101
|
Dextrose 10% drink is superior to sodium-dextrose drink in increasing blood glucose and sprint speed in soccer players: A double-blinded randomized crossover trial study. Sci Sports 2022. [DOI: 10.1016/j.scispo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Chiarello E, Di Nunzio M, Picone G, Antonelli G, Capozzi F, Bordoni A. Insight on Glucose and Fructose Absorption and Relevance in the Enterocyte Milieu. Nutrients 2022; 14:517. [PMID: 35276876 PMCID: PMC8839622 DOI: 10.3390/nu14030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although epidemiological studies indicate a strong correlation between high sugar intake and metabolic diseases, the biological mechanisms underlying this link are still controversial. To further examine the modification and crosstalk occurring in enterocyte metabolism during sugar absorption, in this study we evaluate the diffusion and intestinal metabolism of glucose, fructose and sucrose, which were supplemented in equimolar concentration to Caco-2 cells grown on polyester membrane inserts. At different time points after supplementation, changes in metabolite concentration were evaluated in the apical and basolateral chambers by nuclear magnetic resonance (NMR) and gas-chromatography (GC). Sucrose was only minimally hydrolyzed by Caco-2 cells. Upon supplementation, we observed a faster uptake of fructose than glucose, the pentose sugar being also faster catabolized. Monosaccharide absorption was concomitant to the synthesis/transport of other metabolites, which occurred differently in glucose and fructose supplemented cells. Our results confirm the prominent role of intestinal cells in fructose metabolism and clearance after absorption, representing a further step forward in the understanding of the role of dietary sugars. Future research, including targeted analysis on specific transporters/enzymes and the use of labeled substrates, will be helpful to confirm the present results and their interpretation.
Collapse
Affiliation(s)
- Elena Chiarello
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (E.C.); (G.P.); (G.A.); (F.C.)
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, via Celoria 2, 20133 Milan, Italy;
| | - Gianfranco Picone
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (E.C.); (G.P.); (G.A.); (F.C.)
| | - Giorgia Antonelli
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (E.C.); (G.P.); (G.A.); (F.C.)
| | - Francesco Capozzi
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (E.C.); (G.P.); (G.A.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (E.C.); (G.P.); (G.A.); (F.C.)
- Interdepartmental Centre for Industrial Agri-Food Research (CIRI), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
103
|
Xenogeneic-Free Human Intestinal Organoids for Assessing Intestinal Nutrient Absorption. Nutrients 2022; 14:nu14030438. [PMID: 35276796 PMCID: PMC8838315 DOI: 10.3390/nu14030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Since many nutrients, including the three major ones of glucose, dipeptides, and cholesterol, are mainly absorbed in the small intestine, the assessment of their effects on intestinal tissue is important for the study of food absorption. However, cultured intestinal cell lines, such as Caco-2 cells, or animal models, which differ from normal human physiological conditions, are generally used for the evaluation of intestinal absorption and digestion. Therefore, it is necessary to develop an alternative in vitro method for more accurate analyses. In this study, we demonstrate inhibitory effects on nutrient absorption through nutrient transporters using three-dimensional xenogeneic-free human intestinal organoids (XF-HIOs), with characteristics of the human intestine, as we previously reported. We first show that the organoids absorbed glucose, dipeptide, and cholesterol in a transporter-dependent manner. Next, we examine the inhibitory effect of natural ingredients on the absorption of glucose and cholesterol. We reveal that glucose absorption was suppressed by epicatechin gallate or nobiletin, normally found in green tea catechin or citrus fruits, respectively. In comparison, cholesterol absorption was not inhibited by luteolin and quercetin, contained in some vegetables. Our findings highlight the usefulness of screening for the absorption of functional food substances using XF-HIOs.
Collapse
|
104
|
Babaei-Jadidi R, Kashfi H, Alelwani W, Karimi Bakhtiari A, Kattan SW, Mansouri OA, Mukherjee A, Lobo DN, Nateri AS. Anti-miR-135/SPOCK1 axis antagonizes the influence of metabolism on drug response in intestinal/colon tumour organoids. Oncogenesis 2022; 11:4. [PMID: 35046388 PMCID: PMC8770633 DOI: 10.1038/s41389-021-00376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Little is known about the role of microRNAs (miRNAs) in rewiring the metabolism within tumours and adjacent non-tumour bearing normal tissue and their potential in cancer therapy. This study aimed to investigate the relationship between deregulated miRNAs and metabolic components in murine duodenal polyps and non-polyp-derived organoids (mPOs and mNPOs) from a double-mutant ApcMinFbxw7∆G mouse model of intestinal/colorectal cancer (CRC). We analysed the expression of 373 miRNAs and 12 deregulated metabolic genes in mPOs and mNPOs. Our findings revealed miR-135b might target Spock1. Upregulation of SPOCK1 correlated with advanced stages of CRCs. Knockdown of miR-135b decreased the expression level of SPOCK1, glucose consumption and lactic secretion in CRC patient-derived tumours organoids (CRC tPDOs). Increased SPOCK1 induced by miR-135b overexpression promoted the Warburg effect and consequently antitumour effect of 5-fluorouracil. Thus, combination with miR-135b antisense nucleotides may represent a novel strategy to sensitise CRC to the chemo-reagent based treatment.
Collapse
Affiliation(s)
- Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Hossein Kashfi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ashkan Karimi Bakhtiari
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Shahad W Kattan
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Omniah A Mansouri
- Department of Biology, University of Jeddah, College of Science, Jeddah, 21959, Saudi Arabia
| | - Abhik Mukherjee
- Histopathology, BioDiscovery Institute, School of Medicine, University of Nottingham, NG7 2UH, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Nottingham Digestive Diseases Centre, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
105
|
Gromova LV, Polozov AS, Savochkina EV, Alekseeva AS, Dmitrieva YV, Kornyushin OV, Gruzdkov AA. Effect of Type 2 Diabetes and Impaired Glucose Tolerance on Digestive Enzymes and Glucose Absorption in the Small Intestine of Young Rats. Nutrients 2022; 14:nu14020385. [PMID: 35057569 PMCID: PMC8779211 DOI: 10.3390/nu14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Alexandr S. Polozov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Elizaveta V. Savochkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Oleg V. Kornyushin
- Almazov National Medical Research Center, Ministry of Health of the Russian Federation, 2 Akkuratova Str., 197341 Saint-Petersburg, Russia;
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
- Correspondence: ; Tel.: +7-960-276-3000
| |
Collapse
|
106
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
107
|
Meng Q, Culnan DM, Ahmed T, Sun M, Cooney RN. Roux-en-Y gastric bypass alters intestinal glucose transport in the obese Zucker rat. Front Endocrinol (Lausanne) 2022; 13:901984. [PMID: 36034439 PMCID: PMC9405183 DOI: 10.3389/fendo.2022.901984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract plays a major role in regulating glucose homeostasis and gut endocrine function. The current study examines the effects of Roux-en-Y gastric bypass (RYGB) on intestinal GLP-1, glucose transporter expression and function in the obese Zucker rat (ZR). METHODS Two groups of ZRs were studied: RYGB and sham surgery pair-fed (PF) fed rats. Body weight and food intake were measured daily. On post-operative day (POD) 21, an oral glucose test (OGT) was performed, basal and 30-minute plasma, portal venous glucose and glucagon-like peptide-1 (GLP-1) levels were measured. In separate ZRs, the biliopancreatic, Roux limb (Roux) and common channel (CC) intestinal segments were harvested on POD 21. RESULTS Body weight was decreased in the RYGB group. Basal and 30-minute OGT plasma and portal glucose levels were decreased after RYGB. Basal plasma GLP-1 levels were similar, while a 4.5-fold increase in GLP-1 level was observed in 30-minute after RYGB (vs. PF). The increase in basal and 30-minute portal venous GLP-1 levels after RYGB were accompanied by increased mRNA expressions of proglucagon and PC 1/3, GPR119 protein in the Roux and CC segments. mRNA and protein levels of FFAR2/3 were increased in Roux segment. RYGB decreased brush border glucose transport, transporter proteins (SGLT1 and GLUT2) and mRNA levels of Tas1R1/Tas1R3 and α-gustducin in the Roux and CC segments. CONCLUSIONS Reductions in intestinal glucose transport and enhanced post-prandial GLP-1 release were associated with increases in GRP119 and FFAR2/3 after RYGB in the ZR model. Post-RYGB reductions in the regulation of intestinal glucose transport and L cell receptors regulating GLP-1 secretion represent potential mechanisms for improved glycemic control.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Derek M. Culnan
- Burn and Reconstructive Centers of America, Jackson, MS, United States
| | - Tamer Ahmed
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
| | - Mingjie Sun
- Department of Surgery, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Robert N. Cooney
- Department of Surgery, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Robert N. Cooney,
| |
Collapse
|
108
|
Structural basis of the selective sugar transport in sodium-glucose cotransporters. J Mol Biol 2022; 434:167464. [DOI: 10.1016/j.jmb.2022.167464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
109
|
Rodrigues DB, Marques MC, Hacke A, Loubet Filho PS, Cazarin CBB, Mariutti LRB. Trust your gut: Bioavailability and bioaccessibility of dietary compounds. Curr Res Food Sci 2022; 5:228-233. [PMID: 35106487 PMCID: PMC8787780 DOI: 10.1016/j.crfs.2022.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/26/2022] Open
|
110
|
Xiao T, Zeng J, Qiu L, Wang R, Li N, Deng Z, Zheng L. Combining in silico and in vitro approaches to identify endogenous hypoglycemic peptides from human milk. Food Funct 2022; 13:2899-2912. [DOI: 10.1039/d1fo03537a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potential endogenous hypoglycemic peptides derived from breast milk were screened by in silico approaches against intestinal glucose absorption- and metabolism-related membrane proteins (i.e., SGLT1, ATPase, and GPR40), and their inhibitory...
Collapse
|
111
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
112
|
Zhang M, Yang H, Yang E, Li J, Dong L. Berberine Decreases Intestinal GLUT2 Translocation and Reduces Intestinal Glucose Absorption in Mice. Int J Mol Sci 2021; 23:327. [PMID: 35008753 PMCID: PMC8745600 DOI: 10.3390/ijms23010327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Postprandial hyperglycemia is an important causative factor of type 2 diabetes mellitus, and permanent localization of intestinal GLUT2 in the brush border membrane is an important reason of postprandial hyperglycemia. Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose, but how berberine lowers postprandial blood glucose is still elusive. Here, we investigated the effect of berberine on intestinal glucose transporter 2 (GLUT2) translocation and intestinal glucose absorption in type 2 diabetes mouse model. Type 2 diabetes was induced by feeding of a high-fat diet and injection of streptozotocin and diabetic mice were treated with berberine for 6 weeks. The effects of berberine on intestinal glucose transport and GLUT2 translocation were accessed in isolated intestines and intestinal epithelial cells (IEC-6), respectively. We found that berberine treatment improved glucose tolerance and systemic insulin sensitivity in diabetic mice. Furthermore, berberine decreased intestinal glucose transport and inhibited GLUT2 translocation from cytoplasm to brush border membrane in intestinal epithelial cells. Mechanistically, berberine inhibited intestinal insulin-like growth factor 1 (IGF-1R) phosphorylation and thus reduced localization of PLC-β2 in the membrane, leading to decreased GLUT2 translocation. These results suggest that berberine reduces intestinal glucose absorption through inhibiting IGF-1R-PLC-β2-GLUT2 signal pathway.
Collapse
Affiliation(s)
| | | | | | | | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Military Medical University, Xi’an 710032, China; (M.Z.); (H.Y.); (E.Y.); (J.L.)
| |
Collapse
|
113
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
114
|
Wurster JI, Peterson RL, Brown CE, Penumutchu S, Guzior DV, Neugebauer K, Sano WH, Sebastian MM, Quinn RA, Belenky P. Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Rep 2021; 37:110113. [PMID: 34910917 PMCID: PMC8722030 DOI: 10.1016/j.celrep.2021.110113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
It is well established in the microbiome field that antibiotic (ATB) use and metabolic disease both impact the structure and function of the gut microbiome. But how host and microbial metabolism interacts with ATB susceptibility to affect the resulting dysbiosis remains poorly understood. In a streptozotocin-induced model of hyperglycemia (HG), we use a combined metagenomic, metatranscriptomic, and metabolomic approach to profile changes in microbiome taxonomic composition, transcriptional activity, and metabolite abundance both pre- and post-ATB challenge. We find that HG impacts both microbiome structure and metabolism, ultimately increasing susceptibility to amoxicillin. HG exacerbates drug-induced dysbiosis and increases both phosphotransferase system activity and energy catabolism compared to controls. Finally, HG and ATB co-treatment increases pathogen susceptibility and reduces survival in a Salmonella enterica infection model. Our data demonstrate that induced HG is sufficient to modify the cecal metabolite pool, worsen the severity of ATB dysbiosis, and decrease colonization resistance.
Collapse
Affiliation(s)
- Jenna I Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Rachel L Peterson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Claire E Brown
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA
| | - Douglas V Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kerri Neugebauer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - William H Sano
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02906, USA.
| |
Collapse
|
115
|
Chen P, Chen F, Lei J, Zhou B. Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food Funct 2021; 12:11938-11955. [PMID: 34747418 DOI: 10.1039/d1fo02440j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urolithin B (Uro B), one of the major subcategories of urolithins (microbial metabolites) found in various tissues after ellagitannin consumption, has been demonstrated to possess antioxidant and anti-inflammatory effects. The current research mainly focused on the ameliorative effect of Uro B on intestinal immunity function and exploring the potential mechanisms of its protective role in aging mice induced by D-galactose (D-gal). In the current research, we assessed the ameliorative effects of Uro B on inflammatory injury induced by lipopolysaccharides in HT29 cells. The D-gal-induced accelerated aging model in vivo demonstrated that Uro B could elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and total anti-oxidation capability, decrease malondialdehyde content, regulate the levels of inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-4, and IL-1β) in the small intestine, and reshape the composition of gut microbiota and decrease the intestinal barrier injury in aging mice. Furthermore, Uro B inhibited the expression of TLR4, IRAK4, TRAF6, IKK-β, NF-κB p65, and HMGB1 in the small intestine. Therefore, these findings indicated that Uro B effectively weakened the injury to the small intestine and ameliorated intestinal immunity function through the downregulation of the HMGB1-TLR4-NF-κB pathway in aging mice. Uro B could be considered a healthcare product to prevent diseases associated with an aging immune system.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Benhong Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China. .,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
116
|
Bordier V, Teysseire F, Schlotterbeck G, Senner F, Beglinger C, Meyer-Gerspach AC, Wölnerhanssen BK. Effect of a Chronic Intake of the Natural Sweeteners Xylitol and Erythritol on Glucose Absorption in Humans with Obesity. Nutrients 2021; 13:nu13113950. [PMID: 34836205 PMCID: PMC8618859 DOI: 10.3390/nu13113950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with obesity, accelerated nutrients absorption is observed. Xylitol and erythritol are of interest as alternative sweeteners, and it has been shown in rodent models that their acute ingestion reduces intestinal glucose absorption. This study aims to investigate whether a chronic intake of xylitol and erythritol impacts glucose absorption in humans with obesity. Forty-six participants were randomized to take either 8 g of xylitol or 12 g of erythritol three times a day for five to seven weeks, or to be part of the control group (no substance). Before and after the intervention, intestinal glucose absorption was assessed during an oral glucose tolerance test with 3-Ortho-methyl-glucose (3-OMG). The effect of xylitol or erythritol intake on the area under the curve for 3-OMG concentration was not significant. Neither the time (pre or post intervention), nor the group (control, xylitol, or erythritol), nor the time-by-group interaction effects were significant (p = 0.829, p = 0.821, and p = 0.572, respectively). Therefore, our results show that a chronic intake of the natural sweeteners xylitol and erythritol does not affect intestinal glucose absorption in humans with obesity.
Collapse
Affiliation(s)
- Valentine Bordier
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Fabienne Teysseire
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Götz Schlotterbeck
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Frank Senner
- Institute for Chemistry and Bioanalytics, School of Life Science, FHNW University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland; (G.S.); (F.S.)
| | - Christoph Beglinger
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Anne Christin Meyer-Gerspach
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd. at St. Claraspital, 4002 Basel, Switzerland; (V.B.); (F.T.); (C.B.)
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
- Correspondence: (A.C.M.-G.); (B.K.W.); Tel.: +41-61-685-85-85 (A.C.M.-G. & B.K.W.)
| |
Collapse
|
117
|
Fiorentino TV, Suraci E, De Vito F, Cimellaro A, Hribal ML, Sciacqua A, Andreozzi F, Luzza F, Sesti G. One-hour post-load hyperglycemia combined with HbA1c identifies individuals with augmented duodenal levels of sodium/glucose co-transporter 1. Diabetes Res Clin Pract 2021; 181:109094. [PMID: 34662689 DOI: 10.1016/j.diabres.2021.109094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
AIMS Individuals with HbA1c-defined prediabetes (HbA1c 5.7-6.4%) and 1-hour post-load plasma glucose (1hPG) ≥ 155 mg/dl have an increased risk to develop type 2 diabetes (T2DM). T2DM is associated with a higher intestinal expression of sodium/glucose co-transporter 1 (SGLT-1) and glucose transporter 2 (GLUT-2). It is currently unsettled whether HbA1c-defined dysglycemic conditions combined to 1hPG ≥ 155 mg/dl are associated with changes in SGLT-1 and GLUT-2 duodenal abundance. METHODS SGLT-1 and GLUT-2 protein levels were assessed by western blot on duodenal mucosa biopsies of 57 individuals underwent an upper gastrointestinal endoscopy. RESULTS Compared with the normal group (HbA1c < 5.7%), individuals with HbA1c-defined pre-diabetes and diabetes exhibit no significant change in duodenal SGLT-1 abundance. Conversely, duodenal GLUT-2 levels were progressively increased in subjects with prediabetes and diabetes. Stratifying participants according to HbA1c and 1hPG we found that amongst subjects with HbA1c-defined normal or prediabetes condition those having 1hPG ≥ 155 mg/dl displayed higher duodenal levels of SGLT-1 as compared to their counterparts with 1hPG < 155 mg/dl; in contrast to GLUT-2 levels, which were similar between normal and with prediabetes subjects, regardless of 1hPG value. CONCLUSION A value of 1hPG ≥ 155 mg/dl may identify a subset of individuals within HbA1c-defined glycemic categories having a higher duodenal abundance of SGLT-1.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonio Cimellaro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome 00189, Italy.
| |
Collapse
|
118
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
119
|
Ohlsson B. Theories behind the effect of starch‑ and sucrose‑reduced diets on gastrointestinal symptoms in irritable bowel syndrome (Review). Mol Med Rep 2021; 24:732. [PMID: 34414452 PMCID: PMC8404103 DOI: 10.3892/mmr.2021.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Increased amounts of starch and sugar have been added to the diet in the Western world during the last decades. Undigested carbohydrates lead to bacterial fermentation and gas production with diffusion of water, causing abdominal bloating, pain and diarrhea. Therefore, dietary advice is the first line of treatment of irritable bowel syndrome (IBS), a disease characterized by abdominal pain and altered bowel habits without any organic findings. Recently, a diet with a reduction of starch and sucrose led to a marked effect on gastrointestinal (GI) symptoms. The mechanism is unknown, but three possible mechanisms are presented in the present review. First, functional variants of the enzyme sucrase‑isomaltase (SI) have been described in IBS. A subgroup of patients with IBS may thus suffer from partial SI deficiency with reduced digestion of starch and sucrose. Second, fructose absorption is less efficient than glucose absorption, which may lead to a physiological fructose malabsorption when ingesting high amounts of sucrose. A third mechanism is that high‑sugar diets causing hyperglycemia, hyperinsulinemia and weight gain have led to painful neuropathy in animal models; whereas, improved metabolic control in humans has led to improvement of neuropathy. Starch‑ and sucrose‑reduced diets lead to decreased levels of C‑peptide, insulin, gastric inhibitory peptide, leptin and weight reduction. These metabolic changes may reduce the excitability of the hypersensitive nervous system often found in IBS and, thereby, lead to the reduced symptoms found after the diet. In conclusion, further studies are needed to investigate the pathophysiology behind development of symptoms after starch and sucrose intake, and the mechanisms behind symptom relief after reduced intake.
Collapse
Affiliation(s)
- Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
120
|
Vrhovac Madunić I, Karin-Kujundžić V, Madunić J, Šola IM, Šerman L. Endometrial Glucose Transporters in Health and Disease. Front Cell Dev Biol 2021; 9:703671. [PMID: 34552924 PMCID: PMC8450505 DOI: 10.3389/fcell.2021.703671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pregnancy loss is a frequent occurrence during the peri-implantation period, when there is high glucose demand for embryonic development and endometrial decidualization. Glucose is among the most essential uterine fluid components required for those processes. Numerous studies associate abnormal glucose metabolism in the endometrium with a higher risk of adverse pregnancy outcomes. The endometrium is incapable of synthesizing glucose, which thus must be delivered into the uterine lumen by glucose transporters (GLUTs) and/or the sodium-dependent glucose transporter 1 (SGLT1). Among the 26 glucose transporters (14 GLUTs and 12 SGLTs) described, 10 (9 GLUTs and SGLT1) are expressed in rodents and 8 (7 GLUTs and SGLT1) in the human uterus. This review summarizes present knowledge on the most studied glucose transporters in the uterine endometrium (GLUT1, GLUT3, GLUT4, and GLUT8), whose data regarding function and regulation are still lacking. We present the recently discovered SGLT1 in the mouse and human endometrium, responsible for controlling glycogen accumulation essential for embryo implantation. Moreover, we describe the epigenetic regulation of endometrial GLUTs, as well as signaling pathways included in uterine GLUT’s expression. Further investigation of the GLUTs function in different endometrial cells is of high importance, as numerous glucose transporters are associated with infertility, polycystic ovary syndrome, and gestational diabetes.
Collapse
Affiliation(s)
- Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valentina Karin-Kujundžić
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Madunić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ida Marija Šola
- Department of Gynecology and Obstetrics, Sisters of Charity University Hospital, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
121
|
|
122
|
Carbohydrate hastens hypervolemia achieved through ingestion of aqueous sodium solution in resting euhydrated humans. Eur J Appl Physiol 2021; 121:3527-3537. [PMID: 34537876 DOI: 10.1007/s00421-021-04788-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Ingesting beverages containing a high concentration of sodium under euhydrated conditions induces hypervolemia. Because carbohydrate can enhance interstitial fluid absorption via the sodium-glucose cotransporter and insulin-dependent renal sodium reabsorption, adding carbohydrate to high-sodium beverages may augment the hypervolemic response. METHODS To test this hypothesis, we had nine healthy young males ingest 1087 ± 82 mL (16-17 mL per kg body weight) of water or aqueous solution containing 0.7% NaCl, 0.7% NaCl + 6% dextrin, 0.9% NaCl, or 0.9% NaCl + 6% dextrin under euhydrated conditions. Each drink was divided into six equal volumes and ingested at 10-min intervals. During each trial, participants remained resting for 150 min. Measurements were made at baseline and every 30 min thereafter. RESULTS Plasma osmolality decreased with water ingestion (P ≤ 0.023), which increased urine volume such that there was no elevation in plasma volume from baseline (P ≥ 0.059). The reduction in plasma osmolality did not occur with ingestion of solution containing 0.7% or 0.9% NaCl (P ≥ 0.051). Consequently, urine volume was 176-288 mL smaller than after water ingestion and resulted in plasma volume expansion at 60 min and later times (P ≤ 0.042). In addition, net fluid balance was 211-329 mL greater than after water ingestion (P ≤ 0.028). Adding 6% dextrin to 0.7% or 0.9% NaCl solution resulted in plasma volume expansion within as little as 30 min (P ≤ 0.026), though the magnitudes of the increases in plasma volume were unaffected (P ≥ 0.148). CONCLUSION Dextrin mediates an earlier hypervolemic response associated with ingestion of high-sodium solution in resting euhydrated young men. (247/250 words).
Collapse
|
123
|
Zakłos-Szyda M, Pietrzyk N, Kowalska-Baron A, Nowak A, Chałaśkiewicz K, Ratajewski M, Budryn G, Koziołkiewicz M. Phenolics-Rich Extracts of Dietary Plants as Regulators of Fructose Uptake in Caco-2 Cells via GLUT5 Involvement. Molecules 2021; 26:4745. [PMID: 34443333 PMCID: PMC8401051 DOI: 10.3390/molecules26164745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
The latest data link the chronic consumption of large amounts of fructose present in food with the generation of hypertension and disturbances in carbohydrate and lipid metabolism, which promote the development of obesity, non-alcoholic fatty liver disease, insulin resistance, and type 2 diabetes. This effect is possible after fructose is absorbed by the small intestine cells and, to a lesser extent, by hepatocytes. Fructose transport is dependent on proteins from the family of glucose transporters (GLUTs), among which GLUT5 selectively absorbs fructose from the intestine. In this study, we examined the effect of four phenolic-rich extracts obtained from A. graveolens, B. juncea, and M. chamomilla on fructose uptake by Caco-2 cells. Extracts from B. juncea and M. chamomilla most effectively reduced fluorescent fructose analogue (NBDF) accumulation in Caco-2, as well as downregulated GLUT5 protein levels. These preparations were able to decrease the mRNA level of genes encoding transcription factors regulating GLUT5 expression-thioredoxin-interacting protein (TXNIP) and carbohydrate-responsive element-binding protein (ChREBP). Active extracts contained large amounts of apigenin and flavonols. The molecular docking simulation suggested that some of identified phenolic constituents can play an important role in the inhibition of GLUT5-mediated fructose transport.
Collapse
Affiliation(s)
- Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Nina Pietrzyk
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Agnieszka Kowalska-Baron
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland;
| | - Katarzyna Chałaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| | - Marcin Ratajewski
- Institute of Medical Biology, Laboratory of Epigenetics, Polish Academy of Sciences, Tylna 3a, 90-364 Łódź, Poland;
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland;
| | - Maria Koziołkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (N.P.); (K.C.); (M.K.)
| |
Collapse
|
124
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|
125
|
Jang HR, Lee HY. Mechanisms linking gut microbial metabolites to insulin resistance. World J Diabetes 2021; 12:730-744. [PMID: 34168724 PMCID: PMC8192250 DOI: 10.4239/wjd.v12.i6.730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is the rate-limiting step in the development of metabolic diseases, including type 2 diabetes. The gut microbiota has been implicated in host energy metabolism and metabolic diseases and is recognized as a quantitatively important organelle in host metabolism, as the human gut harbors 10 trillion bacterial cells. Gut microbiota break down various nutrients and produce metabolites that play fundamental roles in host metabolism and aid in the identification of possible therapeutic targets for metabolic diseases. Therefore, understanding the various effects of bacterial metabolites in the development of insulin resistance is critical. Here, we review the mechanisms linking gut microbial metabolites to insulin resistance in various insulin-responsive tissues.
Collapse
Affiliation(s)
- Hye Rim Jang
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Hui-Young Lee
- Laboratory of Mitochondrial and Metabolic Diseases, Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon 21936, South Korea
| |
Collapse
|
126
|
The Hormetic Effect of Metformin: "Less Is More"? Int J Mol Sci 2021; 22:ijms22126297. [PMID: 34208371 PMCID: PMC8231127 DOI: 10.3390/ijms22126297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5′-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.
Collapse
|
127
|
Blockade of fructose transporter protein GLUT5 inhibits proliferation of colon cancer cells: proof of concept for a new class of anti-tumor therapeutics. Pharmacol Rep 2021; 73:939-945. [PMID: 34052986 PMCID: PMC8180478 DOI: 10.1007/s43440-021-00281-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Background Despite the fact that colorectal cancer (CRC) is one of the most commonly diagnosed cancers in men and women, its current treatment remains unsatisfactory and therefore novel studies proposing new approaches are necessary. A high sugar diet is believed to promote carcinogenesis. Fructose is absorbed from the gastrointestinal tract by members of the glucose transporter family—GLUT. The aim of the study was to characterize the expression of GLUT5 at mRNA level in CRC patients. Moreover, our goal was to elucidate the molecular role of GLUT5 in CRC and assess whether GLUT5 inhibitor may affect the viability of colon cancer cells. Methods The expression of GLUT5 at mRNA level was characterized based on 30 samples from resected colorectal cancers and 30 healthy colonic mucosa specimens from surgical margins. The inhibitory effect of N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSBNA) was assessed on a colon cancer cell line, HT-29, and normal colon epithelium cells—CCD 841 CoN Cells. Results GLUT5 expression was found in 96.7% of cancer specimens and only in 53.3% of healthy mucosa fragments. In cancer tissue, real-time PCR analysis showed almost 2, fivefold (p< 0.001) increase of GLUT5 mRNA expression level compared with the healthy intestinal mucosa. GLUT5 inhibitor, MSNBA (10 µM) significantly decreased the viability of colon cancer cells, while barely affected the viability of normal colon epithelium cells. Conclusions Our study suggests that a strong focus should be put on GLUT5 and its inhibitors for both diagnostic and therapeutic purposes in CRC.
Collapse
|
128
|
Miyamoto K, Suzuki K, Ohtaki H, Nakamura M, Yamaga H, Yagi M, Honda K, Hayashi M, Dohi K. A novel mouse model of heatstroke accounting for ambient temperature and relative humidity. J Intensive Care 2021; 9:35. [PMID: 33863391 PMCID: PMC8052643 DOI: 10.1186/s40560-021-00546-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.
Collapse
Affiliation(s)
- Kazuyuki Miyamoto
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan. .,Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| | - Keisuke Suzuki
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Hirokazu Ohtaki
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Motoyasu Nakamura
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Hiroki Yamaga
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Masaharu Yagi
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Munetaka Hayashi
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kenji Dohi
- Department of Emergency, Critical Care and Disaster Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| |
Collapse
|
129
|
Ito J, Nogami M, Morita Y, Sakaguchi K, Komada H, Hirota Y, Sugawara K, Tamori Y, Zeng F, Murakami T, Ogawa W. Dose-dependent accumulation of glucose in the intestinal wall and lumen induced by metformin as revealed by 18 F-labelled fluorodeoxyglucose positron emission tomography-MRI. Diabetes Obes Metab 2021; 23:692-699. [PMID: 33236523 DOI: 10.1111/dom.14262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate the relationships between various clinical variables and the metformin-induced accumulation of fluorodeoxyglucose (FDG) in the intestine, with distinction between the intestinal wall and lumen, in individuals with type 2 diabetes who were receiving metformin treatment and underwent 18 F-labelled FDG ([18 F]FDG) positron emission tomography (PET)-MRI. MATERIALS AND METHODS We evaluated intestinal accumulation of [18 F]FDG with both subjective (a five-point visual scale determined by two experienced radiologists) and objective analyses (measurement of the maximum standardized uptake value [SUVmax ]) in 26 individuals with type 2 diabetes who were receiving metformin and underwent [18 F]FDG PET-MRI. [18 F]FDG accumulation within the intestinal wall was discriminated from that in the lumen on the basis of SUVmax . RESULTS SUVmax for the large intestine was correlated with blood glucose level (BG) and metformin dose, but not with age, body mass index, HbA1c level or estimated glomerular filtration rate (eGFR). SUVmax for the small intestine was not correlated with any of these variables. Visual scale analysis yielded essentially similar results. Metformin dose and eGFR were correlated with SUVmax for the wall and lumen of the large intestine, whereas BG was correlated with that for the wall. Multivariable analysis identified metformin dose as an explanatory factor for SUVmax in the wall and lumen of the large intestine after adjustment for potential confounders including BG and eGFR. CONCLUSIONS Metformin dose is an independent determinant of [18 F]FDG accumulation in the wall and lumen of the large intestine in individuals treated with this drug.
Collapse
Affiliation(s)
- Jun Ito
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Munenobu Nogami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Morita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuhiko Sakaguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hisako Komada
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yushi Hirota
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenji Sugawara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshikazu Tamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Creative Health Promotion, Department of Social/Community Medicine and Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Feibi Zeng
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
130
|
Kulkarni CP, Thevelein JM, Luyten W. Characterization of SGLT1-mediated glucose transport in Caco-2 cell monolayers, and absence of its regulation by sugar or epinephrine. Eur J Pharmacol 2021; 897:173925. [PMID: 33545159 DOI: 10.1016/j.ejphar.2021.173925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Caco-2 cells are increasingly used to study the absorption of drugs and nutrients, including D-glucose, an important nutrient that mainly gets absorbed from the intestine by the sodium/glucose cotransporter 1 (SGLT1). However, disadvantages of Caco-2 cells for such studies have been reported, e.g., D-glucose cannot elicit translocation of the intracellular pool of SGLT1 to the apical membrane, the origin of the cells affects glucose uptake, and Caco-2 cells exhibit heterogeneity. This study aimed to characterize SGLT1-mediated glucose transport across Caco-2 cell monolayers. We found that at lower glucose concentrations (5 mM) SGLT1 contributes more to total glucose transport than at higher (10 mM) glucose concentrations, suggesting contributions by another transporter at higher glucose concentrations. This contrasts with the in vivo situation, where SGLT1 dominant glucose transporter at all glucose concentrations. We also tested whether known regulators like sugars or catecholamines can stimulate glucose transport across Caco-2 cell monolayers. Neither epinephrine nor 2-deoxy-D-glucose could stimulate glucose transport. Moreover, the epinephrine could not induce accumulation of cyclic adenosine monophosphate (cAMP) in Caco-2 cells, indicating the absence of a functional β2-adrenoceptor in Caco-2 cells, which could explain the lack of epinephrine effect on glucose transport. Also, Caco-2 cells may lack some kinases required for increased SGLT1 transport. Overall, SGLT1-mediated glucose transport and its regulation in Caco-2 cells differ from that in vivo, and caution is advised when extrapolating glucose transport results obtained with this model to the in vivo situation.
Collapse
Affiliation(s)
- Chetan P Kulkarni
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium; Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Flanders, Belgium.
| | - Johan M Thevelein
- Center for Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium; Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
| | - Walter Luyten
- Functional Genomics and Proteomics Research Unit, Department of Biology, KU Leuven, Leuven, Flanders, Belgium
| |
Collapse
|
131
|
Hong JH, Kim DH, Lee MK. Glucolipotoxicity and GLP-1 secretion. BMJ Open Diabetes Res Care 2021; 9:9/1/e001905. [PMID: 33627316 PMCID: PMC7908300 DOI: 10.1136/bmjdrc-2020-001905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels. RESEARCH DESIGN AND METHODS To investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function. RESULTS Chronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats. CONCLUSION These results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.
Collapse
Affiliation(s)
- Jung-Hee Hong
- Division of Endocrinology & Metabolism, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Dae-Hee Kim
- Division of Cell Therapy, Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Moon-Kyu Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Uijungbu Eulji Medical Center, Eulji University School of Medicine, Uijungbu, South Korea
| |
Collapse
|
132
|
Vega-Rojas LJ, Luzardo-Ocampo I, Mosqueda J, Palmerín-Carreño DM, Escobedo-Reyes A, Blanco-Labra A, Escobar-García K, García-Gasca T. Bioaccessibility and In Vitro Intestinal Permeability of a Recombinant Lectin from Tepary Bean ( Phaseolus acutifolius) Using the Everted Intestine Assay. Int J Mol Sci 2021; 22:1049. [PMID: 33494324 PMCID: PMC7866216 DOI: 10.3390/ijms22031049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
Tepary bean (Phaseolus acutifolius) lectins exhibit differential in vitro and in vivo biological effects, but their gastrointestinal interactions and digestion have not yet been assessed. This work aimed to evaluate the changes of a recombinant Tepary bean lectin (rTBL-1) through an in vitro and ex vivo gastrointestinal process. A polyclonal antibody was developed to selectively detect rTBL-1 by Western blot (WB) and immunohistochemical analysis. Everted gut sac viability was confirmed until 60 min, where protein bioaccessibility, apparent permeability coefficient, and efflux ratio showed rTBL-1 partial digestion and absorption. Immunoblot assays suggested rTBL-1 internalization, since the lectin was detected in the digestible fraction. The immunohistochemical assay detected rTBL-1 presence at the apical side of the small intestine, potentially due to the interaction with the intestinal cell membrane. The in silico interactions between rTBL-1 and some saccharides or derivatives showed high binding affinity to sialic acid (-6.70 kcal/mol) and N-acetylglucosamine (-6.10 kcal/mol). The ultra-high-performance liquid chromatography-electron spray ionization-quantitative time-of-flight coupled to mass spectrometry (UHPLC-ESI-QTOF/MS) analysis showed rTBL-1 presence in the gastric content and the non-digestible fraction after intestinal simulation conditions. The results indicated that rTBL-1 partially resisted the digestive conditions and interacted with the intestinal membrane, whereas its digestion allowed the absorption or internalization of the protein or the derivative peptides. Further purification of digestion samples should be conducted to identify intact rTBL-1 protein and digested peptides to assess their physiological effects.
Collapse
Affiliation(s)
- Lineth Juliana Vega-Rojas
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (L.J.V.-R.); (D.M.P.-C.); (K.E.-G.)
| | - Ivan Luzardo-Ocampo
- Programa de Investigación y Posgrado en Ciencias de los Alimentos, Facultad de Quimica, Universidad Autónoma de Querétaro, Querétaro 76010, Querétaro, Mexico;
| | - Juan Mosqueda
- Laboratorio de Inmunología y Vacunas, Facultad de Ciencias Naturales, Campus Aeropuerto, Universidad Autónoma de Querétaro, Carretera a Chichimequillas, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico;
| | - Dulce María Palmerín-Carreño
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (L.J.V.-R.); (D.M.P.-C.); (K.E.-G.)
| | - Antonio Escobedo-Reyes
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Alejandro Blanco-Labra
- Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Departamento de Biotecnología y, Bioquímica, Irapuato 36821, Guanajuato, Mexico;
| | - Konisgmar Escobar-García
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (L.J.V.-R.); (D.M.P.-C.); (K.E.-G.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (L.J.V.-R.); (D.M.P.-C.); (K.E.-G.)
| |
Collapse
|
133
|
Gu BH, Kim M, Yun CH. Regulation of Gastrointestinal Immunity by Metabolites. Nutrients 2021; 13:nu13010167. [PMID: 33430497 PMCID: PMC7826526 DOI: 10.3390/nu13010167] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract contains multiple types of immune cells that maintain the balance between tolerance and activation at the first line of host defense facing non-self antigens, including dietary antigens, commensal bacteria, and sometimes unexpected pathogens. The maintenance of homeostasis at the gastrointestinal tract requires stringent regulation of immune responses against various environmental conditions. Dietary components can be converted into gut metabolites with unique functional activities through host as well as microbial enzymatic activities. Accumulating evidence demonstrates that gastrointestinal metabolites have significant impacts on the regulation of intestinal immunity and are further integrated into the immune response of distal mucosal tissue. Metabolites, especially those derived from the microbiota, regulate immune cell functions in various ways, including the recognition and activation of cell surface receptors, the control of gene expression by epigenetic regulation, and the integration of cellular metabolism. These mucosal immune regulations are key to understanding the mechanisms underlying the development of gastrointestinal disorders. Here, we review recent advancements in our understanding of the role of gut metabolites in the regulation of gastrointestinal immunity, highlighting the cellular and molecular regulatory mechanisms by macronutrient-derived metabolites.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| |
Collapse
|
134
|
Soták M, Casselbrant A, Rath E, Zietek T, Strömstedt M, Adingupu DD, Karlsson D, Fritsch Fredin M, Ergang P, Pácha J, Batorsky A, Alpers CE, Börgeson E, Hansen PBL, Ericsson A, Björnson Granqvist A, Wallenius V, Fändriks L, Unwin RJ. Intestinal sodium/glucose cotransporter 3 expression is epithelial and downregulated in obesity. Life Sci 2020; 267:118974. [PMID: 33385407 DOI: 10.1016/j.lfs.2020.118974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
AIM We aimed to determine whether the sodium/glucose cotransporter family member SGLT3, a proposed glucose sensor, is expressed in the intestine and/or kidney, and if its expression is altered in mouse models of obesity and in humans before and after weight-loss surgery. MAIN METHODS We used in-situ hybridization and quantitative PCR to determine whether the Sglt3 isoforms 3a and 3b were expressed in the intestine and kidney of C57, leptin-deficient ob/ob, and diabetic BTBR ob/ob mice. Western blotting and immunohistochemistry were also used to assess SGLT3 protein levels in jejunal biopsies from obese patients before and after weight-loss Roux-en-Y gastric bypass surgery (RYGB), and in lean healthy controls. KEY FINDINGS Sglt3a/3b mRNA was detected in the small intestine (duodenum, jejunum and ileum), but not in the large intestine or kidneys of mice. Both isoforms were detected in epithelial cells (confirmed using intestinal organoids). Expression of Sglt3a/3b mRNA in duodenum and jejunum was significantly lower in ob/ob and BTBR ob/ob mice than in normal-weight littermates. Jejunal SGLT3 protein levels in aged obese patients before RYGB were lower than in lean individuals, but substantially upregulated 6 months post-RYGB. SIGNIFICANCE Our study shows that Sglt3a/3b is expressed primarily in epithelial cells of the small intestine in mice. Furthermore, we observed an association between intestinal mRNA Sglt3a/3b expression and obesity in mice, and between jejunal SGLT3 protein levels and obesity in humans. Further studies are required to determine the possible role of SGLT3 in obesity.
Collapse
Affiliation(s)
- Matúš Soták
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| | - Anna Casselbrant
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Maria Strömstedt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Damilola D Adingupu
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Fritsch Fredin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Batorsky
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Sweden
| | - Pernille B L Hansen
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Anette Ericsson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Björnson Granqvist
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert J Unwin
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Renal Medicine, Division of Medicine, University College London, UK
| |
Collapse
|
135
|
Hasan NM, Johnson KF, Yin J, Baetz NW, Fayad L, Sherman V, Blutt SE, Estes MK, Kumbhari V, Zachos NC, Kovbasnjuk O. Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis. Mol Metab 2020; 44:101129. [PMID: 33246140 PMCID: PMC7770968 DOI: 10.1016/j.molmet.2020.101129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Objective The mechanisms behind the efficacy of bariatric surgery (BS) for treating obesity and type 2 diabetes, particularly with respect to the influence of the small bowel, remain poorly understood. In vitro and animal models are suboptimal with respect to their ability to replicate the human intestinal epithelium under conditions induced by obesity. Human enteroids have the potential to accelerate the development of less invasive anti-obesity therapeutics if they can recapitulate the pathophysiology of obesity. Our aim was to determine whether adult stem cell-derived enteroids preserve obesity-characteristic patient-specific abnormalities in carbohydrate absorption and metabolism. Methods We established 24 enteroid lines representing 19 lean, overweight, or morbidly obese patients, including post-BS cases. Dietary glucose absorption and gluconeogenesis in enteroids were measured. The expression of carbohydrate transporters and gluconeogenic enzymes was assessed and a pharmacological approach was used to dissect the specific contribution of each transporter or enzyme to carbohydrate absorption and metabolism, respectively. Results Four phenotypes representing the relationship between patients’ BMI and intestinal dietary sugar absorption were found, suggesting that human enteroids retain obese patient phenotype heterogeneity. Intestinal glucose absorption and gluconeogenesis were significantly elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2, whereas elevated gluconeogenesis was related to increased expression of GLUT5, PEPCK1, and G6Pase. Conclusions Obesity phenotypes preserved in human enteroids provide a mechanistic link to aberrant dietary carbohydrate absorption and metabolism. Enteroids can be used as a preclinical platform to understand the pathophysiology of obesity, study the heterogeneity of obesity mechanisms, and identify novel therapeutics. Human stem cell-derived enteroids preserve the heterogeneity of obesity-related phenotypes. Four phenotypes representing the relationship between patients' BMI and intestinal dietary glucose absorption were found. Glucose absorption and gluconeogenesis were elevated in enteroids from a cohort of obese patients. Elevated glucose absorption was associated with increased expression of SGLT1 and GLUT2 in enteroids. Elevated gluconeogenesis was associated with increased expression of GLUT5, PEPCK1, and G6Pase in enteroids.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli F Johnson
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas W Baetz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Lea Fayad
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Vadim Sherman
- Department of Surgery, Minimally Invasive Bariatric and General Division, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Vivek Kumbhari
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
136
|
Anthocyanin Bioactivity in Obesity and Diabetes: The Essential Role of Glucose Transporters in the Gut and Periphery. Cells 2020; 9:cells9112515. [PMID: 33233708 PMCID: PMC7699863 DOI: 10.3390/cells9112515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity and type-2 diabetes trends continue to worsen in the United States. Dietary anthocyanins (typically provided by berries and other fruits) are reported to have protective effects against both conditions using a variety of experimental research models including animal and human feeding studies. This review highlights studies that explore the biochemical pathways in both tissue and rodent models which could explain clinical improvements noted with anthocyanin consumption. First, the primary mode of intestinal absorption of anthocyanins is through both sGLT1 and GLUT2 glucose transporters. Stronger binding affinities may allow anthocyanins to be more inhibitive to glucose absorption compared to the reverse, where GLUT2 expression may also be affected. Genetic or chemical inhibition of sGLT1 or GLUT2 demonstrate their essential function in anthocyanin absorption across the enterocyte, where the former interacts with a greater variety of anthocyanins but the latter is the major transporter for specific anthocyanin-glycosides. Once absorbed, anthocyanins positively modulate GLUT4 density and function in both skeletal muscle and adipose tissues via the upregulation of AMPK and restoration of insulin sensitivity. Antioxidant properties and phosphodiesterase inhibition by anthocyanins promote both mitochondrial function and density which could be novel targets for dietary management of obesity and its complications.
Collapse
|
137
|
Otto C, Friedrich A, Vrhovac Madunić I, Baumeier C, Schwenk RW, Karaica D, Germer CT, Schürmann A, Sabolić I, Koepsell H. Antidiabetic Effects of a Tripeptide That Decreases Abundance of Na +-d-glucose Cotransporter SGLT1 in the Brush-Border Membrane of the Small Intestine. ACS OMEGA 2020; 5:29127-29139. [PMID: 33225144 PMCID: PMC7675577 DOI: 10.1021/acsomega.0c03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
In enterocytes, protein RS1 (RSC1A1) mediates an increase of glucose absorption after ingestion of glucose-rich food via upregulation of Na+-d-glucose cotransporter SGLT1 in the brush-border membrane (BBM). Whereas RS1 decelerates the exocytotic pathway of vesicles containing SGLT1 at low glucose levels between meals, RS1-mediated deceleration is relieved after ingestion of glucose-rich food. Regulation of SGLT1 is mediated by RS1 domain RS1-Reg, in which Gln-Ser-Pro (QSP) is effective. In contrast to QSP and RS1-Reg, Gln-Glu-Pro (QEP) and RS1-Reg with a serine to glutamate exchange in the QSP motif downregulate the abundance of SGLT1 in the BBM at high intracellular glucose concentrations by about 50%. We investigated whether oral application of QEP improves diabetes in db/db mice and affects the induction of diabetes in New Zealand obese (NZO) mice under glucolipotoxic conditions. After 6-day administration of drinking water containing 5 mM QEP to db/db mice, fasting glucose was decreased, increase of blood glucose in the oral glucose tolerance test was blunted, and insulin sensitivity was increased. When QEP was added for several days to a high fat/high carbohydrate diet that induced diabetes in NZO mice, the increase of random plasma glucose was prevented, accompanied by lower plasma insulin levels. QEP is considered a lead compound for development of new antidiabetic drugs with more rapid cellular uptake. In contrast to SGLT1 inhibitors, QEP-based drugs may be applied in combination with insulin for the treatment of type 1 and type 2 diabetes, decreasing the required insulin amount, and thereby may reduce the risk of hypoglycemia.
Collapse
Affiliation(s)
- Christoph Otto
- Department
of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Alexandra Friedrich
- Institute
of Anatomy and Cell Biology, University
of Würzburg, 97070 Würzburg, Germany
| | - Ivana Vrhovac Madunić
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Christian Baumeier
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Robert W. Schwenk
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Dean Karaica
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Christoph-Thomas Germer
- Department
of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Annette Schürmann
- Department
of Experimental Diabetology, German Institute
of Human Nutrition, 14558 Potsdam-Rehbruecke, Germany
- German
Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ivan Sabolić
- Molecular
Toxicology Unit, Institute for Medical Research
and Occupational Health, 10000 Zagreb, Croatia
| | - Hermann Koepsell
- Institute
of Anatomy and Cell Biology, University
of Würzburg, 97070 Würzburg, Germany
- . Phone: +49-0151 23532479
| |
Collapse
|
138
|
A special issue on glucose transporters in health and disease. Pflugers Arch 2020; 472:1107-1109. [PMID: 32780191 DOI: 10.1007/s00424-020-02442-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 01/08/2023]
|