101
|
He X, Lan H, Jin K, Liu F. Cholesterol in colorectal cancer: an essential but tumorigenic precursor? Front Oncol 2023; 13:1276654. [PMID: 38023258 PMCID: PMC10655112 DOI: 10.3389/fonc.2023.1276654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal human malignancies, and with the growth of societies and lifestyle changes, the rate of people suffering from it increases yearly. Important factors such as genetics, family history, nutrition, lifestyle, smoking, and alcohol can play a significant role in increasing susceptibility to this cancer. On the other hand, the metabolism of several macromolecules is also involved in the fate of tumors and immune cells. The evidence discloses that cholesterol and its metabolism can play a role in the pathogenesis of several cancers because there appears to be an association between cholesterol levels and CRC, and cholesterol-lowering drugs may reduce the risk. Furthermore, changes or mutations of some involved genes in cholesterol metabolism, such as CYP7A1 as well as signaling pathways, such as mitogen-activated protein kinase (MAPK), can play a role in CRC pathogenesis. This review summarized and discussed the role of cholesterol in the pathogenesis of CRC as well as available cholesterol-related therapeutic approaches in CRC.
Collapse
Affiliation(s)
- Xing He
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fanlong Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
102
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
103
|
Zhao T, Zheng H, Xu JJ, Xu YC, Liu LL, Luo Z. MnO 2 nanoparticles and MnSO 4 differentially affected hepatic lipid metabolism through miR-92a/acsl3-dependent de novo lipogenesis in yellow catfish Pelteobagrusfulvidraco. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122416. [PMID: 37598932 DOI: 10.1016/j.envpol.2023.122416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
With the increasing production and use of MnO2 NPs and MnSO4 in various fields, their discharge into the aquatic environment is inevitable, which poses potential threats to aquatic organisms and humans. However, to date, few studies have been conducted to investigate the potential mechanism of the toxicity of MnO2 NPs, and a comprehensive understanding of the differences between this mechanism and the toxicity mechanism of inorganic Mn (MnSO4) is still lacking. Since lipid metabolism-relevant parameters have been widely recognized as novel biomarkers for risk assessment of environmental contaminants, the present study investigated the differential mechanisms of how MnO2 NPs and MnSO4 affect hepatic lipid metabolism in a freshwater fish yellow catfish. Compared to MnSO4, dietary MnO2 NPs caused liver injury, increased hepatic lipid accumulation and induced lipotoxicity, and up-regulated mRNA expression of de novo lipogenic genes. Moreover, MnO2 NPs downregulated the expression of miR-92a and miR-92b-3p, microRNAs involved in regulation of lipid metabolism, in the liver. Mechanistically, we found that acls3, an acetyl-coenzyme A synthetase, is target gene of miR-92a, and miR-92a-acsl3-dependent de novo lipogenesis contributes to lipid accumulation and lipotoxicity induced by MnO2 NPs. Collectively, these findings provided novel insights into mechanism whereby miRNAs mediate nanoparticles- and inorganic Mn-induced hepatic lipotoxicity and changes of lipid metabolism in vertebrates. Our findings also shed new perspective for ecotoxicity and ecological risk of MnO2 NPs and MnSO4 in aquatic environment.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie-Jie Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu-Lu Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
104
|
van Zwol W, Rimbert A, Wolters JC, Smit M, Bloks VW, Kloosterhuis NJ, Huijkman NCA, Koster MH, Tharehalli U, de Neck SM, Bournez C, Fuh MM, Kuipers J, Rajan S, de Bruin A, Ginsberg HN, van Westen GJP, Hussain MM, Scheja L, Heeren J, Zimmerman P, van de Sluis B, Kuivenhoven JA. Loss of hepatic SMLR1 causes hepatosteatosis and protects against atherosclerosis due to decreased hepatic VLDL secretion. Hepatology 2023; 78:1418-1432. [PMID: 36053190 PMCID: PMC10581432 DOI: 10.1002/hep.32709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 ( SMLR1 ), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine. APPROACH AND RESULTS To assess the role of SMLR1 in the liver, we used somatic CRISPR/CRISPR-associated protein 9 gene editing to silence murine Smlr1 in hepatocytes ( Smlr1 -LKO). When fed a chow diet, male and female mice show hepatic steatosis, reduced plasma apolipoprotein B and triglycerides, and reduced VLDL secretion without affecting microsomal triglyceride transfer protein activity. Immunofluorescence studies show that SMLR1 is in the endoplasmic reticulum and Cis-Golgi complex. The loss of hepatic SMLR1 in female mice protects against diet-induced hyperlipidemia and atherosclerosis but causes NASH. On a high-fat, high-cholesterol diet, insulin and glucose tolerance tests did not reveal differences in male Smlr1 -LKO mice versus controls. CONCLUSIONS We propose a role for SMLR1 in the trafficking of VLDL from the endoplasmic reticulum to the Cis-Golgi complex. While this study uncovers SMLR1 as a player in the VLDL assembly, trafficking, and secretion pathway, it also shows that NASH can occur with undisturbed glucose homeostasis and atheroprotection.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Antoine Rimbert
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Justina C. Wolters
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke Smit
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels J. Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicolette C. A. Huijkman
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mirjam H. Koster
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Umesh Tharehalli
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Simon M. de Neck
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Colin Bournez
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marceline M. Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Jeroen Kuipers
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Alain de Bruin
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Gerard J. P. van Westen
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg−Eppendorf, Hamburg, Germany
| | | | - Bart van de Sluis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
105
|
Struwe MA, Scheidig AJ, Clement B. The mitochondrial amidoxime reducing component-from prodrug-activation mechanism to drug-metabolizing enzyme and onward to drug target. J Biol Chem 2023; 299:105306. [PMID: 37778733 PMCID: PMC10637980 DOI: 10.1016/j.jbc.2023.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.
Collapse
Affiliation(s)
- Michel A Struwe
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Axel J Scheidig
- Zoologisches Institut - Strukturbiologie, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| |
Collapse
|
106
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Do Triglyceride-Rich Lipoproteins Equal Low-Density Lipoproteins in Risk of ASCVD? Curr Atheroscler Rep 2023; 25:795-803. [PMID: 37768410 DOI: 10.1007/s11883-023-01153-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Recent large clinical trials have failed to show that triglyceride-rich lipoprotein-lowering therapies decrease the risk of atherosclerotic cardiovascular disease (ASCVD). In this review, we reconcile these findings with evidence showing that elevated levels of triglyceride-rich lipoproteins and the cholesterol they contain, remnant cholesterol, cause ASCVD alongside low-density lipoprotein (LDL) cholesterol. RECENT FINDINGS Results from observational epidemiology, genetic epidemiology, and randomized controlled trials indicate that lowering of remnant cholesterol and LDL cholesterol decrease ASCVD risk by a similar magnitude per 1 mmol/L (39 mg/dL) lower non-high-density lipoprotein cholesterol (remnant cholesterol+LDL cholesterol). Indeed, recent guidelines for ASCVD prevention recommend the use of non-high-density lipoprotein cholesterol instead of LDL cholesterol. Current consensus is moving towards recognizing remnant cholesterol and LDL cholesterols as equals per 1 mmol/L (39 mg/dL) higher levels in the risk assessment of ASCVD; hence, triglyceride-rich lipoprotein-lowering therapies should also lower levels of non-HDL cholesterol to reduce ASCVD risk.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
107
|
Ramirez-Hincapie S, Birk B, Ternes P, Giri V, Zickgraf FM, Haake V, Herold M, Kamp H, Driemert P, Landsiedel R, Richling E, Funk-Weyer D, van Ravenzwaay B. Application of high throughput in vitro metabolomics for hepatotoxicity mode of action characterization and mechanistic-anchored point of departure derivation: a case study with nitrofurantoin. Arch Toxicol 2023; 97:2903-2917. [PMID: 37665362 PMCID: PMC10504224 DOI: 10.1007/s00204-023-03572-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological pathways. In this study, a high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal component analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing adverse outcome pathways and contribute to the development of new ones.
Collapse
Affiliation(s)
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | | | | | | | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Elke Richling
- Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | | |
Collapse
|
108
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
109
|
Pagano S, Bakker SJL, Juillard C, Vossio S, Moreau D, Brandt KJ, Mach F, Dullaart RPF, Vuilleumier N. Antibody against apolipoprotein-A1, non-alcoholic fatty liver disease and cardiovascular risk: a translational study. J Transl Med 2023; 21:694. [PMID: 37798764 PMCID: PMC10552329 DOI: 10.1186/s12967-023-04569-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common liver disease increasing cardiovascular disease (CVD) morbidity and mortality. Autoantibodies against apolipoprotein A-1 (AAA-1) are a possible novel CVD risk factor promoting inflammation and disrupting cellular lipid homeostasis, two prominent pathogenic features of NAFLD. We explored the role of AAA-1 in NAFLD and their association with CVD risk. METHODS HepaRG cells and liver sections from ApoE-/- mice exposed to AAA-1 were used for lipid quantification and conditional protein expression. Randomly selected sera from 312 subjects of the Prevention of Renal and Vascular End-stage Disease (PREVEND) general population cohort were used to measure AAA-1. A Fatty Liver Index (FLI) ≥ 60 and a 10-year Framingham Risk Score (FRS) ≥ 20% were used as proxy of NAFLD and high CVD risk, respectively. RESULTS In-vitro and mouse models showed that AAA-1 increased triglyceride synthesis leading to steatosis, and promoted inflammation and hepatocyte injury. In the 112 PREVEND participants with FLI ≥ 60, AAA-1 were associated with higher FRS, alkaline phosphatase levels, lower HDL cholesterol and tended to display higher FLI values. Univariate linear and logistic regression analyses (LRA) confirmed significant associations between AAA-1, FLI and FRS ≥ 20%, while in adjusted LRA, FLI was the sole independent predictor of FRS ≥ 20% (OR: 1.05, 95%CI 1.01-1.09, P = 0.003). AAA-1 was not an independent FLI predictor. CONCLUSIONS AAA-1 induce a NAFLD-compatible phenotype in vitro and in mice. Intricate associations exist between AAA-1, CVD risk and FLI in the general population. Further work is required to refine the role of AAA-1 in NAFLD and to determine if the AAA-1 association with CVD is affected by hepatic steatosis.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Rue Michel Servet 1, 1211, Geneva, Switzerland.
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland.
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Catherine Juillard
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Stefania Vossio
- School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Karim J Brandt
- Department of Cardiology, University Hospitals of Geneva, Geneva, Switzerland
| | - François Mach
- Department of Cardiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Robin P F Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
110
|
Jackson KG, Way GW, Zeng J, Lipp MK, Zhou H. The Dynamic Role of Endoplasmic Reticulum Stress in Chronic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1389-1399. [PMID: 37028592 PMCID: PMC10548273 DOI: 10.1016/j.ajpath.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Chronic liver disease (CLD) is a major worldwide public health threat, with an estimated prevalence of 1.5 billion individuals with CLD in 2020. Chronic activation of endoplasmic reticulum (ER) stress-related pathways is recognized as substantially contributing to the pathologic progression of CLD. The ER is an intracellular organelle that folds proteins into their correct three-dimensional shapes. ER-associated enzymes and chaperone proteins highly regulate this process. Perturbations in protein folding lead to misfolded or unfolded protein accumulation in the ER lumen, resulting in ER stress and concomitant activation of the unfolded protein response (UPR). The adaptive UPR is a set of signal transduction pathways evolved in mammalian cells that attempts to reestablish ER protein homeostasis by reducing protein load and increasing ER-associated degradation. However, maladaptive UPR responses in CLD occur due to prolonged UPR activation, leading to concomitant inflammation and cell death. This review assesses the current understanding of the cellular and molecular mechanisms that regulate ER stress and the UPR in the progression of various liver diseases and the potential pharmacologic and biological interventions that target the UPR.
Collapse
Affiliation(s)
- Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Grayson W Way
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jing Zeng
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marissa K Lipp
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Central Virginia Veterans Healthcare System, Richmond, Virginia.
| |
Collapse
|
111
|
Karasawa T, Koike A, Terada S. A very high-carbohydrate diet differentially affects whole-body glucose tolerance and hepatic insulin resistance in rats. Nutrition 2023; 114:112113. [PMID: 37441826 DOI: 10.1016/j.nut.2023.112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES This study was performed to assess the effects of long-term intake of a very high carbohydrate (VHCHO) diet (76% of total energy from carbohydrate [CHO]) on whole-body glucose tolerance and hepatic insulin resistance. METHODS AND MATERIALS Male Sprague Dawley rats were fed either a control high-CHO diet (59% total energy from CHO; n = 8) or a VHCHO diet (76% total energy from CHO; n = 8) for 17 wk. At 4, 8, 12, and 16 wk of the dietary intervention, oral glucose tolerance test and homeostasis model assessment of insulin resistance (HOMA-IR) measurements were taken to assess whole-body glucose tolerance and hepatic insulin resistance, respectively. The triacylglycerol concentration in the liver was measured at the end of the 17-wk intervention period. RESULTS The VHCHO diet group showed significantly higher muscle glucose transporter 4 content and a smaller area under the curve for plasma glucose, but not insulin, in the oral glucose tolerance test compared with the control group. On the other hand, the VHCHO diet group had a significantly higher hepatic triacylglycerol concentration and HOMA-IR measurement compared with the control group. The hepatic triacylglycerol concentration was significantly and positively correlated with HOMA-IR. CONCLUSIONS The results of the present study suggest that long-term intake of a VHCHO diet exerts differential effects on whole-body glucose tolerance and hepatic insulin resistance.
Collapse
Affiliation(s)
- Takuya Karasawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Atsuko Koike
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin Terada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
112
|
Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, Zhang X, Wu X. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111474. [PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
Collapse
Affiliation(s)
- Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guangbao Zhang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjian Niu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | | | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
113
|
Kim H, Lee K, Kim JY, Shim JJ, Lim J, Kim JY, Lee JL. Lactobacillus helveticus Isolated from Raw Milk Improves Liver Function, Hepatic Steatosis, and Lipid Metabolism in Non-Alcoholic Fatty Liver Disease Mouse Model. Microorganisms 2023; 11:2466. [PMID: 37894124 PMCID: PMC10609090 DOI: 10.3390/microorganisms11102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Here, we show that Lactiplantibacillus plantarum LP158 (LP158), Lactobacillus helveticus HY7804 (HY7804), and Lacticaseibacillus paracasei LPC226 (LPC226) isolated from raw milk alleviate non-alcoholic fatty acid disease (NAFLD) in a C57BL/6 mouse model. Lactic acid bacteria (LAB) were screened for their ability to inhibit fatty acid accumulation in palmitic acid (PA)-treated HepG2 cells, and three strains were selected based on the results. We also investigated hemolytic activity and antibiotic resistance of the three strains. LP158, HY7804, and LPC226 suppressed expression of mRNA encoding genes related to lipogenesis, and increased expression of genes related to β-oxidation, in a PA-induced HepG2 cell model. Moreover, when LP158, HY7804, and LPC226 were administered at 109 CFU/kg/day for 8 weeks to mice with dietary-induced NAFLD, they all modulated blood biochemistry markers and reduced steatosis in liver tissue. Also, all three strains significantly reduced expression of mRNA encoding lipogenesis genes (Fasn, Acaca, and Srebp-1c) and inflammatory factors (Tnfα and Ccl-2) and fibrosis factors, and increased expression of a β-oxidation gene (Acox1) in the liver. In particular, HY7804 showed the strongest effects both in vitro and in vivo. Therefore, HY7804, LP158, and LPC226 can be proposed as potential supplements that can improve NAFLD through anti-steatosis, anti-inflammatory, and anti-fibrotic effects.
Collapse
Affiliation(s)
- Hyeonji Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Kippeum Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Ju-Yeon Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jae-Jung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Junghyun Lim
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Joo-Yun Kim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| | - Jung-Lyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (H.K.); (K.L.); (J.-Y.K.); (J.-J.S.)
| |
Collapse
|
114
|
Yin X, Li YS, Ye SZ, Zhang T, Zhang YW, Xi Y, Tang HB. Promotion Effect of Coexposure to a High-Fat Diet and Nano-Diethylnitrosamine on the Progression of Fatty Liver Malignant Transformation into Liver Cancer. Int J Mol Sci 2023; 24:14162. [PMID: 37762463 PMCID: PMC10531889 DOI: 10.3390/ijms241814162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Overconsumption of high-fat foods increases the risk of fatty liver disease (FLD) and liver cancer with long pathogenic cycles. It is also known that the intake of the chemical poison nitrosamine and its nanopreparations can promote the development of liver injuries, such as FLD, and hepatic fibrosis, and significantly shorten the formation time of the liver cancer cycle. The present work confirmed that the coexposure of a high-fat diet (HFD) and nano-diethylnitrosamine (nano-DEN) altered the tumor microenvironment and studied the effect of this coexposure on the progression of fatty liver malignant transformation into liver cancer. Gene transcriptomics and immunostaining were used to evaluate the tumor promotion effect of the coexposure in mice. After coexposure treatment, tumor nodules were obviously increased, and inflammation levels were elevated. The liver transcriptomics analysis showed that the expression levels of inflammatory, fatty, and fibrosis-related factors in the coexposed group were increased in comparison with the nano-DEN- and high-fat-alone groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that coexposure aggravated the high expression of genes related to the carcinomatous pathway and accelerated the formation of the tumor microenvironment. The immunohistochemical staining results showed that the coexposure significantly increased the abnormal changes in proteins related to inflammation, proliferation, aging, and hypoxia in mouse liver tissues. The coexposure of high fat and nano-DEN aggravated the process of steatosis and carcinogenesis. In conclusion, the habitual consumption of pickled foods containing nitrosamines in a daily HFD significantly increases the risk of liver pathology lesions progressing from FLD to liver cancer.
Collapse
Affiliation(s)
- Xin Yin
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China; (X.Y.); (Y.-S.L.); (T.Z.); (Y.-W.Z.)
| | - Yu-Sang Li
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China; (X.Y.); (Y.-S.L.); (T.Z.); (Y.-W.Z.)
| | - Sha-Zhou Ye
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 315211, China;
| | - Ting Zhang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China; (X.Y.); (Y.-S.L.); (T.Z.); (Y.-W.Z.)
| | - Yi-Wen Zhang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China; (X.Y.); (Y.-S.L.); (T.Z.); (Y.-W.Z.)
| | - Yang Xi
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 315211, China;
| | - He-Bin Tang
- Lab of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central Minzu University, No. 182, Minyuan Road, Wuhan 430074, China; (X.Y.); (Y.-S.L.); (T.Z.); (Y.-W.Z.)
| |
Collapse
|
115
|
Chiang YP, Li Z, He M, Jones Q, Pan M, Han X, Jiang XC. Sphingomyelin synthase-related protein SMSr is a phosphatidylethanolamine phospholipase C that promotes nonalcoholic fatty liver disease. J Biol Chem 2023; 299:105162. [PMID: 37586586 PMCID: PMC10494463 DOI: 10.1016/j.jbc.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound β-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor β1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.
Collapse
Affiliation(s)
- Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Quiana Jones
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York, USA.
| |
Collapse
|
116
|
Johnson S, Bao H, McMahon C, Chen Y, Burr S, Anderson A, Madeyski-Bengtson K, Lindén D, Han X, Liu J. Substrate-Specific Function of PNPLA3 Facilitates Hepatic VLDL-Triglyceride Secretion During Stimulated Lipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.553213. [PMID: 37693552 PMCID: PMC10491159 DOI: 10.1101/2023.08.30.553213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The I148M variant of PNPLA3 is strongly linked to hepatic steatosis. Evidence suggests a gain-of-function role for the I148M mutant as an ATGL inhibitor, leaving the physiological relevance of wild-type PNPLA3 undefined. Here we show that PNPLA3 selectively degrades triglycerides (TGs) enriched in polyunsaturated fatty acids (PUFAs) independently of ATGL in cultured cells and mice. Lipidomics and metabolite tracing analyses demonstrated that PNPLA3 mobilizes PUFAs from intracellular TGs for phospholipid desaturation, supporting hepatic secretion of TG-rich lipoproteins. Consequently, mice with liver-specific knockout or acute knockdown of PNPLA3 both exhibited aggravated liver steatosis and concomitant decreases in plasma VLDL-TG, phenotypes that manifest only under lipogenic conditions. I148M-knockin mice similarly displayed impaired hepatic TG secretion during lipogenic stimulation. Our results highlight a specific context whereby PNPLA3 facilitates the balance between hepatic TG storage and secretion and suggest the potential contributions of I148M variant loss-of-function to the development of hepatic steatosis in humans. Summary Statement We define the physiological role of wild type PNPLA3 in maintaining hepatic VLDL-TG secretion.
Collapse
|
117
|
Wang D, Nan N, Bing H, He B. Controlled attenuation parameters to assess liver steatosis in obese patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1241734. [PMID: 37720537 PMCID: PMC10501797 DOI: 10.3389/fendo.2023.1241734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Objectives This study was performed to investigate the changes and influencing factors of liver controlled attenuation parameter (CAP) in obese patients with polycystic ovary syndrome (PCOS), and to determine the prevalence and risk factors of nonalcoholic fatty liver disease (NAFLD) in PCOS patients with obesity. Methods Forty-one PCOS patients with obesity and twenty age- and body mass index (BMI)-matched control women without PCOS were enrolled in this study. General data, body composition, biochemical parameters, sex hormones, and liver CAP in the two groups were collected and compared. Liver CAP was measured using transient elastography. Results NAFLD was more common in the Obese PCOS group than in the control group (75.61% vs. 45.00%, P=0.018). Compared to the control group, the obese PCOS group showed apparent increases in alanine transaminase (ALT), aspartate transaminase (AST), CAP, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), totle testosterone (TT), free androgen index (FAI), fasting insulin (FIns), and homeostasis model assessment-insulin resistance (HOMA-IR), along with lower high-density lipoprotein cholesterol (HDL-C) and sex hormone binding globulin (SHBG) levels. In addition, as shown by Spearman analysis, liver CAP in PCOS patients with obesity had a positive correlation with ALT, AST, TG, TT, FAI, FIns, and HOMA-IR, and a negative correlation with SHBG. Logistic regression analysis showed that TG, TT, FIns, and HOMA-IR were risk factors for NAFLD, while TT was an independent risk factor for NAFLD in PCOS patients with obesity. Conclusion PCOS patients with obesity had a significantly higher prevalence of NAFLD. Furthermore, in PCOS patients with obesity, liver CAP was associated with disorders of lipid metabolism, insulin resistance, and hyperandrogenemia, with elevated testosterone levels being an independent risk factor for NAFLD in PCOS patients with obesity.
Collapse
Affiliation(s)
- Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nan Nan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hao Bing
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
118
|
Hegazi OE, Alalalmeh SO, Alnuaimi GRH, Shahwan M, Jairoun AA, Alorfi NM, Majrashi SA, Alkhanani MF, Alkhattabi A, Alourfi MM, Alsolami FA, Alsharif S, Alshahrani H. NAFLD and nutraceuticals: a review of completed phase III and IV clinical trials. Front Med (Lausanne) 2023; 10:1227046. [PMID: 37601777 PMCID: PMC10433184 DOI: 10.3389/fmed.2023.1227046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) has become a significant public health concern, affecting approximately one-fourth of the population. Despite its prevalence, no FDA-approved drug treatments specifically target NAFLD. Aim To provide a review of clinical trials investigating the use of herbal remedies and dietary supplements in NAFLD management, utilizing the ClinicalTrials.gov database. Methods This review evaluates the current evidence by examining completed phase III and IV clinical trials registered on ClinicalTrials.gov. An exhaustive search was performed on April 17, 2023, using the terms "Nonalcoholic Fatty Liver Disease" and "NAFLD." Two independent reviewers appraised eligible trials based on pre-defined inclusion and exclusion criteria. Results An initial search yielded 1,226 clinical trials, with 12 meeting the inclusion criteria after filtration. The majority of trials focused on Omega-3 fatty acids (20.0%) and vitamin D (26.7%), followed by caffeine, chlorogenic acid, ginger, phosphatidylcholine, Trigonella Foenum-graecum seed extract, vitamin C, and vitamin E (each 6.7%). Most studies were Phase 3 (75.0%) and used a parallel assignment model (91.7%). Quadruple masking was the most prevalent technique (58.3%), and Iran was the leading country in terms of trial locations (25.0%). These interventions constitute two herbal interventions and nine supplement interventions. Conclusion This reveals a diverse range of nutraceuticals, with Omega-3 fatty acids and vitamin D being predominant in the management of NAFLD. The global distribution of trials highlights the widespread interest in these therapeutics. However, more rigorous, large-scale trials are needed to establish safety, efficacy, and optimal dosages.
Collapse
Affiliation(s)
- Omar E. Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O. Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ghala Rashid Humaid Alnuaimi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, University Sains Malaysia (USM), Pulau Pinang, Malaysia
| | - Nasser M. Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shaker A. Majrashi
- Department of Laparoscopic Surgery, King Fahad Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Mustfa Faisal Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | | | - Mansour M. Alourfi
- Department of Gastroenterology, East Jeddah Hospital, Jeddah, Saudi Arabia
- Internal Medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
| | - Faris A. Alsolami
- Khulais General Hospital, Makkah cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Saeed Alsharif
- Gastroenterology Department, Armed force hospital of Southern region, Khamis Mushait, Saudi Arabia
| | - Hatim Alshahrani
- Internal medicine Department, Khamis Mushait General hospital, Khamis Mushait, Saudi Arabia
| |
Collapse
|
119
|
Fang X, Song J, Zhou K, Zi X, Sun B, Bao H, Li L. Molecular Mechanism Pathways of Natural Compounds for the Treatment of Non-Alcoholic Fatty Liver Disease. Molecules 2023; 28:5645. [PMID: 37570615 PMCID: PMC10419790 DOI: 10.3390/molecules28155645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and its incidence continues to increase each year. Yet, there is still no definitive drug that can stop its development. This review focuses mainly on lipotoxicity, oxidative stress, inflammation, and intestinal flora dysbiosis to understand NAFLD's pathogenesis. In this review, we used NCBI's PubMed database for retrieval, integrating in vivo and in vitro experiments to reveal the therapeutic effects of natural compounds on NAFLD. We also reviewed the mechanisms by which the results of these experiments suggest that these compounds can protect the liver from damage by modulating inflammation, reducing oxidative stress, decreasing insulin resistance and lipid accumulation in the liver, and interacting with the intestinal microflora. The natural compounds discussed in these papers target a variety of pathways, such as the AMPK pathway and the TGF-β pathway, and have significant therapeutic effects. This review aims to provide new possible therapeutic lead compounds and references for the development of novel medications and the clinical treatment of NAFLD. It offers fresh perspectives on the development of natural compounds in preventing and treating NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lijing Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.F.)
| |
Collapse
|
120
|
Amatya R, Lee D, Min KA, Shin MC. Pharmaceutical Strategies to Improve Druggability of Potential Drug Candidates in Nonalcoholic Fatty Liver Disease Therapy. Pharmaceutics 2023; 15:1963. [PMID: 37514148 PMCID: PMC10386216 DOI: 10.3390/pharmaceutics15071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become globally prevalent and is the leading cause of chronic liver disease. Although NAFLD is reversible without medical intervention in the early stage, the condition could be sequentially worsened to nonalcoholic steatohepatitis (NASH) and, eventually, cirrhosis and hepatic cancer. The progression of NAFLD is related to various factors such as genetics, pre-disposed metabolic disorders, and immunologic factors. Thankfully, to date, there have been accumulating research efforts and, as a result, different classes of potent drug candidates have been discovered. In addition, there have also been various attempts to explore pharmaceutical strategies to improve the druggability of drug candidates. In this review, we provided a brief overview of the drug candidates that have undergone clinical trials. In the latter part, strategies for developing better drugs are discussed.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| |
Collapse
|
121
|
Pal SC, Méndez-Sánchez N. Insulin resistance and adipose tissue interactions as the cornerstone of metabolic (dysfunction)-associated fatty liver disease pathogenesis. World J Gastroenterol 2023; 29:3999-4008. [PMID: 37476582 PMCID: PMC10354585 DOI: 10.3748/wjg.v29.i25.3999] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between metabolic derangements and fatty liver development are undeniable, since more than 75% of patients with type 2 diabetes mellitus present with fatty liver. There is also significant epidemiological association between insulin resistance (IR) and metabolic (dysfunction)-associated fatty liver disease (MAFLD). For little more than 2 years, the nomenclature of fatty liver of non-alcoholic origin has been intended to change to MAFLD by multiple groups. While a myriad of reasons for which MAFLD is thought to be of metabolic origin could be exposed, the bottom line relies on the role of IR as an initiator and perpetuator of this disease. There is a reciprocal role in MAFLD development and IR as well as serum glucose concentrations, where increased circulating glucose and insulin result in increased de novo lipogenesis by sterol regulatory element-binding protein-1c induced lipogenic enzyme stimulation; therefore, increased endogenous production of triglycerides. The same effect is achieved through impaired suppression of adipose tissue (AT) lipolysis in insulin-resistant states, increasing fatty acid influx into the liver. The complementary reciprocal situation occurs when liver steatosis alters hepatokine secretion, modifying fatty acid metabolism as well as IR in a variety of tissues, including skeletal muscle, AT, and the liver. The aim of this review is to discuss the importance of IR and AT interactions in metabolic altered states as perhaps the most important factor in MAFLD pathogenesis.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 04510, Mexico
| | - Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 04510, Mexico
| |
Collapse
|
122
|
Shao Y, Chen S, Han L, Liu J. Pharmacotherapies of NAFLD: updated opportunities based on metabolic intervention. Nutr Metab (Lond) 2023; 20:30. [PMID: 37415199 DOI: 10.1186/s12986-023-00748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that is becoming increasingly prevalent, and it ranges from simple steatosis to cirrhosis. However, there is still a lack of pharmacotherapeutic strategies approved by the Food and Drug Administration, which results in a higher risk of death related to carcinoma and cardiovascular complications. Of note, it is well established that the pathogenesis of NAFLD is tightly associated with whole metabolic dysfunction. Thus, targeting interconnected metabolic conditions could present promising benefits to NAFLD, according to a number of clinical studies. Here, we summarize the metabolic characteristics of the development of NAFLD, including glucose metabolism, lipid metabolism and intestinal metabolism, and provide insight into pharmacological targets. In addition, we present updates on the progresses in the development of pharmacotherapeutic strategies based on metabolic intervention globally, which could lead to new opportunities for NAFLD drug development.
Collapse
Affiliation(s)
- Yaodi Shao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Suzhen Chen
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liu Han
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junli Liu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
123
|
Mi H, Hu F, Gebeyew K, Cheng Y, Du R, Gao M, He Z, Tan Z. Genome wide transcriptome analysis provides bases on hepatic lipid metabolism disorder affected by increased dietary grain ratio in fattening lambs. BMC Genomics 2023; 24:364. [PMID: 37386405 DOI: 10.1186/s12864-023-09465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The liver is a principal metabolic organ and has a major role in regulating lipid metabolism. With the development of rapidly fattening livestock in the modern breeding industry, the incidence of hepatic steatosis and accumulation in animals was significantly increased. However, the molecular mechanisms responsible for hepatic lipid metabolic disturbances in a high concentrate diet remain unclear. The objective of this study was to evaluate the effects of increasing concentrate level in a fattening lamb diet on biochemical indices, hepatic triglycerides (TG) concentration, and hepatic transcriptomic profiles. In the present study, 42 weaned lambs (about 3 ± 0.3 months old) were randomly assigned to the GN60 group (60% concentrate of dry matter, GN60, n = 21) or GN70 group (70% concentrate of dry matter, n = 21) for a 3-months feeding trial. RESULTS No difference was observed in the growth performance or plasma biochemical parameters between the GN60 group and the GN70 group. The hepatic TG concentration was higher in the GN70 group than GN60 group (P < 0.05). Hepatic transcriptomic analysis showed that there were 290 differentially expressed genes identified between GN60 and GN70 groups, with 125 genes up-regulated and 165 genes down-regulated in the GN70 group. The enriched Gene Ontology (GO) items and KEGG pathways and protein-protein interaction (PPI) network of differentially expressed genes (DEGs) revealed that the majority of enriched pathways were related to lipid metabolism. Further analysis revealed that the fatty acid synthesis was up-regulated, while fatty acid transport, oxidation, and TG degradation were down-regulated in the GN70 group when compared with the GN60 group. CONCLUSIONS These results indicated that GN70 induced excess lipid deposition in the liver of lambs during the fattening period, with high synthesis rates and low degradation rates of TG. The identified mechanisms may help understand hepatic metabolism in lambs with a high concentrate diet and provide insight into decreasing the risk of liver metabolism disorder in animals.
Collapse
Affiliation(s)
- Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiping Du
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, The Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
124
|
Niture S, Gadi S, Qi Q, Rios-Colon L, Khatiwada S, Vandana, Fernando RA, Levine KE, Kumar D. Cyanotoxins Increase Cytotoxicity and Promote Nonalcoholic Fatty Liver Disease Progression by Enhancing Cell Steatosis. Toxins (Basel) 2023; 15:411. [PMID: 37505679 PMCID: PMC10467139 DOI: 10.3390/toxins15070411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Freshwater prokaryotic cyanobacteria within harmful algal blooms produce cyanotoxins which are considered major pollutants in the aquatic system. Direct exposure to cyanotoxins through inhalation, skin contact, or ingestion of contaminated drinking water can target the liver and may cause hepatotoxicity. In the current study, we investigated the effect of low concentrations of cyanotoxins on cytotoxicity, inflammation, modulation of unfolded protein response (UPR), steatosis, and fibrosis signaling in human hepatocytes and liver cell models. Exposure to low concentrations of microcystin-LR (MC-LR), microcystin-RR (MC-RR), nodularin (NOD), and cylindrospermopsin (CYN) in human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines HepG2 and SK-Hep1 resulted in increased cell toxicity. MC-LR, NOD, and CYN differentially regulated inflammatory signaling, activated UPR signaling and lipogenic gene expression, and induced cellular steatosis and fibrotic signaling in HCC cells. MC-LR, NOD, and CYN also regulated AKT/mTOR signaling and inhibited autophagy. Chronic exposure to MC-LR, NOD, and CYN upregulated the expression of lipogenic and fibrosis biomarkers. Moreover, RNA sequencing (RNA seq) data suggested that exposure of human hepatocytes, HepaRG, and HCC HepG2 cells to MC-LR and CYN modulated expression levels of several genes that regulate non-alcoholic fatty liver disease (NAFLD). Our data suggest that low concentrations of cyanotoxins can cause hepatotoxicity and cell steatosis and promote NAFLD progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sabin Khatiwada
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vandana
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Reshan A. Fernando
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Keith E. Levine
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
125
|
Lee JH, Jeon S, Lee HS, Kwon YJ. Gender Differences in the Risk for Incident Non-Alcoholic Fatty Liver Disease According to the Transition of Abdominal Obesity Status: A 16-Year Cohort Study. Nutrients 2023; 15:2880. [PMID: 37447207 DOI: 10.3390/nu15132880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Waist circumference (WC) is an important predictor of long-term adverse outcomes. We aimed at assessing the correlation between abdominal obesity (AO) patterns and non-alcoholic fatty liver disease (NAFLD). Data from 4467 adults aged 40-69 years and without NAFLD who participated in the Korean Genome and Epidemiology Study were analyzed. Participants were classified according to two-year WC pattern into four groups: persistent lean WC, improved AO, progressed to AO, and persistent AO. NAFLD was defined as NAFLD-liver fat score >-0.640. Multiple Cox proportional hazards regression analysis revealed that the fully adjusted hazard ratio (HR) (95% confidence intervals (CIs)) for NAFLD in persistent AO, progressed to AO, and improved AO groups compared to the persistent lean WC group was 1.33 (1.13-1.57), 1.73 (1.48-2.02), and 1.06 (0.84-1.33), respectively. Women in persistent AO or progressed to AO groups had significantly higher risk for NAFLD than those in persistent lean WC or improved AO groups. Men who had progressed to an AO event over two years had significantly higher risk for NAFLD than those without any AO event over two years. Maintaining lean WC and improving AO would be successful strategies for preventing NAFLD in women, while maintaining lean WC would be more effective in men.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea
- Department of Medicine, Hanyang University Graduate School of Medicine, Seoul 04763, Republic of Korea
| | - Soyoung Jeon
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03277, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03277, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| |
Collapse
|
126
|
Zhou J, Shi Y, Yang C, Lu S, Zhao L, Liu X, Zhou D, Luo L, Yin Z. γ-glutamylcysteine alleviates insulin resistance and hepatic steatosis by regulating adenylate cyclase and IGF-1R/IRS1/PI3K/Akt signaling pathways. J Nutr Biochem 2023:109404. [PMID: 37311491 DOI: 10.1016/j.jnutbio.2023.109404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Type 2 diabetes mellitus (T2DM), a complex metabolism disease, which was characterized by metabolic disorders including hyperglycemia, has become a major health problem due to the increasing prevalence worldwide. γ-glutamylcysteine (γ-GC) as an immediate precursor of glutathione (GSH) was originally used for the treatment of sepsis, inflammation bowel disease, and senescence. Here, we evaluated the capacity of γ-GC on diabetes-related metabolic parameters in db/db mice and insulin resistance (IR) amelioration in cells induced by palmitic acid (PA). Our data suggested that γ-GC treatment decreased body weight, reduced adipose tissue size, ameliorated ectopic fat deposition in liver, increased the GSH content in liver, improved glucose control and other diabetes-related metabolic parameters in vivo. Moreover, in vitro experiments showed that γ-GC could maintain the balance of free fatty acids (FFAs) and glucose uptake through regulating the translocation of CD36 and GLUT4 from cytoplasm to plasma membrane. Furthermore, our finding also provided evidence that γ-GC could activate Akt not only via adenylate cyclase (AC)/cAMP/PI3K signaling pathway, but also via IGF-1R/IRS1/PI3K signaling pathway to improve IR and hepatic steatosis. Blocking either of two signaling pathways could not activate Akt activation induced by γ-GC. This unique characteristic ensures the important role of γ-GC in glucose metabolism. Collectively, these results suggested that γ-GC could serve as a candidate dipeptide for the treatment of T2DM and related chronic diabetic complications via activating AC and IGF-1R/IRS1/PI3K/Akt signaling pathways to regulate CD36 and GLUT4 trafficking.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lishuang Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xianli Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
127
|
Kim M, Kim SH, Choi JY, Park YJ. Investigating fatty liver disease-associated adverse outcome pathways of perfluorooctane sulfonate using a systems toxicology approach. Food Chem Toxicol 2023; 176:113781. [PMID: 37059384 DOI: 10.1016/j.fct.2023.113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Adverse outcome pathway (AOP) frameworks help elucidate toxic mechanisms and support chemical regulation. AOPs link a molecular initiating event (MIE), key events (KEs), and an adverse outcome by key event relationships (KERs), which assess the biological plausibility, essentiality, and empirical evidence involved. Perfluorooctane sulfonate (PFOS), a hazardous poly-fluoroalkyl substance, demonstrates hepatotoxicity in rodents. PFOS may induce fatty liver disease (FLD) in humans; however, the underlying mechanism remains unclear. In this study, we evaluated the toxic mechanisms of PFOS-associated FLD by developing an AOP using publicly available data. We identified MIE and KEs by performing GO enrichment analysis on PFOS- and FLD-associated target genes collected from public databases. The MIEs and KEs were then prioritized by PFOS-gene-phenotype-FLD networks, AOP-helpFinder, and KEGG pathway analyses. Following a comprehensive literature review, an AOP was then developed. Finally, six KEs for the AOP of FLD were identified. This AOP indicated that toxicological processes initiated by SIRT1 inhibition led to SREBP-1c activation, de novo fatty acid synthesis, and fatty acid and triglyceride accumulation, culminating in liver steatosis. Our study provides insights into the toxic mechanism of PFOS-induced FLD and suggests approaches to assessing the risk of toxic chemicals.
Collapse
Affiliation(s)
- Moosoo Kim
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Sang Heon Kim
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Jun Yeong Choi
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea.
| |
Collapse
|
128
|
de Souza CF, Stopa LRS, Martins AB, Wunderlich ALM, Lopes GM, de Fatima Silva F, Komino ACM, Zaia DAM, Zaia CTBV, Lima FB, Uchoa ET. Glucocorticoids contribute to metabolic and liver impairments induced by lactation overnutrition in male adult rats. Front Physiol 2023; 14:1161582. [PMID: 37234421 PMCID: PMC10206267 DOI: 10.3389/fphys.2023.1161582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction: Lactation overnutrition is a programming agent of energy metabolism, and litter size reduction leads to the early development of obesity, which persists until adulthood. Liver metabolism is disrupted by obesity, and increased levels of circulating glucocorticoids are pointed as a possible mediator for the obesity development, since bilateral adrenalectomy (ADX) can reduce obesity in different models of obesity. Methods: This study aimed to evaluate the effects of glucocorticoids on metabolic changes and liver lipogenesis and insulin pathway induced by lactation overnutrition. For this, on the postnatal day 3 (PND), 3 pups (small litter-SL) or 10 pups (normal litter-NL) were kept with each dam. On PND 60, male Wistar rats underwent bilateral adrenalectomy (ADX) or fictitious surgery (sham), and half of ADX animals received corticosterone (CORT- 25 mg/L) diluted in the drinking fluid. On PND 74, the animals were euthanized by decapitation for trunk blood collection, and liver dissection and storage. Results and Discussion: SL rats presented increased corticosterone, free fatty acids, total and LDL-cholesterol plasma levels, without changes in triglycerides (TG) and HDL-cholesterol. The SL group also showed increased content of liver TG, and expression of fatty acid synthase (FASN), but decreased expression of PI3Kp110 in the liver, compared to NL rats. In the SL group, the ADX decreased plasma levels of corticosterone, FFA, TG and HDL cholesterol, liver TG, and liver expression of FASN, and IRS2, compared to sham animals. In SL animals, CORT treatment increased plasma levels of TG and HDL cholesterol, liver TG, and expression of FASN, IRS1, and IRS2, compared with the ADX group. In summary, the ADX attenuated plasma and liver changes observed after lactation overnutrition, and CORT treatment could reverse most ADX-induced effects. Thus, increased circulating glucocorticoids are likely to play a pivotal role in liver and plasma impairments induced by lactation overnutrition in male rats.
Collapse
Affiliation(s)
- Camila F. de Souza
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Larissa Rugila S. Stopa
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Andressa B. Martins
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Ana Luiza M. Wunderlich
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
| | | | | | | | - Dimas A. M. Zaia
- Department of Chemistry, State University of Londrina, Londrina, Brazil
| | - Cassia Thaïs B. V. Zaia
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, University of Sao Paulo, Sao Paulo, Brazil
| | - Ernane Torres Uchoa
- Multicenter Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Postgraduate Program in Physiological Sciences, State University of Londrina, Londrina, Brazil
- Department of Physiological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
129
|
Yang X, Sun L, Feng D, Deng Y, Liao W. A Lipidomic Study: Nobiletin ameliorates hepatic steatosis through regulation of lipid alternation. J Nutr Biochem 2023; 118:109353. [PMID: 37116815 DOI: 10.1016/j.jnutbio.2023.109353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/15/2022] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
Hepatic lipidome has been given emphasis for years since hepatic steatosis is the most remarkable character of nonalcoholic fatty liver diseases, an increasingly serious health issue worldwide. Nobiletin (NOB), one of the citrus flavonoids, exerted outstanding effect on lipid metabolism disorder. However, the underlying mechanism of NOB exerting effect on hepatic lipid alternation remains unclear. In this study, the animal model was built by feeding APOE-/- mice with high fat diet (HFD). The results of Oil Red O-stained liver section and the biochemical assay of lipid parameters confirmed the protective effect of NOB on hepatic steatosis and global lipid metabolism disorder in APOE-/- mice. The hepatic lipidomic study revealed a total of 958 lipids significantly altered by HFD and a total of 86, 116, 212 lipid metabolites changed by L-NOB (50 mg/kg/d NOB), M-NOB (100 mg/kg/d NOB) and H-NOB (200 mg/kg/d NOB) respectively. In the further screening analysis, an amount of 60 lipids were identified as the potential lipid markers of NOB treatment, most of which belonged to glycerophospholipids lipid categories and exhibited obvious correlation with each other and the lipid parameters related to hepatic steatosis. Taken together, our data demonstrated that glycerophospholipids metabolism played an indispensable role in the progression of hepatic steatosis and the protective effect of NOB. Besides, the modulation towards genes involved in lipid synthesis were observed after NOB administration in this study. These finding illustrated the anti-hepatic steatosis effect of NOB based on altering hepatic lipidome, particularly the glycerophospholipids metabolism, and provided a new insight in the pathogenesis of hepatic steatosis.
Collapse
Affiliation(s)
- Xushan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Linye Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Dongliang Feng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
130
|
Xiang M, Qian X, Han L, Wang H, Wang J, Liu W, Gu Y, Yao S, Yang J, Zhang Y, Peng Y, Zhang Z. Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 2023; 26:106561. [PMID: 37123234 PMCID: PMC10130924 DOI: 10.1016/j.isci.2023.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Aquaporin-8(AQP8), is a transmembrane channel protein that abounds in liver, which mainly promotes water transport, modulating bile acid formation. However, its role in hepatic lipid metabolism remains unclear. In this study, we found the expression of AQP8 was reduced in liver specimens of patients with NAFLD, high-fat diet (HFD)-induced mice and genetically obese db/db mice. Knockdown of AQP8 in hepatocytes exacerbated the intracellular lipid accumulation induced by free fatty acid (FFA) mixtures. In contrast, hepatic AQP8 overexpression activated farnesoid X receptor (FXR), inhibiting gene expression associated with lipogenesis, which further reduced intrahepatic triglyceride overload in obese mice. FXR knockout abrogated the ameliorating effect of AQP8 overexpression on NAFLD in mice. These findings indicate that AQP8 overexpression protects against fatty liver through activating the FXR pathway.
Collapse
Affiliation(s)
- Minqi Xiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Qian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
131
|
Yan Z, Li S, Chen R, Xie H, Wu M, Nan N, Xing Q, Yun Y, Qin G, Sang N. Effects of differential regional PM 2.5 induced hepatic steatosis and underlying mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121220. [PMID: 36746292 DOI: 10.1016/j.envpol.2023.121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence suggests that exposure to PM2.5 is associated with a high risk of nonalcoholic fatty liver disease (NAFLD). NAFLD is typically characterised by hepatic steatosis. However, the underlying mechanisms and critical components of PM2.5-induced hepatic steatosis remain to be elucidated. In this study, ten-month-old C57BL/6 female mice were exposed to PM2.5 from four cities in China (Taiyuan, Beijing, Hangzhou, and Guangzhou) via oropharyngeal aspiration every other day for four weeks. After the exposure period, hepatic lipid accumulation was evaluated by biochemical and histopathological analyses. The expression levels of genes related to lipid metabolism and metabolomic profiles were assessed in the mouse liver. The association between biomarkers of hepatic steatosis (hepatic Oil Red O staining area and serum and liver triglyceride contents) and typical components of PM2.5 was identified using Pearson correlation analysis. Oil Red O staining and biochemical results indicated that PM2.5 from four cities significantly induced hepatic lipid accumulation. The most severe hepatic steatosis was observed after Guangzhou PM2.5 exposure. Moreover, Guangzhou PM2.5-induced the most significant changes in gene expression associated with lipid metabolism, including increased hepatic fatty acid uptake and lipid droplet formation and decreased fatty acid synthesis and lipoprotein secretion. Contemporaneously, exposure to Guangzhou PM2.5 significantly perturbed hepatic lipid metabolism. According to metabolomic analysis, disturbed hepatic lipid metabolism was primarily concentrated in linoleic acid, α-linoleic acid, and arachidonic acid metabolism. Finally, correlation analysis revealed that copper (Cu) and other inorganic components, as well as the majority of polycyclic aromatic hydrocarbons (PAHs), were related to changes in biomarkers of hepatic steatosis. These findings showed that PM2.5 exposure caused hepatic steatosis in aged mice, which could be related to the critical chemical components of PM2.5. This study provides critical information regarding the components of PM2.5, which cause hepatic steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Shuyue Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China
| | - Haohan Xie
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China
| | - Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China; School of Public Health, Shanxi Medical University, Shanxi, 030001, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi, 030006, PR China
| |
Collapse
|
132
|
Stoffels CBA, Angerer TB, Robert H, Poupin N, Lakhal L, Frache G, Mercier-Bonin M, Audinot JN. Lipidomic Profiling of PFOA-Exposed Mouse Liver by Multi-Modal Mass Spectrometry Analysis. Anal Chem 2023; 95:6568-6576. [PMID: 37027489 PMCID: PMC10134131 DOI: 10.1021/acs.analchem.2c05470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated chemical classified as a persistent organic pollutant. PFOA has been linked to many toxic effects, including liver injury. Many studies report that PFOA exposure alters serum and hepatic lipid metabolism. However, lipidomic pathways altered by PFOA exposure are largely unknown and only a few lipid classes, mostly triacylglycerol (TG), are usually considered in lipid analysis. Here, we performed a global lipidomic analysis on the liver of PFOA-exposed (high-dose and short-duration) and control mice by combining three mass spectrometry (MS) techniques: liquid chromatography with tandem mass spectrometry (LC-MS/MS), matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Among all hepatic lipids identified by LC-MS/MS analysis, more than 350 were statistically impacted (increased or decreased levels) after PFOA exposure, as confirmed by multi-variate data analysis. The levels of many lipid species from different lipid classes, most notably phosphatidylethanolamine (PE), phosphatidylcholine (PC), and TG, were significantly altered. Subsequent lipidomic analysis highlights the pathways significantly impacted by PFOA exposure, with the glycerophospholipid metabolism being the most impacted, and the changes in the lipidome network, which connects all the lipid species together. MALDI-MSI displays the heterogeneous distribution of the affected lipids and PFOA, revealing different areas of lipid expression linked to PFOA localization. TOF-SIMS localizes PFOA at the cellular level, supporting MALDI-MSI results. This multi-modal MS analysis unveils the lipidomic impact of PFOA in the mouse liver after high-dose and short-term exposure and opens new opportunities in toxicology.
Collapse
Affiliation(s)
- Charlotte B A Stoffels
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette 4365, Luxembourg
| | - Tina B Angerer
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Nathalie Poupin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Laila Lakhal
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Gilles Frache
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse 31027, France
| | - Jean-Nicolas Audinot
- Department of Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux 4422, Luxembourg
| |
Collapse
|
133
|
Wang D, Ji DC, Yu CY, Wu DN, Qi L. Research progress on the mitochondrial mechanism of age-related non-alcoholic fatty liver. World J Gastroenterol 2023; 29:1982-1993. [PMID: 37155524 PMCID: PMC10122792 DOI: 10.3748/wjg.v29.i13.1982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. Reduced activity and slower metabolism in the elderly affect the balance of lipid metabolism in the liver leading to the accumulation of lipids. This affects the mitochondrial respiratory chain and the efficiency of β-oxidation and induces the overproduction of reactive oxygen species. In addition, the dynamic balance of the mitochondria is disrupted during the ageing process, which inhibits its phagocytic function and further aggravates liver injury, leading to a higher incidence of NAFLD in the elderly population. The present study reviewed the manifestations, role and mechanism of mitochondrial dysfunction in the progression of NAFLD in the elderly. Based on the understanding of mitochondrial dysfunction and abnormal lipid metabolism, this study discusses the treatment strategies and the potential therapeutic targets for NAFLD, including lipid accumulation, antioxidation, mitophagy and liver-protecting drugs. The purpose is to provide new ideas for the development of innovative drugs for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Dan Wang
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Duo-Chun Ji
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Chun-Yan Yu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Dan-Ni Wu
- College of Basic Medicine, Beihua University, Jilin 132013, Jilin Province, China
| | - Ling Qi
- Central Laboratory, Qingyuan People's Hospital, Qingyuan 511518, Guangdong Province, China
| |
Collapse
|
134
|
Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, Duan Y, Deng H, Xiong W, Tang F, Li G, Zhou M. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol 2023; 13:1122110. [PMID: 37081988 PMCID: PMC10110844 DOI: 10.3389/fonc.2023.1122110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the “soil” of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- MengNa Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - JianXia Wei
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - ChangNing Xue
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - XiangTing Zhou
- The First Clinical College of Changsha Medical University, Changsha, China
| | - ShiPeng Chen
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - LeMei Zheng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - YuMei Duan
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - HongYu Deng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - FaQing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - GuiYuan Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Ming Zhou,
| |
Collapse
|
135
|
Men X, Han X, Lee SJ, Park KT, Han JK, Choi SI, Lee OH. Anti-adipogenic Effects of Sulforaphane-rich Ingredient with Broccoli Sprout and Mustard Seed in 3T3-L1 Preadipocytes. PLANTA MEDICA 2023; 89:526-538. [PMID: 35577064 DOI: 10.1055/a-1853-7101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucoraphanin (GRA) is a precursor of sulforaphane (SFN), which can be synthesized by the enzyme myrosinase. In this study, we developed and validated HPLC analytical methods for the determination of GRA and SFN in mustard seed powder (MSP), broccoli sprout powder (BSP), and the MSP-BSP mixture powder (MBP), and evaluated their anti-adipogenic effects in 3T3-L1 adipocytes. We found that the analysis methods were suitable for the determination of GRA and SFN in MSP, BSP, and MBP. The content of GRA in BSP was 131.11 ± 1.84 µmol/g, and the content of SFN in MBP was 162.29 ± 1.24 µmol/g. In addition, BSP and MBP effectively decreased lipid accumulation content without any cytotoxicity. Both BSP and MBP significantly inhibited the expression of adipogenic proteins and increased the expression of proteins related to lipolysis and lipid metabolism. BSP and MBP inhibited the expression of adipocyte protein 2 (aP2), CCAAT/enhancer-binding protein-α (C/EBP-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) in 3T3-L1 adipocytes, and inhibited the expression of fatty acid synthase (FAS) through AMP-activated protein kinase (AMPK). Meanwhile, BSP and MBP also increased the expression of the lipolysis-related proteins, uncoupling protein-1 (UCP-1) and carnitine palmitoyltransferase-1 (CPT-1). Moreover, MBP exerted anti-adipogenic to a greater extent than BSP in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
136
|
Likitnukul S, Thammacharoen S, Sriwatananukulkit O, Duangtha C, Hemstapat R, Sunrat C, Mangmool S, Pinthong D. Short-Term Growth Hormone Administration Mediates Hepatic Fatty Acid Uptake and De Novo Lipogenesis Gene Expression in Obese Rats. Biomedicines 2023; 11:biomedicines11041050. [PMID: 37189668 DOI: 10.3390/biomedicines11041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity has been linked to metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). Obesity causes a decrease in growth hormone (GH) levels and an increase in insulin levels. Long-term GH treatment increased lipolytic activity as opposed to decreasing insulin sensitivity. Nonetheless, it is possible that short-term GH administration had no impact on insulin sensitivity. In this study, the effect of short-term GH administration on liver lipid metabolism and the effector molecules of GH and insulin receptors were investigated in diet-induced obesity (DIO) rats. Recombinant human GH (1 mg/kg) was then administered for 3 days. Livers were collected to determine the hepatic mRNA expression and protein levels involved in lipid metabolism. The expression of GH and insulin receptor effector proteins was investigated. In DIO rats, short-term GH administration significantly reduced hepatic fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) mRNA expression while increasing carnitine palmitoyltransferase 1A (CPT1A) mRNA expression. Short-term GH administration reduced hepatic FAS protein levels and downregulated gene transcription of hepatic fatty acid uptake and lipogenesis, while increasing fatty acid oxidation in DIO rats. DIO rats had lower hepatic JAK2 protein levels but higher IRS-1 levels than control rats due to hyperinsulinemia. Our findings suggest that short-term GH supplementation improves liver lipid metabolism and may slow the progression of NAFLD, where GH acts as the transcriptional regulator of related genes.
Collapse
|
137
|
van Laar A, Grootaert C, Rajkovic A, Desmet T, Beerens K, Van Camp J. Rare Sugar Metabolism and Impact on Insulin Sensitivity along the Gut-Liver-Muscle Axis In Vitro. Nutrients 2023; 15:1593. [PMID: 37049441 PMCID: PMC10096767 DOI: 10.3390/nu15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Rare sugars have recently attracted attention as potential sugar replacers. Understanding the biochemical and biological behavior of these sugars is of importance in (novel) food formulations and prevention of type 2 diabetes. In this study, we investigated whether rare sugars may positively affect intestinal and liver metabolism, as well as muscle insulin sensitivity, compared to conventional sugars. Rare disaccharide digestibility, hepatic metabolism of monosaccharides (respirometry) and the effects of sugars on skeletal muscle insulin sensitivity (impaired glucose uptake) were investigated in, respectively, Caco-2, HepG2 and L6 cells or a triple coculture model with these cells. Glucose and fructose, but not l-arabinose, acutely increased extracellular acidification rate (ECAR) responses in HepG2 cells and impaired glucose uptake in L6 cells following a 24 h exposure at 28 mM. Cellular bioenergetics and digestion experiments with Caco-2 cells indicate that especially trehalose (α1-1α), D-Glc-α1,2-D-Gal, D-Glc-α1,2-D-Rib and D-Glc-α1,3-L-Ara experience delayed digestion and reduced cellular impact compared to maltose (α1-4), without differences on insulin-stimulated glucose uptake in a short-term setup with a Caco-2/HepG2/L6 triple coculture. These results suggest a potential for l-arabinose and specific rare disaccharides to improve metabolic health; however, additional in vivo research with longer sugar exposures should confirm their beneficial impact on insulin sensitivity in humans.
Collapse
Affiliation(s)
- Amar van Laar
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Charlotte Grootaert
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Van Camp
- NutriFOODChem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
138
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
139
|
Thompson D, Mahmood S, Morrice N, Kamli-Salino S, Dekeryte R, Hoffmann PA, Doherty MK, Whitfield PD, Delibegović M, Mody N. Fenretinide inhibits obesity and fatty liver disease but induces Smpd3 to increase serum ceramides and worsen atherosclerosis in LDLR -/- mice. Sci Rep 2023; 13:3937. [PMID: 36894641 PMCID: PMC9998859 DOI: 10.1038/s41598-023-30759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR-/- mice fed high-fat/high-cholesterol diet ± Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide's beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR-/- mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a fourfold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Dawn Thompson
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Shehroz Mahmood
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nicola Morrice
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ruta Dekeryte
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Philip A Hoffmann
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mary K Doherty
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Philip D Whitfield
- Lipidomics Research Facility, Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Mirela Delibegović
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Nimesh Mody
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
140
|
Qin S, Hou X, Wen Y, Wang C, Tan X, Tian H, Ao Q, Li J, Chu S. Machine learning classifiers for screening nonalcoholic fatty liver disease in general adults. Sci Rep 2023; 13:3638. [PMID: 36869105 PMCID: PMC9984396 DOI: 10.1038/s41598-023-30750-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of major causes of end-stage liver disease in the coming decades, but it shows few symptoms until it develops into cirrhosis. We aim to develop classification models with machine learning to screen NAFLD patients among general adults. This study included 14,439 adults who took health examination. We developed classification models to classify subjects with or without NAFLD using decision tree, random forest (RF), extreme gradient boosting (XGBoost) and support vector machine (SVM). The classifier with SVM was showed the best performance with the highest accuracy (0.801), positive predictive value (PPV) (0.795), F1 score (0.795), Kappa score (0.508) and area under the precision-recall curve (AUPRC) (0.712), and the second top of area under receiver operating characteristic curve (AUROC) (0.850). The second-best classifier was RF model, which was showed the highest AUROC (0.852) and the second top of accuracy (0.789), PPV (0.782), F1 score (0.782), Kappa score (0.478) and AUPRC (0.708). In conclusion, the classifier with SVM is the best one to screen NAFLD in general population based on the results from physical examination and blood testing, followed by the classifier with RF. Those classifiers have a potential to screen NAFLD in general population for physician and primary care doctors, which could benefit to NAFLD patients from early diagnosis.
Collapse
Affiliation(s)
- Shenghua Qin
- Health Management Center, Guilin People's Hospital, Guilin, China
- Philippine Christian University, Manila, Philippines
| | - Xiaomin Hou
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Yuan Wen
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Chunqing Wang
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Xiaxian Tan
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Hao Tian
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Qingqing Ao
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Jingze Li
- Health Management Center, Guilin People's Hospital, Guilin, China
| | - Shuyuan Chu
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
141
|
Cho YE, Kwon YS, Hwang S. Heterogeneous population of macrophages in the development of non-alcoholic fatty liver disease. LIVER RESEARCH 2023; 7:16-25. [PMID: 39959694 PMCID: PMC11791820 DOI: 10.1016/j.livres.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by a spectrum of hepatic diseases, including fatty liver, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. NAFLD is a hepatic manifestation of metabolic syndrome and has become the leading cause of liver transplantation, necessitating an in-depth understanding of its underlying pathogenic mechanisms and the identification of viable drug targets. Although fatty liver is benign and does not exert marked liver damage or inflammation, NAFLD progression involves inflammatory processes facilitated by immune cells. Macrophages and monocytes constitute the pool of innate immune cells that contribute to NAFLD development in association with other cell types, such as neutrophils, T cells, and natural killer cells. The concept that macrophages contribute to the inflammatory processes in NAFLD development has long been debated; however, the remarkable advances in experimental techniques have rapidly uncovered new subpopulations of macrophages and monocytes, whose functions need to be comprehensively elucidated. The current review focuses on the recent expansion of our knowledge of the heterogeneous population of macrophages crucially involved in NAFLD development. In addition, the present paper discusses ongoing efforts to target macrophages and inflammatory processes to develop optimal therapeutic agents against non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Yong Seong Kwon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
142
|
Ferrer MJ, Abruzzese GA, Heber MF, Ferreira SR, Campo Verde Arbocco F, Motta AB. Intrauterine androgen exposure impairs gonadal adipose tissue functions of adult female rats. Theriogenology 2023; 198:131-140. [PMID: 36584634 DOI: 10.1016/j.theriogenology.2022.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Prenatal androgen exposure induces fetal programming leading to alterations in offspring health and phenotypes that resemble those seen in women with Polycystic Ovary Syndrome. It has been described that prenatal androgenization affects the reproductive axis and leads to metabolic and endocrine disorders. Adipose tissue plays a crucial role in all these functions and is susceptible to programming effects. Particularly, gonadal adipose tissue is involved in reproductive functions, so dysfunctions in this tissue could be related to fertility alterations. We aimed to investigate the extent to which prenatal hyperandrogenization is able to alter the functionality of gonadal adipose tissue in female adult rats, including lipid metabolism, adipokines expression, and de novo synthesis of steroids. Pregnant rats were treated with 1 mg of testosterone from day 16 to day 19 of pregnancy, and female offspring were followed until 90 days of age, when they were euthanized. The prenatally hyperandrogenized (PH) female offspring displayed two phenotypes: irregular ovulatory (PHiov) and anovulatory (PHanov). Regarding lipid metabolism, both PH groups displayed disruptions in the main lipid pathways with altered levels of triglyceride and increased lipid peroxidation levels. In addition, we found that Peroxisome Proliferator-Activated Receptors (PPARs) alpha protein expression was decreased in both PH phenotypes (p < 0.05), but no changes were found in PPARγ protein levels. Furthermore, regarding adipokines, no changes were found in Leptin and Adiponectin protein levels, but Chemerin protein levels were decreased in the PHiov group (p < 0.05). Regarding de novo synthesis of steroids, the PHanov group showed increased protein levels of Cyp17a1 and Cyp19, while the PHiov group only showed decreased protein levels of Cyp19 (p < 0.05). These results suggest that prenatal androgen exposure affects females' gonadal adipose tissue in adulthood, disturbing different lipid pathways, Chemerin expression, and de novo synthesis of steroids.
Collapse
Affiliation(s)
- María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Heber
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvana Rocío Ferreira
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, 5500, Mendoza, Argentina; Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
143
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
144
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
145
|
Barboza TK, Susta L, zur Linden A, Gardhouse S, Beaufrère H. Association of plasma metabolites and diagnostic imaging findings with hepatic lipidosis in bearded dragons (Pogona vitticeps) and effects of gemfibrozil therapy. PLoS One 2023; 18:e0274060. [PMID: 36735707 PMCID: PMC9897564 DOI: 10.1371/journal.pone.0274060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES To evaluate the association between plasma metabolites, biochemical analytes, diagnostic imaging findings, and the histologic diagnosis of hepatic lipidosis in bearded dragons. To assess the effects of gemfibrozil therapy on hepatic lipid accumulation and associated diagnostic tests. ANIMALS Fourteen bearded dragons (Pogona vitticeps) with varying severity of hepatic lipid accumulation (with and without hepatic lipidosis) were included. PROCEDURES Animals underwent coelomic ultrasound, computed tomography (CT) scans, and coelioscopic hepatic biopsies. Clinical pathology tests included lipidologic tests, hepatic biomarkers, and mass spectrometry-based metabolomics. Animals were medicated with gemfibrozil 6mg/kg orally once a day for 2 months in a randomized blinded clinical trial prior to repeating previous diagnostic testing. RESULTS Hounsfield units on CT were negatively associated with increased hepatic vacuolation, while ultrasound and gross evaluation of the liver were not reliable. Beta-hydroxybutyric-acid (BHBA) concentrations were significantly associated with hepatic lipidosis. Metabolomics and lipidomics data found BHBA and succinic acid to be potential biomarkers for diagnosing hepatic lipidosis in bearded dragons. Succinic acid concentrations were significantly lower in the gemfibrozil treatment group. There was a tendency for improvement in the biomarkers and reduced hepatic fat in bearded dragons with hepatic lipidosis when treated with gemfibrozil, though the improvement was not statistically significant. CONCLUSIONS These findings provide information on the antemortem assessment of hepatic lipidosis in bearded dragons and paves the way for further research in diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Trinita K. Barboza
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alex zur Linden
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sara Gardhouse
- Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hugues Beaufrère
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
146
|
Yin X, Guo X, Liu Z, Wang J. Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032844. [PMID: 36769165 PMCID: PMC9917647 DOI: 10.3390/ijms24032844] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the excessive fat is accumulated and deposited in hepatocytes without excess alcohol intake or some other pathological causes. NAFLD is a progressive disease, ranging from steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, liver transplantation, and death. Therefore, NAFLD will probably emerge as the leading cause of end-stage liver disease in the coming decades. Unlike other highly prevalent diseases, NAFLD has received little attention from the global public health community. Liver biopsy is currently considered the gold standard for the diagnosis and staging of NAFLD because of the absence of noninvasive and specific biomarkers. Due to the complex pathophysiological mechanisms of NAFLD and the heterogeneity of the disease phenotype, no specific pharmacological therapies have been approved for NAFLD at present, although several drugs are in advanced stages of development. This review summarizes the current evidence on the pathogenesis, diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangyu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
147
|
Shen W, Middleton MS, Cunha GM, Delgado TI, Wolfson T, Gamst A, Fowler KJ, Alazraki A, Trout AT, Ohliger MA, Shah SN, Bashir MR, Kleiner DE, Loomba R, Neuschwander-Tetri BA, Sanyal AJ, Zhou J, Sirlin CB, Lavine JE. Changes in abdominal adipose tissue depots assessed by MRI correlate with hepatic histologic improvement in non-alcoholic steatohepatitis. J Hepatol 2023; 78:238-246. [PMID: 36368598 PMCID: PMC9852022 DOI: 10.1016/j.jhep.2022.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) is prevalent in adults with obesity and can progress to cirrhosis. In a secondary analysis of prospectively acquired data from the multicenter, randomized, placebo-controlled FLINT trial, we investigated the relationship between reduction in adipose tissue compartment volumes and hepatic histologic improvement. METHODS Adult participants in the FLINT trial with paired liver biopsies and abdominal MRI exams at baseline and end-of-treatment (72 weeks) were included (n = 76). Adipose tissue compartment volumes were obtained using MRI. RESULTS Treatment and placebo groups did not differ in baseline adipose tissue volumes, or in change in adipose tissue volumes longitudinally (p = 0.107 to 0.745). Deep subcutaneous adipose tissue (dSAT) and visceral adipose tissue volume reductions were associated with histologic improvement in NASH (i.e., NAS [non-alcoholic fatty liver disease activity score] reductions of ≥2 points, at least 1 point from lobular inflammation and hepatocellular ballooning, and no worsening of fibrosis) (p = 0.031, and 0.030, respectively). In a stepwise logistic regression procedure, which included demographics, treatment group, baseline histology, baseline and changes in adipose tissue volumes, MRI hepatic proton density fat fraction (PDFF), and serum aminotransferases as potential predictors, reductions in dSAT and PDFF were associated with histologic improvement in NASH (regression coefficient = -2.001 and -0.083, p = 0.044 and 0.033, respectively). CONCLUSIONS In adults with NASH in the FLINT trial, those with greater longitudinal reductions in dSAT and potentially visceral adipose tissue volumes showed greater hepatic histologic improvements, independent of reductions in hepatic PDFF. CLINICAL TRIAL NUMBER NCT01265498. IMPACT AND IMPLICATIONS Although central obesity has been identified as a risk factor for obesity-related disorders including insulin resistance and cardiovascular disease, the role of central obesity in non-alcoholic steatohepatitis (NASH) warrants further clarification. Our results highlight that a reduction in central obesity, specifically deep subcutaneous adipose tissue and visceral adipose tissue, may be related to histologic improvement in NASH. The findings from this analysis should increase awareness of the importance of lifestyle intervention in NASH for clinical researchers and clinicians. Future studies and clinical practice may design interventions that assess the reduction of deep subcutaneous adipose tissue and visceral adipose tissue as outcome measures, rather than simply weight reduction.
Collapse
Affiliation(s)
- Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA;; Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University Irving Medical Center; NY, USA;; Columbia Magnetic Resonance Research Center (CMRRC), Columbia University, USA.
| | - Michael S Middleton
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, CA, USA
| | | | - Timoteo I Delgado
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, CA, USA
| | - Tanya Wolfson
- Computational and Applied Statistics Laboratory (CASL), San Diego Supercomputer Center at UCSD, San Diego, CA, USA
| | - Anthony Gamst
- Computational and Applied Statistics Laboratory (CASL), San Diego Supercomputer Center at UCSD, San Diego, CA, USA;; Department of Mathematics, UCSD, San Diego, CA, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, CA, USA
| | - Adina Alazraki
- Emory University School of Medicine, Department of Radiology and Imaging Sciences and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center and Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shetal N Shah
- Section of Abdominal Imaging and Nuclear Medicine Department, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA;; Center for Advanced Magnetic Resonance Development, (CAMRD), Department of Radiology, Duke University Medical Center, Durham, NC, USA;; Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California-San Diego, La Jolla, CA, USA
| | | | | | - Jane Zhou
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, UCSD School of Medicine, San Diego, CA, USA
| | - Joel E Lavine
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA;; Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University Irving Medical Center; NY, USA
| |
Collapse
|
148
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
149
|
Shan S, Zhou J, Yin R, Zhang L, Shi J, Qiao Q, Li Z. Millet Bran Protein Hydrolysate Displays the Anti-non-alcoholic Fatty Liver Disease Effect via Activating Peroxisome Proliferator-Activated Receptor γ to Restrain Fatty Acid Uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1628-1642. [PMID: 36638159 DOI: 10.1021/acs.jafc.2c08169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious health problem worldwide. Impeding fatty acid uptake may be an attractive therapeutic strategy for NAFLD. In the current study, we found that millet bran protein hydrolysate (MBPH) prepared by in vitro gastrointestinal bionic digestion exhibits the potential of anti-NAFLD in vitro and in vivo, characterized by the alleviation of hepatic steatosis and the reduction of lipid accumulation. Further, MBPH significantly decreased the expression levels of fatty acid uptake related genes (FABP1, FABP2, FABP4, CD36, and CPT-1α) of liver tissue in a NAFLD mice model through activating peroxisome proliferator-activated receptor γ (PPARγ) and efficiently restrained the fatty acid uptake of liver tissue, thus exerting anti-NAFLD activity. As expected, the anti-NAFLD effect induced by MBPH, characterized by the alleviation of hepatic vacuolar degeneration, hepatic steatosis, and fibrosis, was effectively abrogated with PPARγ inhibitor (GW9662) treatment. These results indicate that the retardant of fatty acid uptake induced by PPARγ activation may be the critical factor for the anti-NAFLD effect of MBPH. Collectively, MBPH has the potential as a next-generation dietary supplementation for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Shuhua Shan
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiaqi Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ruopeng Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jiangying Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qinqin Qiao
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhuoyu Li
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
150
|
Shi MY, Wong C, Lee TP. Effect modification of hepatitis B viral load on the association between metabolic risk factors and hepatic steatosis. Transl Gastroenterol Hepatol 2023; 8:6. [PMID: 36704648 PMCID: PMC9813647 DOI: 10.21037/tgh-22-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/17/2022] [Indexed: 01/29/2023] Open
Abstract
Background It is not clear if chronic hepatitis B (CHB) infection potentiates the severity of hepatic steatosis (HS) in patients with metabolic risk factors. We tested for the effect modification of hepatitis B viral load on the association between metabolic risk factors and HS. Methods In this retrospective cross-sectional study, we included adult subjects, who had non-cirrhotic nonalcoholic fatty liver disease and CHB infection with positive hepatitis B envelope antibody. We reported descriptive statistics, stratified by detectable and undetectable hepatitis B viral load, by Kruskal-Wallis Rank Sum Test and chi-square. We reported coefficients of two multivariate regression predicting odds of HS > stage 2, testing for interaction between metabolic risk factors and hepatitis B viral load. Results When controlled for age, sex, and hepatitis B treatment, the odds of HS > stage 2 increased significantly by 77% for each additional metabolic risk factor [odds ratio (OR) 1.77, 95% confidence interval (CI): 1.20-2.69, P=0.005]. The odds of HS > stage 2 was not associated with detectable hepatitis B viral load (OR 1.00, 95% CI: 0.83-1.19, P=0.986). The association between the odds of HS > stage 2 and metabolic risk factors did not significantly change as hepatitis B viral load increased [ratio of odds ratio (ROR) 1.01, 95% CI: 0.94-1.08, P=0.839]. Conclusions Our study does not find evidence of effect modification of hepatitis B viral load on the association between metabolic risk factors and HS in non-cirrhotic and hepatitis B envelope antibody positive patients with CHB viral infection. It suggests that the odds of HS in CHB infected patients is affected by metabolic risk factors and not by hepatitis B viremia.
Collapse
Affiliation(s)
- Michelle Y. Shi
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Christopher Wong
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Tai-Ping Lee
- Sandra Atlas Bass Center for Liver Diseases and Division of Hepatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|