101
|
Munnamalai V, Sammudin NH, Young CA, Thawani A, Kuhn RJ, Fekete DM. Embryonic and Neonatal Mouse Cochleae Are Susceptible to Zika Virus Infection. Viruses 2021; 13:v13091823. [PMID: 34578404 PMCID: PMC8472928 DOI: 10.3390/v13091823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital Zika Syndrome (CZS) is caused by vertical transmission of Zika virus (ZIKV) to the gestating human fetus. A subset of CZS microcephalic infants present with reduced otoacoustic emissions; this test screens for hearing loss originating in the cochlea. This observation leads to the question of whether mammalian cochlear tissues are susceptible to infection by ZIKV during development. To address this question using a mouse model, the sensory cochlea was explanted at proliferative, newly post-mitotic or maturing stages. ZIKV was added for the first 24 h and organs cultured for up to 6 days to allow for cell differentiation. Results showed that ZIKV can robustly infect proliferating sensory progenitors, as well as post-mitotic hair cells and supporting cells. Virus neutralization using ZIKV-117 antibody blocked cochlear infection. AXL is a cell surface molecule known to enhance the attachment of flavivirus to host cells. While Axl mRNA is widely expressed in embryonic cochlear tissues susceptible to ZIKV infection, it is selectively downregulated in the post-mitotic sensory organ by E15.5, even though these cells remain infectible. These findings may offer insights into which target cells could potentially contribute to hearing loss resulting from fetal exposure to ZIKV in humans.
Collapse
Affiliation(s)
- Vidhya Munnamalai
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; (V.M.); (C.A.Y.)
- Graduate School of Biomedical Sciences and Engineering, University of Main, Orono, ME 04469, USA
| | - Nabilah H. Sammudin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
| | - Caryl A. Young
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; (V.M.); (C.A.Y.)
| | - Ankita Thawani
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; (N.H.S.); (A.T.); (R.J.K.)
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
102
|
Ferraris P, Wichit S, Cordel N, Missé D. Human host genetics and susceptibility to ZIKV infection. INFECTION GENETICS AND EVOLUTION 2021; 95:105066. [PMID: 34487865 DOI: 10.1016/j.meegid.2021.105066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Managing emerging infectious diseases is a current challenge in the fields of microbiology and epidemiology. Indeed, among other environmental and human-related factors, climate change and global warming favor the emergence of new pathogens. The recent Zika virus (ZIKV) epidemic, of which the large and rapid spread surprised the scientific community, is a reminder of the importance to study viruses currently responsible for sporadic infections. Increasing our knowledge of key factors involved in emerging infections is essential to implement specific monitoring that can be oriented according to the pathogen, targeted population, or at-risk environment. Recent technological developments, such as high-throughput sequencing, genome-wide association studies and CRISPR screenings have allowed the identification of human single nucleotide polymorphisms (SNPs) involved in infectious disease outcome. This review focuses on the human genetic host factors that have been identified and shown to be associated with the pathogenesis of ZIKV infection and candidate SNP targets.
Collapse
Affiliation(s)
- Pauline Ferraris
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France.
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nadège Cordel
- Guadeloupe University Hospital, Department of Dermatology and Clinical Immunology, Pointe-à-Pitre, Guadeloupe and Normandie University, UNIROUEN, IRIB, Inserm, U1234, Rouen, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394 Montpellier, France
| |
Collapse
|
103
|
Bohan D, Maury W. Enveloped RNA virus utilization of phosphatidylserine receptors: Advantages of exploiting a conserved, widely available mechanism of entry. PLoS Pathog 2021; 17:e1009899. [PMID: 34555126 PMCID: PMC8459961 DOI: 10.1371/journal.ppat.1009899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
104
|
Joseph S, Campbell KP. Lassa Fever Virus Binds Matriglycan-A Polymer of Alternating Xylose and Glucuronate-On α-Dystroglycan. Viruses 2021; 13:1679. [PMID: 34578260 PMCID: PMC8473316 DOI: 10.3390/v13091679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Lassa fever virus (LASV) can cause life-threatening hemorrhagic fevers for which there are currently no vaccines or targeted treatments. The late Prof. Stefan Kunz, along with others, showed that the high-affinity host receptor for LASV, and other Old World and clade-C New World mammarenaviruses, is matriglycan-a linear repeating disaccharide of alternating xylose and glucuronic acid that is polymerized uniquely on α-dystroglycan by like-acetylglucosaminyltransferase-1 (LARGE1). Although α-dystroglycan is ubiquitously expressed, LASV preferentially infects vascular endothelia and professional phagocytic cells, which suggests that viral entry requires additional cell-specific factors. In this review, we highlight the work of Stefan Kunz detailing the molecular mechanism of LASV binding and discuss the requirements of receptors, such as tyrosine kinases, for internalization through apoptotic mimicry.
Collapse
Affiliation(s)
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
105
|
Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, Pang ZP, Daniels BP, Jiang P. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Reports 2021; 16:1923-1937. [PMID: 34297942 PMCID: PMC8365109 DOI: 10.1016/j.stemcr.2021.06.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia play critical roles in brain development, homeostasis, and disease. Microglia in animal models cannot accurately model human microglia due to notable transcriptomic and functional differences between human and other animal microglia. Incorporating human pluripotent stem cell (hPSC)-derived microglia into brain organoids provides unprecedented opportunities to study human microglia. However, an optimized method that integrates appropriate amounts of microglia into brain organoids at a proper time point, resembling in vivo brain development, is still lacking. Here, we report a new brain region-specific, microglia-containing organoid model by co-culturing hPSC-derived primitive neural progenitor cells and primitive macrophage progenitors. In the organoids, the number of human microglia can be controlled, and microglia exhibit phagocytic activity and synaptic pruning function. Furthermore, human microglia respond to Zika virus infection of the organoids. Our findings establish a new microglia-containing brain organoid model that will serve to study human microglial function in a variety of neurological disorders.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiaoxi Li
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Caroline Erickson
- Summer Undergraduate Research Program in Neuroscience (NeuroSURP), Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
106
|
Abstract
The latest outbreak of Zika virus (ZIKV) in the Americas was associated with significant neurologic complications, including microcephaly of newborns. We evaluated mechanisms that regulate ZIKV entry into human fetal astrocytes (HFAs). Astrocytes are key players in maintaining brain homeostasis. We show that the central mediator of canonical Wnt signaling, β-catenin, regulates Axl, a receptor for ZIKV infection of HFAs, at the transcriptional level. In turn, ZIKV inhibited β-catenin, potentially as a mechanism to overcome its restriction of ZIKV internalization through regulation of Axl. This was evident with three ZIKV strains tested but not with a laboratory-adapted strain which has a large deletion in its envelope gene. Finally, we show that β-catenin-mediated Axl-dependent internalization of ZIKV may be of increased importance for brain cells, as it regulated ZIKV infection of astrocytes and human brain microvascular cells but not kidney epithelial (Vero) cells. Collectively, our studies reveal a role for β-catenin in ZIKV infection and highlight a dynamic interplay between ZIKV and β-catenin to modulate ZIKV entry into susceptible target cells. IMPORTANCE ZIKV is an emerging pathogen with sporadic outbreaks throughout the world. The most recent outbreak in North America was associated with small brains (microcephaly) in newborns. We studied the mechanism(s) that may regulate ZIKV entry into astrocytes. Astrocytes are a critical resident brain cell population with diverse functions that maintain brain homeostasis, including neurogenesis and neuronal survival. We show that three ZIKV strains (and not a heavily laboratory-adapted strain with a large deletion in its envelope gene) require Axl for internalization. Most importantly, we show that β-catenin, the central mediator of canonical Wnt signaling, negatively regulates Axl at the transcriptional level to prevent ZIKV internalization into human fetal astrocytes. To overcome this restriction, ZIKV downregulates β-catenin to facilitate Axl expression. This highlights a dynamic host-virus interaction whereby ZIKV inhibits β-catenin to promote its internalization into human fetal astrocytes through the induction of Axl.
Collapse
|
107
|
Heydari Z, Moeinvaziri F, Agarwal T, Pooyan P, Shpichka A, Maiti TK, Timashev P, Baharvand H, Vosough M. Organoids: a novel modality in disease modeling. Biodes Manuf 2021; 4:689-716. [PMID: 34395032 PMCID: PMC8349706 DOI: 10.1007/s42242-021-00150-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/12/2021] [Indexed: 12/17/2022]
Abstract
Limitations of monolayer culture conditions have motivated scientists to explore new models that can recapitulate the architecture and function of human organs more accurately. Recent advances in the improvement of protocols have resulted in establishing three-dimensional (3D) organ-like architectures called ‘organoids’ that can display the characteristics of their corresponding real organs, including morphological features, functional activities, and personalized responses to specific pathogens. We discuss different organoid-based 3D models herein, which are classified based on their original germinal layer. Studies of organoids simulating the complexity of real tissues could provide novel platforms and opportunities for generating practical knowledge along with preclinical studies, including drug screening, toxicology, and molecular pathophysiology of diseases. This paper also outlines the key challenges, advantages, and prospects of current organoid systems.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Farideh Moeinvaziri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Paria Pooyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| | - Anastasia Shpichka
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tapas K. Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302 India
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 19991 Moscow, Russia
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, 14155-4364 Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 14155-4364 Iran
| |
Collapse
|
108
|
Filgueiras IS, Torrentes de Carvalho A, Cunha DP, Mathias da Fonseca DL, El Khawanky N, Freire PP, Cabral-Miranda G, Schimke LF, Camara NOS, Ochs HD, Peron JPS, Cabral-Marques O, de Vasconcelos ZFM. The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Negl Trop Dis 2021; 15:e0009575. [PMID: 34351896 PMCID: PMC8341629 DOI: 10.1371/journal.pntd.0009575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the 2015 to 2016 outbreak in America, Zika virus (ZIKV) infected almost 900,000 patients. This international public health emergency was mainly associated with a significant increase in the number of newborns with congenital microcephaly and abnormal neurologic development, known as congenital Zika syndrome (CZS). Furthermore, Guillain-Barré syndrome (GBS), a neuroimmune disorder of adults, has also been associated with ZIKV infection. Currently, the number of ZIKV-infected patients has decreased, and most of the cases recently reported present as a mild and self-limiting febrile illness. However, based on its natural history of a typical example of reemerging pathogen and the lack of specific therapeutic options against ZIKV infection, new outbreaks can occur worldwide, demanding the attention of researchers and government authorities. Here, we discuss the clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. Several studies have confirmed the tropism of ZIKV for neural progenitor stem cells by demonstrating the presence of ZIKV in the central nervous system (CNS) during fetal development, eliciting a deleterious inflammatory response that compromises neurogenesis and brain formation. Of note, while the neuropathology of CZS can be due to a direct viral neuropathic effect, adults may develop neuroimmune manifestations such as GBS due to poorly understood mechanisms. Antiganglioside autoantibodies have been detected in multiple patients with ZIKV infection-associated GBS, suggesting a molecular mimicry. However, further additional immunopathological mechanisms remain to be uncovered, paving the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Amanda Torrentes de Carvalho
- Department of Immunobiology, Institute of Biology of Federal University of Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Daniela Prado Cunha
- Department of Clinical Research, Instituto Fernandes Figueira, Fiocruz, Rio de Janeiro, Brazil
| | | | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, the University of Freiburg, Freiburg, Germany
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Lena F. Schimke
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | | | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences of University of São Paulo, São Paulo, Brazil
- Department of Clinical Analyses and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
| | | |
Collapse
|
109
|
Ebola virus requires phosphatidylserine scrambling activity for efficient budding and optimal infectivity. J Virol 2021; 95:e0116521. [PMID: 34319156 DOI: 10.1128/jvi.01165-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ebola virus (EBOV) attaches to target cells using two categories of cell surface receptors, C-type lectins and phosphatidylserine (PS) receptors. PS receptors typically bind to apoptotic cell membrane PS and orchestrate the uptake and clearance of apoptotic debris. Many enveloped viruses also contain exposed PS and can therefore exploit these receptors for cell entry. Viral infection can induce PS externalization in host cells, resulting in increased outer PS levels on budding virions. Scramblase enzymes carry out cellular PS externalization, thus, we targeted these proteins in order to manipulate viral envelope PS levels. We investigated two scramblases previously identified to be involved in EBOV PS levels, transmembrane protein 16F and Xk-related protein 8 (XKR8), as possible mediators of cellular and viral envelope surface PS levels during the replication of recombinant vesicular stomatitis virus containing its native glycoprotein (rVSV/G) or the EBOV glycoprotein (rVSV/EBOV-GP). We found that rVSV/G and rVSV/EBOV-GP virions produced in XKR8 knockout cells contain decreased levels of PS on their surfaces, and the PS-deficient rVSV/EBOV-GP virions are 70% less efficient at infecting cells through PS receptors. We also observed reduced rVSV and EBOV virus-like particle (VLP) budding in ΔXKR8 cells. Deleting XKR8 in HAP1 cells reduced rVSV/G and rVSV/EBOV-GP budding by 60% and 65% respectively, and reduced Ebola VLP budding more than 60%. We further demonstrated that caspase cleavage of XKR8 is required to promote budding. This suggests that XKR8, in addition to mediating virion PS levels, may also be critical for enveloped virus budding at the plasma membrane. Importance Within the last decade, countries in western and central Africa have experienced the most widespread and deadly Ebola outbreaks since the virus was identified in 1976. While outbreaks are primarily attributed to zoonotic transfer events, new evidence is emerging that outbreaks may be caused by a combination of spillover events and viral latency or persistence in survivors. The possibility that Ebola can remain dormant then re-emerge in survivors highlights the critical need to prevent the virus from entering and establishing infection in human cells. Thus far, host-cell scramblases TMEM16F and XKR8 have been implicated in Ebola envelope surface phosphatidylserine (PS) and cell entry using PS receptors. We assessed the contributions of these proteins using CRISPR knockout cells and two EBOV models: rVSV/EBOV-GP and EBOV VLPs. We observed that XKR8 is required for optimal EBOV envelope PS levels and infectivity, and particle budding across all viral models.
Collapse
|
110
|
Kirui J, Abidine Y, Lenman A, Islam K, Gwon YD, Lasswitz L, Evander M, Bally M, Gerold G. The Phosphatidylserine Receptor TIM-1 Enhances Authentic Chikungunya Virus Cell Entry. Cells 2021; 10:cells10071828. [PMID: 34359995 PMCID: PMC8303237 DOI: 10.3390/cells10071828] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced cell binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.
Collapse
Affiliation(s)
- Jared Kirui
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Yara Abidine
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Annasara Lenman
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Koushikul Islam
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Lisa Lasswitz
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
| | - Gisa Gerold
- Centre for Experimental and Clinical Infection Research, TWINCORE, Institute for Experimental Virology, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; (J.K.); (A.L.); (L.L.)
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden; (Y.A.); (K.I.); (Y.-D.G.); (M.E.); (M.B.)
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
111
|
Hu T, Wu Z, Wu S, Chen S, Cheng A. The key amino acids of E protein involved in early flavivirus infection: viral entry. Virol J 2021; 18:136. [PMID: 34217298 PMCID: PMC8254458 DOI: 10.1186/s12985-021-01611-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/29/2021] [Indexed: 02/11/2023] Open
Abstract
Flaviviruses are enveloped viruses that infect multiple hosts. Envelope proteins are the outermost proteins in the structure of flaviviruses and mediate viral infection. Studies indicate that flaviviruses mainly use envelope proteins to bind to cell attachment receptors and endocytic receptors for the entry step. Here, we present current findings regarding key envelope protein amino acids that participate in the flavivirus early infection process. Among these sites, most are located in special positions of the protein structure, such as the α-helix in the stem region and the hinge region between domains I and II, motifs that potentially affect the interaction between different domains. Some of these sites are located in positions involved in conformational changes in envelope proteins. In summary, we summarize and discuss the key envelope protein residues that affect the entry process of flaviviruses, including the process of their discovery and the mechanisms that affect early infection.
Collapse
Affiliation(s)
- Tao Hu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shaoxiong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
112
|
Schouest B, Beddingfield BJ, Gilbert MH, Bohm RP, Schiro F, Aye PP, Panganiban AT, Magnani DM, Maness NJ. Zika virus infection during pregnancy protects against secondary infection in the absence of CD8 + cells. Virology 2021; 559:100-110. [PMID: 33865073 PMCID: PMC8212702 DOI: 10.1016/j.virol.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/21/2023]
Abstract
While T cell immunity is an important component of the immune response to Zika virus (ZIKV) infection generally, the efficacy of these responses during pregnancy remains unknown. Here, we tested the capacity of CD8 lymphocytes to protect from secondary challenge in four macaques, two of which were depleted of CD8+ cells prior to rechallenge with a heterologous ZIKV isolate. The initial challenge during pregnancy produced transcriptional signatures suggesting complex patterns of immune modulation as well as neutralizing antibodies that persisted until rechallenge, which all animals efficiently controlled, demonstrating that the primary infection conferred adequate protection. The secondary challenge promoted activation of innate and adaptive immune cells, possibly suggesting a brief period of infection prior to clearance. These data confirm that ZIKV infection during pregnancy induces sufficient immunity to protect from a secondary challenge and suggest that this protection is not dependent on CD8 T cells.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Margaret H Gilbert
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Antonito T Panganiban
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Diogo M Magnani
- Department of Medicine, University of Massachusetts, Boston, MA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
113
|
Cardona-Alberich A, Tourbez M, Pearce SF, Sibley CR. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biol 2021; 18:1063-1084. [PMID: 33499699 PMCID: PMC8216183 DOI: 10.1080/15476286.2020.1870362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged in recent years as a breakthrough technology to understand RNA metabolism at cellular resolution. In addition to allowing new cell types and states to be identified, scRNA-seq can permit cell-type specific differential gene expression changes, pre-mRNA processing events, gene regulatory networks and single-cell developmental trajectories to be uncovered. More recently, a new wave of multi-omic adaptations and complementary spatial transcriptomics workflows have been developed that facilitate the collection of even more holistic information from individual cells. These developments have unprecedented potential to provide penetrating new insights into the basic neural cell dynamics and molecular mechanisms relevant to the nervous system in both health and disease. In this review we discuss this maturation of single-cell RNA-sequencing over the past decade, and review the different adaptations of the technology that can now be applied both at different scales and for different purposes. We conclude by highlighting how these methods have already led to many exciting discoveries across neuroscience that have furthered our cellular understanding of the neurological disease.
Collapse
Affiliation(s)
- Aida Cardona-Alberich
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
| | - Manon Tourbez
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Sarah F. Pearce
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Christopher R. Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, Edinburgh University, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
114
|
Gaowa N, Li W, Gelsinger S, Murphy B, Li S. Analysis of Host Jejunum Transcriptome and Associated Microbial Community Structure Variation in Young Calves with Feed-Induced Acidosis. Metabolites 2021; 11:414. [PMID: 34201826 PMCID: PMC8303401 DOI: 10.3390/metabo11070414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
Diet-induced acidosis imposes a health risk to young calves. In this study, we aimed to investigate the host jejunum transcriptome changes, along with its microbial community variations, using our established model of feed-induced ruminal acidosis in young calves. Eight bull calves were randomly assigned to two diet treatments beginning at birth (a starch-rich diet, Aci; a control diet, Con). Whole-transcriptome RNA sequencing was performed on the jejunum tissues collected at 17 weeks of age. Ribosomal RNA reads were used for studying microbial community structure variations in the jejunum. A total of 853 differentially expressed genes were identified (402 upregulated and 451 downregulated) between the two groups. The cell cycle and the digestion and absorption of protein in jejunal tissue were affected by acidosis. Compared to the control, genera of Campylobacter, Burkholderia, Acidaminococcus, Corynebacterium, and Olsenella significantly increased in abundance in the Aci group, while Lachnoclostridium and Ruminococcus were significantly lower in the Aci group. Expression changes in the AXL gene were associated with the abundance variations of a high number of genera in jejunum. Our study provided a snapshot of the transcriptome changes in the jejunum and its associated meta-transcriptome changes in microbial communities in young calves with feed-induced acidosis.
Collapse
Affiliation(s)
- Naren Gaowa
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Brianna Murphy
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Shengli Li
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| |
Collapse
|
115
|
Cordero-Rivera CD, De Jesús-González LA, Osuna-Ramos JF, Palacios-Rápalo SN, Farfan-Morales CN, Reyes-Ruiz JM, Del Ángel RM. The importance of viral and cellular factors on flavivirus entry. Curr Opin Virol 2021; 49:164-175. [PMID: 34171540 DOI: 10.1016/j.coviro.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The flavivirus are emerging and re-emerging arthropod-borne pathogens responsible for significant mortality and morbidity worldwide. The genus comprises more than 70 viruses, and despite genomic and structural similarities, infections by different flaviviruses result in different clinical presentations. In the absence of a safe and effective vaccine against these infections, the search for new strategies to inhibit viral infection is necessary. The life cycle of arboviruses begins with the entry process composed of multiple steps: attachment, internalization, endosomal escape and capsid uncoating. This mini-review describes factors and mechanisms involved in the viral entry as events required to take over the cellular machinery and host factors and cellular pathways commonly used by flaviviruses as possible approaches for developing broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Carlos Daniel Cordero-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Luis Adrián De Jesús-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Juan Fidel Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Selvin Noé Palacios-Rápalo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Carlos Noe Farfan-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - José Manuel Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07320, Mexico.
| |
Collapse
|
116
|
Yang D, Chu H, Lu G, Shuai H, Wang Y, Hou Y, Zhang X, Huang X, Hu B, Chai Y, Yuen TTT, Zhao X, Lee ACY, Ye Z, Li C, Chik KKH, Zhang AJ, Zhou J, Yuan S, Chan JFW. STAT2-dependent restriction of Zika virus by human macrophages but not dendritic cells. Emerg Microbes Infect 2021; 10:1024-1037. [PMID: 33979266 PMCID: PMC8205058 DOI: 10.1080/22221751.2021.1929503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that poses significant threats to global public health. Macrophages and dendritic cells are both key sentinel cells in the host immune response and play critical roles in the pathogenesis of flavivirus infections. Recent studies showed that ZIKV could productively infect monocyte-derived dendritic cells (moDCs), but the role of macrophages in ZIKV infection remains incompletely understood. In this study, we first compared ZIKV infection in monocyte-derived macrophages (MDMs) and moDCs derived from the same donors. We demonstrated that while both MDMs and moDCs were susceptible to epidemic (Puerto Rico) and pre-epidemic (Uganda) strains of ZIKV, virus replication was largely restricted in MDMs but not in moDCs. ZIKV induced significant apoptosis in moDCs but not MDMs. The restricted virus replication in MDMs was not due to inefficient virus entry but was related to post-entry events in the viral replication cycle. In stark contrast with moDCs, ZIKV failed to inhibit STAT1 and STAT2 phosphorylation in MDMs. This resulted in the lack of efficient antagonism of the host type I interferon-mediated antiviral responses. Importantly, depletion of STAT2 but not STAT1 in MDMs significantly rescued the replication of ZIKV and the prototype flavivirus yellow fever virus. Overall, our findings revealed a differential interplay between macrophages and dendritic cells with ZIKV. While dendritic cells may be exploited by ZIKV to facilitate virus replication, macrophages restricted ZIKV infection.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Gang Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Xiaoyu Zhao
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Ziwei Ye
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Cun Li
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Pokfulam, People's Republic of China.,Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, People's Republic of China, and the The University of Hong Kong, Pokfulam, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
117
|
Alpuche-Lazcano SP, Saliba J, Costa VV, Campolina-Silva GH, Marim FM, Ribeiro LS, Blank V, Mouland AJ, Teixeira MM, Gatignol A. Profound downregulation of neural transcription factor Npas4 and Nr4a family in fetal mice neurons infected with Zika virus. PLoS Negl Trop Dis 2021; 15:e0009425. [PMID: 34048439 PMCID: PMC8191876 DOI: 10.1371/journal.pntd.0009425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/10/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection of neurons leads to neurological complications and congenital malformations of the brain of neonates. To date, ZIKV mechanism of infection and pathogenesis is not entirely understood and different studies on gene regulation of ZIKV-infected cells have identified a dysregulation of inflammatory and stem cell maintenance pathways. MicroRNAs (miRNAs) are post-transcriptional regulators of cellular genes and they contribute to cell development in normal function and disease. Previous reports with integrative analyses of messenger RNAs (mRNAs) and miRNAs during ZIKV infection have not identified neurological pathway defects. We hypothesized that dysregulation of pathways involved in neurological functions will be identified by RNA profiling of ZIKV-infected fetal neurons. We therefore used microarrays to analyze gene expression levels following ZIKV infection of fetal murine neurons. We observed that the expression levels of transcription factors such as neural PAS domain protein 4 (Npas4) and of three members of the orphan nuclear receptor 4 (Nr4a) were severely decreased after viral infection. We confirmed that their downregulation was at both the mRNA level and at the protein level. The dysregulation of these transcription factors has been previously linked to aberrant neural functions and development. We next examined the miRNA expression profile in infected primary murine neurons by microarray and found that various miRNAs were dysregulated upon ZIKV infection. An integrative analysis of the differentially expressed miRNAs and mRNAs indicated that miR-7013-5p targets Nr4a3 gene. Using miRmimics, we corroborated that miR-7013-5p downregulates Nr4a3 mRNA and protein levels. Our data identify a profound dysregulation of neural transcription factors with an overexpression of miR-7013-5p that results in decreased Nr4a3 expression, likely a main contributor to ZIKV-induced neuronal dysfunction. Zika virus (ZIKV) is an emerging virus transmitted horizontally between humans through mosquito bites, and sexual intercourse generally inducing a mild disease. ZIKV is also transmitted vertically from mother-to-child producing congenital ZIKV syndrome (CZVS) in neonates. CZVS leads to severe microcephaly associated with neurological, ocular, musculoskeletal, genitourinary disorders and other disabilities. Although numerous studies have been performed on ZIKV infection of brain cells, we are still far from understanding how ZIKV infection leads to dysregulation of host genes, virus-induced cytopathicity and consequent pathology. Micro (mi)RNAs are small noncoding RNAs encoded and processed by the host cell. They regulate gene expression at the post-transcriptional level in a process called RNA interference (RNAi). Here, we evaluated the relationship between ZIKV infection and the level of mRNAs and miRNAs expressed in the cell. ZIKV infection of mouse embryo neurons downregulated several neural immediate-early genes (IEG). Moreover, we revealed that ZIKV infection led to aberrant regulation of several miRNAs, and identified one whose cognate target was a neural IEG. Our work identifies novel genes and miRNAs that are modulated upon ZIKV infection of fetal murine neurons, therefore linking neuronal dysfunction to transcription and the RNA interference pathway.
Collapse
Affiliation(s)
- Sergio P. Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
| | - James Saliba
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada
- Lady Davis Institute for Medical Research, Montréal, Canada
| | - Vivian V. Costa
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Morfologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel H. Campolina-Silva
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda M. Marim
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas S. Ribeiro
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Volker Blank
- Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Physiology, McGill University, Montréal, Canada
| | - Andrew J. Mouland
- RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Mauro M. Teixeira
- Departamento de Bioquimica e Imunologia do Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Canada
- Department of Medicine, Montréal, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- * E-mail:
| |
Collapse
|
118
|
RNA Interference Screening Reveals Requirement for Platelet-Derived Growth Factor Receptor Beta in Japanese Encephalitis Virus Infection. Antimicrob Agents Chemother 2021; 65:AAC.00113-21. [PMID: 33753340 PMCID: PMC8316074 DOI: 10.1128/aac.00113-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Mosquito-borne Japanese encephalitis virus (JEV) causes serious illness worldwide and is associated with high morbidity and mortality. To identify potential host therapeutic targets, a high-throughput receptor tyrosine kinase small interfering RNA library screening was performed with recombinant JEV particles. Platelet-derived growth factor receptor beta (PDGFRβ) was identified as a hit after two rounds of screening. Knockdown of PDGFRβ blocked JEV infection and transcomplementation of PDGFRβ could partly restore its infectivity. The PDGFRβ inhibitor imatinib, which has been approved for the treatment of malignant metastatic cancer, protected mice against JEV-induced lethality by decreasing the viral load in the brain while abrogating the histopathological changes associated with JEV infection. These findings demonstrated that PDGFRβ is important in viral infection and provided evidence for the potential to develop imatinib as a therapeutic intervention against JEV infection.
Collapse
|
119
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
120
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
121
|
Gist of Zika Virus pathogenesis. Virology 2021; 560:86-95. [PMID: 34051478 DOI: 10.1016/j.virol.2021.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne neurotropic flavivirus. ZIKV infection may lead to microcephaly in developing fetus and Guillain-Barré Syndrome (GBS) like symptoms in adults. ZIKV was first reported in humans in 1952 from Uganda and the United Republic of Tanzania. Later, ZIKV outbreak was reported in 2007 from the Yap Island. ZIKV re-emerged as major outbreak in the year 2013 from French Polynesia followed by second outbreak in the year 2015 from Brazil. ZIKV crosses the blood-tissue barriers to enter immune-privileged organs. Clinical manifestations in ZIKV disease includes rash, fever, conjunctivitis, muscle and joint pain, headache, transverse myelitis, meningoencephalitis, Acute Disseminated Encephalomyelitis (ADEM). The understanding of the molecular mechanism of ZIKV pathogenesis is very important to develop potential diagnostic and therapeutic interventions for ZIKV infected patients.
Collapse
|
122
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
123
|
Shereen MA, Bashir N, Su R, Liu F, Wu K, Luo Z, Wu J. Zika virus dysregulates the expression of astrocytic genes involved in neurodevelopment. PLoS Negl Trop Dis 2021; 15:e0009362. [PMID: 33891593 PMCID: PMC8099136 DOI: 10.1371/journal.pntd.0009362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/05/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a kind of flavivirus emerged in French Polynesia and Brazil, and has led to a worldwide public health concern since 2016. ZIKV infection causes various neurological conditions, which are associated with fetus brain development or peripheral and central nervous systems (PNS/CNS) functional problems. To date, no vaccine or any specific antiviral therapy against ZIKV infection are available. It urgently needs efforts to explore the underlying molecular mechanisms of ZIKV-induced neural pathogenesis. ZIKV favorably infects neural and glial cells specifically astrocytes, consequently dysregulating gene expression and pathways with impairment of process neural cells. In this study, we applied a model for ZIKV replication in mouse primary astrocytes (MPAs) and profiled temporal alterations in the host transcriptomes upon ZIKV infection. Among the RNA-sequencing data of 27,812 genes, we examined 710 genes were significantly differentially expressed by ZIKV, which lead to dysregulation of numerous functions including neurons development and migration, glial cells differentiation, myelinations, astrocytes projection, neurogenesis, and brain development, along with multiple pathways including Hippo signaling pathway, tight junction, PI3K-Akt signaling pathway, and focal adhesion. Furthermore, we confirmed the dysregulation of the selected genes in MPAs and human astroglioma U251 cells. We found that PTBP1, LIF, GHR, and PTBP3 were upregulated while EDNRB and MBP were downregulated upon ZIKV infection. The current study highlights the ZIKV-mediated potential genes associated with neurodevelopment or related diseases. Zika virus (ZIKV) infection causes serious neurological disorders of central and peripheral nervous system, and fetal brain development disorders including microcephaly. There are still uncovered explorations for the underlying molecular mechanism of ZIKV-infected pathogenesis. This study reveals a series of dysregulation of neuropathic genes mRNA and protein expression in mouse and human astrocytes upon ZIKV infection. As an ideal ZIKV infection model in mouse primary astrocytes (MPAs), RNA-seq was performed to profile transcriptome alteration by ZIKV infection. Bioinformatics analysis demonstrated the significant alterations of the 710 genes that were linked to glial cell differentiation and projection, neurogenesis and migration of neurons, myelination, as well as synaptic control. Among the top selected differentially expressed genes, such as PTBP1, LIF, GHR, PTBP3, EDNRB, and MBP, the mRNA and protein expressions were confirmed to identify the dysregulation of the transcriptome in MPAs upon ZIKV infection. Furthermore, ZIKV infection altered the mRNA and protein expression of these astrocytic genes involved in neurodevelopment in U251 cells following the analysis of the transcriptome. In conclusion, the alteration of astrocytic gene functions or associated-pathways suggest a novel clue of a mechanism involved in the ZIKV-induced neurodevelopment disorders.
Collapse
Affiliation(s)
- Muhammad Adnan Shereen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Nadia Bashir
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Su
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
124
|
Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021; 10:448. [PMID: 33918691 PMCID: PMC8068860 DOI: 10.3390/pathogens10040448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.
Collapse
Affiliation(s)
- Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| |
Collapse
|
125
|
Moura LM, Ferreira VLDR, Loureiro RM, de Paiva JPQ, Rosa-Ribeiro R, Amaro E, Soares MBP, Machado BS. The Neurobiology of Zika Virus: New Models, New Challenges. Front Neurosci 2021; 15:654078. [PMID: 33897363 PMCID: PMC8059436 DOI: 10.3389/fnins.2021.654078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The Zika virus (ZIKV) attracted attention due to one striking characteristic: the ability to cross the placental barrier and infect the fetus, possibly causing severe neurodevelopmental disruptions included in the Congenital Zika Syndrome (CZS). Few years after the epidemic, the CZS incidence has begun to decline. However, how ZIKV causes a diversity of outcomes is far from being understood. This is probably driven by a chain of complex events that relies on the interaction between ZIKV and environmental and physiological variables. In this review, we address open questions that might lead to an ill-defined diagnosis of CZS. This inaccuracy underestimates a large spectrum of apparent normocephalic cases that remain underdiagnosed, comprising several subtle brain abnormalities frequently masked by a normal head circumference. Therefore, new models using neuroimaging and artificial intelligence are needed to improve our understanding of the neurobiology of ZIKV and its true impact in neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - Edson Amaro
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ), Bahia, Brazil.,University Center SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Advanced Health Systems (CIMATEC ISI SAS), National Service of Industrial Learning - SENAI, Bahia, Brazil
| | | |
Collapse
|
126
|
Morales A, Rojo Rello S, Cristóbal H, Fiz-López A, Arribas E, Marí M, Tutusaus A, de la Cal-Sabater P, Nicolaes GA, Ortiz-Pérez JT, Bernardo D, García de Frutos P. Growth Arrest-Specific Factor 6 (GAS6) Is Increased in COVID-19 Patients and Predicts Clinical Outcome. Biomedicines 2021; 9:biomedicines9040335. [PMID: 33810394 PMCID: PMC8065652 DOI: 10.3390/biomedicines9040335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Growth arrest-specific factor 6 (GAS6) and the Tyro3, AXL, and MERTK (TAM) receptors counterbalance pro-inflammatory responses. AXL is a candidate receptor for SARS-CoV-2, particularly in the respiratory system, and the GAS6/AXL axis is targeted in current clinical trials against COVID-19. However, GAS6 and TAMs have not been evaluated in COVID-19 patients at emergency admission. Methods: Plasma GAS6, AXL, and MERTK were analyzed in 132 patients consecutively admitted to the emergency ward during the first peak of COVID-19. Results: GAS6 levels were higher in the SARS-CoV-2-positive patients, increasing progressively with the severity of the disease. Patients with initial GAS6 at the highest quartile had the worst outcome, with a 3-month survival of 65%, compared to a 90% survival for the rest. Soluble AXL exhibited higher plasma concentration in deceased patients, without significant differences in MERTK among SARS-CoV-2-positive groups. GAS6 mRNA was mainly expressed in alveolar cells and AXL in airway macrophages. Remarkably, THP-1 human macrophage differentiation neatly induces AXL, and its inhibition (bemcentinib) reduced cytokine production in human macrophages after LPS challenge. Conclusions: Plasma GAS6 and AXL levels reflect COVID-19 severity and could be early markers of disease prognosis, supporting a relevant role of the GAS6/AXL system in the immune response in COVID-19.
Collapse
Affiliation(s)
- Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.M.); (H.C.); (M.M.); (A.T.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, CIBEREHD, 08036 Barcelona, Spain
| | - Silvia Rojo Rello
- Servicio de Microbiología, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain;
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.M.); (H.C.); (M.M.); (A.T.)
| | - Aida Fiz-López
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (A.F.-L.); (E.A.); (P.d.l.C.-S.); (D.B.)
| | - Elisa Arribas
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (A.F.-L.); (E.A.); (P.d.l.C.-S.); (D.B.)
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.M.); (H.C.); (M.M.); (A.T.)
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.M.); (H.C.); (M.M.); (A.T.)
| | - Paloma de la Cal-Sabater
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (A.F.-L.); (E.A.); (P.d.l.C.-S.); (D.B.)
| | - Gerry A.F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - José T. Ortiz-Pérez
- Clinic Cardiovascular Institute, Hospital Clinic Barcelona, 08036 Barcelona, Spain;
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid—CSIC, 47003 Valladolid, Spain; (A.F.-L.); (E.A.); (P.d.l.C.-S.); (D.B.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, 08036 Barcelona, Spain; (A.M.); (H.C.); (M.M.); (A.T.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Cell Death and Differentiation, Institut d’Investigacions Biomèdiques de Barcelona, IIBB-CSIC, Rosselló 161, 6th Floor, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
127
|
Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Rep 2021; 35:108959. [PMID: 33811811 PMCID: PMC7985926 DOI: 10.1016/j.celrep.2021.108959] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/10/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.
Collapse
|
128
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
129
|
Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol 2021; 11:575346. [PMID: 33954117 PMCID: PMC8092360 DOI: 10.3389/fcimb.2021.575346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses, as critically important pathogens, are still major public health problems all over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap island in 2007. DENV was considered by the World Health Organization (WHO) as one of the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be a candidate receptor for flavivirus invasion. In this review, we discuss the molecular structure of ZIKV and DENV, and how they interact with AXL to successfully invade host cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-AXL interaction will provide crucial insights into the virus infection process and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Shengda Xie
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huiru Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenjie Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
130
|
Geddes VEV, Brustolini OJB, Cavalcante LTDF, Moreira FRR, de Castro FL, Guimarães APDC, Gerber AL, Figueiredo CM, Diniz LP, Neto EDA, Tanuri A, Souza RP, Assunção-Miranda I, Alves-Leon SV, Romão LF, de Souza JPBM, de Vasconcelos ATR, de Aguiar RS. Common Dysregulation of Innate Immunity Pathways in Human Primary Astrocytes Infected With Chikungunya, Mayaro, Oropouche, and Zika Viruses. Front Cell Infect Microbiol 2021; 11:641261. [PMID: 33791243 PMCID: PMC8006316 DOI: 10.3389/fcimb.2021.641261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Arboviruses pose a major threat throughout the world and represent a great burden in tropical countries of South America. Although generally associated with moderate febrile illness, in more severe cases they can lead to neurological outcomes, such as encephalitis, Guillain-Barré syndrome, and Congenital Syndromes. In this context astrocytes play a central role in production of inflammatory cytokines, regulation of extracellular matrix, and control of glutamate driven neurotoxicity in the central nervous system. Here, we presented a comprehensive genome-wide transcriptome analysis of human primary astrocytes infected with Chikungunya, Mayaro, Oropouche, or Zika viruses. Analyses of differentially expressed genes (DEGs), pathway enrichment, and interactomes have shown that Alphaviruses up-regulated genes related to elastic fiber formation and N-glycosylation of glycoproteins, with down-regulation of cell cycle and DNA stability and chromosome maintenance genes. In contrast, Oropouche virus up-regulated cell cycle and DNA maintenance and condensation pathways while down-regulated extracellular matrix, collagen metabolism, glutamate and ion transporters pathways. Zika virus infection only up-regulated eukaryotic translation machinery while down-regulated interferon pathways. Reactome and integration analysis revealed a common signature in down-regulation of innate immune response, antiviral response, and inflammatory cytokines associated to interferon pathway for all arboviruses tested. Validation of interferon stimulated genes by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) corroborated our transcriptome findings. Altogether, our results showed a co-evolution in the mechanisms involved in the escape of arboviruses to antiviral immune response mediated by the interferon (IFN) pathway.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Liliane Tavares de Faria Cavalcante
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Romero Rebello Moreira
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Luz de Castro
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Camila Menezes Figueiredo
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico de Arruda Neto
- Departamento de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renan Pedra Souza
- Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Ferreira Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Ministério de Ciência Tecnologia e Comunicações, Petrópolis, Brazil
| | - Renato Santana de Aguiar
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia Integrativa, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
131
|
Bhagat R, Kaur G, Seth P. Molecular mechanisms of zika virus pathogenesis: An update. Indian J Med Res 2021; 154:433-445. [PMID: 35345069 PMCID: PMC9131805 DOI: 10.4103/ijmr.ijmr_169_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 01/04/2023] Open
Abstract
Zika virus (ZIKV), member of the family Flaviviridae belonging to genus Flavivirus, is an arthropod-borne virus. The ZIKV is known to cause severe congenital birth defects in neonates. Due to a large number of worldwide outbreaks and associated neurological complications with ZIKV, a public health emergency was declared by the World Health Organization on February 1, 2016. The virus exhibits neurotropism and has a specific propensity towards neural precursor cells of the developing brain. In utero ZIKV infection causes massive cell death in the developing brain resulting in various motor and cognitive disabilities in newborns. The virus modulates cell machinery at several levels to replicate itself and inhibits toll like receptors-3 signalling, deregulates microRNA circuitry and induces a chronic inflammatory response in affected cells. Several significant advances have been made to understand the mechanisms of neuropathogenesis, its prevention and treatment. The current review provides an update on cellular and molecular mechanisms of ZIKV-induced alterations in the function of various brain cells.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
- Department of Genetics, Washington University in Saint Louis, Missouri, United States of America
| | - Guneet Kaur
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| | - Pankaj Seth
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, India
| |
Collapse
|
132
|
Sexton NR, Bellis ED, Murrieta RA, Spangler MC, Cline PJ, Weger-Lucarelli J, Ebel GD. Genome Number and Size Polymorphism in Zika Virus Infectious Units. J Virol 2021; 95:e00787-20. [PMID: 33328311 PMCID: PMC8094933 DOI: 10.1128/jvi.00787-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV; Flaviviridae, Flavivirus) is an arthropod-borne infection that can result in severe outcomes, particularly in fetuses infected in utero It has been assumed that infection by ZIKV, as well as other viruses, is largely initiated by individual virus particles binding to and entering a cell. However, recent studies have demonstrated that multiple virus particles are frequently delivered to a cell simultaneously and that this collective particle delivery enhances infection. ZIKV is maintained in nature between Aedes aegypti mosquitos and vertebrate hosts, including humans. Human infection is initiated through the injection of a relatively small initial inoculum comprised of a genetically complex virus population. Since most mutations decrease virus fitness, collective particle transmission could benefit ZIKV and other arthropod-borne diseases by facilitating the maintenance of genetic complexity and adaptability during infection or through other mechanisms. Therefore, we utilized a barcoded ZIKV to quantify the number of virus genomes that initiate a plaque. We found that individual plaques contain a mean of 10 infecting viral genomes (range, 1 to 212). Few plaques contained more than two dominant genomes. To determine whether multigenome infectious units consist of collectively transmitting virions, infectious units of ZIKV were then separated mechanically by centrifugation, and heavier fractions were found to contain more genomes per plaque-forming unit, with larger diameters. Finally, larger/heavier infectious units reformed after removal. These data suggest that ZIKV populations consist of a variety of infectious unit sizes, likely mostly made up of aggregates, and only rarely begin with a single virus genome.IMPORTANCE The arthropod-borne Zika virus (ZIKV) infects humans and can cause severe neurological sequelae, particularly in fetuses infected in utero How this virus has been able to spread across vast geological ranges and evolve in new host populations is not yet understood. This research demonstrates a novel mechanism of ZIKV transmission through multigenome aggregates, providing insight into ZIKV evolution, immunologic evasion, and better future therapeutic design. This study shows that ZIKV plaques result from collections of genomes rather than individual genomes, increasing the potential for interactions between ZIKV genotypes.
Collapse
Affiliation(s)
- Nicole R Sexton
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Eric D Bellis
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Reyes A Murrieta
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark Cole Spangler
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Parker J Cline
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
133
|
Aragón N, Díaz C, Contreras A. Dental, Occlusal, and Craniofacial Features of Children With Microcephaly Due to Congenital Zika Infection: 3 Cases Report From Valle del Cauca, Cali-Colombia-2020. Cleft Palate Craniofac J 2021; 58:1318-1325. [PMID: 33563005 DOI: 10.1177/1055665621990978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Describes dental, occlusal, and craniofacial characteristics of 3 children aged 3 to 4 years with microcephaly due to congenital Zika infection in Cali Valle del Cauca, 2020. DESIGN Three children case report with congenital Zika virus microcephaly. SETTING Institutional. PATIENTS Three children with maternal viral infection confirmed by polymerase chain reaction during first trimester of pregnancy were included and were born from 2016 to 2017. INTERVENTIONS Oral and mouth functional examination was performed including soft tissue examination; lingual and labial frenulum; evaluation of swallowing and chewing; craniofacial analysis; dimension of dental arch; intercanine and intermolar distance, palate form; relationship and growth of maxilla, mandible, and facial dental midline using plaster models; and complementary image analysis. MAIN OUTCOME MEASURES Child and mother sociodemographic features, craniofacial measurements; dental and oral features; maxillary and mandibular measures; and speech, swallowing, and chewing disorders. RESULTS Small head circumference at birth and at the time of clinical evaluation was compared to normal children of approximately their age. Upper third of the face was short, and presence of hypertonic masticatory muscles with hypotonic swallowing muscles, dysphagia, dyslalia, bruxism, lip incompetence, tongue interposition, and hypersalivation and epilepsy were the main medical problem. They have complete primary dentition with normal dental morphology, tooth eruption altered, dental caries, and dental malocclusion was identified. CONCLUSION There are no changes in the dental formula and dental morphology in the deciduous dentition. They present severe chewing and speaking limitation, facial disproportion, and occlusal problems that warrant dental and medical attention.
Collapse
Affiliation(s)
- Natalia Aragón
- Dentistry School, Universidad del Valle, Cali, Colombia.,Group Periodontal Medicine, Universidad del Valle, Cali, Colombia
| | - Catalina Díaz
- Dentistry School, Universidad del Valle, Cali, Colombia
| | - Adolfo Contreras
- Dentistry School, Universidad del Valle, Cali, Colombia.,Group Periodontal Medicine, Universidad del Valle, Cali, Colombia
| |
Collapse
|
134
|
Duzagac F, Saorin G, Memeo L, Canzonieri V, Rizzolio F. Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers (Basel) 2021; 13:737. [PMID: 33578886 PMCID: PMC7916612 DOI: 10.3390/cancers13040737] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that recapitulate 3D tissue structure and physiology and combines several advantages of current in vivo and in vitro models. Microfluidics technology is used in numerous applications since it allows us to control and manipulate fluid flows with a high degree of accuracy. This system is an emerging tool for understanding disease development and progression, especially for personalized therapeutic strategies for cancer treatment, which provide well-grounded, cost-effective, powerful, fast, and reproducible results. In this review, we highlight how the organoid-on-a-chip models have improved the potential of efficiency and reproducibility of organoid cultures. More widely, we discuss current challenges and development on organoid culture systems together with microfluidic approaches and their limitations. Finally, we describe the recent progress and potential utilization in the organs-on-a-chip practice.
Collapse
Affiliation(s)
- Fahriye Duzagac
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy;
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
135
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
136
|
Axl Alleviates Neuroinflammation and Delays Japanese Encephalitis Progression in Mice. Virol Sin 2021; 36:667-677. [PMID: 33534086 DOI: 10.1007/s12250-020-00342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, which causes the most commonly diagnosed viral encephalitis named Japanese encephalitis (JE) in the world with an unclear pathogenesis. Axl, a receptor tyrosine kinase from TAM family, plays crucial role in many inflammatory diseases. We have previously discovered that Axl deficiency resulted in more severe body weight loss in mice during JEV infection, which we speculate is due to the anti-inflammatory effect of Axl during JE. Currently, the role of Axl in regulating the neuroinflammation and brain damage during JE has not been investigated yet. In this study, by using Axl deficient and heterozygous control mice, we discovered that Axl deficient mice displayed accelerated JE progression and exacerbated brain damage characterized by increased neural cell death, extended infiltration of inflammatory cells, and enhanced production of pro-inflammatory cytokines, in comparison to control mice. Additionally, consistent with our previous report, Axl deficiency had no impact on the infection and target cell tropism of JEV in brain. Taken together, our results suggest that Axl plays an anti-inflammatory and neuroprotective role during the pathogenesis of JE.
Collapse
|
137
|
Ouyang Y, Mouillet JF, Sorkin A, Sadovsky Y. Trophoblastic extracellular vesicles and viruses: Friends or foes? Am J Reprod Immunol 2021; 85:e13345. [PMID: 32939907 PMCID: PMC7880881 DOI: 10.1111/aji.13345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Cells produce cytoplasmic vesicles to facilitate the processing and transport of RNAs, proteins, and other signaling molecules among intracellular organelles. Moreover, most cells release a range of extracellular vesicles (EVs) that mediate intercellular communication in both physiological and pathological settings. In addition to a better understanding of their biological functions, the diagnostic and therapeutic prospects of EVs, particularly the nano-sized small EVs (sEVs, exosomes), are currently being rigorously pursued. While EVs and viruses such as retroviruses might have evolved independently, they share a number of similar characteristics, including biogenesis pathways, size distribution, cargo, and cell-targeting mechanisms. The interplay of EVs with viruses has profound effects on viral replication and infectivity. Our research indicates that sEVs, produced by primary human trophoblasts, can endow other non-placental cell types with antiviral response. Better insights into the interaction of EVs with viruses may illuminate new ways to attenuate viral infections during pregnancy, and perhaps develop new antiviral therapeutics to protect the feto-placental unit during critical times of human development.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
138
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
139
|
Schouest B, Peterson TA, Szeltner DM, Scheef EA, Baddoo M, Ungerleider N, Flemington EK, MacLean AG, Maness NJ. Transcriptional signatures of Zika virus infection in astrocytes. J Neurovirol 2021; 27:116-125. [PMID: 33405202 PMCID: PMC7921019 DOI: 10.1007/s13365-020-00931-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023]
Abstract
Astrocytes are an early and important target of Zika virus (ZIKV) infection in the developing brain, but the impacts of infection on astrocyte function remain controversial. Given that nonhuman primate (NHP) models of ZIKV infection replicate aspects of neurologic disease seen in human infections, we cultured primary astrocytes from the brain tissue of infant rhesus macaques and then infected the cells with Asian or African lineage ZIKV to identify transcriptional patterns associated with infection in these cells. The African lineage virus appeared to have greater infectivity and promote stronger antiviral signaling, but infection by either strain ultimately produced typical virus response patterns. Both viruses induced hypoxic stress, but the Asian lineage strain additionally had an effect on metabolic and lipid biosynthesis pathways. Together, these findings describe an NHP astrocyte model that may be used to assess transcriptional signatures following ZIKV infection.
Collapse
Affiliation(s)
- Blake Schouest
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tiffany A Peterson
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Biomedical Sciences Training Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Dawn M Szeltner
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Elizabeth A Scheef
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Melody Baddoo
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Andrew G MacLean
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
140
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.28.122291. [PMID: 32577652 PMCID: PMC7302206 DOI: 10.1101/2020.05.28.122291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
141
|
Best K, Barouch DH, Guedj J, Ribeiro RM, Perelson AS. Zika virus dynamics: Effects of inoculum dose, the innate immune response and viral interference. PLoS Comput Biol 2021; 17:e1008564. [PMID: 33471814 PMCID: PMC7817008 DOI: 10.1371/journal.pcbi.1008564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Experimental Zika virus infection in non-human primates results in acute viral load dynamics that can be well-described by mathematical models. The inoculum dose that would be received in a natural infection setting is likely lower than the experimental infections and how this difference affects the viral dynamics and immune response is unclear. Here we study a dataset of experimental infection of non-human primates with a range of doses of Zika virus. We develop new models of infection incorporating both an innate immune response and viral interference with that response. We find that such a model explains the data better than models with no interaction between virus and the immune response. We also find that larger inoculum doses lead to faster dynamics of infection, but approximately the same total amount of viral production. The relationship between the infecting dose of a pathogen and the subsequent viral dynamics is unclear in many disease settings, and this relationship has implications for both the timing and the required efficacy of antiviral therapy. Since experimental challenge studies often employ higher doses of virus than would generally be present in natural infection assessment of this relationship is particularly important for translation of findings. In this study we used mathematical modelling of viral load data from a multi-dose study of Zika virus infection in a macaque model to describe the impact of varying the dose of Zika virus on model parameters, and developed a novel mathematical model incorporating viral interference with the innate immune response.
Collapse
Affiliation(s)
- Katharine Best
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Laboratório de Biomatemática, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
142
|
Mohan M, Bhattacharya D. Host-directed Therapy: A New Arsenal to Come. Comb Chem High Throughput Screen 2021; 24:59-70. [PMID: 32723230 DOI: 10.2174/1386207323999200728115857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
The emergence of drug-resistant strains among the variety of pathogens worsens the situation in today's scenario. In such a situation, a very heavy demand for developing the new antibiotics has arisen, but unfortunately, very limited success has been achieved in this arena till now. Infectious diseases usually make their impression in the form of severe pathology. Intracellular pathogens use the host's cell machinery for their survival. They alter the gene expression of several host's pathways and endorse to shut down the cell's innate defense pathway like apoptosis and autophagy. Intracellular pathogens are co-evolved with hosts and have a striking ability to manipulate the host's factors. They also mimic the host molecules and secrete them to prevent the host's proper immune response against them for their survival. Intracellular pathogens in chronic diseases create excessive inflammation. This excessive inflammation manifests in pathology. Host directed therapy could be alternative medicine in this situation; it targets the host factors, and abrogates the replication and persistence of pathogens inside the cell. It also provokes the anti-microbial immune response against the pathogen and reduces the exacerbation by enhancing the healing process to the site of pathology. HDT targets the host's factor involved in a certain pathway that ultimately targets the pathogen life cycle and helps in eradication of the pathogen. In such a scenario, HDT could also play a significant role in the treatment of drugsensitive as well with drug resistance strains because it targets the host's factors, which favors the pathogen survival inside the cell.
Collapse
Affiliation(s)
- Mradul Mohan
- National Institute of Malaria Research, New Delhi, India
| | - Debapriya Bhattacharya
- Center for Biotechnology, School of Pharmaceutical Sciences, SOA Deemed University, Bhubaneswar, Odisha, India
| |
Collapse
|
143
|
Carro SD, Cherry S. Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses 2020; 13:E13. [PMID: 33374822 PMCID: PMC7824540 DOI: 10.3390/v13010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses are a group of positive-sense RNA viruses that are primarily transmitted through arthropod vectors and are capable of causing a broad spectrum of diseases. Many of the flaviviruses that are pathogenic in humans are transmitted specifically through mosquito vectors. Over the past century, many mosquito-borne flavivirus infections have emerged and re-emerged, and are of global importance with hundreds of millions of infections occurring yearly. There is a need for novel, effective, and accessible vaccines and antivirals capable of inhibiting flavivirus infection and ameliorating disease. The development of therapeutics targeting viral entry has long been a goal of antiviral research, but most efforts are hindered by the lack of broad-spectrum potency or toxicities associated with on-target effects, since many host proteins necessary for viral entry are also essential for host cell biology. Mosquito-borne flaviviruses generally enter cells by clathrin-mediated endocytosis (CME), and recent studies suggest that a subset of these viruses can be internalized through a specialized form of CME that has additional dependencies distinct from canonical CME pathways, and antivirals targeting this pathway have been discovered. In this review, we discuss the role and contribution of endocytosis to mosquito-borne flavivirus entry as well as consider past and future efforts to target endocytosis for therapeutic interventions.
Collapse
Affiliation(s)
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
144
|
Gasco S, Muñoz-Fernández MÁ. A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. Int J Mol Sci 2020; 22:ijms22010035. [PMID: 33375140 PMCID: PMC7792973 DOI: 10.3390/ijms22010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) acquired a special relevance due to the pandemic that occurred in the Americas in 2015, when an important number of fetal microcephaly cases occurred. Since then, numerous studies have tried to elucidate the pathogenic mechanisms and the potential therapeutic approaches to combat the virus. Cellular and animal models have proved to be a basic resource for this research, with the more recent addition of organoids as a more realistic and physiological 3D culture for the study of ZIKV. Nanotechnology can also offer a promising therapeutic tool, as the nanoparticles developed by this field can penetrate cells and deliver a wide array of drugs in a very specific and controlled way inside the cells. These two state-of-the-art scientific tools clearly provide a very relevant resource for the study of ZIKV, and will help researchers find an effective treatment or vaccine against the virus.
Collapse
Affiliation(s)
- Samanta Gasco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28001 Madrid, Spain;
- Laboratorio InmunoBiología Molecular (HGUGM), 28001 Madrid, Spain
- Spanish HIV-HGM BioBank, 28001 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28001 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-462-4684
| |
Collapse
|
145
|
Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis. J Virol 2020; 95:JVI.02079-20. [PMID: 33115868 DOI: 10.1128/jvi.02079-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells-efferocytosis-by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell's outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.
Collapse
|
146
|
Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 2020; 10:21604. [PMID: 33303883 PMCID: PMC7729948 DOI: 10.1038/s41598-020-78735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.
Collapse
|
147
|
Proteins involved in actin filament organization are key host factors for Japanese encephalitis virus life-cycle in human neuronal cells. Microb Pathog 2020; 149:104565. [DOI: 10.1016/j.micpath.2020.104565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
|
148
|
Scatularo CE, Ballesteros OA, Saldarriaga C, Mendoza I, Wyss F, Liprandi AS, Munera A, Liendro MC, Baranchuk A. Zika & heart: A systematic review. Trends Cardiovasc Med 2020; 32:52-58. [PMID: 33220438 DOI: 10.1016/j.tcm.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
Zika virus infection affects more than 80 countries in the world, mainly those with a tropical climate. Although the most frequent clinical presentation is characterized by rash, conjunctivitis, myalgia, arthralgia and fever, in some cases it is associated with cardiovascular manifestations, such as myocarditis, pericarditis, heart failure and arrhythmias. Furthermore, maternal transmission of the virus generates congenital Zika syndrome, which is associated with cardiac septal defects. Early recognition and treatment of Zika's cardiovascular complications are essential to reduce morbidity and mortality in these patients. There is no specific antiviral treatment or vaccine in humans, so the development of public health strategies to prevent its transmission is of paramount importance. The "Neglected Tropical Diseases and other Infectious Diseases" (NET-Heart project) is an initiative to systematically review all these devastating endemic conditions affecting the heart to spread knowledge and propose algorithms for early diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Clara Saldarriaga
- Department of Cardiology and Heart Failure Clinic, Cardiovascular Clinic Santa Maria, University of Antioquia, Medellín, Colombia
| | - Ivan Mendoza
- Tropical Cardiology, Tropical Medicine Institute, Central University of Venezuela, Caracas, Venezuela
| | - Fernando Wyss
- Cardiovascular Services and Technology of Guatemala - Cardiosolutions, Guatemala City, Guatemala
| | | | - Ana Munera
- Division of Cardiology, Hospital General de Medellín, Medellín, Colombia
| | | | - Adrian Baranchuk
- Division of Cardiology, Kingston Health Science Center, Queen's University, Kingston K7L 2V7, Ontario, Canada.
| | | |
Collapse
|
149
|
Recent advancements in role of TAM receptors on efferocytosis, viral infection, autoimmunity, and tissue repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 357:1-19. [PMID: 33234241 DOI: 10.1016/bs.ircmb.2020.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evolutionarily conserved highly regulated process of apoptosis has been a major physiological process throughout the entire evolutionary history of living beings that has impacted the process of evolution itself. One of the key features of this highly researched field of science is the process of phosphatidylserine (PS) externalization by the different membrane bound enzymes. The process is a result of series of biological events and is associated with various biological outcomes depending on the proper recognition of this ligand. In this review, we will briefly summarize the recent advancement in the field pertaining to the set of receptors, known as TAM (Tyro3, Axl and Mertk) receptors, for their influence in the recognition of various PS externalization events and mediation of pathological outcomes such as autoimmunity, cancer, and tissue repair.
Collapse
|
150
|
Guzeloglu-Kayisli O, Guo X, Tang Z, Semerci N, Ozmen A, Larsen K, Mutluay D, Guller S, Schatz F, Kayisli UA, Lockwood CJ. Zika Virus-Infected Decidual Cells Elicit a Gestational Age-Dependent Innate Immune Response and Exaggerate Trophoblast Zika Permissiveness: Implication for Vertical Transmission. THE JOURNAL OF IMMUNOLOGY 2020; 205:3083-3094. [PMID: 33139490 DOI: 10.4049/jimmunol.2000713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Vertical transmission of the Zika virus (ZIKV) causes severe fetal defects, but the exact pathogenic mechanism is unclear. We identified up to a 10,480-fold higher expression of viral attachment factors AXL, GAS6, and PROS1 and a 3880-fold increase in ZIKV infectiousness/propagation in human term decidual stromal cells versus trophoblasts. Moreover, levels of viral attachment factors and ZIKV are significantly increased, whereas expression of innate immune response genes are significantly decreased, in human first trimester versus term decidual cells. ZIKV-infected decidual cell supernatants increased cytotrophoblasts infection up to 252-fold compared with directly infected cytotrophoblasts. Tizoxanide treatment efficiently inhibited Zika infection in both maternal and fetal cells. We conclude that ZIKV permissiveness, as well as innate immune responsiveness of human decidual cells, are gestational age dependent, and decidual cells augment ZIKV infection of primary human cytotrophoblast cultures, which are otherwise ZIKV resistant. Human decidual cells may act as reservoirs for trimester-dependent placental transmission of ZIKV, accounting for the higher Zika infection susceptibility and more severe fetal sequelae observed in early versus late pregnancy. Moreover, tizoxanide is a promising agent in preventing perinatal Zika transmission as well as other RNA viruses such as coronavirus.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Nihan Semerci
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Kellie Larsen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Duygu Mutluay
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510
| | - Frederick Schatz
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Umit Ali Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| | - Charles Joseph Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612; and
| |
Collapse
|