101
|
Jonny J, Sitepu EC, Lister INE, Chiuman L, Putranto TA. The Potential of Anti-Inflammatory DC Immunotherapy in Improving Proteinuria in Type 2 Diabetes Mellitus. Vaccines (Basel) 2024; 12:972. [PMID: 39340004 PMCID: PMC11435532 DOI: 10.3390/vaccines12090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
A typical consequence of type 2 diabetes mellitus, diabetic kidney disease (DKD) is a significant risk factor for end-stage renal disease. The pathophysiology of diabetic kidney disease (DKD) is mainly associated with the immune system, which involves adhesion molecules and growth factors disruption, excessive expression of inflammatory mediators, decreased levels of anti-inflammatory mediators, and immune cell infiltration in the kidney. Dendritic cells are professional antigen-presenting cells acting as a bridge connecting innate and adaptive immune responses. The anti-inflammatory subset of DCs is also capable of modulating inflammation. Autologous anti-inflammatory dendritic cells can be made by in vitro differentiation of peripheral blood monocytes and utilized as a cell-based therapy. Treatment with anti-inflammatory cytokines, immunosuppressants, and substances derived from pathogens can induce tolerogenic or anti-inflammatory features in ex vivo-generated DCs. It has been established that targeting inflammation can alleviate the progression of DKD. Recent studies have focused on the potential of dendritic cell-based therapies to modulate immune responses favorably. By inducing a tolerogenic phenotype in dendritic cells, it is possible to decrease the inflammatory response and subsequent kidney damage. This article highlights the possibility of using anti-inflammatory DCs as a cell-based therapy for DKD through its role in controlling inflammation.
Collapse
Affiliation(s)
- Jonny Jonny
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
- Faculty of Military Medicine, Indonesia Defense University, Jakarta 16810, Indonesia
- Faculty of Medicine, University of Pembangunan Nasional “Veteran” Jakarta, Jakarta 12450, Indonesia
| | - Enda Cindylosa Sitepu
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| | - I Nyoman Ehrich Lister
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Linda Chiuman
- Faculty of Medicine, Dentistry, and Health Sciences, University Prima Indonesia, Medan 20118, Indonesia
| | - Terawan Agus Putranto
- Indonesia Army Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta 10410, Indonesia; (E.C.S.)
| |
Collapse
|
102
|
Niu X, Wang Y, Huang L, Guo P, Zhang S, Sun Y, Jin M. Effect of oral metformin on gut microbiota characteristics and metabolite fractions in normal-weight type 2 diabetic mellitus patients. Front Endocrinol (Lausanne) 2024; 15:1397034. [PMID: 39257903 PMCID: PMC11385314 DOI: 10.3389/fendo.2024.1397034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background and aims To analyze the effect of oral metformin on changes in gut microbiota characteristics and metabolite composition in normal weight type 2 diabetic patients. Methods T2DM patients in the cross-sectional study were given metformin for 12 weeks. Patients with unmedicated T2DM were used as a control group to observe the metrics of T2DM patients treated with metformin regimen. 16S rDNA high-throughput gene sequencing of fecal gut microbiota of the study subjects was performed by llumina NovaSeq6000 platform. Targeted macro-metabolomics was performed on 14 cases of each of the gut microbiota metabolites of the study subjects using UPLC-MS/MS technology. Correlations between the characteristics of the gut microbiota and its metabolites, basic human parameters, glycolipid metabolism indicators, and inflammatory factors were analyzed using spearman analysis. Results Glycolipid metabolism indexes and inflammatory factors were higher in normal-weight T2DM patients than in the healthy population (P<0.05), but body weight, BMI, waist circumference, and inflammatory factor concentrations were lower in normal-weight T2DM patients than in obese T2DM patients (P<0.05). Treatment with metformin in T2DM patients improved glycolipid metabolism, but the recovery of glycolipid metabolism was more pronounced in obese T2DM patients. None of the differences in α-diversity indexes were statistically significant (P>0.05), and the differences in β-diversity were statistically significant (P <0.05). Community diversity and species richness recovered after metformin intervention compared to before, and were closer to the healthy population. We found that Anaerostipes/Xylose/Ribulose/Xylulose may play an important role in the treatment of normal-weight T2DM with metformin by improving glycemic lipids and reducing inflammation. And Metformin may play a role in obese T2DM through Romboutsia, medium-chain fatty acids (octanoic acid, decanoic acid, and dodecanoic acid). Conclusion Gut microbial dysbiosis and metabolic disorders were closely related to glucose-lipid metabolism and systemic inflammatory response in normal-weight T2DM patients. Metformin treatment improved glucose metabolism levels, systemic inflammation levels in T2DM patients, closer to the state of healthy population. This effect may be mediated by influencing the gut microbiota and microbial host co-metabolites, mainly associated with Anaerostipes and xylose/Ribulose/Xylulose. Metformin may exert its effects through different pathways in normal-weight versus obese T2DM patients.
Collapse
Affiliation(s)
- Xiaohong Niu
- Endocrine and Metabolic Pathology, Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, China
| | - Ying Wang
- Endocrine and Metabolic Pathology, Changzhi Medical College, Changzhi, China
| | - Linqing Huang
- Endocrine and Metabolic Pathology, Changzhi Medical College, Changzhi, China
| | - Pengna Guo
- Endocrine and Metabolic Pathology, Changzhi Medical College, Changzhi, China
| | - Shi Zhang
- Endocrine and Metabolic Pathology, Changzhi Medical College, Changzhi, China
| | - Yan Sun
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, China
| | - Miaomiao Jin
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, China
| |
Collapse
|
103
|
Wang C, Wu R, Yao D, Yu Z, Shen X. Comparison of dietary inflammatory index and inflammatory biomarkers between vegetarians and omnivores in Chinese population. Sci Rep 2024; 14:19593. [PMID: 39179676 PMCID: PMC11344088 DOI: 10.1038/s41598-024-69168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Most previous studies on the association between vegetarian diet and inflammation have used only one inflammatory biomarker e.g., C-reactive protein (CRP) and the findings were generally inconsistent. Therefore, we conducted a cross-sectional study to investigate the correlation between diet and inflammation in Chinese vegetarians using dietary indices and multiple inflammatory biomarkers. 279 vegetarians and omnivores of the same sex and age recruited in Shanghai, 2016. 24-h dietary review questionnaire was collected and used to calculate Dietary inflammatory index (DII) and Energy-adjusted inflammatory index (E-DII) of both groups. In addition, energy intake matched vegetarian and omnivore recipes were designed by registed dietitions and used to calculate a theoretical DII. Five serum inflammatory biomarkers CRP, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR) were measured. We found that vegetarians had significantly lower E-DII and theoretical DII than omnivores (P < 0.001). In contrast, the raw DII of vegetarians was almost the same with that of omnivores, probably due to lower energy intake in vegetarians than in omnivores (1367.97 ± 479.75 vs. 1724.78 ± 568.13, P < 0.001). Levels of TNF-α, IL-6, NLR and PLR were significantly higher in vegetarians than in omnivores while no statistical differences were found in CRP. In conclusion, a theoretical vegetarian diet with adequate energy intake as well as a balanced dietary intake showed good anti-inflammatory effects, though this was not fully reflected in vegetarian population in the real world, probably due to insufficient energy intake in the vegetarian population.
Collapse
Affiliation(s)
- Cenyu Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhen Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Yu
- Department of Nutrition and Dietetics, Brooks College of Health, University of North Florida, Jacksonville, FL, USA
| | - Xiuhua Shen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
104
|
Liu Z, Zheng L. Associations between SII, SIRI, and cardiovascular disease in obese individuals: a nationwide cross-sectional analysis. Front Cardiovasc Med 2024; 11:1361088. [PMID: 39238504 PMCID: PMC11374596 DOI: 10.3389/fcvm.2024.1361088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Background Systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) are comprehensive markers of inflammatory status. However, the correlation between SII and SIRI and the prevalence of cardiovascular disease (CVD) in populations with obesity remains unknown. Methods This is a cross-sectional study with data obtained from the National Health and Nutrition Examination Survey from 1999 to 2018. SII and SIRI were calculated using the following equations: SII = (platelet count × neutrophil count)/lymphocyte count. SIRI = (neutrophil count × monocyte count)/lymphocyte count. Spearman's rank correlation coefficient was used to assess the relationship between SII and SIRI and baseline variables. Logistic regression models and generalized additive model (GAM) with a spline smoothing function were used to evaluate the association between SIRI and CVD prevalence. Nomogram and receiver operating characteristic curve (ROC) analysis were used to assess the value of the risk prediction model. Results A total of 17,261 participants with obesity and SII and SIRI publicly available data were used for this study. Multivariate logistic regression analysis revealed that SIRI, rather than SII, was an independent risk factor for CVD prevalence. For every standard deviation increase in SIRI, there was a 13%, 15%, and 28% increase in the odds ratios of CVD prevalence (OR = 1.13, 95% CI: 1.04-1.22, P = 0.01), coronary heart disease (OR = 1.15, 95% CI: 1.05-1.26, P = 0.002), and congestive heart failure (OR = 1.28, 95% CI: 1.16-1.41, P < 0.001). ROC results demonstrated that SIRI had a certain accuracy in predicting CVD prevalence (AUC = 0.604), especially when combined with other variables used in the nomogram (AUC = 0.828). The smooth curve fitting regression analysis demonstrated a significant linear association between the risk of SIRI and the odds ratio of CVD prevalence (P for nonlinear = 0.275). Conclusions SIRI is a relatively stable indicator of inflammation and is independently associated with the prevalence of CVD. It may serve as a novel inflammatory indicator to estimate CVD prevalence in populations with obesity.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China
| | - Longxuan Zheng
- Department of Cardiology, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China
| |
Collapse
|
105
|
Liu J, Chen Y, Peng C. Causal relationship between gut microbiota and diabetic complications: a two-sample Mendelian randomization study. Diabetol Metab Syndr 2024; 16:202. [PMID: 39164740 PMCID: PMC11334315 DOI: 10.1186/s13098-024-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Imbalances in gut microbiota (GM) have been proposed as a potential contributing factor to diabetic complications; however, the causal relationship remains incompletely understood. METHODS Summary statistics were obtained from genome-wide association studies (GWAS) of 196 gut microbial taxa, including 9 phyla, 16 classes, 20 orders, 32 families, and 119 genera. These data were then analyzed using mediation Mendelian randomization (MR) analyses to explore the potential mediating effect of diabetes complications risk factors on the relationship between gut microbiota and specific diabetic complications such as diabetic kidney disease (DKD), ketoacidosis, and diabetic retinopathy (DR). RESULTS In our Mendelian analysis, we observed negative associations between Bifidobacterial order and Actinomycete phylum with DKD in type 1 diabetes (T1D) as well as early DKD in T1D. Conversely, these taxa showed positive associations with ketoacidosis in type 2 diabetes (T2D). In reverse Mendelian analysis, we found that DR in both T1D and T2D as well as ketoacidosis in T2D affected the abundance of Eubacterium fissicaten genus and LachnospiraceaeUCG010 family within the gut microbiota. CONCLUSIONS Our findings provide compelling evidence for causal relationships between specific GM taxa and various diabetes complications. These insights contribute valuable knowledge for developing treatments targeting diabetes-related complications.
Collapse
Affiliation(s)
- Jinya Liu
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yuanyuan Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Cheng Peng
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
106
|
Ramerth A, Chapple B, Winter J, Moore W. The Other Side of the Perfect Cup: Coffee-Derived Non-Polyphenols and Their Roles in Mitigating Factors Affecting the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2024; 25:8966. [PMID: 39201652 PMCID: PMC11354961 DOI: 10.3390/ijms25168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The global prevalence of type 2 diabetes (T2D) is 10.5% among adults in the age range of 20-79 years. The primary marker of T2D is persistent fasting hyperglycemia, resulting from insulin resistance and β-cell dysfunction. Multiple factors can promote the development of T2D, including obesity, inflammation, and oxidative stress. In contrast, dietary choices have been shown to prevent the onset of T2D. Oatmeal, lean proteins, fruits, and non-starchy vegetables have all been reported to decrease the likelihood of T2D onset. One of the most widely consumed beverages in the world, coffee, has also demonstrated an impressive ability to reduce T2D risk. Coffee contains a diverse array of bioactive molecules. The antidiabetic effects of coffee-derived polyphenols have been thoroughly described and recently reviewed; however, several non-polyphenolic molecules are less prominent but still elicit potent physiological actions. This review summarizes the effects of select coffee-derived non-polyphenols on various aspects of T2D pathogenesis.
Collapse
Affiliation(s)
| | | | | | - William Moore
- School of Health Sciences, Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA; (A.R.); (B.C.); (J.W.)
| |
Collapse
|
107
|
Zhang L, Han H, Xu A, Sathe A, Fu S, Zhao J, Cai W, Yang Y, Liu J, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Gu Y, Xing C, Schiattarella GG, Cheng SY, Zhang H, Chen Q. Lysozyme 1 Inflamed CCR2 + Macrophages Promote Obesity-Induced Cardiac Dysfunction. Circ Res 2024; 135:596-613. [PMID: 39056179 DOI: 10.1161/circresaha.124.324106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.
Collapse
Affiliation(s)
- Lai Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Department of Cardiology, The Affiliated Jiangning Hospital of Nanjing Medical University, China (L.Z.)
| | - Huian Han
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Andi Xu
- Department of Pathology, Nanjing Drum Tower Hospital, China (A.X.)
| | - Adwait Sathe
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Siying Fu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jiaqi Zhao
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Wenhan Cai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Yaqing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jinting Liu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hui Bai
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Jingjing Ben
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xudong Zhu
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Xiaoyu Li
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qing Yang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Zidun Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, China (Z.W.)
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine (Y.G.), Nanjing Medical University, Jiangsu, China
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development (A.S., C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Bioinformatics (C.X.), University of Texas Southwestern Medical Center, Dallas
- Department of Population and Data Sciences (C.X.), University of Texas Southwestern Medical Center, Dallas
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Deutsches Herzzentrum der Charité, Charité - Universitätsmedizin Berlin, Germany (G.G.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany (G.G.S.)
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (G.G.S.)
| | - Steven Yan Cheng
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
- Key Laboratory of Jiangsu Province on Targeted Intervention of Cardiovascular Diseases (L.Z., H.H., S.F., J.Z., W.C., Y.Y., J.L., H.B., J.B., X.Z., X.L., Q.Y., S.Y.C., H.Z., Q.C.), Nanjing Medical University, Jiangsu, China
| |
Collapse
|
108
|
Peng CJ, Chen S, Yan SY, Zhao JN, Luo ZW, Qian Y, Zhao GL. Mechanism underlying the effects of exercise against type 2 diabetes: A review on research progress. World J Diabetes 2024; 15:1704-1711. [PMID: 39192863 PMCID: PMC11346101 DOI: 10.4239/wjd.v15.i8.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Exercise has emerged as one of the important and effective non-drug therapies used for management of type 2 diabetes (T2D) in certain nations. The present report summarizes the latest findings from the research on the beneficial effect of exercise on T2D. The objectives were to provide references for the theoretical study and the clinical practice of exercise-based management of T2D, in addition to identify the limitations of the existing literature, thereby provide direction for future research in this field.
Collapse
Affiliation(s)
- Chen-Jian Peng
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, China
| | - Shuo Chen
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, China
| | - Su-Ying Yan
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, China
| | - Jian-Ning Zhao
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu Province, China
| | - Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuan Qian
- Department of Outpatient, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, Jiangsu Province, China
| | - Guo-Liang Zhao
- Department of Outpatient, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, Jiangsu Province, China
| |
Collapse
|
109
|
Gupta AK, Shemer A, Economopoulos V, Talukder M. Diabetic Foot and Fungal Infections: Etiology and Management from a Dermatologic Perspective. J Fungi (Basel) 2024; 10:577. [PMID: 39194903 DOI: 10.3390/jof10080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes Mellitus (DM) is a significant global concern. Many diabetic patients will experience complications due to angiopathy, neuropathy, and immune dysfunction, namely diabetic foot ulcers (DFU) and diabetic foot infections (DFI), which can result in lower limb amputation and potentially death. The prevalence of common superficial fungal infections, such as tinea pedis and onychomycosis, can directly increase a diabetic patient's risk of developing both DFU and DFI. In this review article, we discuss the etiology of diabetic foot complications as well as considerations for both screening and management. We also discuss the role of the dermatologist within a multidisciplinary care team in prescribing and managing treatments for tinea pedis and onychomycosis infections within this patient population. We believe that reducing the burden of these fungal infections in the context of the diabetic foot will help reduce DFU and DFI complications and their associated morbidity and mortality.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
- Mediprobe Research Inc., London, ON N5X 2P1, Canada
| | - Avner Shemer
- Department of Dermatology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vasiliki Economopoulos
- Mediprobe Research Inc., London, ON N5X 2P1, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Mesbah Talukder
- Mediprobe Research Inc., London, ON N5X 2P1, Canada
- School of Pharmacy, BRAC University, Dhaka 1212, Bangladesh
| |
Collapse
|
110
|
Chen X, Cai L, Fan W, Yang Q, Mao X, Yao L. Causal relationships between rheumatoid arthritis and neurodegenerative diseases: a two-sample univariable and multivariable Mendelian randomization study. Front Med (Lausanne) 2024; 11:1439344. [PMID: 39193017 PMCID: PMC11347450 DOI: 10.3389/fmed.2024.1439344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Background Observational research has highlighted a potential relationship between rheumatoid arthritis (RA) and neurodegenerative diseases (NDs). However, the confirmation of a causal connection is impeded by the inherent limitations of such studies, including vulnerability to confounding factors and the possibility of reverse causality. This study employs a two-sample Mendelian randomization (MR) approach to assess the causal impact of RA on three NDs, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Methods We aggregated data from genome-wide association studies (GWASs) targeting RA or NDs within populations of European descent. Single nucleotide polymorphisms (SNPs) with robust associations to RA were identified as instrumental variables (IVs). To estimate the association between RA and AD, PD, and ALS, we utilized the inverse variance weighted (IVW) method in our univariable MR (UVMR) analysis. Validation of the IVW results ensued through supplementary analyses using MR-Egger and weighted median methods. The multivariable MR (MVMR) analysis was conducted, adjusting for body mass index (BMI), alcohol drinking, and type 2 diabetes mellitus (T2DM). Results The UVMR analysis, based on the IVW method, revealed a significantly positive causal association between RA and late-onset (LO) AD (OR [95% CI] = 1.084 [1.020-1.153]; p = 9.980 × 10-3), while suggesting a possible inverse relationship with PD (OR [95% CI] = 0.727 [0.563-0.938]; p = 0.014). Our study did not detect any causal connections between RA and early-onset (EO) AD, atypical or mixed (AM) AD, and ALS (all p > 0.05). The MVMR analysis results indicated that after adjusting for alcohol drinking, RA remains a risk factor for LOAD (OR [95% CI] = 1.094 [1.024-1.169]; p = 0.008). However, MVMR analysis revealed no causal connections between RA and PD after adjustments for BMI, alcohol drinking, or T2DM (all p > 0.05). Sensitivity analyses showed no evidence of heterogeneity and horizontal pleiotropy. Conclusions This research provides genetic evidence indicating that RA potentially causes an increased risk of developing LOAD and PD. Such a revelation underscores the importance for individuals suffering from RA to be vigilant about the potential emergence of LOAD and PD. Ongoing monitoring and prompt detection are essential for successfully managing and intervening in this possible risk.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Li Cai
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| | - Weibing Fan
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| | - Qian Yang
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
111
|
Wang Y, Chen M, Wang L, Wu Y. Cardiometabolic traits mediating the effect of education on the risk of DKD and CKD: a Mendelian randomization study. Front Nutr 2024; 11:1400577. [PMID: 39193563 PMCID: PMC11347428 DOI: 10.3389/fnut.2024.1400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Background Both diabetic kidney disease (DKD) and chronic kidney disease (CKD) are more prevalent among individuals with lower levels of education in observational studies. To quantify the mediation effect of recognized cardiometabolic traits, we obtain causal estimates between education and DKD as well as CKD. Materials and methods We assessed the causal effect of education on DKD and CKD, separately estimated the causal effect of 26 cardiometabolic traits on DKD and CKD, and finally calculated the mediating effects and mediating proportions of each using two-step, two-sample multivariable Mendelian randomization (MVMR). Furthermore, the genetic association between exposure, mediators, and outcomes was investigated using linkage disequilibrium score (LDSC) regression analysis. Expression quantitative trait loci (eQTL) were retrieved from the Genotype-Tissue Expression Project (GTEx) v8 to serve as genetic instrumental variables. Transcriptome-wide association studies (TWAS), Bayesian colocalization analysis, and Summary-data-based Mendelian Randomization (SMR) analysis were performed to explore underlying susceptibility genes between education, mediators, and kidney diseases. Results Higher education with a genetically predicted 1-SD (4.2 years) was linked to a 48.64% decreased risk of DKD and a 29.08% decreased risk of CKD. After extensive evaluation of 26 cardiometabolic traits, 7 and 6 causal mediators were identified as mediating the effects of education on DKD and CKD, respectively. The largest mediating factor between education and DKD was BMI, which was followed by WHR, T2D, fasting insulin, SBP, fasting glucose, and DBP. In contrast, candidate mediators in the education-to-CKD pathway included BMI, followed by cigarettes smoked per day, WHR, SBP, T2D, and DBP. MR analysis revealed that TP53INP1 was found to be a shared susceptibility gene for cardiometabolic traits and DKD, while L3MBTL3 was found to be a shared susceptibility gene for cardiometabolic traits and CKD. Conclusion Our findings provide solid evidence that education has a causally protective effect on the development of DKD and CKD. We additionally reveal significant directions for intervention on cardiometabolic traits that mitigate the negative effects of educational inequities on the onset of DKD and CKD. Our work demonstrates a shared genetic basis between education, cardiometabolic traits, and kidney diseases. Future research aiming at lowering kidney risk may benefit from these findings.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
112
|
Jia Y, Liu Y, Wu Y, Feng C, Zhang H, Ren F, Liu H. The regulation of glucose and lipid metabolism through the interaction of dietary polyphenols and polysaccharides via the gut microbiota pathway. Food Funct 2024; 15:8200-8216. [PMID: 39039938 DOI: 10.1039/d4fo00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The interaction of polyphenols-polysaccharides-gut microbiota to promote health benefits has become a hotspot and direction for precise dietary intervention strategies and foundational research in biomedicine. Both dietary polyphenols and polysaccharides possess biological activities that regulate body health. Single components, due to their inherent structure and physicochemical properties, have a low bioavailability, thus are unable to exert their optimal effects. The compound structure formed by the interaction of polyphenols and polysaccharides can enhance their functional properties, thereby more effectively promoting health benefits and preventing diseases. This review primarily focuses on the roles played by polyphenols and polysaccharides in regulating glucose and lipid metabolism, the improvement of glucose and lipid metabolism through the gut microbial pathway by polyphenols and polysaccharides, and the mechanisms by which polyphenols and polysaccharides interact to regulate glucose and lipid metabolism. A considerable amount of preliminary research has confirmed the regulatory effects of plant polyphenols and polysaccharides on glucose and lipid metabolism. However, studies on the combined effects and mechanisms of these two components are still very limited. This review aims to provide a reference for subsequent research on their interactions and changes in functional properties.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan
| | - Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
113
|
Sadafi S, Azizi A, Najafi F, Pasdar Y. Lipid accumulation product and type 2 diabetes risk: a population-based study. BMC Endocr Disord 2024; 24:147. [PMID: 39134995 PMCID: PMC11318136 DOI: 10.1186/s12902-024-01682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The Lipid Accumulation Product (LAP) is a measure that indicates excessive fat accumulation in the body. LAP has been the focus of research in epidemiological studies aimed at forecasting chronic and metabolic diseases. This study aimed to evaluate the association between LAP and type 2 diabetes mellitus (T2DM) among adults in western Iran. METHODS The study involved 9,065 adults who participated in the initial phase of the Ravansar non-communicable diseases study (RaNCD) cohort. To investigate the association between LAP and T2DM, multiple logistic regressions were employed. Additionally, the receiver operating characteristic (ROC) curve was used to evaluate LAP's predictive ability concerning T2DM. RESULTS The participants had an average age of 47.24 ± 8.27 years, comprising 49.30% men and 50.70% women. The mean LAP was 53.10 ± 36.60 for the healthy group and 75.51 ± 51.34 for the diabetic group (P < 0.001). The multiple regression analysis revealed that the odds of T2DM in the second quartile of LAP were 1.69 (95% CI: 1.25, 2.29) times greater than in the first quartile. Furthermore, the odds in the third and fourth quartiles were 2.67 (95% CI: 2.01, 3.55) and 3.73 (95% CI: 2.83, 4.92) times higher, respectively. The ROC analysis for predicting T2DM showed that the LAP index had an area under the curve (AUC) of 0.66 (95% CI: 0.64, 0.68). CONCLUSION A strong association was identified between elevated LAP levels and T2DM in the adult population of western Iran. LAP is recommended as a potential tool for screening diabetes susceptibility.
Collapse
Affiliation(s)
- Sepehr Sadafi
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Azizi
- Social Development and Health Promotion Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Community and Family Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
114
|
Huang X, Hu L, Tao S, Xue T, Hou C, Li J. Relationship between uric acid to high-density cholesterol ratio (UHR) and circulating α-klotho: evidence from NHANES 2007-2016. Lipids Health Dis 2024; 23:244. [PMID: 39123222 PMCID: PMC11312937 DOI: 10.1186/s12944-024-02234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVE To investigate the relationship between uric acid to high-density lipoprotein cholesterol ratio (UHR) and circulating α-klotho levels in U.S. adults. METHODS A cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Circulating α-klotho was defined as the dependent variable and UHR was defined as the independent variable. Multivariable linear regression was performed to assess the relationship between the independent and dependent variables. The nonlinear relationship and effect size between UHR and α-klotho were evaluated using smooth curve fitting and threshold effect analysis. Subgroup analysis and sensitivity analysis were conducted to determine the stability of the results. The diagnostic performance of UHR and α-klotho in common elderly diseases was compared using ROC (Receiver Operating Characteristic) analysis. RESULTS Among 12,849 participants, there was a negative relationship between the UHR and circulating α-klotho. In the fully adjusted overall model, each unit increase in UHR was associated with a decrease of 4.1 pg/mL in α-klotho. The threshold effect analysis showed that before the inflection point of 8.2, each unit increase in UHR was associated with a decrease of 15.0 pg/mL in α-klotho; beyond the inflection point of 8.2, each unit increase in UHR was associated with a decrease of 2.8 pg/mL in α-klotho. Subgroup analyses and sensitivity analysis indicated that the relationship between UHR and α-klotho remained stable across most populations. The ROC diagnostic test indicated that the evaluative efficacy of UHR in diagnosing age-related diseases was comparable to that of α-klotho. CONCLUSION This study revealed that the UHR was associated with the circulating α-klotho concentration, with a negative association observed in most cases. This finding suggested that the UHR might be a promising indicator for evaluating circulating α-klotho levels.
Collapse
Affiliation(s)
- Xuanchun Huang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyi Tao
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tiantian Xue
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chengzhi Hou
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
| | - Jun Li
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
115
|
Fu K, Jing C, Shi J, Mao S, Lu R, Yang M, Chen Y, Qian B, Wang Y, Li L. WTAP and METTL14 regulate the m6A modification of DKK3 in renal tubular epithelial cells of diabetic nephropathy. Biochem Biophys Res Commun 2024; 738:150524. [PMID: 39151294 DOI: 10.1016/j.bbrc.2024.150524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Diabetic nephropathy (DN) is an important cause of death in diabetes patients, which is mainly due to its complex pathogenesis. Here, we explored the role of N6-methyladenosine (m6A) RNA methylation in DN development. Renal tubular epithelial cells from DN patients and experimental DN mice treated with streptozotocin (STZ) exhibited a considerable increase in METTL14 and WTAP expression as well as overall m6A methylation. Knocking down the expression of METTL14 and WTAP inhibited the migration and proliferation of tubular epithelial cells. MeRIP-seq analysis of the renal tissues of DN patients revealed that the genes with elevated m6A methylation were concentrated in the Wnt/β-Catenin signaling pathway. Dickkopf homolog 3 (DKK3) was screened out as the gene with the most significant increase in m6A methylation. In addition, the expression change pattern of DKK3 under DN circumstances is in line with those of METTL14 and WTAP. DKK3's m6A methylation sites were confirmed to be located in the 3'UTR region, which is how METTL14 and WTAP improved DKK3's mRNA stability. Finally, YTHDF1, a m6A reader, was demonstrated to recognize m6A-methylated DKK3 and promote DKK3 expression.
Collapse
Affiliation(s)
- Kang Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Chenyang Jing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Jinsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, 210002, China
| | - Shuya Mao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Rui Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Miao Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yang Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Bin Qian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi, 330006, China.
| | - Limin Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
116
|
Cingolani F, Balasubramaniam A, Srinivasan S. Molecular mechanisms of enteric neuropathies in high-fat diet feeding and diabetes. Neurogastroenterol Motil 2024:e14897. [PMID: 39119749 DOI: 10.1111/nmo.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Obesity and diabetes are associated with altered gastrointestinal function and with the development of abdominal pain, nausea, diarrhea, and constipation among other symptoms. The enteric nervous system (ENS) regulates gastrointestinal motility. Enteric neuropathies defined as damage or loss of enteric neurons can lead to motility disorders. PURPOSE Here, we review the molecular mechanisms that drive enteric neurodegeneration in diabetes and obesity, including signaling pathways leading to neuronal cell death, oxidative stress, and microbiota alteration. We also highlight potential approaches to treat enteric neuropathies including antioxidant therapy to prevent oxidative stress-induced damage and the use of stem cells.
Collapse
Affiliation(s)
- Francesca Cingolani
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
117
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
118
|
Karacabeyli D, Lacaille D, Lu N, McCormick N, Xie H, Choi HK, Aviña-Zubieta JA. Mortality and major adverse cardiovascular events after glucagon-like peptide-1 receptor agonist initiation in patients with immune-mediated inflammatory diseases and type 2 diabetes: A population-based study. PLoS One 2024; 19:e0308533. [PMID: 39116084 PMCID: PMC11309412 DOI: 10.1371/journal.pone.0308533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To assess the risk of all-cause mortality and major adverse cardiovascular events (MACE) in patients with immune-mediated inflammatory diseases (IMIDs) and type 2 diabetes newly initiating glucagon-like peptide-1 receptor agonists (GLP-1-RAs) versus dipeptidyl peptidase-4 inhibitors (DPP-4is). METHODS We performed a population-based cohort study using administrative health data from British Columbia. Patients with an IMID (i.e., rheumatoid arthritis, psoriatic disease, ankylosing spondylitis, inflammatory bowel disease, or a systemic autoimmune rheumatic disease) and type 2 diabetes who newly initiated a GLP-1-RA or DPP-4i between January 1, 2010, and December 31, 2021 were identified using ICD-9/10 codes. The primary outcome was all-cause mortality. Secondary outcomes included MACE and its components (i.e., cardiovascular death, myocardial infarction, and ischemic stroke). Cox proportional hazard regressions were used with propensity score overlap weighting. The analysis was repeated in age- and sex-matched adults without IMIDs. RESULTS We identified 10,855 adults with IMIDs and type 2 diabetes who newly initiated a GLP-1-RA or DPP-4i. All-cause mortality rate was lower among initiators of GLP-1-RAs compared to initiators of DPP-4is, with a weighted hazard ratio (HR) of 0.48 (95% confidence interval [CI], 0.31-0.75) and rate difference (RD) of -9.4 (95% CI, -16.0 to -2.7) per 1000 person-years. Rate of MACE was also lower with GLP-1-RA exposure (HR 0.66 [0.50-0.88], RD -10.5 [-20.4 to -0.8]). Effect sizes were similar in adults without IMIDs. CONCLUSION In patients with IMIDs and type 2 diabetes, GLP-1-RA exposure is associated with a lower risk of all-cause mortality and MACE compared to a cardioneutral active comparator.
Collapse
Affiliation(s)
- Derin Karacabeyli
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Diane Lacaille
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Na Lu
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| | - Natalie McCormick
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Hui Xie
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hyon K. Choi
- Arthritis Research Canada, Vancouver, British Columbia, Canada
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - J. Antonio Aviña-Zubieta
- Division of Rheumatology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Arthritis Research Canada, Vancouver, British Columbia, Canada
| |
Collapse
|
119
|
Huang XD, Jiang DS, Feng X, Fang ZM. The benefits of oral glucose-lowering agents: GLP-1 receptor agonists, DPP-4 and SGLT-2 inhibitors on myocardial ischaemia/reperfusion injury. Eur J Pharmacol 2024; 976:176698. [PMID: 38821168 DOI: 10.1016/j.ejphar.2024.176698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Myocardial infarction (MI) is a life-threatening cardiovascular disease that, on average, results in 8.5 million deaths worldwide each year. Timely revascularization of occluded vessels is a critical method of myocardial salvage. However, reperfusion paradoxically leads to the worsening of myocardial damage known as myocardial ischaemia/reperfusion injury (MI/RI). Therefore, reducing the size of myocardial infarction after reperfusion is critical and remains an important therapeutic goal. The susceptibility of the myocardium to MI/RI may be increased by diabetes. Currently, some traditional antidiabetic agents such as metformin reduce MI/RI by decreasing inflammation, inhibiting oxidative stress, and improving vascular endothelial function. This appears to be a new direction for the treatment of MI/RI. Recent cardiovascular outcome trials have shown that several oral antidiabetic agents, including glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl peptidase-4 inhibitors (DPP-4is), and sodium-glucose-linked transporter-2 inhibitors (SGLT-2is), not only have good antidiabetic effects but also have a protective effect on myocardial protection. This article aims to discuss the mechanisms and effects of oral antidiabetic agents, including GLP-1RAs, DPP-4is, and SGLT-2is, on MI/RI to facilitate their clinical application.
Collapse
Affiliation(s)
- Xu-Dong Huang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ze-Min Fang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiothoracic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
120
|
Alshuweishi Y, Abudawood A, Alfayez D, Almufarrih AA, Alanazi F, Alshuweishi FA, Almuqrin AM. Platelet/High-Density Lipoprotein Ratio (PHR) Predicts Type 2 Diabetes in Obese Patients: A Retrospective Study. Healthcare (Basel) 2024; 12:1540. [PMID: 39120243 PMCID: PMC11311744 DOI: 10.3390/healthcare12151540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Background: Obesity and type 2 diabetes (T2D) pose global health problems that continue to rise. A chronic low-grade inflammation and activation of the immune system are well established in both conditions. The presence of these factors can predict disease development and progression. Emerging evidence suggests that platelet-high density lipoprotein ratio (PHR) is a potential inflammatory marker. The purpose of this study was to investigate the relationship between PHR and T2D among obese patients. Methods: 203 patients with BMI ≥ 30 kg/m2 participated in the study. Patients were categorized into two groups: non-diabetic obese and diabetic obese. Comorbidities, baseline characteristics, laboratory data, as well as PHR levels of the study groups were analyzed. Medians, risk assessment, and the diagnostic performance of PHR values were examined in both groups. Results: In obese patients, the median PHR were significantly increased in obese patients with T2D compared to non-diabetic obese (p < 0.0001). Furthermore, T2D obese with high PHR had a significantly higher FBG and HbA1c (p < 0.05). Although PHR was weakly yet significantly correlated with glycemic markers, ROC curve analysis of the PHR indicated an AUC of 0.700 (p < 0.0001) in predicting T2D in obese patients, and the cutoff value was 6.96, with a sensitivity and specificity of 53.4% and 76.1%, respectively. Moreover, increased PHR (OR = 4.77, p < 0.0001) carried a significantly higher risk for developing T2D in obese individuals. Conclusions: The PHR is a convenient and cost-effective marker that can reliably predict the presence of T2D in high-risk obese population.
Collapse
Affiliation(s)
- Yazeed Alshuweishi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| | - Arwa Abudawood
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Dalal Alfayez
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Abdulmalik A. Almufarrih
- Department of Family and Community Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia; (A.A.); (D.A.); (A.A.A.)
| | - Fuad Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| | - Fahd A. Alshuweishi
- King Fahad Kidney Center, King Saud Medical City, Riyadh 12746, Saudi Arabia;
| | - Abdulaziz M. Almuqrin
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (F.A.); (A.M.A.)
| |
Collapse
|
121
|
Forte N, Marfella B, Nicois A, Palomba L, Paris D, Motta A, Pina Mollica M, Di Marzo V, Cristino L. The short-chain fatty acid acetate modulates orexin/hypocretin neurons: A novel mechanism in gut-brain axis regulation of energy homeostasis and feeding. Biochem Pharmacol 2024; 226:116383. [PMID: 38908530 DOI: 10.1016/j.bcp.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The short-chain fatty acids (SCFAs) acetate, propionate and butyrate, the major products of intestinal microbial fermentation of dietary fibres, are involved in fine-tuning brain functions via the gut-brain axis. However, the effects of SCFAs in the hypothalamic neuronal network regulating several autonomic-brain functions are still unknown. Using NMR spectroscopy, we detected a reduction in brain acetate concentrations in the hypothalamus of obese leptin knockout ob/ob mice compared to lean wild-type littermates. Therefore, we investigated the effect of acetate on orexin/hypocretin neurons (hereafter referred as OX or OX-A neurons), a subset of hypothalamic neurons regulating energy homeostasis, which we have characterized in previous studies to be over-activated by the lack of leptin and enhancement of endocannabinoid tone in the hypothalamus of ob/ob mice. We found that acetate reduces food-intake in concomitance with a reduction of orexin neuronal activity in ob/ob mice. This was demonstrated by evaluating food-intake behaviour and orexin-A/c-FOS immunoreactivity coupled with patch-clamp recordings in Hcrt-eGFP neurons, quantification of prepro-orexin mRNA, and immunolabeling of GPR-43, the main acetate receptor. Our data provide new insights into the mechanisms of the effects of chronic dietary supplementation with acetate, or complex carbohydrates, on energy intake and body weight, which may be partly mediated by inhibition of orexinergic neuron activity.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Letizia Palomba
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy; Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agricultural and Food Sciences, Université Laval, Québec City, QC, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy.
| |
Collapse
|
122
|
Li Q, Song Y, Zhang Z, Xu J, Liu Z, Tang X, Wang X, Chen Y, Zhang Y, Zhu P, Guo X, Jiang L, Wang Z, Liu R, Wang Q, Yao Y, Feng Y, Han Y, Yuan J. The combined effect of triglyceride-glucose index and high-sensitivity C-reactive protein on cardiovascular outcomes in patients with chronic coronary syndrome: A multicenter cohort study. J Diabetes 2024; 16:e13589. [PMID: 39136595 PMCID: PMC11321053 DOI: 10.1111/1753-0407.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index and high-sensitivity C-reactive protein (hsCRP) are the commonly used biomarkers for insulin resistance and systemic inflammation, respectively. We aimed to investigate the combined association of TyG and hsCRP with the major adverse cardiovascular events (MACE) in patients with chronic coronary syndrome (CCS). METHODS A total of 9421 patients with CCS were included in this study. The primary endpoint was defined as a composite of MACE covering all-cause death, nonfatal myocardial infarction, and revascularization. RESULTS During the 2-year follow-up period, 660 (7.0%) cases of MACE were recorded. Participants were divided equally into three groups according to TyG levels. Compared with the TyG T1 group, the risk of MACE was significantly higher in the TyG T3 group. It is noteworthy that among patients in the highest tertile of TyG, hsCRP >3 mg/L was significantly associated with an increased risk of MACE, whereas the results were not significant in the medium to low TyG groups. When patients were divided into six groups according to hsCRP and TyG, the Cox regression analysis showed that patients in the TyG T3 and hsCRP >3 mg/L group had a significantly higher risk of MACE than those in the TyG T1 and hsCRP ≤3 mg/L group. However, no significant interaction was found between TyG and hsCRP on the risk of MACE. CONCLUSION Our study suggests that the concurrent assessment of TyG and hsCRP may be valuable in identifying high-risk populations and guiding management strategies among CCS patients.
Collapse
Affiliation(s)
- Qinxue Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ying Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zheng Zhang
- Department of CardiologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaozeng Wang
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Yan Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongzhen Zhang
- Department of CardiologyPeking University Third HospitalBeijingChina
| | - Pei Zhu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated HospitalZhejiang University School of MedicineZhejiangChina
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhifang Wang
- Department of CardiologyXinxiang Central HospitalXinxiangChina
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingsheng Wang
- Department of CardiologyThe First Hospital of QinhuangdaoQinhuangdaoChina
| | - Yi Yao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingqing Feng
- Department of CardiologyGuangdong Provincial People's HospitalGuangdongChina
| | - Yaling Han
- Department of CardiologyGeneral Hospital of Northern Theater CommandShenyangChina
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
123
|
Compton SLE, Heymsfield SB, Brown JC. Nutritional Mechanisms of Cancer Cachexia. Annu Rev Nutr 2024; 44:77-98. [PMID: 39207878 DOI: 10.1146/annurev-nutr-062122-015646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Collapse
Affiliation(s)
- Stephanie L E Compton
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Steven B Heymsfield
- Metabolism and Body Composition Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Justin C Brown
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
124
|
Parker KG, Windham BG, Blackshear C, Walker KA, Parker SB, Hoogeveen RC, Ballantyne CM, Kucharska-Newton A, Palta P, Selvin E, Vassilaki M, Mosley TH, Griswold ME. Associations of mid-to-late-life inflammation with late-life mobility and the influences of chronic comorbidities, race, and social determinants of health: The Atherosclerosis Risk in Communities Study. J Am Geriatr Soc 2024; 72:2434-2445. [PMID: 38863338 PMCID: PMC11323257 DOI: 10.1111/jgs.18978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Relationships of midlife inflammation with late-life mobility and influences of chronic health conditions, race, and social determinants of health (SDoH) on these relationships are poorly understood. METHODS Among 4758 community-dwelling participants (41% men, 20% Black), high-sensitivity C-reactive protein (hsCRP) was measured over 20+ years: in midlife at study visit 2 (V2: 1990-1992, 47-68 years); at V4 (1996-1998, 53-74 years); and with concurrent late-life 4-m gait speed at V5 (2011-2013, 67-88 years, mean 75 years). SDoH measures included race, the national-rank area deprivation index, education, and income. We examined associations of late-life gait speed with midlife hsCRP (V2 continuous and clinically high ≥3 mg/L), with 20-year hsCRP history from midlife (V2-V5 average continuous hsCRP and clinically high ≥3 mg/L) and with inflammation accumulation (visits and years with high hsCRP). Regression models adjusted for demographic, cardiovascular, and SDoH measures; effect modification by the presence of other common chronic conditions (obesity, diabetes, hypertension) and race were examined, with and without accounting for SDoH. RESULTS High midlife hsCRP was associated with slower late-life gait speed, even among those without chronic conditions in midlife: -4.6 cm/s (95% CI: -6.4, -2.8). Importantly, sustained high hsCRP was associated with a 20-year slowing of -10.0 cm/s (-14.9, -5.1) among those who never experienced obesity, diabetes, or hypertension over the 20-year period. Associations were similar between Black participants, -3.8 cm/s (-6.9, -0.7) and White participants -3.3 (-4.5, -2.2) per interquartile range of midlife hsCRP; effect modifications by chronic conditions and race were unsupported throughout. Results were robust to accounting for SDoH or otherwise; however, worse SDoH was associated with higher inflammation and slower gait speed in both Black and White participants. CONCLUSIONS Inflammation in midlife may contribute to clinically meaningful late-life slowing of gait speed, even among otherwise healthy-appearing adults and regardless of race and socioeconomic disadvantage. Regular monitoring and interventions for inflammation may be warranted from midlife.
Collapse
Affiliation(s)
- Kirby G Parker
- University of Mississippi Medical Center, Department of Radiology, Jackson, MS
| | - B. Gwen Windham
- University of Mississippi Medical Center, MIND Center, Department of Medicine, Jackson, MS
| | - Chad Blackshear
- University of Mississippi Medical Center, MIND Center, Department of Medicine, Jackson, MS
| | - Keenan A Walker
- National Institute on Aging, Laboratory of Behavioral Neuroscience
| | - Sara B Parker
- University of Mississippi Medical Center, Department of Surgery, Jackson, MS
| | - Ron C Hoogeveen
- Baylor College of Medicine, Department of Medicine, Section of Cardiovascular Research, Houston, TX
| | - Christie M Ballantyne
- Baylor College of Medicine, Department of Medicine, Section of Cardiovascular Research, Houston, TX
| | | | - Priya Palta
- University of North Carolina at Chapel Hill, Department of Epidemiology
| | - Elizabeth Selvin
- Johns Hopkins University, Department of Epidemiology, Baltimore, MD
| | - Maria Vassilaki
- Mayo Clinic, Department of Quantitative Health Sciences, Division of Epidemiology, Rochester, MN
| | - Thomas H. Mosley
- University of Mississippi Medical Center, MIND Center, Department of Medicine, Jackson, MS
| | - Michael E Griswold
- University of Mississippi Medical Center, MIND Center, Department of Medicine, Jackson, MS
| |
Collapse
|
125
|
Rui S, Dai L, Zhang X, He M, Xu F, Wu W, Armstrong DG, You Y, Xiao X, Ma Y, Chen Y, Deng W. Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing. J Control Release 2024; 372:221-233. [PMID: 38909697 DOI: 10.1016/j.jconrel.2024.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The utilization of platelet-rich plasma (PRP) has exhibited potential as a therapeutic approach for the management of diabetic foot ulcers (DFUs). However, it is currently not well understood how the diabetic environment may influence PRP-derived exosomes (PRP-Exos) and their potential impact on neutrophil extracellular traps (NETs). This study aims to investigate the effects of the diabetic environment on PRP-Exos, their communication with neutrophils, and the subsequent influence on NETs and wound healing. Through bulk-seq and Western blotting, we confirmed the increased expression of MMP-8 in DFUs. Additionally, we discovered that miRNA-26b-5p plays a significant role in the communication between DFUs and PRP-Exos. In our experiments, we found that PRP-Exos miR-26b-5p effectively improved diabetic wound healing by inhibiting NETs. Further tests validated the inhibitory effect of miR-26b-5p on NETs by targeting MMP-8. Both in vitro and in vivo experiments showed that miRNA-26b-5p from PRP-Exos promoted wound healing by reducing neutrophil infiltration through its targeting of MMP-8. This study establishes the importance of miR-26b-5p in the communication between DFUs and PRP-Exos, disrupting NETs formation in diabetic wounds by targeting MMP-8. These findings provide valuable insights for developing novel therapeutic strategies to enhance wound healing in individuals suffering from DFUs.
Collapse
Affiliation(s)
- Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Linrui Dai
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Xiaoshi Zhang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Min He
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Fan Xu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Yuehua You
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoqiu Xiao
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yu Ma
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Yan Chen
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing 400014, China.
| |
Collapse
|
126
|
Agbo LD, Girerd N, Lamiral Z, Duarte K, Bozec E, Merckle L, Hoge A, Guillaume M, Laville M, Nazare JA, Rossignol P, Boivin JM, Wagner S. Dietary inflammatory potential and arterial stiffness in a French cohort: Insights from the STANISLAS study. Nutr Metab Cardiovasc Dis 2024; 34:1959-1967. [PMID: 38677885 DOI: 10.1016/j.numecd.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND AND AIMS Chronic inflammation plays a key role in arterial stiffness pathogenesis. Dietary components can display anti- or pro-inflammatory properties. Nonetheless, the association between the diet's overall inflammatory potential and arterial stiffness is unclear. This study aimed to assess the association between the diet's overall inflammatory potential and arterial stiffness assessed by carotid-femoral pulse wave velocity (cfPWV). METHODS AND RESULTS This cross-sectional study included 1307 participants from the STANISLAS family cohort study. Dietary data were collected using a validated food frequency questionnaire. The adapted dietary inflammatory index (ADII) score was calculated to assess the inflammatory potential of the participants' diet. The association of ADII score quartile with cfPWV was assessed using IPW-weighted linear mixed models with random family effect. The median (Q1-Q3) ADII score was 0.45 (-1.57, 2.04). Participants exhibiting higher ADII scores demonstrated elevated energy intake, dietary saturated fat, and ultra-processed foods. Conversely, individuals with lower ADII scores exhibited higher vitamins and omega intakes, and a higher diet quality, as assessed by the DASH score. Despite these observations from the descriptive analyses, ADII score quartiles were not significantly associated with cfPWV (β(95% CI) were 0.01 (-0.02,0.04) for Q2, 0.02 (-0.01,0.05) for Q3, and 0.02 (-0.01,0.05) for Q4 compared to Q1). CONCLUSION In this cross-sectional study, participants had a relatively modest consumption of pro-inflammatory foods, no substantial associations were observed between the diet inflammatory potential and arterial stiffness. Further longitudinal studies in larger cohorts are needed to better understand the link between inflammatory diet and arterial stiffness.
Collapse
Affiliation(s)
- Louis-Désiré Agbo
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| | - Nicolas Girerd
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France.
| | - Zohra Lamiral
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| | - Kevin Duarte
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| | - Erwan Bozec
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| | - Ludovic Merckle
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| | - Axelle Hoge
- Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | - Michèle Guillaume
- Département des Sciences de la Santé Publique, Université de Liège, Liège, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre-Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, F-CRIN/FORCE Network, Pierre-Bénite, France
| | - Patrick Rossignol
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France; Medicine and Nephrology-Dialysis Departments, Princess Grace Hospital, and Monaco Private Hemodialysis Centre, Monaco, Monaco
| | - Jean-Marc Boivin
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France; Department of General Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sandra Wagner
- INSERM CIC 1433, Nancy CHRU, Inserm U1116, FCRIN, INI-CRCT, University of Lorraine, Nancy, France
| |
Collapse
|
127
|
Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov Today 2024; 29:104087. [PMID: 38969091 DOI: 10.1016/j.drudis.2024.104087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Diabetic distal symmetric polyneuropathy is the most common type of peripheral neuropathy complication of diabetes mellitus. Neuroinflammation is emerging as an important contributor to diabetes-induced neuropathy. Long-term hyperglycemia results in increased production of advanced glycation end products (AGEs). AGEs interact with their receptors to activate intracellular signaling, leading to the release of various inflammatory cytokines. Increased release of inflammatory cytokines is associated with diabetes, diabetic neuropathy, and neuropathic pain. Thus, anti-inflammatory intervention is a potential therapy for diabetic distal symmetric polyneuropathy. Further characterization of inflammatory mechanisms might identify novel therapeutic targets to mitigate diabetic neuropathy.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Daniel L Menkes
- Department of Neurology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Nizar Souayah
- Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
128
|
Zhou C, Zhou Y, Liu L, Jiang H, Wei H, Zhou C, Ji X. Progress and recognition of idiopathic intracranial hypertension: A narrative review. CNS Neurosci Ther 2024; 30:e14895. [PMID: 39097911 PMCID: PMC11298205 DOI: 10.1111/cns.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/03/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Idiopathic intracranial hypertension (IIH) mainly affects obese young women, causing elevated intracranial pressure, headaches, and papilledema, risking vision loss and severe headaches. Despite weight loss as the primary treatment, the underlying mechanisms remain unclear. Recent research explores novel therapeutic targets. AIMS This review aimed to provide a comprehensive understanding of IIH's pathophysiology and clinical features to inform pathogenesis and improve treatment strategies. METHODS Recent publications on IIH were searched and summarized using PubMed, Web of Science, and MEDLINE. RESULTS The review highlights potential pathomechanisms and therapeutic advances in IIH. CONCLUSION IIH incidence is rising, with growing evidence linking it to metabolic and hormonal disturbances. Early diagnosis and treatment remain challenging.
Collapse
Affiliation(s)
- Chenxia Zhou
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Neurology and Intracranial Hypertension and Cerebral Venous Disease CenterNational Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersBeijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision Medicine, Capital Medical UniversityBeijingChina
| | - Lu Liu
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Neurology and Intracranial Hypertension and Cerebral Venous Disease CenterNational Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Zhongguancun Xirui Institute of Precision Medicine for Heart and Brain TumorsBeijingChina
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersBeijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision Medicine, Capital Medical UniversityBeijingChina
| | - Huimin Wei
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineSchool of Biological Science and Medical Engineering, Beihang UniversityBeijingChina
| | - Chen Zhou
- Neurology and Intracranial Hypertension and Cerebral Venous Disease CenterNational Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersBeijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision Medicine, Capital Medical UniversityBeijingChina
| | - Xunming Ji
- Neurology and Intracranial Hypertension and Cerebral Venous Disease CenterNational Health Commission of China, Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersBeijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision Medicine, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
129
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
130
|
Ullah A, Singla RK, Batool Z, Cao D, Shen B. Pro- and anti-inflammatory cytokines are the game-changers in childhood obesity-associated metabolic disorders (diabetes and non-alcoholic fatty liver diseases). Rev Endocr Metab Disord 2024; 25:783-803. [PMID: 38709387 DOI: 10.1007/s11154-024-09884-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Childhood obesity is a chronic inflammatory epidemic that affects children worldwide. Obesity affects approximately 1 in 5 children worldwide. Obesity in children can worsen weight gain and raise the risk of obesity-related comorbidities like diabetes and non-alcoholic fatty liver disease (NAFLD). It can also negatively impact the quality of life for these children. Obesity disrupts immune system function, influencing cytokine (interleukins) balance and expression levels, adipokines, and innate and adaptive immune cells. The altered expression of immune system mediators, including interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17 (IL-17), interleukin-18 (IL-18), transforming growth factor (TGF), tumor necrosis factor (TNF), and others, caused inflammation, progression, and the development of pediatric obesity and linked illnesses such as diabetes and NAFLD. Furthermore, anti-inflammatory cytokines, including interleukin-2 (IL-2), have been shown to have anti-diabetes and IL-1 receptor antagonist (IL-1Ra) anti-diabetic and pro-NAFLFD properties, and interleukin-10 (IL-10) has been shown to have a dual role in managing diabetes and anti-NAFLD. In light of the substantial increase in childhood obesity-associated disorders such as diabetes and NAFLD and the absence of an effective pharmaceutical intervention to inhibit immune modulation factors, it is critical to consider the alteration of immune system components as a preventive and therapeutic approach. Thus, the current review focuses on the most recent information regarding the influence of pro- and anti-inflammatory cytokines (interleukins) and their molecular mechanisms on pediatric obesity-associated disorders (diabetes and NAFLD). Furthermore, we discussed the current therapeutic clinical trials in childhood obesity-associated diseases, diabetes, and NAFLD.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Zahra Batool
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
131
|
Rajamanickam A, Babu S. Helminth Infections and Diabetes: Mechanisms Accounting for Risk Amelioration. Annu Rev Nutr 2024; 44:339-355. [PMID: 38724017 DOI: 10.1146/annurev-nutr-061121-100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| | - Subash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| |
Collapse
|
132
|
Li P, Qiao Q, Nie C, Guo X, Wang C, Liu J, Liang K. The mediating role of chronic low-grade inflammation participation in the relationship between obesity and type 2 diabetes: findings from the NHANES. BMC Endocr Disord 2024; 24:130. [PMID: 39085863 PMCID: PMC11293100 DOI: 10.1186/s12902-024-01671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Chronic low-grade inflammation may mediate the relationship between obesity and diabetes, yet clinical research in this area remains scarce. Thus, this study aimed to explore the mediating role of chronic low-grade inflammation in this relationship using the National Health and Nutrition Examination Survey (NHANES). METHODS This study involved 2,482 participants enrolled in the NHANES between 2005 and 2016. Based on the complex sampling survey weights of NHANES, logistic regression models were fitted, adjusting for various covariates to investigate the relationship between BMI, INFLA score, and diabetes. Moreover, weighted quantile sum (WQS) regression models were fitted to analyze the proportional contribution of individual components within the INFLA score. Finally, mediation analysis was conducted to quantitatively assess the magnitude of the mediating effect of the INFLA score on the relationship between BMI and diabetes. RESULTS After adjusting for all potential confounding factors, a significant positive correlation was noted between INFLA score and diabetes [OR (95% CI), 1.038(1.003-1.075), p = 0.035]. Additionally, a significant positive correlation was observed between the high INFLA group and diabetes compared to the low INFLA group [OR (95% CI), 1.599(1.031-2.481), p = 0.037]. WQS regression models revealed that the proportional contributions of C-reactive protein, white blood cell count, platelet count, and neutrophil-to-lymphocyte ratio (NLR) were 55.5%, 34.8%, 8.46%, and 1.19%, respectively. Finally, the results of the mediation analysis indicated that the indirect effect of the INFLA score accounted for 10.20%. CONCLUSIONS Chronic low-grade inflammation was associated with diabetes and partially mediates the relationship between obesity and diabetes.
Collapse
Affiliation(s)
- Ping Li
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
- The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qincheng Qiao
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
- The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenyu Nie
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
- The First Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinghong Guo
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Chuan Wang
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China
| | - Jinbo Liu
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China.
| | - Kai Liang
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
133
|
Braga GDC, Simões JLB, Teixeira Dos Santos YJ, Filho JCM, Bagatini MD. The impacts of obesity in rheumatoid arthritis and insights into therapeutic purinergic modulation. Int Immunopharmacol 2024; 136:112357. [PMID: 38810303 DOI: 10.1016/j.intimp.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune condition responsible for the impairment of synovia and joints, endangering the functionality of individuals and contributing to mortality. Currently, obesity is increasing worldwide, and recent studies have suggested an association between such condition and RA. In this sense, obese individuals present a lower capacity for achieving remission and present more intense symptoms of the disease, demonstrating a link between both disorders. Different studies aim to understand the possible connection between the conditions; however, few is known in this sense. Therefore, knowing that obesity can alter the activity of multiple body systems, this work's objective is to evaluate the main modifications caused by obesity, which can be linked to the pathophysiology of RA, highlighting as relevant topics obesity's negative impact triggering systemic inflammation, intestinal dysbiosis, endocrine disbalances. Furthermore, the relationship between oxidative stress and obesity also deserves to be highlighted, considering the influence of reactive oxygen species (ROS) accumulation in RA exacerbation. Additionally, many of those characteristics influenced by obesity, along with the classic peculiarities of RA pathophysiology, can also be associated with purinergic signaling. Hence, this work suggests possible connections between the purinergic system and RA, proposing potential therapeutic targets against RA to be studied.
Collapse
|
134
|
Groenewald EJ, Nkambule BB, Nyambuya TM. Aggravated Systemic Inflammation and Atherogenicity in African Patients Living With Type 2 Diabetes and Hypertension Comorbidity. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241263298. [PMID: 39081822 PMCID: PMC11287731 DOI: 10.1177/11795514241263298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Objective To explore routinely measured markers of systemic inflammation in hypertension (HTN) and type 2 diabetes (T2D) comorbidity, and their association with atherogenicity. Methods This study included a total of 70 patients with T2D which were categorised into 2 groups, that is with T2D and with HTN comorbidity (T2D + HTN) (n = 35/group). All measured laboratory parameters were determined using standardised methods. Results The neutrophil/lymphocyte ratio (NLR) was elevated in patients with T2D + HTN when compared to those with T2D (P = .0494). This was also the case with C-reactive protein (CRP) levels (P < .0001) and systemic immune-inflammation (SII) index (P = .0298). Notably, the majority of patients with T2D + HTN [63% (n = 22)] were classified as having an intermediate or high atherogenic index of plasma (AIP). The correlation analysis of systemic inflammation showed significant associations between CRP and age (r = .24, P = .0477); CRP and red blood cell count (r = -.4, P = .0455), and SII and systolic blood pressure (SBP) (r = .33, P = .0056). However, there was no association between inflammatory profiles and lipograms (P > .05). We further assessed predictors for an elevated AIP using mutivariable regression model adjusted for age, SBP, CRP and SII. Only NLR was a significant predictor of AIP (β = .287, SE: 0.1, P = .0046). Conclusion HTN comorbidity in T2D is associated with exacerbated levels of inflammation and atherogenicity. NLR is a significant independent risk factor for increased atherogenicity in patients with T2D. Therefore, the use of therapeutic strategies that target and alleviate inflammation in patients with T2D and HTN comorbidity is imperative in reducing the initiating and progression of cardiovascular events (CVEs).
Collapse
Affiliation(s)
- Ernst J Groenewald
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M Nyambuya
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
135
|
Zhao X, Song B, Yao T, Fan H, Liu T, Gao G, Wang K, Lu W, Liu C. Waist circumference glucose, a novel and effective predictor of type 2 diabetes: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1427785. [PMID: 39135621 PMCID: PMC11317235 DOI: 10.3389/fendo.2024.1427785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Waist circumference (WC) and fasting plasma glucose (FPG) have been demonstrated as risk factors for type 2 diabetes mellitus (T2DM). Evidence is limited regarding the association of the combination of WC and FPG (WyG) with the risk of T2DM. The primary aim of the study was to investigate the relationship between WyG and T2DM. Research design and methods The current study was a population-based cohort study using data from the NAGALA database. Participants were divided into tertiles based on WyG. Cox proportional hazard regression model was applied to identify the association of WyG with T2DM. Results During a median follow-up of 6.19 years in the normoglycemia group and 5.58 years in the prediabetes group, respectively, 88 and 285 individuals in the two groups received a diagnosis of T2DM. After full adjustment, risk of T2DM increased in step-wise fashion with increasing tertiles of WyG. For a per-SD increase in WyG, the hazard ratios for T2DM were 3.05 (95% CI 2.64 - 3.51) in all populations, 1.94 (95% CI 1.46 - 2.58) in the normoglycemia group and 1.63 (95% CI 1.40 - 1.90) in the prediabetes group. The interaction between WyG and fatty liver on T2DM was statistically significant in the prediabetes group (P for interaction = 0.034). Conclusions Elevated WyG was independently associated with incident T2DM in Japan. Baseline WyG help identify individuals at high risk of T2DM and implement effective preventive measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weilin Lu
- *Correspondence: Weilin Lu, ; Chengyun Liu,
| | | |
Collapse
|
136
|
Brummer C, Singer K, Brand A, Bruss C, Renner K, Herr W, Pukrop T, Dorn C, Hellerbrand C, Matos C, Kreutz M. Sex-Dependent T Cell Dysregulation in Mice with Diet-Induced Obesity. Int J Mol Sci 2024; 25:8234. [PMID: 39125804 PMCID: PMC11311663 DOI: 10.3390/ijms25158234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is an emerging public health problem. Chronic low-grade inflammation is considered a major promotor of obesity-induced secondary diseases such as cardiovascular and fatty liver disease, type 2 diabetes mellitus, and several cancer entities. Most preliminary studies on obesity-induced immune responses have been conducted in male rodents. Sex-specific differences between men and women in obesity-induced immune dysregulation have not yet been fully outlined but are highly relevant to optimizing prevention strategies for overweight-associated complications. In this study, we fed C57BL/6 female vs. male mice with either standard chow or an obesity-inducing diet (OD). Blood and spleen immune cells were isolated and analyzed by flow cytometry. Lean control mice showed no sex bias in systemic and splenic immune cell composition, whereas the immune responses to obesity were significantly distinct between female and male mice. While immune cell alterations in male OD mice were characterized by a significant reduction in T cells and an increase in myeloid-derived suppressor cells (MDSC), female OD mice displayed preserved T cell numbers. The sex-dependent differences in obesity-induced T cell dysregulation were associated with varying susceptibility to body weight gain and fatty liver disease: Male mice showed significantly more hepatic inflammation and histopathological stigmata of fatty liver in comparison to female OD mice. Our findings indicate that sex impacts susceptibility to obesity-induced T cell dysregulation, which might explain sex-dependent different incidences in the development of obesity-associated secondary diseases. These results provide novel insights into the understanding of obesity-induced chronic inflammation from a sex-specific perspective. Given that most nutrition, exercise, and therapeutic recommendations for the prevention of obesity-associated comorbidities do not differentiate between men and women, the data of this study are clinically relevant and should be taken into consideration in future trials and treatment strategies.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Almut Brand
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Christina Bruss
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Department of Gynecology and Obstetrics, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Kathrin Renner
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Comprehensive Cancer Center Eastern Bavaria (CCCO), 93053 Regensburg, Germany
- Center of Translational Oncology (CTO), 93053 Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, University of Erlangen, 91054 Erlangen, Germany
| | - Carina Matos
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| |
Collapse
|
137
|
Deng GH. Causal relationship between rheumatoid arthritis and ankylosing spondylitis: Two-sample Mendelian randomization. Medicine (Baltimore) 2024; 103:e39132. [PMID: 39058807 PMCID: PMC11272285 DOI: 10.1097/md.0000000000039132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
To investigate the causal relationship between rheumatoid arthritis (RA) and ankylosing spondylitis using Mendelian randomization (MR). Genetic loci independently associated with RA and ankylosing spondylitis in people of European origin were selected as instrumental variables using pooled data from large-scale genome-wide association studies. Three MR analyses, MR-Egger, weighted median, and inverse variance weighting, were used to investigate the causal relationship between RA and ankylosing spondylitis. Heterogeneity and multiplicity tests were used, and a sensitivity test using the "leave-one-out" method was used to explore the robustness of the results. The inverse variance weighting results showed an OR (95 % CI) of 1.25 (1.11-1.41), P < .001, indicating a causal relationship between RA and ankylosing spondylitis. And no heterogeneity and pleiotropy were found by the test and sensitivity analysis also showed robust results. The present study was conducted to analyze and explore the genetic data using two-sample MR analysis and the results showed that there is a causal relationship between RA and the occurrence of ankylosing spondylitis.
Collapse
Affiliation(s)
- Guang-Hua Deng
- Ya'an Hospital of Traditional Chinese Medicine, Orthopaedic Clinic, Sichuan, China
| |
Collapse
|
138
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
139
|
Tian P, Fu J, Liu Y, Li M, Liu J, Liu J, Zhang Z, Zhang P. Unveiling the hidden pathologies: preoperative endoscopic findings in patients with obesity undergoing bariatric surgery. BMC Surg 2024; 24:215. [PMID: 39048984 PMCID: PMC11267783 DOI: 10.1186/s12893-024-02502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Obesity is closely associated with upper gastrointestinal disorders. The recommendations for routine preoperative esophagogastroduodenoscopy (EGD) before bariatric surgery remains a topic of debate. This study aimed to describe the pathological endoscopic findings in individuals qualified for bariatric surgery. METHODS Retrospective analysis was conducted on preoperative gastroscopy reports of patients who underwent bariatric surgery at our hospital between October 2022 and October 2023. RESULTS A total of 405 patients were included in the study. The two most prevalent endoscopic findings during EGD in this patient cohort were chronic superficial gastritis (326/405, 80.5%) and reflux esophagitis (82/405, 20.2%). Some patients exhibited two or more abnormalities. Patients with reflux esophagitis were older, had a higher proportion of men, higher BMI, higher rates of smoking and drinking compared to those without it (P = 0.033, P < 0.001, P = 0.003, P = 0.001, and P = 0.003, respectively). Morbid obesity (P = 0.037), smoking habits (P = 0.012), and H. pylori infection (P = 0.023) were significant risk factors for reflux esophagitis in male patients, while age (P = 0.007) was the sole risk factor in female patients. No statistically significant differences were observed in surgical procedures between LA-A and B groups (P = 0.382), but statistically significant differences were noted between the nondiabetic and diabetic groups (P < 0.001). CONCLUSIONS Preoperative EGD can unveil a broad spectrum of pathologies in patients with obesity, suggesting the need for routine examination before bariatric surgery. The findings of this study can guide bariatric surgeons in developing tailored treatments and procedures, thus significantly enhancing prognosis. Gastroscopy should be performed routinely in Chinese patients planning to undergo bariatric surgery.
Collapse
Affiliation(s)
- Peirong Tian
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jing Fu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Mengyi Li
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jia Liu
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Jingli Liu
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| | - Peng Zhang
- Division of Metabolic and Bariatric Surgery, Department of General Surgery, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
140
|
Sciarretta F, Ninni A, Zaccaria F, Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu Z, Gaudioso F, Tortolici F, Tiberi M, Zhang J, Carotti S, Boudina S, Grumati P, Zhou B, Brestoff JR, Ivanov S, Aquilano K, Lettieri-Barbato D. Lipid-associated macrophages reshape BAT cell identity in obesity. Cell Rep 2024; 43:114447. [PMID: 38963761 DOI: 10.1016/j.celrep.2024.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor β1 (TGF-β1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.
Collapse
Affiliation(s)
| | - Andrea Ninni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Veronica Ceci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Gaudioso
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jiabi Zhang
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Sihem Boudina
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT, USA
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
141
|
Zhu C, Lai Y, Liu C, Teng L, Zhu Y, Lin X, Fu X, Lai Q, Liu S, Zhou X, Fang Y. Comprehensively prognostic and immunological analyses of GLP-1 signaling-related genes in pan-cancer and validation in colorectal cancer. Front Pharmacol 2024; 15:1387243. [PMID: 39104385 PMCID: PMC11298396 DOI: 10.3389/fphar.2024.1387243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Background: Glucagon-like peptide-1 (GLP-1) has crucial impact on glycemic control and weight loss physiologically. GLP-1 receptor agonists have been approved for treatment of diabetes and obesity. Emerging evidence suggests that GLP-1 receptor agonists exert anticancer effect in tumorigenesis and development. However, the role and mechanism of GLP-1 signaling-related genes in pan-cancer still need further study. Methods: We comprehensively investigated the aberrant expression and genetic alterations of GLP-1 signaling-related genes in 33 cancer types. Next, GLP-1 signaling score of each patient in The Cancer Genome Atlas were established by the single-sample gene set enrichment analysis. In addition, we explored the association of GLP-1 signaling score with prognostic significance and immune characteristics. Furthermore, qRT-PCR and immunohistochemistry staining were applied to verify the expression profiling of GLP-1 signaling-related genes in colorectal cancer (CRC) tissues. Wound-healing assays and migration assays were carried out to validate the role of GLP-1 receptor agonist in CRC cell lines. Results: The expression profiling of GLP-1 signaling-related genes is commonly altered in pan-cancer. The score was decreased in cancer tissues compared with normal tissues and the lower expression score was associated with worse survival in most of cancer types. Notably, GLP-1 signaling score was strongly correlated with immune cell infiltration, including T cells, neutrophils, dendritic cells and macrophages. In addition, GLP-1 signaling score exhibited close association with tumor mutation burden, microsatellite instability and immunotherapy response in patients with cancer. Moreover, we found that the expression of GLP-1 signaling-related genes ITPR1 and ADCY5 were significantly reduced in CRC tissues, and GLP-1 receptor agonist semaglutide impaired the migration capacity of CRC cells, indicating its protective role. Conclusion: This study provided a preliminary understanding of the GLP-1 signaling-related genes in pan-cancer, showing the prognosis significance and potential immunotherapeutic values in most cancer types, and verified the potential anticancer effect of GLP-1 receptor agonist in CRC.
Collapse
Affiliation(s)
- Chaojun Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Teng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Fu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
142
|
Song L, Ji W, Cao X. Integrated analysis of gut microbiome and its metabolites in ACE2-knockout and ACE2-overexpressed mice. Front Cell Infect Microbiol 2024; 14:1404678. [PMID: 39086603 PMCID: PMC11288824 DOI: 10.3389/fcimb.2024.1404678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024] Open
Abstract
Background Aberrant activation of the classic renin-angiotensin system (RAS) and intestinal micro dysbiosis adversely affect insulin resistance (IR), dyslipidemia, and other metabolic syndrome markers. However, the action of angiotensin-converting enzyme 2 (ACE2) and gut health in systemic homeostasis vary, and their interaction is not completely understood. Methods We adopted a combinatory approach of metabolomics and fecal 16S rRNA analysis to investigate gut microbiota and metabolite in two different mouse models, ACE2 knockout (ACE2 KO) mice and the ACE2-overexpressing obese mice. Results 16S rRNA gene sequencing revealed that ACE2 influences microbial community composition and function, and ACE2 KO mice had increased Deferribacteres, Alcaligenaceae, Parasutterella, Catenibacterium, and Anaerotruncus, with decreased short-chain fatty acid (SCFA)-producing bacteria (Marvinbryantia and Alistipes). In contrast, ACE2-overexpressed mice exhibited increased anti-inflammatory probiotic (Oscillospiraceae, Marinifilaceae, and Bifidobacteriaceae) and SCFA-producing microbes (Rikenellaceae, Muribaculaceae, Ruminococcaceae, Odoribacter, and Alistipes) and decreased Firmicutes/Bacteroidetes, Lactobacillaceae, Erysipelotrichaceae, and Lachnospiraceae. Metabolome analysis indicated differential metabolites in ACE2 KO and ACE2-overexpression mice, especially the glucolipid metabolism-related compounds. Furthermore, correlation analysis between gut microbiota and metabolites showed a dynamic mutual influence affecting host health. Conclusion Our study confirms for the first time a significant association between ACE2 status and gut microbiome and metabolome profiles, providing a novel mechanism for the positive effect of ACE2 on energy homeostasis.
Collapse
Affiliation(s)
| | | | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
143
|
Kistler W, Villiger M, Villiger B, Yazici D, Pat Y, Mitamura Y, Ardicli S, Skolnick S, Dhir R, Akdis M, Nadeau K, Ogulur I, Akdis CA. Epithelial barrier theory in the context of nutrition and environmental exposure in athletes. Allergy 2024. [PMID: 39011970 DOI: 10.1111/all.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.
Collapse
Affiliation(s)
- Walter Kistler
- Medical Committee International Ice Hockey Federation, Zürich, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Michael Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Beat Villiger
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Stephen Skolnick
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Seed Health Inc., Los Angeles, California, USA
| | - Raja Dhir
- Seed Health Inc., Los Angeles, California, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
144
|
Zhang W, Zhu M, Liu X, Que M, Dekyi K, Zheng L, Zhang Y, Lv Y, Fan Q, Wang X, Li H. Edible bird's nest regulates glucose and lipid metabolic disorders via the gut-liver axis in obese mice. Food Funct 2024; 15:7577-7591. [PMID: 38934780 DOI: 10.1039/d4fo00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Edible bird's nest (EBN) is a traditional food known for its nourishing and functional properties and is found to be involved in anti-oxidation, anti-aging, and anti-influenza mechanisms, immune regulation, and improving cardiovascular diseases, among others. However, the potential of EBN to improve glycolipid metabolism disorders in high-fat-diet induced obesity and the underlying mechanisms remain unexplored. We examined the effects of EBN on glycolipid metabolism in obese mice fed a high-fat diet. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. The obese mice were selected and divided into six groups: two model control groups (normal and high-fat diets) and four intervention groups [Neu5Ac and low-, medium-, and high-dose EBN], with 12 mice in each group. After 10 weeks of continuous gavage intervention, only mice in the high-dose EBN intervention group had lower body weight and total fat content, especially visceral fat. Meanwhile, intervention with three doses of EBN reduced serum FBG, TC, LDL, Ox-LDL, IL-1β, IL-6, and TNF-α levels and increased serum HDL levels and energy expenditure. Using the high dosage as a paradigm, EBN intervention increased the sialic acid content in LDL, decreased TMAO in the liver, and increased GLP-1 levels in sera. EBN increased the colonic abundances of Akkermansia, Lactobacillus, and Desulfovibrio and reduced those of Lysinibacillus and Bacillus. The changes in the microbial community contribute to increasing colonic bile acids, reducing lipopolysaccharide synthesis to protect the intestinal barrier, and lowering inflammation levels. Changes were also observed in colonic transcripts and metabolites and liver gene transcripts and metabolites, which were mainly enriched in pathways of glycolipid metabolism, immune function amelioration, inflammatory signal mitigation, circadian rhythm, bile acid metabolism and insulin resistance. Therefore, EBN may enhance the gut microbiota and intestinal immunity, relieve chronic inflammation levels in serum, improve antioxidant capacity and circadian rhythm in the liver, promote bile acid metabolism, and decrease lipid absorption and lipid synthesis via the gut-liver axis. Consequently, this may reduce blood lipid and fat accumulation as well as improve islet function and reduce blood glucose levels.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Meizhen Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Xuncai Liu
- Xiamen Yan Palace Seelong Biotechnology Co., Ltd, Xiamen 361100, China.
| | - Maoyao Que
- Xiamen Yan Palace Seelong Biotechnology Co., Ltd, Xiamen 361100, China.
| | - Kelsang Dekyi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Linxi Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Yichen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Youping Lv
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| | - Qunyan Fan
- Xiamen Yan Palace Seelong Biotechnology Co., Ltd, Xiamen 361100, China.
| | - Xinyue Wang
- Department of Nutrition, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian Province, China.
- Xiamen Clinical Research Center for Cancer Therapy, China
| | - Hongwei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, School of Public Health, Xiamen University, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, China
| |
Collapse
|
145
|
Cucoreanu C, Tigu AB, Nistor M, Moldovan RC, Pralea IE, Iacobescu M, Iuga CA, Szabo R, Dindelegan GC, Ciuce C. Epigenetic and Molecular Alterations in Obesity: Linking CRP and DNA Methylation to Systemic Inflammation. Curr Issues Mol Biol 2024; 46:7430-7446. [PMID: 39057082 PMCID: PMC11275580 DOI: 10.3390/cimb46070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is marked by excessive fat accumulation in the adipose tissue, which disrupts metabolic processes and causes chronic systemic inflammation. Commonly, body mass index (BMI) is used to assess obesity-related risks, predicting potential metabolic disorders. However, for a better clustering of obese patients, we must consider molecular and epigenetic changes which may be responsible for inflammation and metabolic changes. Our study involved two groups of patients, obese and healthy donors, on which routine analysis were performed, focused on BMI, leukocytes count, and C-reactive protein (CRP) and completed with global DNA methylation and gene expression analysis for genes involved in inflammation and adipogenesis. Our results indicate that obese patients exhibited elevated leukocytes levels, along with increased BMI and CRP. The obese group revealed a global hypomethylation and upregulation of proinflammatory genes, with adipogenesis genes following the same trend of being overexpressed. The study confirms that obesity is linked to systematic inflammation and metabolic dysfunction through epigenetic and molecular alterations. The CRP was correlated with the hypomethylation status in obese patients, and this fact may contribute to a better understanding of the roles of specific genes in adipogenesis and inflammation, leading to a better personalized therapy.
Collapse
Affiliation(s)
- Ciprian Cucoreanu
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Translational Medicine, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Radu-Cristian Moldovan
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advance Medicine—MEDFUTURE, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Robert Szabo
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania
| | - George-Calin Dindelegan
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Constatin Ciuce
- Department of General Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
146
|
Pan X, Olatunji OJ, Basit A, Sripetthong S, Nalinbenjapun S, Ovatlarnporn C. Insights into the phytochemical profiling, antidiabetic and antioxidant potentials of Lepionurus sylvestris Blume extract in fructose/streptozotocin-induced diabetic rats. Front Pharmacol 2024; 15:1424346. [PMID: 39070783 PMCID: PMC11272583 DOI: 10.3389/fphar.2024.1424346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
In this study, the antidiabetic activities of Lepionurus sylvestris Blume extract (LSB) in rats was investigated. The in vitro antidiabetic properties of LSB was evaluated using α-amylase, α-glucosidase and DPP-IV inhibitory assays, while the antioxidant assay was analysed using DPPH, ABTS and FRAP assays. Type 2 diabetes was with high-fructose/streptozotocin, and the diabetic animals were treated with LSB for 5 weeks. At the end of the experiment, the effects of LSB were evaluated via insulin level, lipid profile and hepatorenal function biomarkers. The level of oxido-inflammatory parameters, histopathology and insulin immunohistochemical staining in the pancreas was evaluated. Diabetic rats manifested significant increases in the blood glucose level, food/water intake, lipid profiles, hepatorenal function biomarkers, as well as a marked decreases in the body weight and serum insulin levels. Histopathological and insulin immunohistochemical examination also revealed decreased pancreatic beta cells and insulin positive cells, respectively. These alterations were associated with significant increases in malondialdehyde, TNF-α and IL-1β, in addition to significant declines in GSH, SOD and CAT activities. LSB significantly reduced blood glucose level, glucose intolerance, serum lipids, restored altered hepatorenal and pancreatic functions in the treated diabetic rats. Further, LSB showed antioxidant and anti-inflammatory activities by reducing malondialdehyde, TNF-α, IL-1β, and increasing antioxidant enzymes activities in the pancreatic tissues. A total of 77 secondary metabolites were tentatively identified in the UPLC-Q-TOF-MS analysis of LSB. Overall, these findings provides insight into the potentials of LSB as an antidiabetic agent which may be associated to the plethora bioactive compounds in the plant.
Collapse
Affiliation(s)
- Xianzhu Pan
- Department of Pathology and Pathophysiology, Anhui Medical College, Hefei, China
| | | | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sasikarn Sripetthong
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sirinporn Nalinbenjapun
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Drug Delivery System Excellent Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
147
|
Adolph TE, Meyer M, Jukic A, Tilg H. Heavy arch: from inflammatory bowel diseases to metabolic disorders. Gut 2024; 73:1376-1387. [PMID: 38777571 PMCID: PMC11287632 DOI: 10.1136/gutjnl-2024-331914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Metabolic disorders and inflammatory bowel diseases (IBD) have captured the globe during Westernisation of lifestyle and related dietary habits over the last decades. Both disease entities are characterised by complex and heterogeneous clinical spectra linked to distinct symptoms and organ systems which, on a first glimpse, do not have many commonalities in clinical practice. However, experimental studies indicate a common backbone of inflammatory mechanisms in metabolic diseases and gut inflammation, and emerging clinical evidence suggests an intricate interplay between metabolic disorders and IBD. OBJECTIVE We depict parallels of IBD and metabolic diseases, easily overlooked in clinical routine. DESIGN We provide an overview of the recent literature and discuss implications of metabolic morbidity in patients with IBD for researchers, clinicians and healthcare providers. CONCLUSION The Western lifestyle and diet and related gut microbial perturbation serve as a fuel for metabolic inflammation in and beyond the gut. Metabolic disorders and the metabolic syndrome increasingly affect patients with IBD, with an expected negative impact for both disease entities and risk for complications. This concept implies that tackling the obesity pandemic exerts beneficial effects beyond metabolic health.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
148
|
Wang J, Liu F, Mo J, Gong D, Zheng F, Su J, Ding S, Yang W, Guo P. Exploring the causal relationship between body mass index and keratoconus: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1402108. [PMID: 39050542 PMCID: PMC11266172 DOI: 10.3389/fmed.2024.1402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Background Despite reports suggesting a link between obesity and keratoconus, the causal relationship is not fully understood. Methods We used genome-wide association study (GWAS) data from public databases for a two-sample Mendelian randomization analysis to investigate the causal link between body mass index (BMI) and keratoconus. The primary method was inverse variance weighted (IVW), complemented by different analytical techniques and sensitivity analyses to ensure result robustness. A meta-analysis was also performed to bolster the findings' reliability. Results Our study identified a significant causal relationship between BMI and keratoconus. Out of 20 Mendelian randomization (MR) analyses conducted, 9 showed heterogeneity or pleiotropy. Among the 11 analyses that met all three MR assumptions, 4 demonstrated a significant causal difference between BMI and keratoconus, while the remaining 7 showed a positive trend but were not statistically significant. Meta-analysis confirmed a significant causal relationship between BMI and keratoconus. Conclusion There is a significant causal relationship between BMI and keratoconus, suggesting that obesity may be a risk factor for keratoconus.
Collapse
Affiliation(s)
- Jiaoman Wang
- The 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Fangyuan Liu
- The 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Jianhao Mo
- The 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Di Gong
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Fang Zheng
- Department of Ophthalmology, Jinzhou Medical University, Jinzhou, China
| | - Jingjing Su
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Sicheng Ding
- The 2nd Clinical Medical College of Jinan University, Shenzhen, China
| | - Weihua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ping Guo
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
149
|
Hao J, Jin X, Li Z, Zhu Y, Wang L, Jiang X, Wang D, Qi L, Jia D, Gao B. Anti-Obesity Activity of Sanghuangporus vaninii by Inhibiting Inflammation in Mice Fed a High-Fat Diet. Nutrients 2024; 16:2159. [PMID: 38999906 PMCID: PMC11243596 DOI: 10.3390/nu16132159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is an unhealthy condition associated with various diseases characterized by excess fat accumulation. However, in China, the prevalence of obesity is 14.1%, and it remains challenging to achieve weight loss or resolve this issue through clinical interventions. Sanghuangpours vaninii (SPV) is a nutritional fungus with multiple pharmacological activities and serves as an ideal dietary intervention for combating obesity. In this study, a long-term high-fat diet (HFD) was administered to induce obesity in mice. Different doses of SPV and the positive drug simvastatin (SV) were administered to mice to explore their potential anti-obesity effects. SPV regulated weight, serum lipids, and adipocyte size while inhibiting inflammation and hepatic steatosis. Compared with the vehicle-treated HFD-fed mice, the lowest decreases in total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were 9.72%, 9.29%, and 12.29%, respectively, and the lowest increase in high-density lipoprotein cholesterol (HDL-C) was 5.88% after treatment with different doses of SPV. With SPV treatment, the analysis of gut microbiota and serum lipids revealed a significant association between lipids and inflammation-related factors, specifically sphingomyelin. Moreover, Western blotting results showed that SPV regulated the toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in HFD-diet mice, which is related to inflammation and lipid metabolism. This research presents empirical proof of the impact of SPV therapy on obesity conditions.
Collapse
Affiliation(s)
- Jie Hao
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Lu Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China;
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Liangliang Qi
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| | - Bo Gao
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.H.); (X.J.); (Z.L.); (Y.Z.); (L.W.); (D.W.)
| |
Collapse
|
150
|
Kastratovic N, Zdravkovic N, Cekerevac I, Sekerus V, Harrell CR, Mladenovic V, Djukic A, Volarevic A, Brankovic M, Gmizic T, Zdravkovic M, Bjekic-Macut J, Zdravkovic N, Djonov V, Volarevic V. Effects of Combustible Cigarettes and Heated Tobacco Products on Systemic Inflammatory Response in Patients with Chronic Inflammatory Diseases. Diseases 2024; 12:144. [PMID: 39057115 PMCID: PMC11276168 DOI: 10.3390/diseases12070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Smoke derived from combustible cigarettes (CCs) contains numerous harmful chemicals that can impair the viability, proliferation, and activation of immune cells, affecting the progression of chronic inflammatory diseases. In order to avoid the detrimental effects of cigarette smoking, many CC users have replaced CCs with heated tobacco products (HTPs). Due to different methods of tobacco processing, CC-sourced smoke and HTP-derived aerosols contain different chemical constituents. With the exception of nicotine, HTP-sourced aerosols contain significantly lower amounts of harmful constituents than CC-derived smoke. Since HTP-dependent effects on immune-cell-driven inflammation are still unknown, herein we used flow cytometry analysis, intracellular staining, and an enzyme-linked immunosorbent assay to determine the impact of CCs and HTPs on systemic inflammatory response in patients suffering from ulcerative colitis (UC), diabetes mellitus (DM), and chronic obstructive pulmonary disease (COPD). Both CCs and HTPs significantly modulated cytokine production in circulating immune cells, affecting the systemic inflammatory response in COPD, DM, and UC patients. Compared to CCs, HTPs had weaker capacity to induce the synthesis of inflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, IL-12, IL-23, IL-17, TNF-α), but more efficiently induced the production of immunosuppressive IL-10 and IL-35. Additionally, HTPs significantly enhanced the synthesis of pro-fibrotic TGF-β. The continuous use of CCs and HTPs aggravated immune-cell-driven systemic inflammation in COPD and DM patients, but not in UC patients, suggesting that the immunomodulatory effects of CC-derived smoke and HTP-sourced aerosols are disease-specific, and need to be determined for specific immune-cell-driven inflammatory diseases.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ivan Cekerevac
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Pulmonology Clinic, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Vanesa Sekerus
- Institute for Pulmonary Diseases of Vojvodina, 4 Institutski Put, 21204 Novi Sad, Serbia;
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 3 Hajduk Veljkova Street, 21000 Novi Sad, Serbia
| | - Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Aleksandar Djukic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (V.M.); (A.D.)
- Center for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Kragujevac, 30 Zmaj Jovina Street, 34000 Kragujevac, Serbia
| | - Ana Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Marija Brankovic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Tijana Gmizic
- Department of Gastroenterology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia; (M.B.); (T.G.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
- Department of Cardiology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center “Bežanijska Kosa”, Dr Zoza Matea bb, 11080 Belgrade, Serbia;
| | - Nebojsa Zdravkovic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Statistics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia; (N.K.); (N.Z.); (I.C.); (A.V.); (N.Z.)
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|