101
|
Kang J, Jia T, Jiao Z, Shen C, Xie C, Cheng W, Sahakian BJ, Waxman D, Feng J. Increased brain volume from higher cereal and lower coffee intake: shared genetic determinants and impacts on cognition and metabolism. Cereb Cortex 2022; 32:5163-5174. [PMID: 35136970 PMCID: PMC9383440 DOI: 10.1093/cercor/bhac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/27/2022] Open
Abstract
It is unclear how different diets may affect human brain development and if genetic and environmental factors play a part. We investigated diet effects in the UK Biobank data from 18,879 healthy adults and discovered anticorrelated brain-wide gray matter volume (GMV)-association patterns between coffee and cereal intake, coincidence with their anticorrelated genetic constructs. The Mendelian randomization approach further indicated a causal effect of higher coffee intake on reduced total GMV, which is likely through regulating the expression of genes responsible for synaptic development in the brain. The identified genetic factors may further affect people's lifestyle habits and body/blood fat levels through the mediation of cereal/coffee intake, and the brain-wide expression pattern of gene CPLX3, a dedicated marker of subplate neurons that regulate cortical development and plasticity, may underlie the shared GMV-association patterns among the coffee/cereal intake and cognitive functions. All the main findings were successfully replicated. Our findings thus revealed that high-cereal and low-coffee diets shared similar brain and genetic constructs, leading to long-term beneficial associations regarding cognitive, body mass index (BMI), and other metabolic measures. This study has important implications for public health, especially during the pandemic, given the poorer outcomes of COVID-19 patients with greater BMIs.
Collapse
Affiliation(s)
| | - Tianye Jia
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - Zeyu Jiao
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Barbara J Sahakian
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| | - David Waxman
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Fudan, Shanghai 200433, China
| | - Jianfeng Feng
- Corresponding author: Jianfeng Feng, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China, ; Tianye Jia, Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, China. ; Barbara J. Sahakian, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom.
| |
Collapse
|
102
|
Wu J, Chen Y, Wang P, Caselli RJ, Thompson PM, Wang J, Wang Y. Integrating Transcriptomics, Genomics, and Imaging in Alzheimer's Disease: A Federated Model. FRONTIERS IN RADIOLOGY 2022; 1:777030. [PMID: 37492173 PMCID: PMC10365097 DOI: 10.3389/fradi.2021.777030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/21/2021] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) affects more than 1 in 9 people age 65 and older and becomes an urgent public health concern as the global population ages. In clinical practice, structural magnetic resonance imaging (sMRI) is the most accessible and widely used diagnostic imaging modality. Additionally, genome-wide association studies (GWAS) and transcriptomics-the study of gene expression-also play an important role in understanding AD etiology and progression. Sophisticated imaging genetics systems have been developed to discover genetic factors that consistently affect brain function and structure. However, most studies to date focused on the relationships between brain sMRI and GWAS or brain sMRI and transcriptomics. To our knowledge, few methods have been developed to discover and infer multimodal relationships among sMRI, GWAS, and transcriptomics. To address this, we propose a novel federated model, Genotype-Expression-Imaging Data Integration (GEIDI), to identify genetic and transcriptomic influences on brain sMRI measures. The relationships between brain imaging measures and gene expression are allowed to depend on a person's genotype at the single-nucleotide polymorphism (SNP) level, making the inferences adaptive and personalized. We performed extensive experiments on publicly available Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrated our proposed method outperformed state-of-the-art expression quantitative trait loci (eQTL) methods for detecting genetic and transcriptomic factors related to AD and has stable performance when data are integrated from multiple sites. Our GEIDI approach may offer novel insights into the relationship among image biomarkers, genotypes, and gene expression and help discover novel genetic targets for potential AD drug treatments.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Panwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junwen Wang
- Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
103
|
OUP accepted manuscript. Brain 2022; 145:3214-3224. [DOI: 10.1093/brain/awac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
|
104
|
Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, Agartz I, Brouwer RM, Cannon DM, de Zwarte SMC, Eyler LT, Favre P, Hajek T, Haukvik UK, Houenou J, Landén M, Lett TA, McDonald C, Nabulsi L, Patel Y, Pauling ME, Paus T, Radua J, Soeiro‐de‐Souza MG, Tronchin G, van Haren NEM, Vieta E, Walter H, Zeng L, Alda M, Almeida J, Alnæs D, Alonso‐Lana S, Altimus C, Bauer M, Baune BT, Bearden CE, Bellani M, Benedetti F, Berk M, Bilderbeck AC, Blumberg HP, Bøen E, Bollettini I, del Mar Bonnin C, Brambilla P, Canales‐Rodríguez EJ, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Dima D, Duchesnay É, Elvsåshagen T, Fears SC, Frangou S, Fullerton JM, Glahn DC, Goikolea JM, Green MJ, Grotegerd D, Gruber O, Haarman BCM, Henry C, Howells FM, Ives‐Deliperi V, Jansen A, Kircher TTJ, Knöchel C, Kramer B, Lafer B, López‐Jaramillo C, Machado‐Vieira R, MacIntosh BJ, Melloni EMT, Mitchell PB, Nenadic I, Nery F, Nugent AC, Oertel V, Ophoff RA, Ota M, Overs BJ, Pham DL, Phillips ML, Pineda‐Zapata JA, Poletti S, Polosan M, Pomarol‐Clotet E, Pouchon A, Quidé Y, Rive MM, Roberts G, Ruhe HG, Salvador R, Sarró S, Satterthwaite TD, Schene AH, Sim K, Soares JC, Stäblein M, Stein DJ, Tamnes CK, Thomaidis GV, Upegui CV, Veltman DJ, Wessa M, Westlye LT, Whalley HC, Wolf DH, Wu M, Yatham LN, Zarate CA, Thompson PM, Andreassen OA. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp 2022; 43:56-82. [PMID: 32725849 PMCID: PMC8675426 DOI: 10.1002/hbm.25098] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
Collapse
Affiliation(s)
- Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Abraham Nunes
- Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christoph Abé
- Faculty of Computer ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Center for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rachel M. Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Sonja M. C. de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Lisa T. Eyler
- Department of PsychiatryUniversity of CaliforniaLa JollaCaliforniaUSA
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
| | - Pauline Favre
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
| | - Tomas Hajek
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- National Institute of Mental HealthKlecanyCzech Republic
| | - Unn K. Haukvik
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
| | - Josselin Houenou
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
- Neurospin, CEA Paris‐Saclay, team UNIACTGif‐sur‐YvetteFrance
- APHPMondor University Hospitals, DMU IMPACTCréteilFrance
| | - Mikael Landén
- Department of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Tristram A. Lett
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
- Department of Neurology with Experimental NeurologyCharité Universitätsmedizin BerlinBerlinGermany
| | - Colm McDonald
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Yash Patel
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Melissa E. Pauling
- Desert‐Pacific MIRECCVA San Diego HealthcareSan DiegoCaliforniaUSA
- INSERM U955, team 15 “Translational Neuro‐Psychiatry”CréteilFrance
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Joaquim Radua
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Marcio G. Soeiro‐de‐Souza
- Mood Disorders Unit (GRUDA), Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloSPBrazil
| | - Giulia Tronchin
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje E. M. van Haren
- Department of Child and Adolescent Psychiatry/PsychologyErasmus Medical CenterRotterdamThe Netherlands
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Henrik Walter
- Department for Psychiatry and PsychotherapyCharité Universitätsmedizin BerlinBerlinGermany
| | - Ling‐Li Zeng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina
| | - Martin Alda
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | - Jorge Almeida
- Dell Medical SchoolThe University of Texas at AustinAustinTexasUSA
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Cara Altimus
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Medical FacultyTechnische Universität DresdenDresdenGermany
| | - Bernhard T. Baune
- Department of PsychiatryUniversity of MünsterMünsterGermany
- Department of PsychiatryThe University of MelbourneMelbourneVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Marcella Bellani
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly
| | - Francesco Benedetti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Michael Berk
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- IMPACT Institute – The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVictoriaAustralia
| | - Amy C. Bilderbeck
- The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of MelbourneOrygenMelbourneVictoriaAustralia
- P1vital LtdWallingfordUK
| | | | - Erlend Bøen
- Mood Disorders Research ProgramYale School of MedicineNew HavenConnecticutUSA
| | - Irene Bollettini
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Paolo Brambilla
- Psychosomatic and CL PsychiatryOslo University HospitalOsloNorway
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Erick J. Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
- Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Orwa Dandash
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne and Melbourne HealthMelbourneVictoriaAustralia
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Udo Dannlowski
- Department of PsychiatryUniversity of MünsterMünsterGermany
| | | | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Danai Dima
- Department of Psychology, School of Social Sciences and ArtsCity, University of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT)Oslo University HospitalOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Scott C. Fears
- Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Greater Los Angeles Veterans AdministrationLos AngelesCaliforniaUSA
| | - Sophia Frangou
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janice M. Fullerton
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Barcelona Bipolar Disorders and Depressive Unit, Hospital Clinic, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Melissa J. Green
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Oliver Gruber
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Chantal Henry
- Department of PsychiatryService Hospitalo‐Universitaire, GHU Paris Psychiatrie & NeurosciencesParisFrance
- Université de ParisParisFrance
| | - Fleur M. Howells
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
| | | | - Andreas Jansen
- Core‐Facility Brainimaging, Faculty of MedicineUniversity of MarburgMarburgGermany
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Tilo T. J. Kircher
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Bernd Kramer
- Department of General PsychiatryHeidelberg UniversityHeidelbergGermany
| | - Beny Lafer
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloSPBrazil
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
- Mood Disorders ProgramHospital Universitario Trastorno del ÁnimoMedellínColombia
| | - Rodrigo Machado‐Vieira
- Experimental Therapeutics and Molecular Pathophysiology Program, Department of PsychiatryUTHealth, University of TexasHoustonTexasUSA
| | - Bradley J. MacIntosh
- Hurvitz Brain SciencesSunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Elisa M. T. Melloni
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Philip B. Mitchell
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Igor Nenadic
- Department of Psychiatry and PsychotherapyPhilipps‐University MarburgMarburgGermany
| | - Fabiano Nery
- University of CincinnatiCincinnatiOhioUSA
- Universidade de São PauloSão PauloSPBrazil
| | | | - Viola Oertel
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral GeneticsLos AngelesCaliforniaUSA
- Department of PsychiatryErasmus Medical Center, Erasmus UniversityRotterdamThe Netherlands
| | - Miho Ota
- Department of Mental Disorder ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | | | - Daniel L. Pham
- Milken Institute Center for Strategic PhilanthropyWashingtonDistrict of ColumbiaUSA
| | - Mary L. Phillips
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Sara Poletti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of Neuroscience, Psychiatry and Psychobiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Mircea Polosan
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
- INSERM U1216 ‐ Grenoble Institut des NeurosciencesLa TroncheFrance
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Arnaud Pouchon
- University of Grenoble AlpesCHU Grenoble AlpesGrenobleFrance
| | - Yann Quidé
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Maria M. Rive
- Department of PsychiatryAmsterdam UMC, location AMCAmsterdamThe Netherlands
| | - Gloria Roberts
- School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Henricus G. Ruhe
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- CIBERSAMMadridSpain
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Aart H. Schene
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jair C. Soares
- Center of Excellent on Mood DisordersUTHealth HoustonHoustonTexasUSA
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Michael Stäblein
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyGoethe University FrankfurtFrankfurtGermany
| | - Dan J. Stein
- Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
- SAMRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Georgios V. Thomaidis
- Papanikolaou General HospitalThessalonikiGreece
- Laboratory of Mechanics and MaterialsSchool of Engineering, Aristotle UniversityThessalonikiGreece
| | - Cristian Vargas Upegui
- Research Group in Psychiatry GIPSI, Department of PsychiatryFaculty of Medicine, Universidad de AntioquiaMedellínColombia
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMCAmsterdamThe Netherlands
| | - Michèle Wessa
- Department of Neuropsychology and Clinical PsychologyJohannes Gutenberg‐University MainzMainzGermany
| | - Lars T. Westlye
- Department of PsychologyUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and AddictionOslo University HospitalOsloNorway
| | | | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mon‐Ju Wu
- Department of Psychiatry and Behavioral SciencesUTHealth HoustonHoustonTexasUSA
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Carlos A. Zarate
- Chief Experimental Therapeutics & Pathophysiology BranchBethesdaMarylandUSA
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of OsloOsloNorway
- Division of Mental Health and Addicition, Oslo University HospitalOsloNorway
| | | |
Collapse
|
105
|
Paschou P, Jin Y, Müller-Vahl K, Möller HE, Rizzo R, Hoekstra PJ, Roessner V, Mol Debes N, Worbe Y, Hartmann A, Mir P, Cath D, Neuner I, Eichele H, Zhang C, Lewandowska K, Munchau A, Verrel J, Musil R, Silk TJ, Hanlon CA, Bihun ED, Brandt V, Dietrich A, Forde N, Ganos C, Greene DJ, Chu C, Grothe MJ, Hershey T, Janik P, Koller JM, Martin-Rodriguez JF, Müller K, Palmucci S, Prato A, Ramkiran S, Saia F, Szejko N, Torrecuso R, Tumer Z, Uhlmann A, Veselinovic T, Wolańczyk T, Zouki JJ, Jain P, Topaloudi A, Kaka M, Yang Z, Drineas P, Thomopoulos SI, White T, Veltman DJ, Schmaal L, Stein DJ, Buitelaar J, Franke B, van den Heuvel O, Jahanshad N, Thompson PM, Black KJ. Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration. Front Psychiatry 2022; 13:958688. [PMID: 36072455 PMCID: PMC9443935 DOI: 10.3389/fpsyt.2022.958688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.
Collapse
Affiliation(s)
- Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Yin Jin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Hannover University Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renata Rizzo
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Pieter J Hoekstra
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Nanette Mol Debes
- Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Yulia Worbe
- Department of Neurophysiology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Danielle Cath
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Heike Eichele
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Chencheng Zhang
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | | | - Alexander Munchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Julius Verrel
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Tim J Silk
- Deakin University, Geelong, VIC, Australia
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily D Bihun
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Andrea Dietrich
- University Medical Center Groningen, Department of Psychiatry, University of Groningen, Groningen, Netherlands
| | - Natalie Forde
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christos Ganos
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, United States
| | - Chunguang Chu
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Piotr Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| | - Juan Francisco Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Karsten Müller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefano Palmucci
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Adriana Prato
- Child and Adolescent Neurology and Psychiatric Section, Department of Clinical and Experimental Medicine, Catania University, Catania, Italy
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich GmbH, Jülich, Germany.,JARA BRAIN-Translational Medicine, Aachen, Germany
| | - Federica Saia
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zeynep Tumer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Anne Uhlmann
- Department of Child and Adolescent Psychiatry, Technische Universität (TU) Dresden, Dresden, Germany
| | - Tanja Veselinovic
- Department of Psychiatry, Psychotherapy and Psychosomatic, RWTH Aachen University, Aachen, Germany
| | - Tomasz Wolańczyk
- Department of Child Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Pritesh Jain
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Apostolia Topaloudi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mary Kaka
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zhiyu Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Petros Drineas
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sophia I Thomopoulos
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dan J Stein
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jan Buitelaar
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Barbara Franke
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Odile van den Heuvel
- Department Psychiatry, Department Anatomy and Neuroscience, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Neda Jahanshad
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M Thompson
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
106
|
Sønderby IE, Ching CRK, Thomopoulos SI, van der Meer D, Sun D, Villalon‐Reina JE, Agartz I, Amunts K, Arango C, Armstrong NJ, Ayesa‐Arriola R, Bakker G, Bassett AS, Boomsma DI, Bülow R, Butcher NJ, Calhoun VD, Caspers S, Chow EWC, Cichon S, Ciufolini S, Craig MC, Crespo‐Facorro B, Cunningham AC, Dale AM, Dazzan P, de Zubicaray GI, Djurovic S, Doherty JL, Donohoe G, Draganski B, Durdle CA, Ehrlich S, Emanuel BS, Espeseth T, Fisher SE, Ge T, Glahn DC, Grabe HJ, Gur RE, Gutman BA, Haavik J, Håberg AK, Hansen LA, Hashimoto R, Hibar DP, Holmes AJ, Hottenga J, Hulshoff Pol HE, Jalbrzikowski M, Knowles EEM, Kushan L, Linden DEJ, Liu J, Lundervold AJ, Martin‐Brevet S, Martínez K, Mather KA, Mathias SR, McDonald‐McGinn DM, McRae AF, Medland SE, Moberget T, Modenato C, Monereo Sánchez J, Moreau CA, Mühleisen TW, Paus T, Pausova Z, Prieto C, Ragothaman A, Reinbold CS, Reis Marques T, Repetto GM, Reymond A, Roalf DR, Rodriguez‐Herreros B, Rucker JJ, Sachdev PS, Schmitt JE, Schofield PR, Silva AI, Stefansson H, Stein DJ, Tamnes CK, Tordesillas‐Gutiérrez D, Ulfarsson MO, Vajdi A, van 't Ent D, van den Bree MBM, Vassos E, Vázquez‐Bourgon J, Vila‐Rodriguez F, Walters GB, Wen W, Westlye LT, Wittfeld K, Zackai EH, Stefánsson K, Jacquemont S, Thompson PM, Bearden CE, Andreassen OA. Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp 2022; 43:300-328. [PMID: 33615640 PMCID: PMC8675420 DOI: 10.1002/hbm.25354] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Collapse
Affiliation(s)
- Ida E. Sønderby
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | - Christopher R. K. Ching
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Mental HealthVeterans Affairs Greater Los Angeles Healthcare System, Los AngelesCaliforniaUSA
| | - Julio E. Villalon‐Reina
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Ingrid Agartz
- NORMENT, Institute of Clinical PsychiatryUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Rosa Ayesa‐Arriola
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
| | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineVU University Medical CenterAmsterdamThe Netherlands
| | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Public Health (APH) Research InstituteAmsterdam UMCAmsterdamThe Netherlands
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute for Anatomy IMedical Faculty & University Hospital Düsseldorf, University of DüsseldorfDüsseldorfGermany
| | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Simone Ciufolini
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental SciencesThe Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's CollegeLondonUnited Kingdom
| | | | - Adam C. Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Anders M. Dale
- Center for Multimodal Imaging and GeneticsUniversity of California San DiegoLa JollaCaliforniaUSA
- Department RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Paola Dazzan
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Greig I. de Zubicaray
- Faculty of HealthQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Srdjan Djurovic
- Department of Medical GeneticsOslo University HospitalOsloNorway
- NORMENT, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Gary Donohoe
- Center for Neuroimaging, Genetics and GenomicsSchool of Psychology, NUI GalwayGalwayIreland
| | - Bogdan Draganski
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- Neurology DepartmentMax‐Planck Institute for Human Brain and Cognitive SciencesLeipzigGermany
| | - Courtney A. Durdle
- MIND Institute and Department of Psychiatry and Behavioral SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU DresdenDresdenGermany
| | - Beverly S. Emanuel
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas Espeseth
- Department of PsychologyUniversity of OsloOsloNorway
- Department of PsychologyBjørknes CollegeOsloNorway
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics UnitCenter for Genomic Medicine, Massachusetts General HospitalBostonMassachusettsUSA
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David C. Glahn
- Tommy Fuss Center for Neuropsychiatric Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Hans J. Grabe
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Youth Suicide Prevention, Intervention and Research CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Boris A. Gutman
- Medical Imaging Research Center, Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jan Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - Asta K. Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
- Department of Radiology and Nuclear MedicineSt. Olavs HospitalTrondheimNorway
| | - Laura A. Hansen
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ryota Hashimoto
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
- Department of PsychiatryOsaka University Graduate School of MedicineOsakaJapan
| | - Derrek P. Hibar
- Personalized Healthcare AnalyticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Avram J. Holmes
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Jouke‐Jan Hottenga
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Emma E. M. Knowles
- Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - David E. J. Linden
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
| | - Jingyu Liu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia Tech, EmoryAtlantaGeorgiaUSA
- Computer ScienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Astri J. Lundervold
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - Sandra Martin‐Brevet
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
| | - Kenia Martínez
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IsSGM, Universidad Complutense, School of MedicineMadridSpain
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain
| | - Karen A. Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
| | - Samuel R. Mathias
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBoston Children's HospitalBostonMassachusettsUSA
| | - Donna M. McDonald‐McGinn
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Division of Human Genetics and 22q and You CenterChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Allan F. McRae
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Torgeir Moberget
- Department of Psychology, Faculty of Social SciencesUniversity of OsloOsloNorway
| | - Claudia Modenato
- LREN, Centre for Research in Neuroscience, Department of NeuroscienceUniversity Hospital Lausanne and University LausanneLausanneSwitzerland
- University of LausanneLausanneSwitzerland
| | - Jennifer Monereo Sánchez
- School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Clara A. Moreau
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
| | - Thomas W. Mühleisen
- Institute of Neuroscience and Medicine (INM‐1)Research Centre JülichJülichGermany
- Cecile and Oskar Vogt Institute for Brain Research, Medical FacultyUniversity Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Tomas Paus
- Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Departments of Psychology and PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Zdenka Pausova
- Translational Medicine, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Carlos Prieto
- Bioinformatics Service, NucleusUniversity of SalamancaSalamancaSpain
| | | | - Céline S. Reinbold
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Centre for Lifespan Changes in Brain and Cognition, Department of PsychologyUniversity of OsloOsloNorway
| | - Tiago Reis Marques
- Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith HospitalImperial College LondonLondonUnited Kingdom
| | - Gabriela M. Repetto
- Center for Genetics and GenomicsFacultad de Medicina, Clinica Alemana Universidad del DesarrolloSantiagoChile
| | - Alexandre Reymond
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - James J. Rucker
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalSydneyNew South WalesAustralia
| | - James E. Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Ana I. Silva
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUnited Kingdom
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | | | - Dan J. Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| | - Diana Tordesillas‐Gutiérrez
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Neuroimaging Unit, Technological FacilitiesValdecilla Biomedical Research Institute (IDIVAL), SantanderSpain
| | - Magnus O. Ulfarsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of Electrical and Computer EngineeringUniversity of Iceland, ReykjavikIceland
| | - Ariana Vajdi
- Semel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Dennis van 't Ent
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Marianne B. M. van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUnited Kingdom
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Javier Vázquez‐Bourgon
- Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryMarqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL)SantanderSpain
- School of MedicineUniversity of CantabriaSantanderSpain
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - G. Bragi Walters
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lars T. Westlye
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- NORMENT, Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
| | - Elaine H. Zackai
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kári Stefánsson
- Population Genomics, deCODE genetics/AmgenReykjavikIceland
- Faculty of MedicineUniversity of IcelandReykjavikIceland
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research CenterUniversity of Montreal, MontrealQCCanada
- Department of PediatricsUniversity of Montreal, MontrealQCCanada
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and PsychologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Center for Neurobehavioral GeneticsUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital and University of OsloOsloNorway
| |
Collapse
|
107
|
Zhu Y, Wang MJ, Crawford KM, Ramírez-Tapia JC, Lussier AA, Davis KA, de Leeuw C, Takesian AE, Hensch TK, Smoller JW, Dunn EC. Sensitive period-regulating genetic pathways and exposure to adversity shape risk for depression. Neuropsychopharmacology 2022; 47:497-506. [PMID: 34689167 PMCID: PMC8674315 DOI: 10.1038/s41386-021-01172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Animal and human studies have documented the existence of developmental windows (or sensitive periods) when experience can have lasting effects on brain structure or function, behavior, and disease. Although sensitive periods for depression likely arise through a complex interplay of genes and experience, this possibility has not yet been explored in humans. We examined the effect of genetic pathways regulating sensitive periods, alone and in interaction with common childhood adversities, on depression risk. Guided by a translational approach, we: (1) performed association analyses of three gene sets (60 genes) shown in animal studies to regulate sensitive periods using summary data from a genome-wide association study of depression (n = 807,553); (2) evaluated the developmental expression patterns of these genes using data from BrainSpan (n = 31), a transcriptional atlas of postmortem brain samples; and (3) tested gene-by-development interplay (dGxE) by analyzing the combined effect of common variants in sensitive period genes and time-varying exposure to two types of childhood adversity within a population-based birth cohort (n = 6254). The gene set regulating sensitive period opening associated with increased depression risk. Notably, 6 of the 15 genes in this set showed developmentally regulated gene-level expression. We also identified a statistical interaction between caregiver physical or emotional abuse during ages 1-5 years and genetic risk for depression conferred by the opening genes. Genes involved in regulating sensitive periods are differentially expressed across the life course and may be implicated in depression vulnerability. Our findings about gene-by-development interplay motivate further research in large, more diverse samples to further unravel the complexity of depression etiology through a sensitive period lens.
Collapse
Affiliation(s)
- Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Min-Jung Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Alexandre A Lussier
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kathryn A Davis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christiaan de Leeuw
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan W Smoller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Center on the Developing Child, Cambridge, MA, USA.
| |
Collapse
|
108
|
van den Heuvel OA, Boedhoe PS, Bertolin S, Bruin WB, Francks C, Ivanov I, Jahanshad N, Kong X, Kwon JS, O'Neill J, Paus T, Patel Y, Piras F, Schmaal L, Soriano‐Mas C, Spalletta G, van Wingen GA, Yun J, Vriend C, Simpson HB, van Rooij D, Hoexter MQ, Hoogman M, Buitelaar JK, Arnold P, Beucke JC, Benedetti F, Bollettini I, Bose A, Brennan BP, De Nadai AS, Fitzgerald K, Gruner P, Grünblatt E, Hirano Y, Huyser C, James A, Koch K, Kvale G, Lazaro L, Lochner C, Marsh R, Mataix‐Cols D, Morgado P, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi E, Pittenger C, Reddy YJ, Sato JR, Soreni N, Stewart SE, Taylor SF, Tolin D, Thomopoulos SI, Veltman DJ, Venkatasubramanian G, Walitza S, Wang Z, Thompson PM, Stein DJ. An overview of the first 5 years of the ENIGMA obsessive-compulsive disorder working group: The power of worldwide collaboration. Hum Brain Mapp 2022; 43:23-36. [PMID: 32154629 PMCID: PMC8675414 DOI: 10.1002/hbm.24972] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 01/12/2023] Open
Abstract
Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.
Collapse
Affiliation(s)
- Odile A. van den Heuvel
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Bergen Center for Brain PlasticityHaukeland University HospitalBergenNorway
| | - Premika S.W. Boedhoe
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sara Bertolin
- Department of PsychiatryBellvitge University Hospital, Bellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
| | - Willem B. Bruin
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Clyde Francks
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Neda Jahanshad
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Xiang‐Zhen Kong
- Department of Language & GeneticsMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Jun Soo Kwon
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
- Department of Brain & Cognitive SciencesSeoul National University College of Natural SciencesSeoulSouth Korea
| | - Joseph O'Neill
- Division of Child & Adolescent PsychiatryUCLA Jane & Terry Semel Institute For NeuroscienceLos AngelesCalifornia
| | - Tomas Paus
- Holland Bloorview Kids Rehabilitation HospitalBloorview Research InstituteTorontoOntarioCanada
| | - Yash Patel
- Holland Bloorview Kids Rehabilitation HospitalBloorview Research InstituteTorontoOntarioCanada
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
- Centre for Youth Mental Health, The University of MelbourneMelbourneAustralia
| | - Carles Soriano‐Mas
- Department of PsychiatryBellvitge University Hospital, Bellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)BarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexsas
| | - Guido A. van Wingen
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Je‐Yeon Yun
- Seoul National University HospitalSeoulRepublic of Korea
- Yeongeon Student Support Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Chris Vriend
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - H. Blair Simpson
- Center for OC and Related Disorders at the New York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNew York
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Marcelo Q. Hoexter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Paul Arnold
- Mathison Centre for Mental Health Research & Education and Department of PsychiatryCumming School of Medicine, University of CalgaryCalgaryAlbertaCanada
| | - Jan C. Beucke
- Humboldt‐Universität zu BerlinDepartment of PsychologyBerlinGermany
- Karolinska InstitutetDepartment of Clinical NeuroscienceStockholmSweden
| | - Francesco Benedetti
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Irene Bollettini
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Anushree Bose
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | | | | | - Kate Fitzgerald
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | | | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry, University of ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Yoshiyuki Hirano
- Research Center for Child Mental DevelopmentChiba UniversityChibaJapan
| | - Chaim Huyser
- De Bascule, academic center child and adolescent psychiatryAmsterdamThe Netherlands
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Kathrin Koch
- Department of Neuroradiology, School of MedicineKlinikum Rechts der Isar, Technical University of MunichMunichGermany
| | - Gerd Kvale
- Bergen Center for Brain PlasticityHaukeland University HospitalBergenNorway
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, IDIBAPS, CIBERSAM, Department of MedicineFaculty of BarcelonaBarcelonaSpain
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityMatielandSouth Africa
| | - Rachel Marsh
- Center for OC and Related Disorders at the New York State Psychiatric Institute and Columbia University Irving Medical CenterNew YorkNew York
| | - David Mataix‐Cols
- Department of Psychiatry and Clinical PsychobiologyScientific Institute OspedaleMilanItaly
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of MinhoBragaPortugal
- ICVS/3B's, PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Clinical Academic Center–BragaBragaPortugal
| | - Takashi Nakamae
- Department of PsychiatryGraduate School of Medical Science, Kyoto Prefectural University of MedicineKyotoJapan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical SciencesKyushu UniversityKyushuJapan
| | - Janardhanan C. Narayanaswamy
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Erika Nurmi
- Department of Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos AngelesCalifornia
| | | | | | - João R. Sato
- Center of Mathematics, Computing and CognitionUniversidade Federal do ABCSanto AndréBrazil
| | - Noam Soreni
- Pediatric OCD Consultation Service, Anxiety Treatment and Research CenterMcMaster UniversityHamiltonOntarioCanada
| | - S. Evelyn Stewart
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Mental Health and Addictions Research InstituteVancouverBritish ColumbiaCanada
- BC Children's HospitalVancouverBritish ColumbiaCanada
| | - Stephan F. Taylor
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - David Tolin
- Anxiety Disorders Center, The Institute of LivingHartfordConnecticut
| | - Sophia I. Thomopoulos
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Dick J. Veltman
- Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ganesan Venkatasubramanian
- Obsessive‐Compulsive Disorder (OCD) Clinic Department of PsychiatryNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Susanne Walitza
- Department of PsychiatryUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong UniversityShanghaiChina
| | - Paul M. Thompson
- Keck USC School of MedicineImaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & InformaticsMarina del ReyCalifornia
| | - Dan J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
109
|
Matoba N, Love MI, Stein JL. Evaluating brain structure traits as endophenotypes using polygenicity and discoverability. Hum Brain Mapp 2022; 43:329-340. [PMID: 33098356 PMCID: PMC8675430 DOI: 10.1002/hbm.25257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022] Open
Abstract
Human brain structure traits have been hypothesized to be broad endophenotypes for neuropsychiatric disorders, implying that brain structure traits are comparatively "closer to the underlying biology." Genome-wide association studies from large sample sizes allow for the comparison of common variant genetic architectures between traits to test the evidence supporting this claim. Endophenotypes, compared to neuropsychiatric disorders, are hypothesized to have less polygenicity, with greater effect size of each susceptible SNP, requiring smaller sample sizes to discover them. Here, we compare polygenicity and discoverability of brain structure traits, neuropsychiatric disorders, and other traits (91 in total) to directly test this hypothesis. We found reduced polygenicity (FDR = 0.01) and increased discoverability (FDR = 3.68 × 10-9 ) of cortical brain structure traits, as compared to aggregated estimates of multiple neuropsychiatric disorders. We predict that ~8 M individuals will be required to explain the full heritability of cortical surface area by genome-wide significant SNPs, whereas sample sizes over 20 M will be required to explain the full heritability of depression. In conclusion, our findings are consistent with brain structure satisfying the higher power criterion of endophenotypes.
Collapse
Affiliation(s)
- Nana Matoba
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Michael I. Love
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of BiostatisticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jason L. Stein
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- UNC Neuroscience CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
110
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
111
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Zugman A, Harrewijn A, Cardinale EM, Zwiebel H, Freitag GF, Werwath KE, Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Hilbert K, Cardoner N, Porta‐Casteràs D, Gosnell S, Salas R, Blair KS, Blair JR, Hammoud MZ, Milad M, Burkhouse K, Phan KL, Schroeder HK, Strawn JR, Beesdo‐Baum K, Thomopoulos SI, Grabe HJ, Van der Auwera S, Wittfeld K, Nielsen JA, Buckner R, Smoller JW, Mwangi B, Soares JC, Wu M, Zunta‐Soares GB, Jackowski AP, Pan PM, Salum GA, Assaf M, Diefenbach GJ, Brambilla P, Maggioni E, Hofmann D, Straube T, Andreescu C, Berta R, Tamburo E, Price R, Manfro GG, Critchley HD, Makovac E, Mancini M, Meeten F, Ottaviani C, Agosta F, Canu E, Cividini C, Filippi M, Kostić M, Munjiza A, Filippi CA, Leibenluft E, Alberton BAV, Balderston NL, Ernst M, Grillon C, Mujica‐Parodi LR, van Nieuwenhuizen H, Fonzo GA, Paulus MP, Stein MB, Gur RE, Gur RC, Kaczkurkin AN, Larsen B, Satterthwaite TD, Harper J, Myers M, Perino MT, Yu Q, Sylvester CM, Veltman DJ, Lueken U, Van der Wee NJA, Stein DJ, Jahanshad N, Thompson PM, Pine DS, Winkler AM. Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group. Hum Brain Mapp 2022; 43:255-277. [PMID: 32596977 PMCID: PMC8675407 DOI: 10.1002/hbm.25096] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.
Collapse
Affiliation(s)
- André Zugman
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anita Harrewijn
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Elise M. Cardinale
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Hannah Zwiebel
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Gabrielle F. Freitag
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Katy E. Werwath
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Janna M. Bas‐Hoogendam
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
- Leiden University, Institute of Psychology, Developmental and Educational PsychologyLeidenThe Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Moji Aghajani
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
- GGZ InGeestDepartment of Research & InnovationAmsterdamThe Netherlands
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Narcis Cardoner
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Daniel Porta‐Casteràs
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Savannah Gosnell
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Karina S. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - James R. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Mira Z. Hammoud
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Mohammed Milad
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Katie Burkhouse
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral HealthThe Ohio State UniversityColumbusOhioUSA
| | - Heidi K. Schroeder
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Jeffrey R. Strawn
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Katja Beesdo‐Baum
- Behavioral EpidemiologyInstitute of Clinical Psychology and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Sandra Van der Auwera
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Jared A. Nielsen
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Randy Buckner
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Jordan W. Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Benson Mwangi
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Jair C. Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mon‐Ju Wu
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Giovana B. Zunta‐Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Andrea P. Jackowski
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Pedro M. Pan
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Giovanni A. Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Michal Assaf
- Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Department of PsychiatryYale School of MedicineNew HavenConnecticutUSA
| | - Gretchen J. Diefenbach
- Anxiety Disorders CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Yale School of MedicineNew HavenConnecticutUSA
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eleonora Maggioni
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Carmen Andreescu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Berta
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erica Tamburo
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca Price
- Department of Psychiatry & PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gisele G. Manfro
- Anxiety Disorder ProgramHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Department of PsychiatryFederal University of Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Hugo D. Critchley
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | - Elena Makovac
- Centre for Neuroimaging ScienceKings College LondonLondonUK
| | - Matteo Mancini
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | | | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Camilla Cividini
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Neurology and Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Milutin Kostić
- Institute of Mental Health, University of BelgradeBelgradeSerbia
- Department of Psychiatry, School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Ana Munjiza
- Institute of Mental Health, University of BelgradeBelgradeSerbia
| | - Courtney A. Filippi
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Ellen Leibenluft
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Bianca A. V. Alberton
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do ParanáCuritibaPuerto RicoBrazil
| | - Nicholas L. Balderston
- Center for Neuromodulation in Depression and StressUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Monique Ernst
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Christian Grillon
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | | | - Gregory A. Fonzo
- Department of PsychiatryThe University of Texas at Austin Dell Medical SchoolAustinTexasUSA
| | | | - Murray B. Stein
- Department of Psychiatry & Family Medicine and Public HealthUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Bart Larsen
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jennifer Harper
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | - Michael Myers
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Qiongru Yu
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Dick J. Veltman
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Nic J. A. Van der Wee
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SAMRC Unite on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Daniel S. Pine
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anderson M. Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
113
|
Nawaz MS, Einarsson G, Bustamante M, Gisladottir RS, Walters GB, Jonsdottir GA, Skuladottir AT, Bjornsdottir G, Magnusson SH, Asbjornsdottir B, Unnsteinsdottir U, Sigurdsson E, Jonsson PV, Palmadottir VK, Gudjonsson SA, Halldorsson GH, Ferkingstad E, Jonsdottir I, Thorleifsson G, Holm H, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Stefansson H, Thorgeirsson TE, Ulfarsson MO, Stefansson K. Thirty novel sequence variants impacting human intracranial volume. Brain Commun 2022; 4:fcac271. [PMID: 36415660 PMCID: PMC9677475 DOI: 10.1093/braincomms/fcac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial volume, measured through magnetic resonance imaging and/or estimated from head circumference, is heritable and correlates with cognitive traits and several neurological disorders. We performed a genome-wide association study meta-analysis of intracranial volume (n = 79 174) and found 64 associating sequence variants explaining 5.0% of its variance. We used coding variation, transcript and protein levels, to uncover 12 genes likely mediating the effect of these variants, including GLI3 and CDK6 that affect cranial synostosis and microcephaly, respectively. Intracranial volume correlates genetically with volumes of cortical and sub-cortical regions, cognition, learning, neonatal and neurological traits. Parkinson's disease cases have greater and attention deficit hyperactivity disorder cases smaller intracranial volume than controls. Our Mendelian randomization studies indicate that intracranial volume associated variants either increase the risk of Parkinson's disease and decrease the risk of attention deficit hyperactivity disorder and neuroticism or correlate closely with a confounder.
Collapse
Affiliation(s)
- Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Humanities, University of Iceland, Saemundargata 2, 102 Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Engilbert Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Psychiatry, Landspitali-National University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Palmi V Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Geriatric Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Vala Kolbrun Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Egil Ferkingstad
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
114
|
Farrell SF, Campos AI, Kho PF, de Zoete RMJ, Sterling M, Rentería ME, Ngo TT, Cuéllar-Partida G. Genetic basis to structural grey matter associations with chronic pain. Brain 2021; 144:3611-3622. [PMID: 34907416 DOI: 10.1093/brain/awab334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
Structural neuroimaging studies of individuals with chronic pain conditions have often observed decreased regional grey matter at a phenotypic level. However, it is not known if this association can be attributed to genetic factors. Here we employed a novel integrative data-driven and hypothesis-testing approach to determine whether there is a genetic basis to grey matter morphology differences in chronic pain. Using publicly available genome-wide association study summary statistics for regional chronic pain conditions (n = 196 963) and structural neuroimaging measures (n = 19 629-34 000), we applied bivariate linkage disequilibrium-score regression and latent causal variable analyses to determine the genetic correlations (rG) and genetic causal proportion (GCP) between these complex traits, respectively. Five a priori brain regions (i.e. prefrontal cortex, cingulate cortex, insula, thalamus and superior temporal gyrus) were selected based on systematic reviews of grey matter morphology studies in chronic pain. Across this evidence-based selection of five brain regions, 10 significant negative genetic correlations (out of 369) were found (false discovery rate < 5%), suggesting a shared genetic basis to both reduced regional grey matter morphology and the presence of chronic pain. Specifically, negative genetic correlations were observed between reduced insula grey matter morphology and chronic pain in the abdomen (mean insula cortical thickness), hips (left insula volume) and neck/shoulders (left and right insula volume). Similarly, a shared genetic basis was found for reduced posterior cingulate cortex volume in chronic pain of the hip (left and right posterior cingulate), neck/shoulder (left posterior cingulate) and chronic pain at any site (left posterior cingulate); and for reduced pars triangularis volume in chronic neck/shoulder (left pars triangularis) and widespread pain (right pars triangularis). Across these negative genetic correlations, a significant genetic causal proportion was only found between mean insula thickness and chronic abdominal pain [rG (standard error, SE) = -0.25 (0.08), P = 1.06 × 10-3; GCP (SE) = -0.69 (0.20), P = 4.96 × 10-4]. This finding suggests that the genes underlying reduced cortical thickness of the insula causally contribute to an increased risk of chronic abdominal pain. Altogether, these results provide independent corroborating evidence for observational reports of decreased grey matter of particular brain regions in chronic pain. Further, we show for the first time that this association is mediated (in part) by genetic factors. These novel findings warrant further investigation into the neurogenetic pathways that underlie the development and prolongation of chronic pain conditions.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Herston, QLD, Australia.,NHMRC Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Herston, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Adrián I Campos
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Genetic Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Pik-Fang Kho
- Molecular Cancer Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rutger M J de Zoete
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Herston, QLD, Australia.,NHMRC Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Herston, QLD, Australia
| | - Miguel E Rentería
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Genetic Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Trung Thanh Ngo
- Diamantina Institute, The University of Queensland and Translational Research Institute, Woolloongabba, QLD, Australia
| | - Gabriel Cuéllar-Partida
- Diamantina Institute, The University of Queensland and Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
115
|
Hosten N, Bülow R, Völzke H, Domin M, Schmidt CO, Teumer A, Ittermann T, Nauck M, Felix S, Dörr M, Markus MRP, Völker U, Daboul A, Schwahn C, Holtfreter B, Mundt T, Krey KF, Kindler S, Mksoud M, Samietz S, Biffar R, Hoffmann W, Kocher T, Chenot JF, Stahl A, Tost F, Friedrich N, Zylla S, Hannemann A, Lotze M, Kühn JP, Hegenscheid K, Rosenberg C, Wassilew G, Frenzel S, Wittfeld K, Grabe HJ, Kromrey ML. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare (Basel) 2021; 10:33. [PMID: 35052197 PMCID: PMC8775435 DOI: 10.3390/healthcare10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Study of Health in Pomerania (SHIP), a population-based study from a rural state in northeastern Germany with a relatively poor life expectancy, supplemented its comprehensive examination program in 2008 with whole-body MR imaging at 1.5 T (SHIP-MR). We reviewed more than 100 publications that used the SHIP-MR data and analyzed which sequences already produced fruitful scientific outputs and which manuscripts have been referenced frequently. Upon reviewing the publications about imaging sequences, those that used T1-weighted structured imaging of the brain and a gradient-echo sequence for R2* mapping obtained the highest scientific output; regarding specific body parts examined, most scientific publications focused on MR sequences involving the brain and the (upper) abdomen. We conclude that population-based MR imaging in cohort studies should define more precise goals when allocating imaging time. In addition, quality control measures might include recording the number and impact of published work, preferably on a bi-annual basis and starting 2 years after initiation of the study. Structured teaching courses may enhance the desired output in areas that appear underrepresented.
Collapse
Affiliation(s)
- Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Amro Daboul
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Christian Schwahn
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Torsten Mundt
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Karl-Friedrich Krey
- Department of Orthodontics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Kindler
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Maria Mksoud
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Stefanie Samietz
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Jean-Francois Chenot
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Andreas Stahl
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Frank Tost
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anke Hannemann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional Radiology, Medical University, Carl-Gustav Carus, 01307 Dresden, Germany;
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Christian Rosenberg
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Georgi Wassilew
- Clinic of Orthopedics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
- Correspondence:
| |
Collapse
|
116
|
Zheng Y, Garrett ME, Sun D, Clarke-Rubright EK, Haswell CC, Maihofer AX, Elman JA, Franz CE, Lyons MJ, Kremen WS, Peverill M, Sambrook K, McLaughlin KA, Davenport ND, Disner S, Sponheim SR, Andrew E, Korgaonkar M, Bryant R, Varkevisser T, Geuze E, Coleman J, Beckham JC, Kimbrel NA, Sullivan D, Miller M, Hayes J, Verfaellie M, Wolf E, Salat D, Spielberg JM, Milberg W, McGlinchey R, Dennis EL, Thompson PM, Medland S, Jahanshad N, Nievergelt CM, Ashley-Koch AE, Logue MW, Morey RA. Trauma and posttraumatic stress disorder modulate polygenic predictors of hippocampal and amygdala volume. Transl Psychiatry 2021; 11:637. [PMID: 34916497 PMCID: PMC8677780 DOI: 10.1038/s41398-021-01707-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The volume of subcortical structures represents a reliable, quantitative, and objective phenotype that captures genetic effects, environmental effects such as trauma, and disease effects such as posttraumatic stress disorder (PTSD). Trauma and PTSD represent potent exposures that may interact with genetic markers to influence brain structure and function. Genetic variants, associated with subcortical volumes in two large normative discovery samples, were used to compute polygenic scores (PGS) for the volume of seven subcortical structures. These were applied to a target sample enriched for childhood trauma and PTSD. Subcortical volume PGS from the discovery sample were strongly associated in our trauma/PTSD enriched sample (n = 7580) with respective subcortical volumes of the hippocampus (p = 1.10 × 10-20), thalamus (p = 7.46 × 10-10), caudate (p = 1.97 × 10-18), putamen (p = 1.7 × 10-12), and nucleus accumbens (p = 1.99 × 10-7). We found a significant association between the hippocampal volume PGS and hippocampal volume in control subjects from our sample, but was absent in individuals with PTSD (GxE; (beta = -0.10, p = 0.027)). This significant GxE (PGS × PTSD) relationship persisted (p < 1 × 10-19) in four out of five threshold peaks (0.024, 0.133, 0.487, 0.730, and 0.889) used to calculate hippocampal volume PGSs. We detected similar GxE (G × ChildTrauma) relationships in the amygdala for exposure to childhood trauma (rs4702973; p = 2.16 × 10-7) or PTSD (rs10861272; p = 1.78 × 10-6) in the CHST11 gene. The hippocampus and amygdala are pivotal brain structures in mediating PTSD symptomatology. Trauma exposure and PTSD modulate the effect of polygenic markers on hippocampal volume (GxE) and the amygdala volume PGS is associated with PTSD risk, which supports the role of amygdala volume as a risk factor for PTSD.
Collapse
Affiliation(s)
- Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Melanie E Garrett
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Delin Sun
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Emily K Clarke-Rubright
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Courtney C Haswell
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Adam X Maihofer
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jeremy A Elman
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - William S Kremen
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Kelly Sambrook
- Department of Psychology, Harvard University, Boston, MA, USA
| | | | - Nicholas D Davenport
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Seth Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | - Mayuresh Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Richard Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Tim Varkevisser
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Elbert Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Jonathan Coleman
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
- King's College London, NIHR Maudsley BRC, London, UK
| | - Jean C Beckham
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Nathan A Kimbrel
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Danielle Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mark Miller
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Jasmeet Hayes
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mieke Verfaellie
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Erika Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Salat
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jeffrey M Spielberg
- VA Boston Healthcare System, Jamaica Plain, MA, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare System, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Departments of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Rajendra A Morey
- VISN 6 MIRECC, Durham VA Health Care System, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
117
|
Integrated Genomic, Transcriptomic and Proteomic Analysis for Identifying Markers of Alzheimer's Disease. Diagnostics (Basel) 2021; 11:diagnostics11122303. [PMID: 34943540 PMCID: PMC8700271 DOI: 10.3390/diagnostics11122303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
There is an urgent need to identify biomarkers for Alzheimer’s disease (AD), but the identification of reliable blood-based biomarkers has proven to be much more difficult than initially expected. The current availability of high-throughput multi-omics data opens new possibilities in this titanic task. Candidate Single Nucleotide Polymorphisms (SNPs) from large, genome-wide association studies (GWAS), meta-analyses exploring AD (case-control design), and quantitative measures for cortical structure and general cognitive performance were selected. The Genotype-Tissue Expression (GTEx) database was used for identifying expression quantitative trait loci (eQTls) among candidate SNPs. Genes significantly regulated by candidate SNPs were investigated for differential expression in AD cases versus controls in the brain and plasma, both at the mRNA and protein level. This approach allowed us to identify candidate susceptibility factors and biomarkers of AD, facing experimental validation with more evidence than with genetics alone.
Collapse
|
118
|
Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, Seidlitz J, Bullmore ET. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol Psychiatry 2021; 26:7709-7718. [PMID: 34462574 PMCID: PMC8872982 DOI: 10.1038/s41380-021-01260-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Recent discovery of approximately 270 common genetic variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. We hypothesized that normal variation in PRS would be associated with magnetic resonance imaging (MRI) phenotypes of brain morphometry and tissue composition. We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macrostructural MRI metrics measured at each of 180 cortical areas, seven subcortical structures, and 15 major white matter tracts. Linear mixed-effect models were used to investigate associations between PRS and brain structure at global and regional scales, controlled for multiple comparisons. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, five subcortical structures, and 14 white matter tracts. Other microstructural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate, and prefrontal cortical areas, insula, and hippocampus. Post-hoc bidirectional Mendelian randomization analyses provided preliminary evidence in support of a causal relationship between (reduced) thalamic NDI and (increased) risk of schizophrenia. Risk-related reduction in NDI is plausibly indicative of reduced density of myelinated axons and dendritic arborization in large-scale cortico-subcortical networks. Cortical, subcortical, and white matter microstructure may be linked to the genetic mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Eva-Maria Stauffer
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Richard A I Bethlehem
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Graham K Murray
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Rafael Romero-Garcia
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward T Bullmore
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Trust, Elizabeth House, Fulbourn Hospital, Cambridge, UK
| |
Collapse
|
119
|
Where the genome meets the connectome: Understanding how genes shape human brain connectivity. Neuroimage 2021; 244:118570. [PMID: 34508898 DOI: 10.1016/j.neuroimage.2021.118570] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The integration of modern neuroimaging methods with genetically informative designs and data can shed light on the molecular mechanisms underlying the structural and functional organization of the human connectome. Here, we review studies that have investigated the genetic basis of human brain network structure and function through three complementary frameworks: (1) the quantification of phenotypic heritability through classical twin designs; (2) the identification of specific DNA variants linked to phenotypic variation through association and related studies; and (3) the analysis of correlations between spatial variations in imaging phenotypes and gene expression profiles through the integration of neuroimaging and transcriptional atlas data. We consider the basic foundations, strengths, limitations, and discoveries associated with each approach. We present converging evidence to indicate that anatomical connectivity is under stronger genetic influence than functional connectivity and that genetic influences are not uniformly distributed throughout the brain, with phenotypic variation in certain regions and connections being under stronger genetic control than others. We also consider how the combination of imaging and genetics can be used to understand the ways in which genes may drive brain dysfunction in different clinical disorders.
Collapse
|
120
|
Kraljević N, Schaare HL, Eickhoff SB, Kochunov P, Yeo BTT, Kharabian Masouleh S, Valk SL. Behavioral, Anatomical and Heritable Convergence of Affect and Cognition in Superior Frontal Cortex. Neuroimage 2021; 243:118561. [PMID: 34506912 PMCID: PMC8526801 DOI: 10.1016/j.neuroimage.2021.118561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cognitive abilities and affective experience are key human traits that are interrelated in behavior and brain. Individual variation of cognitive and affective traits, as well as brain structure, has been shown to partly underlie genetic effects. However, to what extent affect and cognition have a shared genetic relationship with local brain structure is incompletely understood. Here we studied phenotypic and genetic correlations of cognitive and affective traits in behavior and brain structure (cortical thickness, surface area and subcortical volumes) in the pedigree-based Human Connectome Project sample (N = 1091). Both cognitive and affective trait scores were highly heritable and showed significant phenotypic correlation on the behavioral level. Cortical thickness in the left superior frontal cortex showed a phenotypic association with both affect and cognition. Decomposing the phenotypic correlations into genetic and environmental components showed that the associations were accounted for by shared genetic effects between the traits. Quantitative functional decoding of the left superior frontal cortex further indicated that this region is associated with cognitive and emotional functioning. This study provides a multi-level approach to study the association between affect and cognition and suggests a convergence of both in superior frontal cortical thickness.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Lina Schaare
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Otto Hahn group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Leipzig 04103, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Centre for Translational MR Research, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Shahrzad Kharabian Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Otto Hahn group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Leipzig 04103, Germany.
| |
Collapse
|
121
|
The role of glucocorticoid receptor gene in the association between attention deficit-hyperactivity disorder and smaller brain structures. J Neural Transm (Vienna) 2021; 128:1907-1916. [PMID: 34609638 DOI: 10.1007/s00702-021-02425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.
Collapse
|
122
|
Thompson PM, Jahanshad N, Schmaal L, Turner JA, Winkler AM, Thomopoulos SI, Egan GF, Kochunov P. The Enhancing NeuroImaging Genetics through Meta-Analysis Consortium: 10 Years of Global Collaborations in Human Brain Mapping. Hum Brain Mapp 2021; 43:15-22. [PMID: 34612558 PMCID: PMC8675422 DOI: 10.1002/hbm.25672] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.
Collapse
Affiliation(s)
- Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Lianne Schmaal
- Orygen, Parkville, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Jessica A Turner
- Psychology Department, Georgia State University, Atlanta, Georgia, USA
| | - Anderson M Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia.,Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
123
|
Friedman NP, Banich MT, Keller MC. Twin studies to GWAS: there and back again. Trends Cogn Sci 2021; 25:855-869. [PMID: 34312064 PMCID: PMC8446317 DOI: 10.1016/j.tics.2021.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
The field of human behavioral genetics has come full circle. It began by using twin/family studies to estimate the relative importance of genetic and environmental influences. As large-scale genotyping became cost-effective, genome-wide association studies (GWASs) yielded insights about the nature of genetic influences and new methods that use GWAS data to estimate heritability and genetic correlations invigorated the field. Yet these newer GWAS methods have not replaced twin/family studies. In this review, we discuss the strengths and weaknesses of the two approaches with respect to characterizing genetic and environmental influences, measurement of behavioral phenotypes, and evaluation of causal models, with a particular focus on cognitive neuroscience. This discussion highlights how twin/family studies and GWAS complement and mutually reinforce one another.
Collapse
Affiliation(s)
- Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
124
|
Arnatkeviciute A, Fulcher BD, Bellgrove MA, Fornito A. Imaging Transcriptomics of Brain Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:319-331. [PMID: 36324650 PMCID: PMC9616271 DOI: 10.1016/j.bpsgos.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Noninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms. Here, we provide an overview of some fundamental methods in imaging transcriptomics and outline their application to understanding brain disorders of neurodevelopment, adulthood, and neurodegeneration. Converging evidence indicates that spatial variations in gene expression are linked to normative changes in brain structure during age-related maturation and neurodegeneration that are in part associated with cell-specific gene expression markers of gene expression. Transcriptional correlates of disorder-related neuroimaging phenotypes are also linked to transcriptionally dysregulated genes identified in ex vivo analyses of patient brains. Modeling studies demonstrate that spatial patterns of gene expression are involved in regional vulnerability to neurodegeneration and the spread of disease across the brain. This growing body of work supports the utility of transcriptional atlases in testing hypotheses about the molecular mechanism driving disease-related changes in macroscopic neuroimaging phenotypes.
Collapse
Affiliation(s)
- Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
- Address correspondence to Aurina Arnatkeviciute, Ph.D
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
125
|
Biton A, Traut N, Poline JB, Aribisala BS, Bastin ME, Bülow R, Cox SR, Deary IJ, Fukunaga M, Grabe HJ, Hagenaars S, Hashimoto R, Kikuchi M, Muñoz Maniega S, Nauck M, Royle NA, Teumer A, Valdés Hernández M, Völker U, Wardlaw JM, Wittfeld K, Yamamori H, Bourgeron T, Toro R. Polygenic Architecture of Human Neuroanatomical Diversity. Cereb Cortex 2021; 30:2307-2320. [PMID: 32109272 DOI: 10.1093/cercor/bhz241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/15/2023] Open
Abstract
We analyzed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging and single nucleotide polymorphism (SNP) data from >26 000 individuals from the UK Biobank project and 5 other projects that had previously participated in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our results confirm the polygenic architecture of neuroanatomical diversity, with SNPs capturing from 40% to 54% of regional brain volume variance. Chromosomal length correlated with the amount of phenotypic variance captured, r ~ 0.64 on average, suggesting that at a global scale causal variants are homogeneously distributed across the genome. At a local scale, SNPs within genes (~51%) captured ~1.5 times more genetic variance than the rest, and SNPs with low minor allele frequency (MAF) captured less variance than the rest: the 40% of SNPs with MAF <5% captured <one fourth of the genetic variance. We also observed extensive pleiotropy across regions, with an average genetic correlation of rG ~ 0.45. Genetic correlations were similar to phenotypic and environmental correlations; however, genetic correlations were often larger than phenotypic correlations for the left/right volumes of the same region. The heritability of differences in left/right volumes was generally not statistically significant, suggesting an important influence of environmental causes in the variability of brain asymmetry. Our code is available athttps://github.com/neuroanatomy/genomic-architecture.
Collapse
Affiliation(s)
- Anne Biton
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, UMR 3571, CNRS, Université Paris Diderot, Paris 75015, France.,Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris 75015, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, UMR 3571, CNRS, Université Paris Diderot, Paris 75015, France
| | - Jean-Baptiste Poline
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Benjamin S Aribisala
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Department of Computer Science, Lagos State University, Lagos, 102101, Nigeria
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Robin Bülow
- The Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, 17489, Germany
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, School of Life Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17485, Germany.,German Centre of Neurodegenerative Diseases (DZNE) Site Greifswald/Rostock, Greifswald, 17489, Germany
| | - Saskia Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,The Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-0031, Japan
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17475, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, 17475, Germany
| | - Natalie A Royle
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Maria Valdés Hernández
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine, Greifswald, 17475, Germany.,Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Greifswald, Greifswald, 17475, Germany
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB UK.,Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17485, Germany.,German Centre of Neurodegenerative Diseases (DZNE) Site Greifswald/Rostock, Greifswald, 17489, Germany
| | - Hidenaga Yamamori
- Department of Psychiatry, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | | | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, UMR 3571, CNRS, Université Paris Diderot, Paris 75015, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, UMR 3571, CNRS, Université Paris Diderot, Paris 75015, France.,Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, 75004, France
| |
Collapse
|
126
|
Oltra J, Segura B, Uribe C, Monté-Rubio GC, Campabadal A, Inguanzo A, Pardo J, Marti MJ, Compta Y, Valldeoriola F, Iranzo A, Junque C. Sex differences in brain atrophy and cognitive impairment in Parkinson's disease patients with and without probable rapid eye movement sleep behavior disorder. J Neurol 2021; 269:1591-1599. [PMID: 34345972 PMCID: PMC8857118 DOI: 10.1007/s00415-021-10728-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
Background The presence of rapid eye movement sleep behavior disorder (RBD) contributes to increase cognitive impairment and brain atrophy in Parkinson’s disease (PD), but the impact of sex is unclear. We aimed to investigate sex differences in cognition and brain atrophy in PD patients with and without probable RBD (pRBD). Methods Magnetic resonance imaging and cognition data were obtained for 274 participants from the Parkinson's Progression Marker Initiative database: 79 PD with pRBD (PD-pRBD; male/female, 54/25), 126 PD without pRBD (PD-non pRBD; male/female, 73/53), and 69 healthy controls (male/female, 40/29). FreeSurfer was used to obtain volumetric and cortical thickness data. Results Males showed greater global cortical and subcortical gray matter atrophy than females in the PD-pRBD group. Significant group-by-sex interactions were found in the pallidum. Structures showing a within-group sex effect in the deep gray matter differed, with significant volume reductions for males in one structure in in PD-non pRBD (brainstem), and three in PD-pRBD (caudate, pallidum and brainstem). Significant group-by-sex interactions were found in Montreal Cognitive Assessment (MoCA) and Symbol Digits Modalities Test (SDMT). Males performed worse than females in MoCA, phonemic fluency and SDMT in the PD-pRBD group. Conclusion Male sex is related to increased cognitive impairment and subcortical atrophy in de novo PD-pRBD. Accordingly, we suggest that sex differences are relevant and should be considered in future clinical and translational research. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10728-x.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Canada
| | - Gemma C Monté-Rubio
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Anna Inguanzo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Maria J Marti
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Sleep Disorders Center, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| |
Collapse
|
127
|
Fjell AM, Grydeland H, Wang Y, Amlien IK, Bartres-Faz D, Brandmaier AM, Düzel S, Elman J, Franz CE, Håberg AK, Kietzmann TC, Kievit RA, Kremen WS, Krogsrud SK, Kühn S, Lindenberger U, Macía D, Mowinckel AM, Nyberg L, Panizzon MS, Solé-Padullés C, Sørensen Ø, Westerhausen R, Walhovd KB. The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. eLife 2021; 10:66466. [PMID: 34180395 PMCID: PMC8260220 DOI: 10.7554/elife.66466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs showed a similar pattern of genetic volume–volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.
Collapse
Affiliation(s)
- Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Hakon Grydeland
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - David Bartres-Faz
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Andreas M Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Jeremy Elman
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Carol E Franz
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States
| | - Asta K Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim C Kietzmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier Andrew Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - William S Kremen
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, United States
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Didac Macía
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Athanasia Monika Mowinckel
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiation Sciences, Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Matthew S Panizzon
- Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego, La Jolla, United States.,Department of Psychiatry, University of California, San Diego, La Jolla, United States
| | - Cristina Solé-Padullés
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, and Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Rene Westerhausen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
128
|
林 岚, 熊 敏, 吴 水. [A review on the application of UK Biobank in neuroimaging]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:594-601. [PMID: 34180206 PMCID: PMC9927767 DOI: 10.7507/1001-5515.202012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/22/2021] [Indexed: 11/03/2022]
Abstract
UK Biobank (UKB) is a forward-looking epidemiological project with over 500, 000 people aged 40 to 69, whose image extension project plans to re-invite 100, 000 participants from UKB to perform multimodal brain magnetic resonance imaging. Large-scale multimodal neuroimaging combined with large amounts of phenotypic and genetic data provides great resources to conduct brain health-related research. This article provides an in-depth overview of UKB in the field of neuroimaging. Firstly, neuroimage collection and imaging-derived phenotypes are summarized. Secondly, typical studies of UKB in neuroimaging areas are introduced, which include cardiovascular risk factors, regulatory factors, brain age prediction, normality, successful and morbid brain aging, environmental and genetic factors, cognitive ability and gender. Lastly, the open challenges and future directions of UKB are discussed. This article has the potential to open up a new research field for the prevention and treatment of neurological diseases.
Collapse
Affiliation(s)
- 岚 林
- 北京工业大学 环境与生命学部 生物医学工程系 智能化生理测量与临床转化北京市国际科研合作基地(北京 100124)Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 敏 熊
- 北京工业大学 环境与生命学部 生物医学工程系 智能化生理测量与临床转化北京市国际科研合作基地(北京 100124)Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 水才 吴
- 北京工业大学 环境与生命学部 生物医学工程系 智能化生理测量与临床转化北京市国际科研合作基地(北京 100124)Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| |
Collapse
|
129
|
Viscardi LH, Imparato DO, Bortolini MC, Dalmolin RJS. Ionotropic Receptors as a Driving Force behind Human Synapse Establishment. Mol Biol Evol 2021; 38:735-744. [PMID: 32986821 PMCID: PMC7947827 DOI: 10.1093/molbev/msaa252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The origin of nervous systems is a main theme in biology and its mechanisms are largely underlied by synaptic neurotransmission. One problem to explain synapse establishment is that synaptic orthologs are present in multiple aneural organisms. We questioned how the interactions among these elements evolved and to what extent it relates to our understanding of the nervous systems complexity. We identified the human neurotransmission gene network based on genes present in GABAergic, glutamatergic, serotonergic, dopaminergic, and cholinergic systems. The network comprises 321 human genes, 83 of which act exclusively in the nervous system. We reconstructed the evolutionary scenario of synapse emergence by looking for synaptic orthologs in 476 eukaryotes. The Human–Cnidaria common ancestor displayed a massive emergence of neuroexclusive genes, mainly ionotropic receptors, which might have been crucial to the evolution of synapses. Very few synaptic genes had their origin after the Human–Cnidaria common ancestor. We also identified a higher abundance of synaptic proteins in vertebrates, which suggests an increase in the synaptic network complexity of those organisms.
Collapse
Affiliation(s)
- Lucas Henriques Viscardi
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment-BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment-BioME, IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Biochemistry, CB, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
130
|
Naqvi S, Sleyp Y, Hoskens H, Indencleef K, Spence JP, Bruffaerts R, Radwan A, Eller RJ, Richmond S, Shriver MD, Shaffer JR, Weinberg SM, Walsh S, Thompson J, Pritchard JK, Sunaert S, Peeters H, Wysocka J, Claes P. Shared heritability of human face and brain shape. Nat Genet 2021; 53:830-839. [PMID: 33821002 PMCID: PMC8232039 DOI: 10.1038/s41588-021-00827-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Evidence from model organisms and clinical genetics suggests coordination between the developing brain and face, but the role of this link in common genetic variation remains unknown. We performed a multivariate genome-wide association study of cortical surface morphology in 19,644 individuals of European ancestry, identifying 472 genomic loci influencing brain shape, of which 76 are also linked to face shape. Shared loci include transcription factors involved in craniofacial development, as well as members of signaling pathways implicated in brain-face cross-talk. Brain shape heritability is equivalently enriched near regulatory regions active in either forebrain organoids or facial progenitors. However, we do not detect significant overlap between shared brain-face genome-wide association study signals and variants affecting behavioral-cognitive traits. These results suggest that early in embryogenesis, the face and brain mutually shape each other through both structural effects and paracrine signaling, but this interplay may not impact later brain development associated with cognitive function.
Collapse
Affiliation(s)
- Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yoeri Sleyp
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hanne Hoskens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jeffrey P Spence
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rose Bruffaerts
- Department of Neurosciences, KU Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium, Hasselt University, Hasselt, Belgium
- Biomedical Research Institute Hasselt University Hasselt Belgium, Hasselt University, Hasselt, Belgium
| | - Ahmed Radwan
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - John R Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - James Thompson
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Jonathan K Pritchard
- Departments of Genetics and Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan Sunaert
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium.
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
131
|
Hidalgo S, Campusano JM, Hodge JJL. The Drosophila ortholog of the schizophrenia-associated CACNA1A and CACNA1B voltage-gated calcium channels regulate memory, sleep and circadian rhythms. Neurobiol Dis 2021; 155:105394. [PMID: 34015490 DOI: 10.1016/j.nbd.2021.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia exhibits up to 80% heritability. A number of genome wide association studies (GWAS) have repeatedly shown common variants in voltage-gated calcium (Cav) channel genes CACNA1C, CACNA1I and CACNA1G have a major contribution to the risk of the disease. More recently, studies using whole exome sequencing have also found that CACNA1B (Cav2.2 N-type) deletions and rare disruptive variants in CACNA1A (Cav2.1 P/Q-type) are associated with schizophrenia. The negative symptoms of schizophrenia include behavioural defects such as impaired memory, sleep and circadian rhythms. It is not known how variants in schizophrenia-associated genes contribute to cognitive and behavioural symptoms, thus hampering the development of treatment for schizophrenia symptoms. In order to address this knowledge gap, we studied behavioural phenotypes in a number of loss of function mutants for the Drosophila ortholog of the Cav2 gene family called cacophony (cac). cac mutants showed several behavioural features including decreased night-time sleep and hyperactivity similar to those reported in human patients. The change in timing of sleep-wake cycles suggested disrupted circadian rhythms, with the loss of night-time sleep being caused by loss of cac just in the circadian clock neurons. These animals also showed a reduction in rhythmic circadian behaviour a phenotype that also could be mapped to the central clock. Furthermore, reduction of cac just in the clock resulted in a lengthening of the 24 h period. In order to understand how loss of Cav2 function may lead to cognitive deficits and underlying cellular pathophysiology we targeted loss of function of cac to the memory centre of the fly, called the mushroom bodies (MB). This manipulation was sufficient to cause reduction in both short- and intermediate-term associative memory. Memory impairment was accompanied by a decrease in Ca2+ transients in response to a depolarizing stimulus, imaged in the MB presynaptic terminals. This work shows loss of cac Cav2 channel function alone causes a number of cognitive and behavioural deficits and underlying reduced neuronal Ca2+ transients, establishing Drosophila as a high-throughput in vivo genetic model to study the Cav channel pathophysiology related to schizophrenia.
Collapse
Affiliation(s)
- Sergio Hidalgo
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge M Campusano
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Science, University of Bristol, UK.
| |
Collapse
|
132
|
The genetic architecture of the human thalamus and its overlap with ten common brain disorders. Nat Commun 2021; 12:2909. [PMID: 34006833 PMCID: PMC8131358 DOI: 10.1038/s41467-021-23175-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/16/2021] [Indexed: 11/08/2022] Open
Abstract
The thalamus is a vital communication hub in the center of the brain and consists of distinct nuclei critical for consciousness and higher-order cortical functions. Structural and functional thalamic alterations are involved in the pathogenesis of common brain disorders, yet the genetic architecture of the thalamus remains largely unknown. Here, using brain scans and genotype data from 30,114 individuals, we identify 55 lead single nucleotide polymorphisms (SNPs) within 42 genetic loci and 391 genes associated with volumes of the thalamus and its nuclei. In an independent validation sample (n = 5173) 53 out of the 55 lead SNPs of the discovery sample show the same effect direction (sign test, P = 8.6e-14). We map the genetic relationship between thalamic nuclei and 180 cerebral cortical areas and find overlapping genetic architectures consistent with thalamocortical connectivity. Pleiotropy analyses between thalamic volumes and ten psychiatric and neurological disorders reveal shared variants for all disorders. Together, these analyses identify genetic loci linked to thalamic nuclei and substantiate the emerging view of the thalamus having central roles in cortical functioning and common brain disorders.
Collapse
|
133
|
Zhao B, Shan Y, Yang Y, Yu Z, Li T, Wang X, Luo T, Zhu Z, Sullivan P, Zhao H, Li Y, Zhu H. Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits. Nat Commun 2021; 12:2878. [PMID: 34001886 PMCID: PMC8128893 DOI: 10.1038/s41467-021-23130-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Structural variations of the human brain are heritable and highly polygenic traits, with hundreds of associated genes identified in recent genome-wide association studies (GWAS). Transcriptome-wide association studies (TWAS) can both prioritize these GWAS findings and also identify additional gene-trait associations. Here we perform cross-tissue TWAS analysis of 211 structural neuroimaging and discover 278 associated genes exceeding Bonferroni significance threshold of 1.04 × 10-8. The TWAS-significant genes for brain structures have been linked to a wide range of complex traits in different domains. Through TWAS gene-based polygenic risk scores (PRS) prediction, we find that TWAS PRS gains substantial power in association analysis compared to conventional variant-based GWAS PRS, and up to 6.97% of phenotypic variance (p-value = 7.56 × 10-31) can be explained in independent testing data sets. In conclusion, our study illustrates that TWAS can be a powerful supplement to traditional GWAS in imaging genetics studies for gene discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhaolong Yu
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongyu Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale University, New Haven, CT, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
134
|
He X, Li X, Fu J, Xu J, Liu H, Zhang P, Li W, Yu C, Ye Z, Qin W. The morphometry of left cuneus mediating the genetic regulation on working memory. Hum Brain Mapp 2021; 42:3470-3480. [PMID: 33939221 PMCID: PMC8249898 DOI: 10.1002/hbm.25446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Working memory is a basic human cognitive function. However, the genetic signatures and their biological pathway remain poorly understood. In the present study, we tried to clarify this issue by exploring the potential associations and pathways among genetic variants, brain morphometry and working memory performance. We first carried out association analyses between 2‐back accuracy and 212 image‐derived phenotypes from 1141 Human Connectome Project (HCP) subjects using a linear mixed model (LMM). We found a significantly positive correlation between the left cuneus volume and 2‐back accuracy (T = 3.615, p = 3.150e−4, Cohen's d = 0.226, corrected using family‐wise error [FWE] method). Based on the LMM‐based genome‐wide association study (GWAS) on the HCP dataset and UK Biobank 33 k GWAS summary statistics, we identified eight independent single nucleotide polymorphisms (SNPs) that were reliably associated with left cuneus volume in both UKB and HCP dataset. Within the eight SNPs, we found a negative correlation between the rs76119478 polymorphism and 2‐back accuracy accuracy (T = −2.045, p = .041, Cohen's d = −0.129). Finally, an LMM‐based mediation analysis elucidated a significant effect of left cuneus volume in mediating rs76119478 polymorphism on the 2‐back accuracy (indirect effect = −0.007, 95% BCa CI = [−0.045, −0.003]). These results were also replicated in a subgroup of Caucasians in the HCP population. Further fine mapping demonstrated that rs76119478 maps on intergene CTD‐2315A10.2 adjacent to protein‐encoding gene DAAM1, and is significantly associated with L3HYPDH mRNA expression. Our study suggested this new variant rs76119478 may regulate the working memory through exerting influence on the left cuneus volume.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
135
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
136
|
Lamballais S, Jansen PR, Labrecque JA, Ikram MA, White T. Genetic scores for adult subcortical volumes associate with subcortical volumes during infancy and childhood. Hum Brain Mapp 2021; 42:1583-1593. [PMID: 33528897 PMCID: PMC7978120 DOI: 10.1002/hbm.25292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Individual differences in subcortical brain volumes are highly heritable. Previous studies have identified genetic variants that underlie variation in subcortical volumes in adults. We tested whether those previously identified variants also affect subcortical regions during infancy and early childhood. The study was performed within the Generation R study, a prospective birth cohort. We calculated polygenic scores based on reported GWAS for volumes of the accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen, and thalamus. Participants underwent cranial ultrasound around 7 weeks of age (range: 3-20), and we obtained metrics for the gangliothalamic ovoid, a predecessor of the basal ganglia. Furthermore, the children participated in a magnetic resonance imaging (MRI) study around the age of 10 years (range: 9-12). A total of 340 children had complete data at both examinations. Polygenic scores primarily associated with their corresponding volumes at 10 years of age. The scores also moderately related to the diameter of the gangliothalamic ovoid on cranial ultrasound. Mediation analysis showed that the genetic influence on subcortical volumes at 10 years was only mediated for 16.5-17.6% of the total effect through the gangliothalamic ovoid diameter at 7 weeks of age. Combined, these findings suggest that previously identified genetic variants in adults are relevant for subcortical volumes during early life, and that they affect both prenatal and postnatal development of the subcortical regions.
Collapse
Affiliation(s)
- Sander Lamballais
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Philip R. Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU University Amsterdamthe Netherlands
- Department of Clinical Genetics, VU Medical CenterAmsterdam UMCAmsterdamthe Netherlands
| | - Jeremy A. Labrecque
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - M. Arfan Ikram
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Tonya White
- Department of Child and Adolescent PsychiatryErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| |
Collapse
|
137
|
Roughan WH, Campos AI, García-Marín LM, Cuéllar-Partida G, Lupton MK, Hickie IB, Medland SE, Wray NR, Byrne EM, Ngo TT, Martin NG, Rentería ME. Comorbid Chronic Pain and Depression: Shared Risk Factors and Differential Antidepressant Effectiveness. Front Psychiatry 2021; 12:643609. [PMID: 33912086 PMCID: PMC8072020 DOI: 10.3389/fpsyt.2021.643609] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
The bidirectional relationship between depression and chronic pain is well-recognized, but their clinical management remains challenging. Here we characterize the shared risk factors and outcomes for their comorbidity in the Australian Genetics of Depression cohort study (N = 13,839). Participants completed online questionnaires about chronic pain, psychiatric symptoms, comorbidities, treatment response and general health. Logistic regression models were used to examine the relationship between chronic pain and clinical and demographic factors. Cumulative linked logistic regressions assessed the effect of chronic pain on treatment response for 10 different antidepressants. Chronic pain was associated with an increased risk of depression (OR = 1.86 [1.37-2.54]), recent suicide attempt (OR = 1.88 [1.14-3.09]), higher use of tobacco (OR = 1.05 [1.02-1.09]) and misuse of painkillers (e.g., opioids; OR = 1.31 [1.06-1.62]). Participants with comorbid chronic pain and depression reported fewer functional benefits from antidepressant use and lower benefits from sertraline (OR = 0.75 [0.68-0.83]), escitalopram (OR = 0.75 [0.67-0.85]) and venlafaxine (OR = 0.78 [0.68-0.88]) when compared to participants without chronic pain. Furthermore, participants taking sertraline (OR = 0.45 [0.30-0.67]), escitalopram (OR = 0.45 [0.27-0.74]) and citalopram (OR = 0.32 [0.15-0.67]) specifically for chronic pain (among other indications) reported lower benefits compared to other participants taking these same medications but not for chronic pain. These findings reveal novel insights into the complex relationship between chronic pain and depression. Treatment response analyses indicate differential effectiveness between particular antidepressants and poorer functional outcomes for these comorbid conditions. Further examination is warranted in targeted interventional clinical trials, which also include neuroimaging genetics and pharmacogenomics protocols. This work will advance the delineation of disease risk indicators and novel aetiological pathways for therapeutic intervention in comorbid pain and depression as well as other psychiatric comorbidities.
Collapse
Affiliation(s)
- William H. Roughan
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Adrián I. Campos
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Luis M. García-Marín
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gabriel Cuéllar-Partida
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- UQ Diamantina Institute, The University of Queensland and Translational Research Institute, Brisbane, QLD, Australia
| | - Michelle K. Lupton
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ian B. Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Sarah E. Medland
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Enda M. Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Trung Thanh Ngo
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- UQ Diamantina Institute, The University of Queensland and Translational Research Institute, Brisbane, QLD, Australia
| | - Nicholas G. Martin
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Miguel E. Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
138
|
Bryan J, Mandan A, Kamat G, Gottschalk WK, Badea A, Adams KJ, Thompson JW, Colton CA, Mukherjee S, Lutz MW. Likelihood ratio statistics for gene set enrichment in Alzheimer's disease pathways. Alzheimers Dement 2021; 17:561-573. [PMID: 33480182 PMCID: PMC8044005 DOI: 10.1002/alz.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The study of Alzheimer's disease (AD) has revealed biological pathways with implications for disease neuropathology and pathophysiology. These pathway-level effects may also be mediated by individual characteristics or covariates such as age or sex. Evaluation of AD biological pathways in the context of interactions with these covariates is critical to the understanding of AD as well as the development of model systems used to study the disease. METHODS Gene set enrichment methods are powerful tools used to interpret gene-level statistics at the level of biological pathways. We introduce a method for quantifying gene set enrichment using likelihood ratio-derived test statistics (gsLRT), which accounts for sample covariates like age and sex. We then use our method to test for age and sex interactions with protein expression levels in AD and to compare the pathway results between human and mouse species. RESULTS Our method, based on nested logistic regressions is competitive with the existing standard for gene set testing in the context of linear models and complex experimental design. The gene sets we identify as having a significant association with AD-both with and without additional covariate interactions-are validated by previous studies. Differences between gsLRT results on mouse and human datasets are observed. DISCUSSION Characterizing biological pathways involved in AD builds on the important work involving single gene drivers. Our gene set enrichment method finds pathways that are significantly related to AD while accounting for covariates that may be relevant to disease development. The method highlights commonalities and differences between human AD and mouse models, which may inform the development of higher fidelity models for the study of AD.
Collapse
Affiliation(s)
- Jordan Bryan
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arpita Mandan
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Gauri Kamat
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | | | - Alexandra Badea
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Kendra J. Adams
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Carol A. Colton
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Department of Neurology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
139
|
Johnston KJA, Ward J, Ray PR, Adams MJ, McIntosh AM, Smith BH, Strawbridge RJ, Price TJ, Smith DJ, Nicholl BI, Bailey MES. Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2021; 17:e1009428. [PMID: 33830993 PMCID: PMC8031124 DOI: 10.1371/journal.pgen.1009428] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Blair H. Smith
- Division of Population Health Sciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
140
|
Genetic factors influencing a neurobiological substrate for psychiatric disorders. Transl Psychiatry 2021; 11:192. [PMID: 33782385 PMCID: PMC8007575 DOI: 10.1038/s41398-021-01317-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023] Open
Abstract
A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk.
Collapse
|
141
|
Chambers T, Anney R, Taylor PN, Teumer A, Peeters RP, Medici M, Caseras X, Rees DA. Effects of Thyroid Status on Regional Brain Volumes: A Diagnostic and Genetic Imaging Study in UK Biobank. J Clin Endocrinol Metab 2021; 106:688-696. [PMID: 33274371 PMCID: PMC7947746 DOI: 10.1210/clinem/dgaa903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Thyroid hormone is essential for optimal human neurodevelopment and may modify the risk of attention-deficit/hyperactivity disorder (ADHD). However, the brain structures involved are unknown and it is unclear if the adult brain is also susceptible to changes in thyroid status. METHODS We used International Classification of Disease-10 codes, polygenic thyroid scores at different thresholds of association with thyroid traits (PT-values), and image-derived phenotypes in UK Biobank (n = 18 825) to investigate the effects of a recorded diagnosis of thyroid disease and genetic risk for thyroid status on cerebellar and subcortical gray matter volume. Regional genetic pleiotropy between thyroid status and ADHD was explored using the GWAS-pairwise method. RESULTS A recorded diagnosis of hypothyroidism (n = 419) was associated with significant reductions in total cerebellar and pallidum gray matter volumes (β [95% CI] = -0.14[-0.23, -0.06], P = 0.0005 and β [95%CI] = -0.12 [-0.20, -0.04], P = 0.0042, respectively), mediated in part by increases in body mass index. While we found no evidence for total cerebellar volume alterations with increased polygenic scores for any thyroid trait, opposing influences of increased polygenic scores for hypo- and hyperthyroidism were found in the pallidum (PT < 1e-3: β [95% CI] = -0.02 [-0.03, -0.01], P = 0.0003 and PT < 1e-7: β [95% CI] = 0.02 [0.01, 0.03], P = 0.0003, respectively). Neither hypo- nor hyperthyroidism showed evidence of regional genetic pleiotropy with ADHD. CONCLUSIONS Thyroid status affects gray matter volume in adults, particularly at the level of the cerebellum and pallidum, with potential implications for the regulation of motor, cognitive, and affective function.
Collapse
Affiliation(s)
- Tom Chambers
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Richard Anney
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter N Taylor
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Robin P Peeters
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marco Medici
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, HB Nijmegen, The Netherlands
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Correspondence: D. Aled Rees, FRCP, PhD, Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
142
|
Overlap in genetic risk for cross-disorder vulnerability to mental disorders and genetic risk for altered subcortical brain volumes. J Affect Disord 2021; 282:740-756. [PMID: 33601715 DOI: 10.1016/j.jad.2020.12.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND There have been considerable recent advances in understanding the genetic architecture of psychiatric disorders as well as the underlying neurocircuitry. However, there is little work on the concordance of genetic variations that increase risk for cross-disorder vulnerability, and those that influence subcortical brain structures. We undertook a genome-wide investigation of the genetic overlap between cross-disorder vulnerability to psychiatric disorders (p-factor) and subcortical brain structures. METHODS Summary statistics were obtained from the PGC cross-disorder genome-wide association study (GWAS) (Ncase= 232,964, Ncontrol= 494,162) and the CHARGE-ENIGMA subcortical brain volumes GWAS (N=38,851). SNP effect concordance analysis (SECA) was used to assess pleiotropy and concordance. Linkage Disequilibrium (LD) Score Regression and ρ-HESS were used to assess genetic correlation and conditional false discovery (cFDR) was used to identify variants associated with p-factor, conditional on the variants association with subcortical brain volumes. RESULTS Evidence of global pleiotropy between p-factor and all subcortical brain regions was observed. Risk variants for p-factor correlated negatively with brainstem. A total of 787 LD-independent variants were significantly associated with p-factor when conditioned on the subcortical GWAS results. Gene set enrichment analysis of these variants implicated actin binding and neuronal regulation. LIMITATIONS SECA could be biased due to the potential presence of overlapping study participants in the p-factor and subcortical GWASs. CONCLUSION Findings of genome-wide pleiotropy and possible concordance between genetic variants that contribute to p-factor and smaller brainstem volumes, are consistent with previous work. cFDR results highlight actin binding and neuron regulation as key underlying mechanisms. Further fine-grained delineation of these mechanisms is needed to advance the field.
Collapse
|
143
|
Farias FHG, Benitez BA, Cruchaga C. Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiol Dis 2021; 151:105247. [PMID: 33429041 DOI: 10.1016/j.nbd.2020.105247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Endophenotypes, as measurable intermediate features of human diseases, reflect underlying molecular mechanisms. The use of quantitative endophenotypes in genetic studies has improved our understanding of pathophysiological changes associated with diseases. The main advantage of the quantitative endophenotypes approach to study human diseases over a classic case-control study design is the inferred biological context that can enable the development of effective disease-modifying treatments. Here, we summarize recent progress on biomarkers for neurodegenerative diseases, including cerebrospinal fluid and blood-based, neuroimaging, neuropathological, and clinical studies. This review focuses on how endophenotypic studies have successfully linked genetic modifiers to disease risk, disease onset, or progression rate and provided biological context to genes identified in genome-wide association studies. Finally, we review critical methodological considerations for implementing this approach and future directions.
Collapse
Affiliation(s)
- Fabiana H G Farias
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America; Hope Center for Neurologic Diseases, Washington University, St. Louis, MO 63110, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, United States of America; Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, United States of America.
| |
Collapse
|
144
|
Abstract
Anatomical imaging in OCD using magnetic resonance imaging (MRI) has been performed since the late 1980s. MRI research was further stimulated with the advent of automated image processing techniques such as voxel-based morphometry (VBM) and surface-based methods (e.g., FreeSurfer) which allow for detailed whole-brain data analyses. Early studies suggesting involvement of corticostriatal circuitry (particularly orbitofrontal cortex and ventral striatum) have been complemented by meta-analyses and pooled analyses indicating additional involvement of posterior brain regions, in particular parietal cortex. Recent large-scale meta-analyses from the ENIGMA consortium have revealed greater pallidum and smaller hippocampus volume in adult OCD, coupled with parietal cortical thinning. Frontal cortical thinning was only observed in medicated patients. Previous reports of symptom dimension-specific alterations were not confirmed. In paediatric OCD, thalamus enlargement has been a consistent finding. Studies investigating white matter volume (VBM) or integrity (using diffusion tensor imaging (DTI)) have shown mixed results, with recent DTI meta-analyses mainly showing involvement of posterior cortical-subcortical tracts in addition to subcortical-prefrontal connections. To which extent these abnormalities are unique to OCD or common to other psychiatric disorders is unclear, as few comparative studies have been performed. Overall, neuroanatomical alterations in OCD appear to be subtle and may vary with time, stressing the need for adequately powered longitudinal studies. Although multivariate approaches using machine learning methodologies have so far been disappointing in distinguishing individual OCD patients from healthy controls, including multimodal data in such analyses may aid in further establishing a neurobiological profile of OCD.
Collapse
Affiliation(s)
- D J Veltman
- Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
146
|
Medland SE, Grasby KL, Jahanshad N, Painter JN, Colodro-Conde L, Bralten J, Hibar DP, Lind PA, Pizzagalli F, Thomopoulos SI, Stein JL, Franke B, Martin NG, Thompson PM. Ten years of enhancing neuro-imaging genetics through meta-analysis: An overview from the ENIGMA Genetics Working Group. Hum Brain Mapp 2020; 43:292-299. [PMID: 33300665 PMCID: PMC8675405 DOI: 10.1002/hbm.25311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Here we review the motivation for creating the enhancing neuroimaging genetics through meta-analysis (ENIGMA) Consortium and the genetic analyses undertaken by the consortium so far. We discuss the methodological challenges, findings, and future directions of the genetics working group. A major goal of the working group is tackling the reproducibility crisis affecting "candidate gene" and genome-wide association analyses in neuroimaging. To address this, we developed harmonized analytic methods, and support their use in coordinated analyses across sites worldwide, which also makes it possible to understand heterogeneity in results across sites. These efforts have resulted in the identification of hundreds of common genomic loci robustly associated with brain structure. We have found both pleiotropic and specific genetic effects associated with brain structures, as well as genetic correlations with psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Psychology, University of Queensland, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Jodie N Painter
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lucía Colodro-Conde
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Psychology, University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA.,Personalized Healthcare, Genentech, Inc., South San Francisco, California, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California, USA
| | | |
Collapse
|
147
|
Nyberg L, Boraxbekk CJ, Sörman DE, Hansson P, Herlitz A, Kauppi K, Ljungberg JK, Lövheim H, Lundquist A, Adolfsson AN, Oudin A, Pudas S, Rönnlund M, Stiernstedt M, Sundström A, Adolfsson R. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res Rev 2020; 64:101184. [PMID: 32992046 DOI: 10.1016/j.arr.2020.101184] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Individual differences in cognitive performance increase with advancing age, reflecting marked cognitive changes in some individuals along with little or no change in others. Genetic and lifestyle factors are assumed to influence cognitive performance in ageing by affecting the magnitude and extent of age-related brain changes (i.e., brain maintenance or atrophy), as well as the ability to recruit compensatory processes. The purpose of this review is to present findings from the Betula study and other longitudinal studies, with a focus on clarifying the role of key biological and environmental factors assumed to underlie individual differences in brain and cognitive ageing. We discuss the vital importance of sampling, analytic methods, consideration of non-ignorable dropout, and related issues for valid conclusions on factors that influence healthy neurocognitive ageing.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Department of Radiation Sciences, Umeå University, S-90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Daniel Eriksson Sörman
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Patrik Hansson
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden
| | - Agneta Herlitz
- Department of Clinical Neuroscience, Division of Psychology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jessica K Ljungberg
- Department of Human Work Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Geriatric Medicine, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Statistics, USBE, Umeå University, 901 87 Umeå, Sweden
| | | | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, S-90187 Umeå, Sweden; Environment Society and Health, Occupational and Environmental Medicine, Lund University
| | - Sara Pudas
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | | | - Mikael Stiernstedt
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, S-90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, S-90187 Umeå, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå University, S-90187 Umeå, Sweden; Centre for Demographic and Ageing Research (CEDAR), Umeå University, Umeå, S-90187, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
148
|
Miao X, Liu W, Fan B, Lin H. Transcriptomic Heterogeneity of Alzheimer's Disease Associated with Lipid Genetic Risk. Neuromolecular Med 2020; 22:534-541. [PMID: 32862331 DOI: 10.1007/s12017-020-08610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial disease that affects more than 5 million Americans. Multiple pathways might be involved in the AD pathogenesis. The implication of lipid genetic susceptibility on brain gene expression is yet to be investigated. The current study included 192 brain samples from AD patients who were enrolled in the ROSMAP study. The samples were genotyped and imputed to the HRC Reference Panel. Lipid polygenetic risk score was constructed from the weighted sum of genetic variants associated with low-density lipoprotein cholesterol (LDL-C). The gene expression was profiled by RNA sequencing, and the association of gene expression with lipid polygenetic risk scores was tested by linear regression models adjusted for age, sex and APOE e4 alleles. Three genes were found to associate with lipid polygenetic risk scores, including HMCN2 (P = 3.6 × 10-7), PDLIM5 (P = 1.2 × 10-6), and FHL5 (P = 2.0 × 10-6). Network analysis revealed multiple related pathways, including dopaminergic synapse (P = 4.5 × 10-5), circadian entrainment (P = 1.1 × 10-4), and cholinergic synapse (P = 2.3 × 10-4). Our study underscores the importance of lipid regulation and metabolism to AD heterogeneity.
Collapse
Affiliation(s)
- Xiao Miao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifeng Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Fan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, E-632, Boston, MA, 02118, USA.
| |
Collapse
|
149
|
Murray AN, Chandler HL, Lancaster TM. Multimodal hippocampal and amygdala subfield volumetry in polygenic risk for Alzheimer's disease. Neurobiol Aging 2020; 98:33-41. [PMID: 33227567 PMCID: PMC7886309 DOI: 10.1016/j.neurobiolaging.2020.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
Preclinical models of Alzheimer's disease (AD) suggest that volumetric reductions in medial temporal lobe (MTL) structures manifest before clinical onset. AD polygenic risk scores (PRSs) are further linked to reduced MTL volumes (the hippocampus/amygdala); however, the relationship between the PRS and specific subregions remains unclear. We determine the relationship between the AD-PRSs and MTL subregions in a large sample of young participants (N = 730, aged 22–35 years) using a multimodal (T1w/T2w) approach. We first demonstrate that the PRSs for the hippocampus/amygdala predict their respective volumes and specific hippocampal subregions (pFDR < 0.05). We further observe negative relationships between the AD-PRSs and whole hippocampal/amygdala volumes. Critically, we demonstrate novel associations between the AD-PRSs and specific hippocampal subfields such as CA1 (β = −0.096, pFDR = 0.045) and the fissure (β = −0.101, pFDR = 0.041). We provide evidence that the AD-PRS is linked to specific MTL subfields decades before AD onset. This may help inform preclinical models of AD risk, providing additional specificity for intervention and further insight into mechanisms by which common AD variants confer susceptibility. Polygenic risk for Alzheimer's disease (AD-PRS) explains significant proportion of AD. AD-PRS also linked to hippocampus and amygdala volume. AD-PRS is negatively associated with specific hippocampal subfields. Polygenic AD models help us understand genetic contributions to medial temporal lobe nuclei.
Collapse
Affiliation(s)
- Amy N Murray
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Thomas M Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom; Dementia Research Institute at Cardiff University, School of Medicine, Cardiff University, Cardiff, United Kingdom; School of Psychology, Bath University, Bath, United Kingdom.
| |
Collapse
|
150
|
Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Mol Psychiatry 2020; 25:2672-2684. [PMID: 32826963 DOI: 10.1038/s41380-020-00866-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3's roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.
Collapse
|