151
|
Lemoine T, Violle C, Montazeaud G, Isaac ME, Rocher A, Fréville H, Fort F. Plant trait relationships are maintained within a major crop species: lack of artificial selection signal and potential for improved agronomic performance. THE NEW PHYTOLOGIST 2023; 240:2227-2238. [PMID: 37771248 DOI: 10.1111/nph.19279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
The exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp. durum, characterized by variable degrees of artificial selection. We measured aboveground and belowground traits as well as agronomic traits to explore the functional and agronomic trait spaces and to investigate trait-to-agronomic performance relationships. We showed that the wheat functional trait space shared commonalities with global cross-species spaces previously described, with two main axes of variation: a root foraging axis and a slow-fast trade-off axis. Moreover, we detected a clear signature of artificial selection on the variation of agronomic traits, unlike functional traits. Interestingly, we identified alternative phenotypic combinations that can optimize crop performance. Our work brings insightful knowledge about the structure of phenotypic spaces of domesticated plants and the maintenance of phenotypic trade-offs in response to artificial selection, with implications for trade-off-free and multi-criteria selection in plant breeding.
Collapse
Affiliation(s)
- Taïna Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, M1C 1A4, ON, Canada
| | - Aline Rocher
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Hélène Fréville
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| |
Collapse
|
152
|
Wei B, Zhang D, Wang G, Liu Y, Li Q, Zheng Z, Yang G, Peng Y, Niu K, Yang Y. Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem. THE NEW PHYTOLOGIST 2023; 240:1802-1816. [PMID: 37434301 DOI: 10.1111/nph.19115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
Knowledge about changes in plant functional traits is valuable for the mechanistic understanding of warming effects on ecosystem functions. However, observations have tended to focus on aboveground plant traits, and there is little information about changes in belowground plant traits or the coordination of above- and belowground traits under climate warming, particularly in permafrost ecosystems. Based on a 7-yr field warming experiment, we measured 26 above- and belowground plant traits of four dominant species, and explored community functional composition and trait networks in response to experimental warming in a permafrost ecosystem on the Tibetan Plateau. Experimental warming shifted community-level functional traits toward more acquisitive values, with earlier green-up, greater plant height, larger leaves, higher photosynthetic resource-use efficiency, thinner roots, and greater specific root length and root nutrient concentrations. However, warming had a negligible effect in terms of functional diversity. In addition, warming shifted hub traits which have the highest centrality in the network from specific root area to leaf area. These results demonstrate that above- and belowground traits exhibit consistent adaptive strategies, with more acquisitive traits in warmer environments. Such changes could provide an adaptive advantage for plants in response to environmental change.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qinlu Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihu Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kechang Niu
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
153
|
Bertuol-Garcia D, Ladouceur E, Brudvig LA, Laughlin DC, Munson SM, Curran MF, Davies KW, Svejcar LN, Shackelford N. Testing the hierarchy of predictability in grassland restoration across a gradient of environmental severity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2922. [PMID: 37776043 DOI: 10.1002/eap.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/07/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Ecological restoration is critical for recovering degraded ecosystems but is challenged by variable success and low predictability. Understanding which outcomes are more predictable and less variable following restoration can improve restoration effectiveness. Recent theory asserts that the predictability of outcomes would follow an order from most to least predictable from coarse to fine community properties (physical structure > taxonomic diversity > functional composition > taxonomic composition) and that predictability would increase with more severe environmental conditions constraining species establishment. We tested this "hierarchy of predictability" hypothesis by synthesizing outcomes along an aridity gradient with 11 grassland restoration projects across the United States. We used 1829 vegetation monitoring plots from 227 restoration treatments, spread across 52 sites. We fit generalized linear mixed-effects models to predict six indicators of restoration outcomes as a function of restoration characteristics (i.e., seed mixes, disturbance, management actions, time since restoration) and used variance explained by models and model residuals as proxies for restoration predictability. We did not find consistent support for our hypotheses. Physical structure was among the most predictable outcomes when the response variable was relative abundance of grasses, but unpredictable for total canopy cover. Similarly, one dimension of taxonomic composition related to species identities was unpredictable, but another dimension of taxonomic composition indicating whether exotic or native species dominated the community was highly predictable. Taxonomic diversity (i.e., species richness) and functional composition (i.e., mean trait values) were intermittently predictable. Predictability also did not increase consistently with aridity. The dimension of taxonomic composition related to the identity of species in restored communities was more predictable (i.e., smaller residuals) in more arid sites, but functional composition was less predictable (i.e., larger residuals), and other outcomes showed no significant trend. Restoration outcomes were most predictable when they related to variation in dominant species, while those responding to rare species were harder to predict, indicating a potential role of scale in restoration predictability. Overall, our results highlight additional factors that might influence restoration predictability and add support to the importance of continuous monitoring and active management beyond one-time seed addition for successful grassland restoration in the United States.
Collapse
Affiliation(s)
- Diana Bertuol-Garcia
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Emma Ladouceur
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Leipzig-Halle-Jena, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | | | - Seth M Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, USA
| | | | - Kirk W Davies
- USDA, Agricultural Research Service, Burns, Oregon, USA
| | | | - Nancy Shackelford
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
154
|
Walsh SK, Wolkis D, Abbriano RM, Barton KE. Variability in seed salinity tolerance in an island coastal community. ANNALS OF BOTANY 2023; 132:485-498. [PMID: 37665955 PMCID: PMC10666991 DOI: 10.1093/aob/mcad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS Islands, with their long coastlines and increased vulnerability to sea level rise, offer compelling opportunities to investigate the salinity tolerance of coastal plants. Seeds are generally more vulnerable than other plant stages to increased stressors. The aim of this study was to characterize salinity tolerance during germination across a diverse pool of 21 species from 14 plant families found in coastal communities throughout the Hawaiian Islands in order to increase our general understanding of coastal plant ecology for conservation and restoration. METHODS Seeds of each species were exposed to unfiltered/untreated seawater (35 ppt total salinity) and two salinity treatments (10 and 20 ppt) in which the seawater was diluted with distilled water, and germination percent and timing were compared to seeds in a distilled water control. Non-germinated seeds were then tested for recovery germination. We quantified and compared germination percent, time and recovery among species and across salinity levels and tested for heterogeneity related to seed size, dormancy class, habit and threatened status. KEY RESULTS Although salinity tolerance varied considerably among species, salinity exposure generally reduced and delayed germination. The greatest effects were detected at higher salinity levels. Recovery germination overall was higher for seeds that had been exposed to higher salinity. None of the factors we explored emerged as predictors of salinity tolerance except seed mass, which tended to enhance germination at higher salinity. CONCLUSIONS Species responses to salinity exposure indicate high vulnerability of coastal systems to increased salinity stress, and variability among species could lead to shifts in community assembly and composition under sea level rise. These results can help guide coastal ecosystem conservation and restoration management decisions in the face of climate change.
Collapse
Affiliation(s)
- Seana K Walsh
- Department of Science and Conservation, National Tropical Botanical Garden, Kalāheo, Hawaiʻi, USA
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Dustin Wolkis
- Department of Science and Conservation, National Tropical Botanical Garden, Kalāheo, Hawaiʻi, USA
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raffaela M Abbriano
- Department of Science and Conservation, National Tropical Botanical Garden, Kalāheo, Hawaiʻi, USA
| | - Kasey E Barton
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, USA
| |
Collapse
|
155
|
Suonan J, Lu X, Li X, Hautier Y, Wang C. Nitrogen addition strengthens the stabilizing effect of biodiversity on productivity by increasing plant trait diversity and species asynchrony in the artificial grassland communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1301461. [PMID: 38053765 PMCID: PMC10694273 DOI: 10.3389/fpls.2023.1301461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Background and aims Nitrogen (N) enrichment usually weakens the stabilizing effect of biodiversity on productivity. However, previous studies focused on plant species richness and thus largely ignored the potential contributions of plant functional traits to stability, even though evidence is increasing that functional traits are stronger predictors than species richness of ecosystem functions. Methods We conducted a common garden experiment manipulating plant species richness and N addition levels to quantify effects of N addition on relations between species richness and functional trait identity and diversity underpinning the 'fast-slow' economics spectrum and community stability. Results Nitrogen addition had a minor effect on community stability but increased the positive effects of species richness on community stability. Increasing community stability was found in the species-rich communities dominated by fast species due to substantially increasing temporal mean productivity relative to its standard deviation. Furthermore, enhancement in 'fast-slow' functional diversity in species-rich communities dominated by fast species under N addition increased species asynchrony, resulting in a robust biodiversity-stability relationship under N addition the artificial grassland communities. Conclusion The findings demonstrate mechanistic links between plant species richness, 'fast-slow' functional traits, and community stability under N addition, suggesting that dynamics of biodiversity-stability relations under global changes are the results of species-specific responses of 'fast-slow' traits on the plant economics spectrum.
Collapse
Affiliation(s)
- Ji Suonan
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xuwei Lu
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
156
|
Kang P, Cheng J, Hu J, Jing Y, Wang J, Yang H, Ding X, Yan X. Quercus wutaishanica shrub affects temperate forest community composition and soil properties under different restoration stage. PLoS One 2023; 18:e0294159. [PMID: 37976250 PMCID: PMC10655981 DOI: 10.1371/journal.pone.0294159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Quercus wutaishanica is the dominant tree species in the natural ecosystem restoration of temperate forests in China, and it plays an active role in maintaining ecological balance. However, little is known about how ecosystem versatility develops during the restoration of forest ecosystems dominated by Q. wutaishanica. In this study, we investigated the species composition of the Q. wutaishanica community, soil nutrients, and their functional traits at various restoration stages, and comprehensively analyzed the correlations among them. At the early stage of restoration (10 years of restoration), there were Spiraea pubescens and Syringa pubescens in Q. wutaishanica community (87% of the total species), while had a larger niche width. In the middle of restoration (30 years of restoration), shannon and evenness indices were the largest, while soil total carbon, ammonium nitrogen and chlorophyll content of Q. wutaishanica leaves were the highest; among them, soil total carbon was 15.7% higher than that in 10 years of restoration, 32.4% higher than that in 40 years of restoration, ammonium nitrogen was 71.7% higher than that in 40 years of restoration, and chlorophyll content was 217.9% higher than that in 10 years of restoration, and 51.8% higher than that in 40 years of restoration. At the later stage of restoration (40 years of restoration), Lonicera ferdinandii occupied the dominant ecological niche, and soil available nitrogen, available phosphorus content and leaf thickness were the largest; while AN was 10.9% higher than that of 10 years of restoration, 16.5% higher than that of 30 years of restoration, AP was 60.6% higher than that of 10 years of restoration, 21.6% higher than that of 30 years of restoration, leaf thickness was 22.3% higher than that of 10 years of restoration, 84.9% higher than that of 30 years of restoration. However, the restriction of various soil nutrients was reduced. Our study highlighted the effectiveness of soil resource availability in plant communities during restoration, reduced competition for light among plants, and altered species richness. Furthermore, changes in the interrelationship between plant community composition and leaf functional traits of the dominant species responded positively to community restoration. These results further deepen our understanding of forest management and restoration of forest communities. In the future, it is necessary to comprehensively consider the influence of various factors on forest community restoration.
Collapse
Affiliation(s)
- Peng Kang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission, Yinchuan, China
| | - Jiming Cheng
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Jinpeng Hu
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Yongshun Jing
- Forest Tree Breeding Center, Liupanshan Forestry Bureau, Guyuan, China
| | - Jing Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission, Yinchuan, China
| | - Hui Yang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
| | - Xiaodong Ding
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission, Yinchuan, China
| | - Xingfu Yan
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission, Yinchuan, China
| |
Collapse
|
157
|
Wang Y, Wang Y, Yu F, Yi X. Phylogeny more than plant height and leaf area explains variance in seed mass. FRONTIERS IN PLANT SCIENCE 2023; 14:1266798. [PMID: 38034582 PMCID: PMC10687375 DOI: 10.3389/fpls.2023.1266798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Although variation in seed mass can be attributed to other plant functional traits such as plant height, leaf size, genome size, growth form, leaf N and phylogeny, until now, there has been little information on the relative contributions of these factors to variation in seed mass. We compiled data consisting of 1071 vascular plant species from the literature to quantify the relationships between seed mass, explanatory variables and phylogeny. Strong phylogenetic signals of these explanatory variables reflected inherited ancestral traits of the plant species. Without controlling phylogeny, growth form and leaf N are associated with seed mass. However, this association disappeared when accounting for phylogeny. Plant height, leaf area, and genome size showed consistent positive relationship with seed mass irrespective of phylogeny. Using phylogenetic partial R2s model, phylogeny explained 50.89% of the variance in seed mass, much more than plant height, leaf area, genome size, leaf N, and growth form explaining only 7.39%, 0.58%, 1.85%, 0.06% and 0.09%, respectively. Therefore, future ecological work investigating the evolution of seed size should be cautious given that phylogeny is the best overall predictor for seed mass. Our study provides a novel avenue for clarifying variation in functional traits across plant species, improving our better understanding of global patterns in plant traits.
Collapse
Affiliation(s)
- Yingnan Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
158
|
Jiang S, Zhang J, Tang Y, Li Z, Liu H, Wang L, Wu Y, Liang C. Plant functional traits and biodiversity can reveal the response of ecosystem functions to grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165636. [PMID: 37487897 DOI: 10.1016/j.scitotenv.2023.165636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Plant functional traits can elucidate the response of plant communities and ecosystems to biotic and abiotic disturbances. However, whether livestock consume more aboveground biomass (AGB) in communities dominated by species with 'acquisitive' traits or in communities where biodiversity is high is not well known. Here, we measured 22 functional traits of the grazing communities and control communities in a Mongolian Plateau desert steppe. The effects of grazing on AGB, CWM traits, species diversity, and functional diversity (FD) were analysed, furthermore, we estimated the grazing impact by using the log response ratio (LRR, an increasing value shows a higher grazing impact) and investigated the correlations between the LRR, plant growth, and community-weighted mean (CWM) traits and diversity indices. We found that grazing significantly increased the CWM dry matter content and carbon-to‑nitrogen ratio and decreased the CWM height, specific leaf area (SLA), and nitrogen and phosphorus contents. The AGB decreased, while species diversity and FD increased under grazing treatments. Additionally, we found that plant traits and biodiversity could predict the response of AGB to grazing, the LRR was higher in patches dominated by species with 'acquisitive' foliage and in patches with higher biodiversity; in these patches, plant growth was lower. In the study area, the response of CWM traits to grazing suggests an avoidance strategy, which may be more conducive for adapting to low resource utilization environments. Also, the relationship between the CWM traits and the LRR indicated that the effect of grazing on AGB was mainly related to the selective foraging of herbivores. In addition, patches preferred by livestock may not recover quickly, leading to slow growth and thus reduced biomass under grazing treatments after prolonged grazing.
Collapse
Affiliation(s)
- Shan Jiang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Yiwei Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Ministry of Education of China and Inner Mongolia Autonomous Region, Collaborative Innovation Centre for Grassland Ecological Security, Hohhot 010021, China
| | - Yantao Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
159
|
Wu X, Fu B, Wang S, Liu Y, Yao Y, Li Y, Xu Z, Liu J. Three main dimensions reflected by national SDG performance. Innovation (N Y) 2023; 4:100507. [PMID: 37744178 PMCID: PMC10514454 DOI: 10.1016/j.xinn.2023.100507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Unraveling the complexity of the 17 interacting sustainable development goals (SDGs) is crucial for their achievement. Empirically revealing the dimensions of the SDGs helps generalize the dominant features of SDGs and better understand their drivers. Here, using a database of 166 countries' progress toward achieving each individual SDG, we found that about 70% of the variability of national SDG performance can be captured by three dimensions: socioeconomic development at the expense of resource and climate, the environment, and development at the expense of equality. Moreover, these dimensions are mainly affected by the economy; as gross domestic product (GDP) per capita increases, the first dimension increases monotonically, the environment dimension decreases and then increases, and the inequality dimension increases and then decreases. Our findings indicate a dim prospect of eventually achieving all SDGs because of the conflicts between economic growth and resource and climate goals under the current development paradigm, highlighting the importance of sustainable transformation.
Collapse
Affiliation(s)
- Xutong Wu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Bojie Fu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yanxu Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Ying Yao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yingjie Li
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
| | - Zhenci Xu
- Department of Geography, The University of Hong Kong, Hong Kong 999077, China
| | - Jianguo Liu
- Center for Systems Integration and Sustainability, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
160
|
Tosini L, Cartereau M, Le Bagousse-Pinguet Y, Laffont-Schwob I, Prudent P, Farnet Da Silva AM, Montès N, Labrousse Y, Vassalo L, Folzer H. Plant biodiversity offsets negative effects of metals and metalloids soil multi-contamination on ecosystem multifunctionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165567. [PMID: 37459987 DOI: 10.1016/j.scitotenv.2023.165567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
Despite increasing metals and metalloids (MM) human-driven soil contamination, how it simultaneously alters biodiversity and ecosystem functioning remains unknown. We used a wide gradient of a 170-year-old MM soil multi-contamination in Mediterranean scrublands to assess the effects of soil multi-contamination on multiple plant biodiversity facets, microbial communities and ecosystem multifunctionality (EMF). We found an overall positive effect of plant biodiversity on EMF mediated by microbial communities, and allowing offsetting the negative impacts of MM soil multi-contamination, especially on soil water holding capacity and nitrogen content. The diversity of distant plant lineages was the key facet promoting EMF by enhancing microbial communities, whereas the subordinate species richness altered EMF. By developing a holistic approach of these complex relationships between soil multi-contamination, plant biodiversity, microbial communities and ecosystem functioning, our results reveal the potential of plant biodiversity, and especially the diversity of evolutionary distant species, to offset the alteration of ecosystem functioning by MM soil multi-contamination. In this worldwide decade of ecosystems restoration, our study helps to identify relevant facets of plant biodiversity promoting contaminated ecosystem functioning, which is crucial to guide and optimize management efforts aiming to restore ecosystems and preserve human health.
Collapse
Affiliation(s)
- Lorène Tosini
- Aix Marseille Univ, IRD, LPED, Marseille, France; Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | - Manuel Cartereau
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | | | | | | | | | | | | | | | - Hélène Folzer
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| |
Collapse
|
161
|
Fernández-Guisuraga JM, Marcos E, Sáenz de Miera LE, Ansola G, Pinto R, Calvo L. Short-term responses of ecosystem multifunctionality to fire severity are modulated by fire-induced impacts on plant and soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165477. [PMID: 37451468 DOI: 10.1016/j.scitotenv.2023.165477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
This study represents a first attempt to shed light into the mechanisms that modulate the response of ecosystem multifunctionality (EMF) to fire severity in post-fire landscapes. We specifically investigated the role played by fire-induced changes on above and belowground communities in the modulation of EMF responses at short-term after fire. For this purpose, we estimated EMF using an averaging approach from three ecosystem functions (carbon regulation, decomposition and soil fertility) and their standardized functional indicators in field plots burned at low and high fire severity 1-year after a wildfire occurred in a Mediterranean ecosystem in the central region of Spain. Plant taxonomic and functional richness, and the bacterial and fungal taxonomic richness, were measured in the plots as community properties with a potential intermediate control over fire severity effects on EMF. The ecological effects of fire severity on above and belowground communities were important in shaping EMF as evidenced by Structural Equation Modeling (SEM). Indeed, the evidenced shrinkage exerted by high fire severity on EMF at short-term after fire was not direct, but modulated by fire-induced effects on the plant functional richness and the microbial taxonomic richness. However, EMF variation was more strongly modulated by indirect effects of fire severity on the biodiversity of soil microbial communities, than by the effects on the plant communities. Particularly, the fungal community exerted the strongest intermediate control (standardized SEM β coefficient = 0.62), which can be linked to the differential response of bacterial (β = -0.36) and fungal (β = -0.84) communities to fire severity evidenced here. Our findings demonstrate that the effects of fire severity on above and belowground communities are important drivers of short-term ecosystem functioning. Efforts tailored to secure the provision of multiple functions should be focused on promoting the recovery on soil microbial communities under high-severity scenarios.
Collapse
Affiliation(s)
- José Manuel Fernández-Guisuraga
- Centro de Investigação e de Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain.
| | - Elena Marcos
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Luis E Sáenz de Miera
- Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Gemma Ansola
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Rayo Pinto
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| | - Leonor Calvo
- Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
162
|
Castro Sánchez-Bermejo P, Davrinche A, Matesanz S, Harpole WS, Haider S. Within-individual leaf trait variation increases with phenotypic integration in a subtropical tree diversity experiment. THE NEW PHYTOLOGIST 2023; 240:1390-1404. [PMID: 37710419 DOI: 10.1111/nph.19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Covariation of plant functional traits, that is, phenotypic integration, might constrain their variability. This was observed for inter- and intraspecific variation, but there is no evidence of a relationship between phenotypic integration and the functional variation within single plants (within-individual trait variation; WTV), which could be key to understand the extent of WTV in contexts like plant-plant interactions. We studied the relationship between WTV and phenotypic integration in c. 500 trees of 21 species in planted forest patches varying in species richness in subtropical China. Using visible and near-infrared spectroscopy (Vis-NIRS), we measured nine leaf morphological and chemical traits. For each tree, we assessed metrics of single and multitrait variation to assess WTV, and we used plant trait network properties based on trait correlations to quantify phenotypic integration. Against expectations, strong phenotypic integration within a tree led to greater variation across leaves. Not only this was true for single traits, but also the dispersion in a tree's multitrait hypervolume was positively associated with tree's phenotypic integration. Surprisingly, we only detected weak influence of the surrounding tree-species diversity on these relationships. Our study suggests that integrated phenotypes allow the variability of leaf phenotypes within the organism and supports that phenotypic integration prevents maladaptive variation.
Collapse
Affiliation(s)
- Pablo Castro Sánchez-Bermejo
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Andréa Davrinche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Research Centre for Ecological Change (REC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Silvia Matesanz
- Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
| | - W Stanley Harpole
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04103, Germany
| | - Sylvia Haider
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
- Leuphana University of Lüneburg, Institute of Ecology, Lüneburg, 21335, Germany
| |
Collapse
|
163
|
Zhang Y, Cao JJ, Yang QP, Wu MZ, Zhao Y, Kong DL. The worldwide allometric relationship in anatomical structures for plant roots. PLANT DIVERSITY 2023; 45:621-629. [PMID: 38197011 PMCID: PMC10772186 DOI: 10.1016/j.pld.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 01/11/2024]
Abstract
The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO2 concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.
Collapse
Affiliation(s)
- Yue Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing-Jing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qing-Pei Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming-Zuo Wu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - De-Liang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
164
|
Maitner B, Gallagher R, Svenning JC, Tietje M, Wenk EH, Eiserhardt WL. A global assessment of the Raunkiaeran shortfall in plants: geographic biases in our knowledge of plant traits. THE NEW PHYTOLOGIST 2023; 240:1345-1354. [PMID: 37369249 DOI: 10.1111/nph.18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 06/29/2023]
Abstract
This article is part of the Special Collection ‘Global plant diversity and distribution’. See https://www.newphytologist.org/global-plant-diversity for more details.
Collapse
Affiliation(s)
- Brian Maitner
- Department of Geography, University at Buffalo, 125a Wilkeson Quadrangle, Buffalo, NY, 14261, USA
| | - Rachael Gallagher
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jens-Christian Svenning
- Department of Biology, Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
| | - Elizabeth H Wenk
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2033, Australia
| | - Wolf L Eiserhardt
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Ny Munkegade 114, DK-8000, Aarhus C, Denmark
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, Surrey, UK
| |
Collapse
|
165
|
Piton G, Allison SD, Bahram M, Hildebrand F, Martiny JBH, Treseder KK, Martiny AC. Life history strategies of soil bacterial communities across global terrestrial biomes. Nat Microbiol 2023; 8:2093-2102. [PMID: 37798477 DOI: 10.1038/s41564-023-01465-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/08/2023] [Indexed: 10/07/2023]
Abstract
The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities. The emerging patterns show a triangle of life history strategies shaped by two trait dimensions, supporting previous theoretical and isolate-based studies. The first dimension ranges from streamlined genomes with simple metabolisms to larger genomes and expanded metabolic capacities. As metabolic capacities expand, bacterial communities increasingly differentiate along a second dimension that reflects a trade-off between increasing capacities for environmental responsiveness or for nutrient recycling. Random forest analyses show that soil pH, C:N ratio and precipitation patterns together drive the dominant life history strategy of soil bacterial communities and their biogeographic distribution. Our findings provide a trait-based framework to compare life history strategies of soil bacteria.
Collapse
Affiliation(s)
- Gabin Piton
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA.
- Eco&Sols, University Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - Steven D Allison
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, UK
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Adam C Martiny
- Department of Earth System Science, University of California, Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
166
|
Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, Zou Y, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Niinemets Ü, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Cazzolla Gatti R, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Valverde FC, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Finér L, Fischer M, Fletcher C, Fridman J, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Kucher D, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Monteagudo Mendoza A, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTF, Piotto D, Pitman NCA, Mendoza-Polo I, Poulsen AD, Poulsen JR, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schelhaas MJ, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miścicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Van Do T, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Westerlund B, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Zohner CM. The global biogeography of tree leaf form and habit. NATURE PLANTS 2023; 9:1795-1809. [PMID: 37872262 PMCID: PMC10654052 DOI: 10.1038/s41477-023-01543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Collapse
Affiliation(s)
- Haozhi Ma
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Yibiao Zou
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC - AGROTECNIO - CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, D.C., Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | | | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, Univ. Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, the Netherlands
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Tropical Forest and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St. Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | | | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Ben DeVries
- Department of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, Canada
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE, Université des Antilles Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brasil
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Jonas Fridman
- Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU, Umea, Sweden
| | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Martin Herold
- Helmholtz GFZ German Research Centre for Geosciences, Remote Sensing and Geoinformatics Section, Telegrafenberg, Potsdam, Germany
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Poznań University of Life Sciences, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | - Kuswata Kartawinata
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Dmitry Kucher
- Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land Ltd, Kirby Misperton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela (EDIUS), Santiago de Compostela, Spain
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium and Biodiversity Science, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Mytischi Branch of Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | | | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | | | | | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
- The Nature Conservancy, Boulder, CO, USA
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School for Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University Valladolid, Valladolid, Spain
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida and Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Center for Natural Climate Solutions, Conservation International, Arlington, VA, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE - Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
- Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | | | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
- Siberian Federal University, Krasnoyarsk, Russian Federation
| | | | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, the Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, French Guiana
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Stanislaw Miścicki
- Department of Forest Management, Dendrometry and Forest Economics, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, French Guiana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russian Federation
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russian Federation
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, the Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Agricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Bertil Westerlund
- Department of Forest Resource Management, Swedish University of Agricultural Sciences SLU, Umea, Sweden
| | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Hannsjoerg Woell
- Independent Researcher, Sommersbergseestrasse, Bad Aussee, Austria
| | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderick Zagt
- Tropenbos International, Wageningen, the Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
167
|
Zhu J, Zong N, Shi P, He Y, Yang X, Zhang Y, Jiang L. Resource co-limitation of community biomass but not structure of an alpine grassland. Ecology 2023; 104:e4167. [PMID: 37671849 DOI: 10.1002/ecy.4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/09/2023] [Accepted: 07/29/2023] [Indexed: 09/07/2023]
Abstract
Anthropogenic environmental changes are influencing the structure and function of many ecological communities, but their underlying mechanisms are often poorly understood. We conducted a 7-year field experiment to explore the ecological consequences of nitrogen (N) and phosphorous (P) enrichment in a high-altitude Tibetan alpine grassland. We found that the enrichment of both N and P, but not either alone, increased plant above- and belowground biomass. In contrast, N, but not P, enrichment reduced species richness and altered plant phylogenetic diversity and structure. Whereas plant species loss and changes in phylogenetic structure were mainly driven by higher soil manganese levels under N addition, they were mainly driven by increased plant belowground biomass under the addition of both N and P. Our study highlights the resource co-limitation of community biomass but not the structure of the study grassland, while also identifying soil metal toxicity and belowground competition as important mechanisms driving community changes following nutrient amendment.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ning Zong
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Peili Shi
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yunlong He
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
168
|
Gao Y, Tariq A, Zeng F, Li X, Sardans J, Liu C, Peñuelas J. Fine-root traits are devoted to the allocation of foliar phosphorus fractions of desert species under water and phosphorus-poor environments. PHYSIOLOGIA PLANTARUM 2023; 175:e14105. [PMID: 38148234 DOI: 10.1111/ppl.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Traits of leaves and fine roots are expected to predict the responses and adaptation of plants to their environments. Whether and how fine-root traits (FRTs) are associated with the allocation of foliar phosphorus (P) fractions of desert species in water- and P-poor environments, however, remains unclear. We exposed seedlings of Alhagi sparsifolia Shap. (hereafter Alhagi) treated with two water and four P-supply levels for three years in open-air pot experiments and measured the concentrations of foliar P fractions, foliar traits, and FRTs. The allocation proportion of foliar nucleic acid-P and acid phosphatase (APase) activity of fine roots were significantly higher by 45.94 and 53.3% in drought and no-P treatments relative to well-watered and high-P treatments, whereas foliar metabolic-P and structural-P were significantly lower by 3.70 and 5.26%. Allocation proportions of foliar structural-P and residual-P were positively correlated with fine-root P (FRP) concentration, but nucleic acid-P concentration was negatively correlated with FRP concentration. A tradeoff was found between the allocation proportion to all foliar P fractions relative to the FRP concentration, fine-root APase activity, and amounts of carboxylates, followed by fine-root morphological traits. The requirement for a link between the aboveground and underground tissues of Alhagi was generally higher in the drought than the well-watered treatment. Altering FRTs and the allocation of P to foliar nucleic acid-P were two coupled strategies of Alhagi under conditions of drought and/or low-P. These results advance our understanding of the strategies for allocating foliar P by mediating FRTs in drought and P-poor environments.
Collapse
Affiliation(s)
- Yanju Gao
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyi Li
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Chenggang Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
169
|
Schnitzer SA, DeFilippis DM, Aguilar A, Bernal B, Peréz S, Valdés A, Valdés S, Bernal F, Mendoza A, Castro B, Garcia-Leon M. Maximum stem diameter predicts liana population demography. Ecology 2023; 104:e4163. [PMID: 37679881 DOI: 10.1002/ecy.4163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Determining population demographic rates is fundamental to understanding differences in species' life-history strategies and their capacity to coexist. Calculating demographic rates, however, is challenging and requires long-term, large-scale censuses. Body size may serve as a simple predictor of demographic rate; can it act as a proxy for demographic rate when those data are unavailable? We tested the hypothesis that maximum body size predicts species' demographic rate using repeated censuses of the 77 most common liana species on the Barro Colorado Island, Panama (BCI) 50-ha plot. We found that maximum stem diameter does predict species' population turnover and demography. We also found that lianas on BCI can grow to the enormous diameter of 635 mm, indicating that they can store large amounts of carbon and compete intensely with tropical canopy trees. This study is the first to show that maximum stem diameter can predict plant species' demographic rates and that lianas can attain extremely large diameters. Understanding liana demography is particularly timely because lianas are increasing rapidly in many tropical forests, yet their species-level population dynamics remain chronically understudied. Determining per-species maximum liana diameters in additional forests will enable systematic comparative analyses of liana demography and potential influence across forest types.
Collapse
Affiliation(s)
- Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - David M DeFilippis
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Antonio Aguilar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Boris Bernal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Salomé Peréz
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Abelino Valdés
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Seberino Valdés
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Fidedigna Bernal
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Adrián Mendoza
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Biancolini Castro
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Maria Garcia-Leon
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
170
|
Lajoie G, Kembel SW. Data-driven identification of major axes of functional variation in bacteria. Environ Microbiol 2023; 25:2580-2591. [PMID: 37648438 DOI: 10.1111/1462-2920.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
The discovery of major axes of correlated functional variation among species and habitats has revealed the fundamental trade-offs structuring both functional and taxonomic diversity in eukaryotes such as plants. Whether such functional axes exist in the bacterial realm and whether they could explain bacterial taxonomic turnover among ecosystems remains unknown. Here, we use a data-driven approach to leverage global genomic and metagenomic datasets to reveal the existence of major axes of functional variation explaining both evolutionary differentiation within Bacteria and their ecological sorting across diverse habitats. We show that metagenomic variation among bacterial communities from various ecosystems is structured along a few axes of correlated functional pathways. Similar clusters of traits explained phylogenetic trait variation among >16,000 bacterial genomes, suggesting that functional turnover among bacterial communities from distinct habitats does not only result from the differential filtering of similar functions among communities, but also from phylogenetic correlations among these functions. Concordantly, functional pathways associated with trait clusters that were most important for defining functional turnover among bacterial communities were also those that had the highest phylogenetic signal in the bacterial genomic phylogeny. This study overall underlines the important role of evolutionary history in shaping contemporary distributions of bacteria across ecosystems.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| |
Collapse
|
171
|
Turtureanu PD, Pușcaș M, Podar D, Balázs ZR, Hurdu BI, Novikov A, Renaud J, Saillard A, Bec S, Șuteu D, Băcilă I, Choler P. Extent of intraspecific trait variability in ecologically central and marginal populations of a dominant alpine plant across European mountains. ANNALS OF BOTANY 2023; 132:335-347. [PMID: 37478315 PMCID: PMC10583199 DOI: 10.1093/aob/mcad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIMS Studying trait variability and restricted gene flow between populations of species can reveal species dynamics. Peripheral populations commonly exhibit lower genetic diversity and trait variability due to isolation and ecological marginality, unlike central populations experiencing gene flow and optimal conditions. This study focused on Carex curvula, the dominant species in alpine acidic meadows of European mountain regions. The species is sparser in dry areas such as the Pyrenees and Balkans, compared to the Central-Eastern Alps and Carpathians. We hypothesized that distinct population groups could be identified based on their mean functional trait values and their correlation with the environment; we predicted that ecologically marginal populations would have stronger trait correlations, lower within-population trait variability (intraspecific trait variability, ITV) and lower genetic diversity than populations of optimal habitats. METHODS Sampling was conducted in 34 populations that spanned the entire distribution range of C. curvula. We used hierarchical clustering to identify emergent functional groups of populations, defined by combinations of multiple traits associated with nutrient economy and drought tolerance (e.g. specific leaf area, anatomy). We contrasted the geographical distribution of these groups in relation to environment and genetic structure. We compared pairwise trait relationships, within-population trait variation (ITV) and neutral genetic diversity between groups. KEY RESULTS Our study identified emergent functional groups of populations. Those in the southernmost ranges, specifically the Pyrenees and Balkan region, showed drought-tolerant trait syndromes and correlated with indicators of limited water availability. While we noted a decline in population genetic diversity, we did not observe any significant changes in ITV in ecologically marginal (peripheral) populations. CONCLUSIONS Our research exemplifies the relationship between ecological marginality and geographical peripherality, which in this case study is linked to genetic depauperation but not to reduced ITV. Understanding these relationships is crucial for understanding the biogeographical factors shaping trait variation.
Collapse
Affiliation(s)
- Pavel Dan Turtureanu
- A. Borza Botanic Garden, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Emil G. Racoviță Institute, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Mihai Pușcaș
- A. Borza Botanic Garden, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Emil G. Racoviță Institute, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Dorina Podar
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Zoltán Robert Balázs
- Centre for Systems Biology, Biodiversity and Bioresources (3B), Babeș-Bolyai University, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
- Doctoral School of Integrative Biology, Babeș-Bolyai University, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
| | - Bogdan-Iuliu Hurdu
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Andriy Novikov
- Department of Biosystematics and Evolution, State Museum of Natural History of the NAS of Ukraine, 18 Teatralna Street, 79008 Lviv, Ukraine
| | - Julien Renaud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Amélie Saillard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Stéphane Bec
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Dana Șuteu
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Ioan Băcilă
- Institute of Biological Research, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Philippe Choler
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| |
Collapse
|
172
|
Gagnon E, Baldaszti L, Moonlight P, Knapp S, Lehmann CER, Särkinen T. Functional and ecological diversification of underground organs in Solanum. Front Genet 2023; 14:1231413. [PMID: 37886686 PMCID: PMC10597785 DOI: 10.3389/fgene.2023.1231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The evolution of geophytes in response to different environmental stressors is poorly understood largely due to the great morphological variation in underground plant organs, which includes species with rhizomatous structures or underground storage organs (USOs). Here we compare the evolution and ecological niche patterns of different geophytic organs in Solanum L., classified based on a functional definition and using a clade-based approach with an expert-verified specimen occurrence dataset. Results from PERMANOVA and Phylogenetic ANOVAs indicate that geophytic species occupy drier areas, with rhizomatous species found in the hottest areas whereas species with USOs are restricted to cooler areas in the montane tropics. In addition, rhizomatous species appear to be adapted to fire-driven disturbance, in contrast to species with USOs that appear to be adapted to prolonged climatic disturbance such as unfavorable growing conditions due to drought and cold. We also show that the evolution of rhizome-like structures leads to changes in the relationship between range size and niche breadth. Ancestral state reconstruction shows that in Solanum rhizomatous species are evolutionarily more labile compared to species with USOs. Our results suggest that underground organs enable plants to shift their niches towards distinct extreme environmental conditions and have different evolutionary constraints.
Collapse
Affiliation(s)
- Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Ludwig Baldaszti
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Moonlight
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Caroline E. R. Lehmann
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiina Särkinen
- Tropical Diversity Section, Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
173
|
Parra A, Pratt RB, Jacobsen AL, Chamorro D, Torres I, Moreno JM. Functional response and resistance to drought in seedlings of six shrub species with contrasting leaf traits from the Mediterranean Basin and California. TREE PHYSIOLOGY 2023; 43:1758-1771. [PMID: 37369036 DOI: 10.1093/treephys/tpad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Extreme drought events during post-fire regeneration are becoming increasingly frequent in Mediterranean-type ecosystems. Understanding how plants with different traits and origins respond to such conditions during early life stages is therefore critical for assessing the effect of climate change. Here, seedlings of three Cistus (semi-deciduous malacophylls from the Mediterranean Basin) and three Ceanothus (evergreen sclerophylls from California) species, two post-fire seeder genera with contrasting leaf traits, were subjected to complete water deprivation for 3 months in a common garden experiment. The leaf and plant structure and plant tissue water relations were characterized before the drought, and the functional responses (water availability, gas exchange and fluorescence) were monitored during the drought. Both genera exhibited contrasting leaf structure and tissue water relations traits, with higher leaf area and specific leaf area as well as higher osmotic potential at maximum turgor and turgor loss point in Cistus than Ceanothus. During drought, Ceanothus showed a more conservative use of water than Cistus, with a water potential less sensitive to decreasing soil moisture and a strong decline in photosynthesis and stomatal conductance in response to water deficit, but also a level of fluorescence more responsive to drought than Cistus. However, we could not find a different degree of drought resistance between the genera. This was particularly clear between Cistus ladanifer L. and Ceanothus pauciflorus DC., the two most functionally contrasting species, but at the same time, the two most drought-resistant. Our findings demonstrate that species with different leaf traits and functional responses to water stress may not differ in their degree of drought resistance, at least during the seedling stage. This underlines the need to take general categorizations by genus or functional types with caution and to deepen our knowledge about the Mediterranean-type species ecophysiology, especially during early life stages, in order to anticipate their vulnerability to climate change.
Collapse
Affiliation(s)
- Antonio Parra
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - R Brandon Pratt
- Department of Biology, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
| | - Daniel Chamorro
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - Iván Torres
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| | - José M Moreno
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Av. Carlos III s/n, 45071 Toledo, Spain
| |
Collapse
|
174
|
Cui X, Dai D, Huang C, Wang B, Li S, You C, Paterson AM, Perry GLW, Buckley HL, Cubino JP, Wyse SV, Alam MA, Zhou S, Xiao L, Cao D, Xu Z, Curran TJ. Climatic conditions affect shoot flammability by influencing flammability-related functional traits in nonfire-prone habitats. THE NEW PHYTOLOGIST 2023; 240:105-113. [PMID: 36960541 DOI: 10.1111/nph.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Plant flammability is an important driver of wildfires, and flammability itself is determined by several plant functional traits. While many plant traits are influenced by climatic conditions, the interaction between climatic conditions and plant flammability has rarely been investigated. Here, we explored the relationships among climatic conditions, shoot-level flammability components, and flammability-related functional traits for 186 plant species from fire-prone and nonfire-prone habitats. For species originating from nonfire-prone habitats, those from warmer areas tended to have lower shoot moisture content and larger leaves, and had higher shoot flammability with higher ignitibility, combustibility, and sustainability. Plants in wetter areas tended to have lower shoot flammability with lower combustibility and sustainability due to higher shoot moisture contents. In fire-prone habitats, shoot flammability was not significantly related to any climatic factor. Our study suggests that for species originating in nonfire-prone habitats, climatic conditions have influenced plant flammability by shifting flammability-related functional traits, including leaf size and shoot moisture content. Climate does not predict shoot flammability in species from fire-prone habitats; here, fire regimes may have an important role in shaping plant flammability. Understanding these nuances in the determinants of plant flammability is important in an increasingly fire-prone world.
Collapse
Affiliation(s)
- Xinglei Cui
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Dachuan Dai
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congde Huang
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Bilei Wang
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuting Li
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengming You
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Adrian M Paterson
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Josep Padullés Cubino
- Centre for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 8193, Spain
| | - Sarah V Wyse
- School of Forestry, University of Canterbury, Christchurch, 7910, New Zealand
| | - Md Azharul Alam
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| | - Shixing Zhou
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Lin Xiao
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongyu Cao
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenfeng Xu
- Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, National Forestry and Grassland Administration, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, National Forestry and Grassland Administration, Chengdu, 611130, China
| | - Timothy J Curran
- Department of Pest-management and Conservation, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
175
|
Ni M, Luo H, Xu H, Chu C, Fang S. High temperature can improve the performance of invasive plants by facilitating root growth. AMERICAN JOURNAL OF BOTANY 2023; 110:e16227. [PMID: 37561668 DOI: 10.1002/ajb2.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
PREMISE The ever-increasing temperatures of the Anthropocene may facilitate plant invasions. To date, studies of temperature effects on alien plants have mainly focused on aboveground plant traits but ignored belowground traits, which may confound predictions of plant invasion risks. METHODS The temperature effects on the root growth dynamics of two alien shrubs, invasive Mimosa sepiaria and naturalized Corchorus capsulari, were studied using a 3D, transparent growth system under five temperature treatments (day/night: 18°C/13°C to 34°C/29°C) that cover the present and future warming temperature scenarios in China. We measured root depth and width growth in response to temperature treatments over 84 days. We also investigated intra- and interspecific competition of paired plants of the two species grown together at the five temperatures. RESULTS Shoot growth of M. sepiaria and C. capsularis was optimal at the mid-range temperature. Root growth, however, was faster at the highest temperature (34°C/29°C) for M. sepiaria, but decreased for C. capsularis as temperatures increased. Root depth growth was more sensitive than root width for both species during neighbor competition. Compared to C. capsularis, M. sepiaria had relatively greater advantage during intra- and interspecific competition with increasing temperature, possibly because of its better root growth at high temperatures. CONCLUSIONS These results suggest that temperature increases can improve the performance of some alien plants by facilitating width and depth growth of their roots. This enhancement requires serious attention when managing and predicting invasion risk.
Collapse
Affiliation(s)
- Ming Ni
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongxia Luo
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suqin Fang
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
176
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
177
|
Ciccarelli D, Bona C, Carta A. Coordination between leaf and root traits in Mediterranean coastal dune plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:973-980. [PMID: 37429743 DOI: 10.1111/plb.13562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Plant trait-based functional spectra are crucial to assess ecosystem functions and services. Whilst most research has focused on aboveground vegetative traits (leaf economic spectrum, LES), contrasting evidence on any coordination between the LES and root economic spectrum (RES) has been reported. Studying spectra variation along environmental gradients and accounting for species' phylogenetic relatedness may help to elucidate the strength of coordination between above- and belowground trait variation. We focused on leaf and root traits of 39 species sampled in three distinct habitats (front, back and slack) along a shoreline-inland gradient on coastal dunes. We tested, within a phylogenetic comparative framework, for the presence of the LES and RES, for any coordination between these spectra, and explored their relation to variation in ecological strategies along this gradient. In each habitat, three-quarters of trait variation is captured in two-dimensional spectra, with species' phylogenetic relatedness moderately influencing coordination and trade-off between traits. Along the shoreline-inland gradient, aboveground traits support the LES in all habitats. Belowground traits are consistent with the RES in the back-habitat only, where the environmental constraints are weaker, and a coordination between leaf and root traits was also found, supporting the whole-plant spectrum (PES). This study confirms the complexity when seeking any correlation between the LES and RES in ecosystems characterized by multiple environmental pressures, such as those investigated here. Changes in traits adopted to resist environmental constraints are similar among species, independent of their evolutionary relatedness, thus explaining the low phylogenetic contribution in support of our results.
Collapse
Affiliation(s)
- D Ciccarelli
- Department of Biology, University of Pisa, Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Pisa, Italy
| | - C Bona
- Department of Botany, Federal University of Paraná, Curitiba, Brazil
| | - A Carta
- Department of Biology, University of Pisa, Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Pisa, Italy
| |
Collapse
|
178
|
Fernández-Pascual E, Carta A, Rosbakh S, Guja L, Phartyal SS, Silveira FAO, Chen SC, Larson JE, Jiménez-Alfaro B. SeedArc, a global archive of primary seed germination data. THE NEW PHYTOLOGIST 2023; 240:466-470. [PMID: 37533134 DOI: 10.1111/nph.19143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Eduardo Fernández-Pascual
- IMIB Biodiversity Research Institute (University of Oviedo - CSIC - Principality of Asturias), University of Oviedo, E-33600, Mieres, Spain
| | - Angelino Carta
- Department of Biology, Botany Unit, University of Pisa, 56122, Pisa, Italy
- CIRSEC - Centre for Climate Change Impact, University of Pisa, 56122, Pisa, Italy
| | - Sergey Rosbakh
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Lydia Guja
- National Seed Bank, Australian National Botanic Gardens, Parks Australia, 2601, Acton, ACT, Australia
- Centre for Australian National Biodiversity Research (A Joint Venture Between Parks Australia and CSIRO), CSIRO, 2601, Acton, ACT, Australia
| | - Shyam S Phartyal
- School of Ecology and Environment Studies, Nalanda University, 803116, Rajgir, India
| | - Fernando A O Silveira
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, 31320290, Belo Horizonte, Brazil
| | - Si-Chong Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, RH176TN, Wakehurst, UK
| | - Julie E Larson
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, 97720, USA
| | - Borja Jiménez-Alfaro
- IMIB Biodiversity Research Institute (University of Oviedo - CSIC - Principality of Asturias), University of Oviedo, E-33600, Mieres, Spain
| |
Collapse
|
179
|
Schmera D, Ricotta C, Podani J. Components of functional diversity revisited: A new classification and its theoretical and practical implications. Ecol Evol 2023; 13:e10614. [PMID: 37841225 PMCID: PMC10570903 DOI: 10.1002/ece3.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Functional diversity is regarded as a key concept for understanding the link between ecosystem function and biodiversity. The different and ecologically well-defined aspects of the concept are reflected by the so-called functional components, for example, functional richness and divergence. Many authors proposed that components be distinguished according to the multivariate technique on which they rely, but more recent studies suggest that several multivariate techniques, providing different functional representations (such as dendrograms and ordinations) of the community can in fact express the same functional component. Here, we review the relevant literature and find that (1) general ecological acceptance of the field is hampered by ambiguous terminology and (2) our understanding of the role of multivariate techniques in defining components is unclear. To address these issues, we provide new definitions for the three basic functional diversity components namely functional richness, functional divergence and functional regularity. In addition, we present a classification of presence-/absence-based approaches suitable for quantifying these components. We focus exclusively on the binary case for its relative simplicity. We find illogical, as well as logical but unused combinations of components and representations; and reveal that components can be quantified almost independently from the functional representation of the community. Finally, theoretical and practical implications of the new classification are discussed.
Collapse
Affiliation(s)
- Dénes Schmera
- Balaton Limnological Research InstituteTihanyHungary
- National Laboratory for Water Science and Water SecurityBalaton Limnological Research InstituteTihanyHungary
| | - Carlo Ricotta
- Department of Environmental BiologyUniversity of Rome ‘La Sapienza’RomeItaly
| | - János Podani
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of BiologyEötvös UniversityBudapestHungary
- Institute of Evolution, Centre for Ecological ResearchBudapestHungary
| |
Collapse
|
180
|
Kassout J, Hmimsa Y, Fatehi SE, Kadaoui K, Houssni M, Chakkour S, Sahli A, El Chami MA, Ariza-Mateos D, Palacios-Rodríguez G, Navarro-Cerrillo RM, Ater M. Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia siliqua L. of Morocco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3447. [PMID: 37836187 PMCID: PMC10575131 DOI: 10.3390/plants12193447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The carob tree (Ceratonia siliqua L.) is a significant fruit tree in the Mediterranean region with cultural, biological, and ecological importance. Despite its importance, intraspecific trait variability (ITV) in carob trees has been largely overlooked in previous studies. Understanding ITV and its relationship with environmental conditions is crucial for conservation and breeding programs. In this study, we investigated the variability of carob pod and seed-related traits across different ecological scales in 25 studied populations in Morocco. Significant differences in morphological traits were observed between carob populations at various ecological levels, and pod-related traits exhibited greater variability than seed traits. Correlation analysis revealed strong associations between carob morphological traits and environmental conditions, with altitude and aridity index playing an influential role. The aridity gradient was strongly related to changes in pod size, seed number, and size, as well as seed yield. Our findings highlight an important ITV reaching 45% at the intra-population level, 36.5% at the inter-geographic level, and 30% at the inter-population level. Overall, this study contributes valuable insights into the ecology and adaptation of carob trees, emphasizing the importance of considering intraspecific variability when studying this remarkable species. This knowledge is critical for addressing the challenges posed by climate change and human activities on the long-term survival and ecological functioning of carob populations.
Collapse
Affiliation(s)
- Jalal Kassout
- Regional Center of Agricultural Research of Marrakech, National Institute of Agricultural Research, Avenue Ennasr, P.O. Box 415, Rabat Principale, Rabat 10090, Morocco
| | - Younes Hmimsa
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Salama El Fatehi
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
- TEDAEEP Team Research, Polydisciplinary Faculty of Larache (FPL), University of Abdelmalek Essaâdi, P.O. Box 745, Larache 92000, Morocco
| | - Khalil Kadaoui
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mhammad Houssni
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Soufian Chakkour
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Abdelouahab Sahli
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| | - Mohamad Ali El Chami
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - David Ariza-Mateos
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Guillermo Palacios-Rodríguez
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Rafael M. Navarro-Cerrillo
- Forestry Engineering Department, ERSAF Research Group RNM-360, University of Córdoba, 14014 Córdoba, Spain; (M.A.E.C.); (D.A.-M.); (G.P.-R.); (R.M.N.-C.)
| | - Mohamed Ater
- Laboratory of Applied Botany, Bio-Agrodiversity Team, Faculty of Sciences, University of Abdelmalek Essaâdi, Tétouan 93030, Morocco; (Y.H.); (S.E.F.); (K.K.); (M.H.); (S.C.); (A.S.); (M.A.)
| |
Collapse
|
181
|
Umaña MN. The interplay of drought and hurricanes on tree recovery: insights from dynamic and weak functional responses. Proc Biol Sci 2023; 290:20231732. [PMID: 37727090 PMCID: PMC10509583 DOI: 10.1098/rspb.2023.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Identifying the functional traits that enable recovery after extreme events is necessary for assessing forest persistence and functioning. However, the variability of traits mediating responses to disturbances presents a significant limitation, as these relationships may be contingent on the type of disturbance and change over time. This study investigates the effects of traits on tree growth-for short and longer terms-in response to two vastly different extreme climatic events (droughts and hurricanes) in a Puerto Rican forest. I found that trees display a dynamic functional response to extreme climatic events. Leaf traits associated with efficient photosynthesis mediated faster tree growth after hurricanes, while trees with low wood density and high water use efficiency displayed faster growth after drought. In the longer term, over both drought and hurricanes, tree size was the only significant predictor of growth, with faster growth for smaller trees. However, despite finding significant trait-growth relationships, the predictive power of traits was overall low. As the frequency of extreme events increases due to climate change, understanding the dynamic relationships between traits and tree growth is necessary for identifying strategies for recovery.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
182
|
Zimmer A, Beach T, Riva Regalado S, Salcedo Aliaga J, Cruz Encarnación R, Anthelme F. Llamas (Llama glama) enhance proglacial ecosystem development in Cordillera Blanca, Peru. Sci Rep 2023; 13:15936. [PMID: 37743358 PMCID: PMC10518316 DOI: 10.1038/s41598-023-41458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
Worldwide, mountain glaciers are shrinking rapidly. Consequently, large areas are becoming available for the development of novel alpine ecosystems. These harsh environments, however, delay primary succession. In this study with a local community, we conducted an inclusion experiment to investigate whether Llama glama influences soils and vegetation primary succession following glacial retreat. At the foot of the Uruashraju glacier in the Cordillera Blanca, Peru (~ 4680 m.a.s.l.), we established four llama inclusion plots and four control plots that we studied from 2019 to 2022, 24-40 years after deglacierization. After three years, the llama plots had significantly increased soil organic carbon and soil nitrogen. In the llama plots, we found a large, significant increase in vascular plant cover (+ 57%) between the second and third years of experimentation, and we identified four new species that were not present in 2019. Our results suggest that Llama glama, through their latrine behavior and role as a seed disperser, enhances the primary succession and novel ecosystem formation in recently deglacierized landscapes. Our study provides scientific support that rewilding of native Andean camelids may favor adaptation to glacier retreat and inform conservation and management strategies in proglacial landscapes.
Collapse
Affiliation(s)
- Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA.
| | - Timothy Beach
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA
| | - Sebastián Riva Regalado
- Laboratorio de Florística, Departamento de Dicotiledóneas, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Jean Salcedo Aliaga
- Departamento de Etnobotánica y Botánica Económica, Museo de Historia Natural. Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Rolando Cruz Encarnación
- Área de Evaluación de Glaciares y Lagunas, Autoridad Nacional del Agua, Huaraz, Peru
- Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Peru
| | - Fabien Anthelme
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| |
Collapse
|
183
|
Duan X. Stoichiometric characteristics of woody plant leaves and responses to climate and soil factors in China. PLoS One 2023; 18:e0291957. [PMID: 37733819 PMCID: PMC10513206 DOI: 10.1371/journal.pone.0291957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
The main research content of the field of ecological stoichiometry is the energy of various chemical elements and the interaction between organisms and the environment throughout ecological processes. Nitrogen and phosphorus are the main elements required for the growth and development of plants and these also form the constituent basis of biological organisms. Both elements interact and jointly regulate the growth and development of plants, and their element ratios are an indication of the nutrient utilization rate and nutrient limitation status of plants. Previous research developed a general biogeography model of the stoichiometric relationship between nitrogen and phosphorus in plant leaves on a global scale. Further, it was shown that the relative rate of nitrogen uptake by leaves was lower than that of phosphorus, and the scaling exponent of nitrogen and phosphorus was 2/3. However, it is not clear how the stoichiometric values of nitrogen and phosphorus, especially their scaling exponents, change in the leaves of Chinese woody plants in response to changing environmental conditions. Therefore, data sets of leaf nitrogen and phosphorus concentrations, and nitrogen to phosphorus ratios in Chinese woody plants were compiled and classified according to different life forms. The overall average concentrations of nitrogen and phosphorus in leaves were 20.77 ± 8.12 mg g-1 and 1.58 ± 1.00 mg g-1, respectively. The contents of nitrogen and phosphorus in leaves of deciduous plants were significantly higher than those of evergreen plants. In leaves, life form is the main driving factor of nitrogen content, and mean annual temperature is the main driving factor of phosphorus content; soil available nitrogen is the main driving factor of the nitrogen to phosphorus ratio. These values can be used for comparison with other studies. In addition, the scale index was found to be significantly different among different life forms. The scaling exponents of N-P of woody plants of different life forms, such as trees, shrubs, evergreen, deciduous, and coniferous plants are 0.67, 0.72, 0.63, 0.72, and 0.66, respectively. The N-P scaling exponent of shrubs was higher than that of trees, and that of deciduous plants was higher than that of evergreen plants. These results suggest that the internal attributes of different life forms, the growth rate related to phosphorus, and the relative nutrient availability of soil are the reasons for the unsteady relationship between nitrogen and phosphorus in leaves.
Collapse
|
184
|
Schönbeck L, Arteaga M, Mirza H, Coleman M, Mitchell D, Huang X, Ortiz H, Santiago LS. Plant physiological indicators for optimizing conservation outcomes. CONSERVATION PHYSIOLOGY 2023; 11:coad073. [PMID: 37711583 PMCID: PMC10498484 DOI: 10.1093/conphys/coad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.
Collapse
Affiliation(s)
- Leonie Schönbeck
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Marc Arteaga
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Humera Mirza
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Mitchell Coleman
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Tejon Ranch Conservancy, Frazier Park, CA 93225, USA
| | - Denise Mitchell
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Xinyi Huang
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Haile Ortiz
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Louis S Santiago
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092. Balboa, Ancon, Panama, Republic of Panama
| |
Collapse
|
185
|
Ceriani A, Dalle Fratte M, Agosto G, Montagnoli A, Cerabolini BEL. Using Plant Functional Traits to Define the Biomass Energy Potential of Invasive Alien Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:3198. [PMID: 37765361 PMCID: PMC10535227 DOI: 10.3390/plants12183198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The eradication of invasive alien plant species (IAPS) is mandatory worldwide, but the resulting biomass is still considered waste. The energy use of biomasses obtained from IAPS eradication may represent ecological and economic benefits, creating synergies with restoration projects. We evaluated whether the growth forms and functional types identified using the functional space of 63 IAPS corresponded to a possible bioenergy use through multivariate analysis techniques. We extracted leaf and nutrient traits and Grime's CSR plant strategies from an existing database. We calculated the carbon-to-nitrogen ratio (C:N) and gross heating value (GHV) as indicators of biochemical or thermal processes, respectively. For 10 species, we measured the above-ground biomass C:N and GHV (including leaves, stems and branches) and correlated them with those of leaves and with plant adaptive strategies. We identified four groups of IAPS indicative of the main trade-offs between plant economics and size variation, which respectively correlated with C:N and GHV. Herbaceous IAPS were better suited to biochemical processes, and woody IAPS to thermal ones. Overall, Grime's CSR strategies were the best tool to define the IAPS bioenergy potential. In the long term, competitive and ruderal IAPSs can represent a reusable feedstock until their complete eradication.
Collapse
Affiliation(s)
- Alex Ceriani
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Michele Dalle Fratte
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Gustavo Agosto
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | | |
Collapse
|
186
|
Bürli S, Ensslin A, Kempel A, Fischer M. Are rare plant species less resistant than common ones to herbivores? A multi-plant species study using above- and below-ground generalist herbivores. Ecol Evol 2023; 13:e10482. [PMID: 37674652 PMCID: PMC10480044 DOI: 10.1002/ece3.10482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Rare plant species are suggested to be less resistant to herbivores than common species. Their lower apparency and the fact that they often live in isolated populations, resulting in fewer herbivore encounters, might have led to the evolution of reduced defences. Moreover, their frequent lower levels of genetic diversity compared with common species could negatively affect their resistance against enemies. However, the hypothesis that plant resistance depends on plant regional and local rarity, independently of habitat and competitive and growth strategy, lacks evidence. To test this hypothesis, we assessed the performance and preference of one belowground and three aboveground generalist invertebrate herbivores from different taxonomic groups as indicators of plant resistance. Herbivores were fed a total of 62 regionally and locally rare and common plant species from Switzerland. We accounted for differences in a plant's growth and competitive strategy and habitat resource availability. We found that regionally and locally rare and common plant species did not generally differ in their resistance to most generalist herbivores. However, one herbivore species even performed better and preferred locally and regionally common plant species over rarer ones, indicating that common species are not more resistant, but tend to be less resistant. We also found that all herbivore species consistently performed better on competitive and large plant species, although different herbivore species generally preferred and performed better on different plant species. The latter indicates that the use of generalist herbivores as indicators of plant-resistance levels can be misleading. Synthesis: Our results show that rare plant species are not inherently less resistant than common ones to herbivores. Instead, our results suggest that the ability of plants to allocate resources away from defence towards enhancing their competitive ability might have allowed plants to tolerate herbivory, and to become locally and regionally common.
Collapse
Affiliation(s)
- Sarah Bürli
- Botanical Garden of the University of BernBernSwitzerland
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Faculty of Health and Environmental SciencesAucklandNew Zealand
| | - Andreas Ensslin
- Botanical Garden of the University of BernBernSwitzerland
- Conservatory and Botanic Garden of the City of GenevaChambésySwitzerland
| | - Anne Kempel
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERCDavosSwitzerland
| | - Markus Fischer
- Botanical Garden of the University of BernBernSwitzerland
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
187
|
Zhao C, Lin Q, Tian D, Ji C, Shen H, Fan D, Wang X, Fang J. Nitrogen addition promotes conservative resource-use strategies via aggravating phosphorus limitation of evergreen trees in subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164047. [PMID: 37187388 DOI: 10.1016/j.scitotenv.2023.164047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Changti Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Quanhong Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Di Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Dayong Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Xiangping Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
188
|
Walker TWN, Schrodt F, Allard PM, Defossez E, Jassey VEJ, Schuman MC, Alexander JM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, van Dam NM, David B, Descombes P, Endara MJ, Fernandez C, Forrister D, Gargallo-Garriga A, Glauser G, Marr S, Neumann S, Pellissier L, Peters K, Rasmann S, Roessner U, Salguero-Gómez R, Sardans J, Weckwerth W, Wolfender JL, Peñuelas J. Leaf metabolic traits reveal hidden dimensions of plant form and function. SCIENCE ADVANCES 2023; 9:eadi4029. [PMID: 37647404 PMCID: PMC10468135 DOI: 10.1126/sciadv.adi4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.
Collapse
Affiliation(s)
- Tom W. N. Walker
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Franziska Schrodt
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pierre-Marie Allard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Defossez
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Vincent E. J. Jassey
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Meredith C. Schuman
- Departments of Geography and Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jake M. Alexander
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oliver Baines
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Virginie Baldy
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Richard D. Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona 08028, Spain
| | - Phyllis D. Coley
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole M. van Dam
- Leibniz Institute of Vegetable and Ornamental crops (IGZ), 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Bruno David
- Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 31562 Toulouse, France
| | - Patrice Descombes
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
- Musée et Jardins botaniques cantonaux, 1007 Lausanne, Switzerland
| | - María-José Endara
- Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas, 170124 Quito, Ecuador
| | - Catherine Fernandez
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Dale Forrister
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Gaëtan Glauser
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Sue Marr
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Steffen Neumann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
| | - Loïc Pellissier
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Kristian Peters
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Ute Roessner
- Research School of Biology, The Australian National University, 2601 Acton, Australia
| | | | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Wolfram Weckwerth
- Molecular Systems Biology, Department of Functional and Evolutionary Ecology, 1010 University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, 1010 University of Vienna, Vienna, Austria
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
189
|
Nadal M, Quintanilla LG, Pons-Perpinyà J, Lima VF, Gago J, Aranda I. Leaf structure and water relations of an allotetraploid Mediterranean fern and its diploid parents. PHYSIOLOGIA PLANTARUM 2023; 175:e14043. [PMID: 37882284 DOI: 10.1111/ppl.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Allopolyploidy is a common speciation mechanism in plants; however, its physiological and ecological consequences in niche partitioning have been scarcely studied. In this sense, leaf traits are good proxies to study the adaptive capacity of allopolyploids and diploid parents to their respective environmental conditions. In the present work, leaf water relations (assessed through pressure-volume curves) and structural and anatomical traits of the allotetraploid fern Oeosporangium tinaei and its diploid parents, Oeosporangium hispanicum and Oeosporangium pteridioides, were studied under controlled conditions in response to a water stress (WS) cycle. O. hispanicum showed the lowest osmotic potential at turgor loss point (πtlp ) and leaf capacitance, together with higher leaf mass per area (LMA), leaf thickness (LT), leaf density (LD), and leaf dry matter content (LDMC), whereas O. pteridioides presented the opposite set of traits (high πtlp and capacitance, and low LMA, LT, LD, and LDMC). O. tinaei showed an intermediate position for most of the studied traits. The responsiveness (osmotic and elastic adjustments) to WS was low, although most of the traits explained the segregation of the three species across a range of drought tolerance according to the rank: O. hispanicum > O. tinaei > O. pteridioides. These trait differences may underlie the niche segregation among coexisting populations of the three species in the Mediterranean basin.
Collapse
Affiliation(s)
- Miquel Nadal
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Zaragoza, Spain
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Luis G Quintanilla
- School of Environmental Sciences and Technology (ESCET), University Rey Juan Carlos, Móstoles, Spain
| | - Joan Pons-Perpinyà
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Jorge Gago
- Agro-Environmental and Water Economics Institute (INAGEA), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Ismael Aranda
- Institute of Forest Sciences, National Institute for Agricultural and Food Research and Technology, Spanish National Research Council (ICIFOR-INIA-CSIC), Madrid, Spain
| |
Collapse
|
190
|
Umaña MN, Needham J, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Uriarte M, Zimmerman JK. Demographic trade-offs and functional shifts in a hurricane-impacted tropical forest. ANNALS OF BOTANY 2023; 131:1051-1060. [PMID: 36702550 PMCID: PMC10457028 DOI: 10.1093/aob/mcad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS Understanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow-fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. METHODS We analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. KEY RESULTS The previously identified growth-survival trade-off was not observed. Instead, we identified a fecundity-growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. CONCLUSIONS Our study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.
Collapse
Affiliation(s)
- María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Jessica Needham
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras, PR 00936, USA
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556, USA
| | - Jill Thompson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - María Uriarte
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jess K Zimmerman
- Department of Biology, University of Puerto Rico, Río Piedras, PR 00931, USA
- Department of Environmental Sciences, University of Puerto Rico, Río Piedras, PR 00936, USA
| |
Collapse
|
191
|
Lammerant R, Rita A, Borghetti M, Muscarella R. Water-limited environments affect the association between functional diversity and forest productivity. Ecol Evol 2023; 13:e10406. [PMID: 37560182 PMCID: PMC10408253 DOI: 10.1002/ece3.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The link between biodiversity and ecosystem function can depend on environmental conditions. This contingency can impede our ability to predict how biodiversity-ecosystem function (BEF) relationships will respond to future environmental change, causing a clear need to explore the processes underlying shifts in BEF relationships across large spatial scales and broad environmental gradients. We compiled a dataset on five functional traits (maximum height, wood density, specific leaf area [SLA], seed size, and xylem vulnerability to embolism [P50]), covering 78%-90% of the tree species in the National Forest Inventory from Italy, to test (i) how a water limitation gradient shapes the functional composition and diversity of forests, (ii) how functional composition and diversity of trees relate to forest annual increment via mass ratio and complementarity effects, and (iii) how the relationship between functional diversity and annual increment varies between Mediterranean and temperate climate regions. Functional composition varied with water limitation; tree communities tended to have more conservative traits in sites with higher levels of water limitation. The response of functional diversity differed among traits and climatic regions but among temperate forest plots, we found a consistent increase of functional diversity with water limitation. Tree diversity was positively associated with annual increment of Italian forests through a combination of mass ratio and niche complementarity effects, but the relative importance of these effects depended on the trait and range of climate considered. Specifically, niche complementarity effects were more strongly associated with annual increment in the Mediterranean compared to temperate forests. Synthesis: Overall, our results suggest that biodiversity mediates forest annual increment under water-limited conditions by promoting beneficial interactions between species and complementarity in resource use. Our work highlights the importance of conserving functional diversity for future forest management to maintain forest annual increment under the expected increase in intensity and frequency of drought.
Collapse
Affiliation(s)
- Roel Lammerant
- Department of Ecology & GeneticsUppsala UniversityUppsalaSweden
- Present address:
Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Angelo Rita
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPortici (Napoli)Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari ed AmbientaliUniversità degli Studi della BasilicataPotenzaItaly
| | | |
Collapse
|
192
|
Yang J, Wang Z, Pan Y, Zheng Y. Woody plant functional traits and phylogenetic signals correlate with urbanization in remnant forest patches. Ecol Evol 2023; 13:e10366. [PMID: 37529580 PMCID: PMC10388403 DOI: 10.1002/ece3.10366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
Exploring the alterations in functional traits of urban remnant vegetation offers a more comprehensive perspective on plant assembly within the context of urbanization. While plant functional traits are influenced by both environmental gradients and the evolutionary history of plant species, the specific mechanisms by which urbanization mediates the combination of functional traits and the evolutionary history of remnant vegetation remain unclear. To examine the relationship between functional traits and phylogenies of remnant vegetation and urbanization, we classified the woody plant species surveyed in 72 sample plots in nine remnant forest patches in Guiyang, China, into four groups (urban, rural, middle and general groups) according to their location under different levels of urbanization and measured nine functional traits of these species. The phylogenetic signals of each functional trait of the four species groups were then quantified based on Blomberg's K. Furthermore, we analysed the correlations between functional traits and species abundance using phylogenetic generalized least squares. The results showed that significant phylogenetic signals were detected in more functional traits of the urban group than other groups. Thirteen and three significant relationships between functional traits and species abundance were detected for tree and shrub species after removing phylogenies. Tall tree species were more abundant in the urban group, while the general group favoured the species with adaptable traits (low height and high leaf area and C/N). Overall, we demonstrate that urbanization drove shifts in plant functional traits in remnant forests after combining the phylogenetic patterns.
Collapse
Affiliation(s)
- Jingyi Yang
- College of ForestryGuizhou UniversityGuiyangChina
| | - Zijin Wang
- College of ForestryGuizhou UniversityGuiyangChina
| | - Ying Pan
- College of ForestryGuizhou UniversityGuiyangChina
| | - Yanjun Zheng
- College of ForestryGuizhou UniversityGuiyangChina
| |
Collapse
|
193
|
Osborne P, Aquilué N, Mina M, Moe K, Jemtrud M, Messier C. A trait-based approach to both forestry and timber building can synchronize forest harvest and resilience. PNAS NEXUS 2023; 2:pgad254. [PMID: 37649582 PMCID: PMC10465084 DOI: 10.1093/pnasnexus/pgad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
Along with forest managers, builders are key change agents of forest ecosystems' structure and composition through the specification and use of wood products. New forest management approaches are being advocated to increase the resilience and adaptability of forests to climate change and other natural disturbances. Such approaches call for a diversification of our forests based on species' functional traits that will dramatically change the harvested species composition, volume, and output of our forested landscapes. This calls for the wood-building industry to adapt its ways of operating. Accordingly, we expand the evaluation of the ecological resilience of forest ecosystems based on functional diversification to include a trait-based approach to building with wood. This trait-based plant-building framework can illustrate how forecasted forest changes in the coming decades may impact and guide decisions about wood-building practices, policies, and specifications. We apply this approach using a fragmented rural landscape in temperate southeastern Canada. We link seven functional groups based on the ecological traits of tree species in the region to a similar functional grouping of building traits to characterize the push and pull of managing forests and wood buildings together. We relied on a process-based forest landscape model to simulate long-term forest dynamics and timber harvesting to evaluate how various novel management approaches will interact with the changing global environment to affect the forest-building relationships. Our results suggest that adopting a whole system, plant-building approach to forests and wood buildings, is key to enhancing forest ecological and timber construction industry resilience.
Collapse
Affiliation(s)
- Peter Osborne
- Peter Guo-hua Fu School of Architecture, McGill University, Montreal, QC, Canada H2Z 1H5
| | - Núria Aquilué
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Forest Science and Technology Centre of Catalonia (CTFC), Crta. de St. Llorenç de Morunys, km 2. 25280 Solsona, Spain
| | - Marco Mina
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Institute for Alpine Environment, Eurac Research, Bozen/Bolzano 39100, Italy
| | - Kiel Moe
- College of Architecture, Design and Construction, Auburn University, Auburn, AL 36849, USA
| | - Michael Jemtrud
- Peter Guo-hua Fu School of Architecture, McGill University, Montreal, QC, Canada H2Z 1H5
| | - Christian Messier
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada H2L 2C4
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada J0V 1V0
| |
Collapse
|
194
|
Karbstein K, Römermann C, Hellwig F, Prinz K. Population size affected by environmental variability impacts genetics, traits, and plant performance in Trifolium montanum L. Ecol Evol 2023; 13:e10376. [PMID: 37560178 PMCID: PMC10406824 DOI: 10.1002/ece3.10376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Population size, genetic diversity, and performance have fundamental importance for ecology, evolution, and nature conservation of plant species. Despite well-studied relationships among environmental, genetic, and intraspecific trait variation (ITV), the influence of population size on these aspects is less understood. To assess the sources of population size variation, but also its impact on genetic, functional trait, and performance aspects, we conducted detailed population size estimations, assessed 23 abiotic and biotic environmental habitat factors, performed population genetic analyses using nine microsatellite markers, and recorded nine functional traits based on 260 Trifolium montanum individuals from 13 semi-dry grassland locations of Central Europe. Modern statistical analyses based on a multivariate framework (path analysis) with preselected linear regression models revealed that the variation of abiotic factors (in contrast to factors per se) almost completely, significantly explained fluctuations in population size (R 2 = .93). In general, abiotic habitat variation (heterogeneity) was not affected by habitat area. Population size significantly explained genetic diversity (N A: R 2 = .42, H o: R 2 = .67, H e: R 2 = .43, and I: R 2 = .59), inbreeding (F IS: R 2 = .35), and differentiation (G ST: R 2 = .20). We also found that iFDCV (ITV) was significantly explained by abiotic habitat heterogeneity, and to a lesser extent by genetic diversity H e (R 2 = .81). Nevertheless, habitat heterogeneity did not statistically affect genetic diversity. This may be due to the use of selectively neutral microsatellite markers, and possibly by insufficient abiotic selective pressures on habitats examined. Small T. montanum populations in nonoptimal habitats were characterized by reduced genetic and functional trait diversity, and elevated genetic inbreeding and differentiation. This indicates reduced adaptability to current and future environmental changes. The long-term survival of small populations with reduced genetic diversity and beginning inbreeding will be highly dependent on habitat protection and adequate land-use actions.
Collapse
Affiliation(s)
- Kevin Karbstein
- Institute of Ecology and EvolutionFriedrich Schiller UniversityJenaGermany
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Albrecht‐von‐Haller Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
| | - Christine Römermann
- Institute of Ecology and EvolutionFriedrich Schiller UniversityJenaGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Frank Hellwig
- Institute of Ecology and EvolutionFriedrich Schiller UniversityJenaGermany
| | - Kathleen Prinz
- Institute of Ecology and EvolutionFriedrich Schiller UniversityJenaGermany
| |
Collapse
|
195
|
Maracahipes-Santos L, Silvério DV, Maracahipes L, Macedo MN, Lenza E, Jankowski KJ, Wong MY, Silva ACSD, Neill C, Durigan G, Brando PM. Intraspecific trait variability facilitates tree species persistence along riparian forest edges in Southern Amazonia. Sci Rep 2023; 13:12454. [PMID: 37528174 PMCID: PMC10394016 DOI: 10.1038/s41598-023-39510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Tropical forest fragmentation from agricultural expansion alters the microclimatic conditions of the remaining forests, with effects on vegetation structure and function. However, little is known about how the functional trait variability within and among tree species in fragmented landscapes influence and facilitate species' persistence in these new environmental conditions. Here, we assessed potential changes in tree species' functional traits in riparian forests within six riparian forests in cropland catchments (Cropland) and four riparian forests in forested catchments (Forest) in southern Amazonia. We sampled 12 common functional traits of 123 species across all sites: 64 common to both croplands and forests, 33 restricted to croplands, and 26 restricted to forests. We found that forest-restricted species had leaves that were thinner, larger, and with higher phosphorus (P) content, compared to cropland-restricted ones. Tree species common to both environments showed higher intraspecific variability in functional traits, with leaf thickness and leaf P concentration varying the most. Species turnover contributed more to differences between forest and cropland environments only for the stem-specific density trait. We conclude that the intraspecific variability of functional traits (leaf thickness, leaf P, and specific leaf area) facilitates species persistence in riparian forests occurring within catchments cleared for agricultural expansion in Amazonia.
Collapse
Affiliation(s)
- Leonardo Maracahipes-Santos
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Rua Horizontina 104, Centro, Canarana, MT, 78640-000, Brazil.
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), Campus de Nova Xavantina, Rua Prof. Dr. Renato Figueiro Varella, Caixa Postal 08, Nova Xavantina, MT, 78690-000, Brazil.
| | - Divino Vicente Silvério
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Rua Horizontina 104, Centro, Canarana, MT, 78640-000, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), Campus de Nova Xavantina, Rua Prof. Dr. Renato Figueiro Varella, Caixa Postal 08, Nova Xavantina, MT, 78690-000, Brazil
- Departamento de Biologia, Universidade Federal Rural da Amazônia (UFRA), Capitão Poço, Pará, 68650-000, Brazil
| | - Leandro Maracahipes
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Rua Horizontina 104, Centro, Canarana, MT, 78640-000, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), P.O. Box 6109, Campinas, SP, 13083-970, Brazil
| | - Marcia Nunes Macedo
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Rua Horizontina 104, Centro, Canarana, MT, 78640-000, Brazil
- Woodwell Climate Research Center, Falmouth, MA, 02450, USA
| | - Eddie Lenza
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), Campus de Nova Xavantina, Rua Prof. Dr. Renato Figueiro Varella, Caixa Postal 08, Nova Xavantina, MT, 78690-000, Brazil
| | - Kathi Jo Jankowski
- U.S. Geological Survey Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | | | | | | | - Giselda Durigan
- Laboratório de Ecologia e Hidrologia, Instituto de Pesquisas Ambientais, Floresta Estadual de Assis, Assis, SP, Brazil
| | - Paulo Monteiro Brando
- Instituto de Pesquisa Ambiental da Amazônia (IPAM), Rua Horizontina 104, Centro, Canarana, MT, 78640-000, Brazil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso (UNEMAT), Campus de Nova Xavantina, Rua Prof. Dr. Renato Figueiro Varella, Caixa Postal 08, Nova Xavantina, MT, 78690-000, Brazil
- Woodwell Climate Research Center, Falmouth, MA, 02450, USA
- Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
196
|
Snell-Rood EC, Smirnoff D. Biology for biomimetics I: function as an interdisciplinary bridge in bio-inspired design. BIOINSPIRATION & BIOMIMETICS 2023; 18:052001. [PMID: 37429293 DOI: 10.1088/1748-3190/ace5fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
In bio-inspired design, the concept of 'function' allows engineers and designers to move between biological models and human applications. Abstracting a problem to general functions allows designers to look to traits that perform analogous functions in biological organisms. However, the idea of function can mean different things across fields, presenting challenges for interdisciplinary research. Here we review core ideas in biology that relate to the concept of 'function,' including adaptation, tradeoffs, and fitness, as a companion to bio-inspired design approaches. We align these ideas with a top-down approach in biomimetics, where engineers or designers start with a problem of interest and look to biology for ideas. We review how one can explore a range of biological analogies for a given function by considering function across different parts of an organism's life, such as acquiring nutrients or avoiding disease. Engineers may also draw inspiration from biological traits or systems that exhibit a particular function, but did not necessarily evolve to do so. Such an evolutionary perspective is important to how biodesigners search biological space for ideas. A consideration of the evolution of trait function can also clarify potential trade-offs and biological models that may be more promising for an application. This core set of concepts from evolutionary and organismal biology can aid engineers and designers in their search for biological inspiration.
Collapse
Affiliation(s)
- Emilie C Snell-Rood
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, United States of America
| | - Dimitri Smirnoff
- Department of Curriculum and Instruction, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
197
|
Li N, Cao Y, Wu J, Zhang T, Zou X, Ma X, Wu P. Environmental Adaptability and Energy Investment Strategy of Different Cunninghamia lanceolata Clones Based on Leaf Calorific Value and Construction Cost Characteristics. PLANTS (BASEL, SWITZERLAND) 2023; 12:2723. [PMID: 37514336 PMCID: PMC10383926 DOI: 10.3390/plants12142723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The calorific value and construction cost of leaves reflect the utilization strategy of plants for environmental resources. Their genetic characteristics and leaf functional traits as well as climate change affect the calorific values. This study explores the differences in energy investment strategies and the response characteristics of energy utilization in leaves to climate change among nine clones of Chinese fir (Cunninghamia lanceolata). Considering the objectives, the differences in the energy utilization strategies were analyzed by determining the leaf nutrients, specific leaf area, and leaf calorific value and by calculating the construction cost. The results showed a significant difference in the ash-free calorific value and construction cost of leaves among different Chinese fir clones (p < 0.05). There were also significant differences in leaf carbon (C) content, leaf nitrogen (N) content, specific leaf area, and ash content. The correlation analysis showed that leaves' ash-free calorific value and construction cost were positively correlated with the C content. Principal component analysis (PCA) showed that P2 is inclined to the "fast investment return" energy investment strategy, while L27 is inclined to the "slow investment return" energy investment strategy. Redundancy analysis (RDA) indicates that the monthly average temperature strongly correlates positively with leaf construction cost, N content, and specific leaf area. The monthly average precipitation positively impacts the ash-free calorific value and construction cost of leaves. In conclusion, there are obvious differences in energy investment strategies among different Chinese fir clones. When temperature and precipitation change, Chinese fir leaves can adjust their energy investment to adapt to environmental changes. In the future, attention should be paid to the impact of climate change-related aspects on the growth and development of Chinese fir plantations.
Collapse
Affiliation(s)
- Nana Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Yue Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Jinghui Wu
- Fujian Shanghang Baisha Forestry Farm, Longyan 364205, China
| | - Ting Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xianhua Zou
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Chinese Fir Engineering Technology Research Center of the State Forestry and Grassland Administration, Fuzhou 350002, China
| |
Collapse
|
198
|
da Silva IA, Mayfield MM, Dwyer JM. Weak evidence of trade-offs modulated by seed mass among a guild of closely related winter annuals. Oecologia 2023:10.1007/s00442-023-05416-8. [PMID: 37436476 PMCID: PMC10386915 DOI: 10.1007/s00442-023-05416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Plant-plant interactions are integral to the establishment and persistence of diversity in plant communities. For annual plant species that depend on seeds to regenerate, seed characteristics that confer fitness advantages may mediate processes such as plant-plant interactions. Seed mass is known to vary widely and has been shown to associate with species' differences in stress tolerance and competitive effects. However, understanding of how seed mass influences species' responses to competition is less well understood. Using natural assemblages of six closely related annual plant species in Western Australia, we implemented a thinning study to assess how seed mass influences the outcomes of plant-plant interactions. We found relatively weak evidence for competition or facilitation among species. Our strongest results indicated that heavy-seeded species had lower survivorship than light-seeded species when interacting with heterospecifics. Seed mass was also negatively related to overall survival, counter to expectations. These findings indicate some evidence for trade-offs mediated by seed mass in this system. However, we acknowledge that other factors may have influenced our results, such as the use of natural assemblages (rather than using sowing experiments) and the presence of important small-scale environmental variation not captured with our choice of abiotic variables. Further research is required to clarify the role of seed mass in this diverse annual system, ideally including many focal species, and using sowing experiments.
Collapse
Affiliation(s)
- Isis A da Silva
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Margaret M Mayfield
- School of Biological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - John M Dwyer
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
199
|
A picture of plant functional diversity on an oceanic island. Nature 2023:10.1038/d41586-023-01998-8. [PMID: 37438624 DOI: 10.1038/d41586-023-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
|
200
|
Portela AP, Gonçalves JF, Durance I, Vieira C, Honrado J. Riparian forest response to extreme drought is influenced by climatic context and canopy structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163128. [PMID: 37030365 DOI: 10.1016/j.scitotenv.2023.163128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 06/01/2023]
Abstract
Droughts significantly impact forest ecosystems, reducing forest health and productivity, compromising ecosystem functioning, and nature-based solutions for climate change. The response and resilience of riparian forests to drought are poorly understood despite their key role in the functioning of aquatic and terrestrial ecosystems. Here we investigate riparian forest drought responses and resilience to an extreme drought event at a regional scale. We also examine how drought event characteristics, average climate conditions, topography, soil, vegetation structure, and functional diversity shape the resilience of riparian forests to drought. We used a time series of the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) to calculate the resistance to and recovery after an extreme drought (2017-2018) in 49 sites across an Atlantic-Mediterranean climate gradient in North Portugal. We used generalized additive models and multi-model inference to understand which factors best explained drought responses. We found a trade-off between drought resistance and recovery (maximum r = -0.5) and contrasting strategies across the climatic gradient of the study area. Riparian forests in the Atlantic regions showed comparatively higher resistance, while Mediterranean forests recovered more. Canopy structure and climate context were the most relevant predictors of resistance and recovery. However, median NDVI and NDWI had not returned to pre-drought levels (RcNDWI mean = 1.21, RcNDVI mean = 1.01) three years after the event. Our study shows that riparian forests have contrasting drought response strategies and may be susceptible to extended legacy effects associated with extreme and/or recurring droughts, similarly to upland forests. This work highlights the drought vulnerability of riparian ecosystems and emphasises the need for further studies on long-term resilience to droughts.
Collapse
Affiliation(s)
- Ana Paula Portela
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - João F Gonçalves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; proMetheus-Research Unit in Materials, Energy and Environment for Sustainability, Instituto Politécnico de Viana do Castelo (IPVC), Avenida do Atlântico, No. 644, 4900-348 Viana do Castelo, Portugal.
| | - Isabelle Durance
- Water Research Institute and School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, United Kingdom.
| | - Cristiana Vieira
- Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP/UPorto/PRISC), Praça Gomes Teixeira, 4099-002 Porto, Portugal..
| | - João Honrado
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|