201
|
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M. Possible Biochemical Processes Underlying the Positive Health Effects of Plant-Based Diets-A Narrative Review. Nutrients 2021; 13:2593. [PMID: 34444753 PMCID: PMC8398942 DOI: 10.3390/nu13082593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-based diets are becoming more popular for many reasons, and epidemiological as well as clinical data also suggest that a well-balanced vegan diet can be adopted for the prevention, and in some cases, in the treatment of many diseases. In this narrative review, we provide an overview of the relationships between these diets and various conditions and their potential biochemical background. As whole plant foods are very rich in food-derived antioxidants and other phytochemicals, they have many positive physiological effects on different aspects of health. In the background of the beneficial health effects, several biochemical processes could stand, including the reduced formation of trimethylamine oxide (TMAO) or decreased serum insulin-like growth factor 1 (IGF-1) levels and altered signaling pathways such as mechanistic target of rapamycin (mTOR). In addition, the composition of plant-based diets may play a role in preventing lipotoxicity, avoiding N-glycolylneuraminic acid (Neu5Gc), and reducing foodborne endotoxin intake. In this article, we attempt to draw attention to the growing knowledge about these diets and provide starting points for further research.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Tamas Marosvolgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
| | - Eszter Frank
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Eva Polyak
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Kata Fekete
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Erdelyi
- Institute of Health Insurance, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary;
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
202
|
Yeh TS, Yuan C, Ascherio A, Rosner BA, Blacker D, Willett WC. Long-term dietary protein intake and subjective cognitive decline in US men and women. Am J Clin Nutr 2021; 115:199-210. [PMID: 34293099 PMCID: PMC8755047 DOI: 10.1093/ajcn/nqab236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Diet is one of the modifiable risk factors for cognitive decline. However, studies on dietary protein intake and cognitive decline have remained limited and inconclusive. OBJECTIVES In this study, we aimed to investigate the associations between long-term dietary protein intake and subsequent subjective cognitive decline (SCD). METHODS We included 49,493 women from the Nurses' Health Study (NHS) (1984-2006) and 27,842 men from the Health Professionals Follow-up Study (HPFS) (1986-2002). For the NHS, average dietary intake was calculated from 7 repeated semi-quantitative FFQs (SFFQs), and SCD was assessed in 2012 and 2014. For the HPFS, average dietary intake was calculated from 5 repeated SFFQs, and SCD was assessed in 2008 and 2012. Poisson regression was used to examine the associations between dietary protein, amino acids, and various protein food sources with subsequent SCD. RESULTS Higher protein intake compared with total carbohydrates was associated with lower odds of SCD. When substituting 5% energy from protein for the equivalent percentage of energy from total carbohydrates, the pooled multivariable-adjusted ORs (95% CIs) were 0.89 (0.85, 0.94) for total protein, 0.89 (0.84, 0.94) for animal protein, and 0.74 (0.62, 0.88) for plant protein. When substituting 5% of energy from animal protein with plant protein, the OR was 0.84 (95% CI: 0.72, 0.97). For protein food sources, higher intakes of beans/legumes, fish, and lean poultry were significantly associated with lower odds of SCD, but higher intake of hotdogs was associated with higher odds of SCD. CONCLUSIONS Higher protein intake was associated with lower odds of SCD when compared isocalorically with carbohydrate. Plant protein sources were also associated with lower odds when compared with animal protein sources. Our findings suggest that adequate protein intake, and choices of protein sources could play a role in the maintenance of cognition and should be studied further.
Collapse
Affiliation(s)
- Tian-Shin Yeh
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Changzheng Yuan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Big Data and Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
203
|
Caputo M, Pigni S, Agosti E, Daffara T, Ferrero A, Filigheddu N, Prodam F. Regulation of GH and GH Signaling by Nutrients. Cells 2021; 10:1376. [PMID: 34199514 PMCID: PMC8227158 DOI: 10.3390/cells10061376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF-I) are pleiotropic hormones with important roles in lifespan. They promote growth, anabolic actions, and body maintenance, and in conditions of energy deprivation, favor catabolic feedback mechanisms switching from carbohydrate oxidation to lipolysis, with the aim to preserve protein storages and survival. IGF-I/insulin signaling was also the first one identified in the regulation of lifespan in relation to the nutrient-sensing. Indeed, nutrients are crucial modifiers of the GH/IGF-I axis, and these hormones also regulate the complex orchestration of utilization of nutrients in cell and tissues. The aim of this review is to summarize current knowledge on the reciprocal feedback among the GH/IGF-I axis, macro and micronutrients, and dietary regimens, including caloric restriction. Expanding the depth of information on this topic could open perspectives in nutrition management, prevention, and treatment of GH/IGF-I deficiency or excess during life.
Collapse
Affiliation(s)
- Marina Caputo
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Stella Pigni
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Emanuela Agosti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Tommaso Daffara
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Alice Ferrero
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Flavia Prodam
- SCDU of Endocrinology, University Hospital Maggiore della Carità, 28100 Novara, Italy; (M.C.); (S.P.); (T.D.); (A.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
204
|
Zhong VW, Allen NB, Greenland P, Carnethon MR, Ning H, Wilkins JT, Lloyd-Jones DM, Van Horn L. Protein foods from animal sources, incident cardiovascular disease and all-cause mortality: a substitution analysis. Int J Epidemiol 2021; 50:223-233. [PMID: 33411911 DOI: 10.1093/ije/dyaa205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Protein-rich foods are major parts of the human diet and are highly heterogeneous in nutrient composition and health effects. Designing healthy diets for disease prevention requires careful consideration of substituting unhealthier protein foods with healthier protein foods. METHODS This was a pooled analysis of six prospective cohort studies of 29 682 US participants. Data were collected in 1985-2016. Adjusted hazard ratios (HRs) and 30-year absolute risk differences (ARDs) were calculated for the associations between simultaneous substitution of one or more animal protein foods with other animal or plant protein foods at various amounts, and incident cardiovascular disease (CVD) and all-cause mortality. RESULTS Substituting eggs, processed meat, unprocessed red meat or poultry with nuts, whole grains, legumes or fish was associated with lower risks of incident CVD and all-cause mortality. According to different substitution amounts (varying from one serving per week to one serving per day) and different numbers of protein foods being simultaneously substituted (varying from one to four), estimates ranged between 1%: HR, 0.99 [95% confidence interval (CI), 0.98-1.00], and 54%: HR, 0.46 (0.35-0.60), lower risks on the relative scale and between 0.3%: ARD, -0.29% (-0.48% to -0.05%), and 14.0%: ARD, -13.96% (-17.29% to -9.96%) lower risks on the absolute scale. CONCLUSIONS Nuts, whole grains, legumes and fish appeared to be healthier protein sources than eggs, processed meat, unprocessed red meat and poultry for preventing incident CVD and premature death. The magnitude of lower risk for incident CVD and all-cause mortality was driven by amount and number of animal protein foods substituted.
Collapse
Affiliation(s)
- Victor W Zhong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongyan Ning
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John T Wilkins
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
205
|
Duregon E, Pomatto-Watson LCDD, Bernier M, Price NL, de Cabo R. Intermittent fasting: from calories to time restriction. GeroScience 2021; 43:1083-1092. [PMID: 33686571 PMCID: PMC8190218 DOI: 10.1007/s11357-021-00335-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
The global human population has recently experienced an increase in life expectancy with a mounting concern about the steady rise in the incidence of age-associated chronic diseases and socio-economic burden. Calorie restriction (CR), the reduction of energy intake without malnutrition, is a dietary manipulation that can increase health and longevity in most model organisms. However, the practice of CR in day-to-day life is a challenging long-term goal for human intervention. Recently, daily fasting length and periodicity have emerged as potential drivers behind CR's beneficial health effects. Numerous strategies and eating patterns have been successfully developed to recapitulate many of CR's benefits without its austerity. These novel feeding protocols range from shortened meal timing designed to interact with our circadian system (e.g., daily time-restricted feeding) to more extended fasting regimens known as intermittent fasting. Here, we provide a glimpse of the current status of knowledge on different strategies to reap the benefits of CR on metabolic health in murine models and in humans, without the rigor of continuous reduction in caloric intake as presented at the USU State of the Science Symposium.
Collapse
Affiliation(s)
- Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Laura C D D Pomatto-Watson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
206
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
207
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
208
|
Even PC, Gehring J, Tomé D. What does self-selection of dietary proteins in rats tell us about protein requirements and body weight control? Obes Rev 2021; 22:e13194. [PMID: 33403737 DOI: 10.1111/obr.13194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Omnivores are able to correctly select adequate amounts of macronutrients from natural foods as well as purified macronutrients. In the rat model, the selected protein levels are often well above the requirements estimated from the nitrogen balance. These high intake levels were initially interpreted as reflecting poor control of protein intake, but the selected levels were later found to be precisely controlled for changes in dietary protein quality and adjusted for cold, exercise, pregnancy, lactation, age, etc. and therefore met physiological requirements. Several authors have also suggested that instead of a given level of protein intake, rodents regulate a ratio of protein to dietary carbohydrates in order to achieve metabolic benefits such as reduced insulin levels, improved blood glucose control, and, in the long term, reduced weight and fat gain. The objective of this review was to analyze the most significant results of studies carried out on rats and mice since the beginning of the 20th century, to consider what these results can bring us to interpret the current causes of the obesity pandemic and to anticipate the possible consequences of policies aimed at reducing the contribution of animal proteins in the human diet.
Collapse
Affiliation(s)
- Patrick C Even
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Joséphine Gehring
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| | - Daniel Tomé
- AgroParisTech, INRAE, UMR PNCA, Université Paris-Saclay, Paris, France
| |
Collapse
|
209
|
Vogtschmidt YD, Raben A, Faber I, de Wilde C, Lovegrove JA, Givens DI, Pfeiffer AFH, Soedamah-Muthu SS. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021; 328:124-135. [PMID: 34120735 DOI: 10.1016/j.atherosclerosis.2021.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/25/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Higher protein (HP) diets may lead to lower cardiometabolic risk, compared to lower protein (LP) diets. This systematic review and meta-analysis aims to investigate the effects of HP versus LP diets on cardiometabolic risk factors in adults, using the totality of the current evidence from randomised controlled trials (RCTs). METHODS Systematic searches were conducted in electronic databases, up to November 2020. Random effects meta-analyses were conducted to pool the standardised mean differences (SMD) and 95% confidence intervals (CI). The main outcomes were weight loss, body mass index (BMI), waist circumference, fat mass, systolic and diastolic BP, total cholesterol, HDL-and LDL-cholesterol, triacylglycerol, fasting glucose and insulin, and glycated haemoglobin. RESULTS Fifty-seven articles reporting on 54 RCTs were included, involving 4344 participants (65% female, mean age: 46 (SD 10) years, mean BMI: 33 (SD 3) kg/m2), with a mean study duration of 18 weeks (range: 4 to 156 weeks). Compared to LP diets (range protein (E%):10-23%), HP diets (range protein (E%): 20-45%) led to more weight loss (SMD -0.13, 95% CI: -0.23, -0.03), greater reductions in fat mass (SMD -0.14, 95% CI: -0.24, -0.04), systolic BP (SMD -0.12, 95% CI: -0.21, -0.02), total cholesterol (SMD -0.11, 95% CI: -0.19, -0.02), triacylglycerol (SMD -0.22, 95% CI: -0.30, -0.14) and insulin (SMD -0.12, 95% CI: -0.22, -0.03). No significant differences were observed for the other outcomes. CONCLUSIONS Higher protein diets showed small, but favourable effects on weight loss, fat mass loss, systolic blood pressure, some lipid outcomes and insulin, compared to lower protein diets.
Collapse
Affiliation(s)
- Yakima D Vogtschmidt
- KingdomHugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Harry Nursten Building, Reading RG6 6DZ, United Kingdom; Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6DZ, United Kingdom; Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, United Kingdom.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958, Frederiksberg C, Denmark; Steno Diabetes Center Copenhagen (SDCC), Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Ilona Faber
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Claudia de Wilde
- Center of Research on Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, 5000, LE Tilburg, the Netherlands
| | - Julie A Lovegrove
- KingdomHugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Harry Nursten Building, Reading RG6 6DZ, United Kingdom; Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6DZ, United Kingdom; Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, United Kingdom
| | - D Ian Givens
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading RG6 6DZ, United Kingdom; Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, United Kingdom
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research, Partner Potsdam, Berlin, Germany; Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12200, Berlin, Germany
| | - Sabita S Soedamah-Muthu
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 6AR, United Kingdom; Center of Research on Psychological and Somatic disorders (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, 5000, LE Tilburg, the Netherlands
| |
Collapse
|
210
|
Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. TRANSLATIONAL MEDICINE OF AGING 2021; 5:17-30. [PMID: 34263088 PMCID: PMC8277109 DOI: 10.1016/j.tma.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a key macronutrient and source of essential macromolecules, dietary protein plays a significant role in health. For many years, protein-rich diets have been recommended as healthy due to the satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find that consumption of dietary protein is associated with an increased risk of multiple diseases, especially diabetes, while studies in rodents have demonstrated that protein restriction can promote metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein on health and longevity are not mediated simply by protein quantity but are instead mediated by protein quality - the specific amino acid composition of the diet. Here, we discuss how dietary protein and specific amino acids including methionine, the branched chain amino acids (leucine, isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, with attention to the specific molecular mechanisms that may participate in these effects. Finally, we discuss the potential applicability of these findings to promoting healthy aging in humans.
Collapse
Affiliation(s)
- Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
211
|
A Low-Protein High-Fat Diet Leads to Loss of Body Weight and White Adipose Tissue Weight via Enhancing Energy Expenditure in Mice. Metabolites 2021; 11:metabo11050301. [PMID: 34064590 PMCID: PMC8150844 DOI: 10.3390/metabo11050301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
Obesity has become a worldwide health problem over the past three decades. During obesity, metabolic dysfunction of white adipose tissue (WAT) is a key factor increasing the risk of type 2 diabetes. A variety of diet approaches have been proposed for the prevention and treatment of obesity. The low-protein high-fat diet (LPHF) is a special kind of high-fat diet, characterized by the intake of a low amount of protein, while compared to typical high-fat diet, may induce weight loss and browning of WAT. Physical activity is another effective intervention to treat obesity by reducing WAT mass, inducing browning of WAT. In order to determine whether an LPHF, along with exercise enhanced body weight loss and body fat loss as well as the synergistic effect of an LPHF and exercise on energy expenditure in a mice model, we combined a 10-week LPHF with an 8-week forced treadmill training. Meanwhile, a traditional high-fat diet (HPHF) containing the same fat and relatively more protein was introduced as a comparison. In the current study, we further analyzed energy metabolism-related gene expression, plasma biomarkers, and related physiological changes. When comparing to HPHF, which induced a dramatic increase in body weight and WAT weight, the LPHF led to considerable loss of body weight and WAT, without muscle mass and strength decline, while it exhibited a risk of liver and pancreas damage. The mechanism underlying the LPHF-induced loss of body weight and WAT may be attributed to the synergistically upregulated expression of Ucp1 in WAT and Fgf21 in the liver, which may enhance energy expenditure. The 8-week training did not further enhance weight loss and increased plasma biomarkers of muscle damage when combined with LPHF. Furthermore, LPHF reduced the expression of fatty acid oxidation-related genes in adipose tissues, muscle tissues, and liver. Our results indicated that an LPHF has potential for obesity treatment, while the physiological condition should be monitored during application.
Collapse
|
212
|
Yu D, Richardson NE, Green CL, Spicer AB, Murphy ME, Flores V, Jang C, Kasza I, Nikodemova M, Wakai MH, Tomasiewicz JL, Yang SE, Miller BR, Pak HH, Brinkman JA, Rojas JM, Quinn WJ, Cheng EP, Konon EN, Haider LR, Finke M, Sonsalla M, Alexander CM, Rabinowitz JD, Baur JA, Malecki KC, Lamming DW. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab 2021; 33:905-922.e6. [PMID: 33887198 PMCID: PMC8102360 DOI: 10.1016/j.cmet.2021.03.025] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/02/2021] [Accepted: 03/30/2021] [Indexed: 02/01/2023]
Abstract
Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis. Reducing valine induces similar but more modest metabolic effects, whereas these effects are absent with low leucine. Reducing isoleucine or valine rapidly restores metabolic health to diet-induced obese mice. Finally, we demonstrate that variation in dietary isoleucine levels helps explain body mass index differences in humans. Our results reveal isoleucine as a key regulator of metabolic health and the adverse metabolic response to dietary BCAAs and suggest reducing dietary isoleucine as a new approach to treating and preventing obesity and diabetes.
Collapse
Affiliation(s)
- Deyang Yu
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nicole E Richardson
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara L Green
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alexandra B Spicer
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Michaela E Murphy
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Victoria Flores
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maria Nikodemova
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Matthew H Wakai
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay L Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Shany E Yang
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Blake R Miller
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Heidi H Pak
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacqueline A Brinkman
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jennifer M Rojas
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William J Quinn
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunhae P Cheng
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elizabeth N Konon
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lexington R Haider
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan Finke
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michelle Sonsalla
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen C Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA.
| |
Collapse
|
213
|
Huang AW, Wei M, Caputo S, Wilson ML, Antoun J, Hsu WC. An Intermittent Fasting Mimicking Nutrition Bar Extends Physiologic Ketosis in Time Restricted Eating: A Randomized, Controlled, Parallel-Arm Study. Nutrients 2021; 13:1523. [PMID: 33946428 PMCID: PMC8147148 DOI: 10.3390/nu13051523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
There has been increasing interest in time-restricted eating to attain intermittent fasting's metabolic benefits. However, a more extended daily fast poses many challenges. This study was designed to evaluate the effects of a 200-calorie fasting-mimicking diet (FMD) energy bar formulated to prolong ketogenesis and mitigate fasting-associated side effects. A randomized, controlled study was conducted comparing the impact of consuming an FMD bar vs. continued water fast, after a 15-h overnight fast. Subjects in the FMD group showed a 3-h postprandial beta-hydroxybutyrate (BHB) level and 4-h postprandial BHB area under the curve (AUC0-4) that were non-inferior to those who continued with the water fast (p = 0.891 and p = 0.377, respectively). The postprandial glucose AUC0-4 in the FMD group was non-inferior to that in the water fast group (p = 0.899). A breakfast group served as a control, which confirmed that the instrument used in home glucose and ketone monitoring functioned as expected. The results indicate that FMD bar consumption does not interfere with the physiological ketogenesis associated with overnight fasting and could be used to facilitate the practice of time-restricted eating or intermittent fasting.
Collapse
Affiliation(s)
- Angie W. Huang
- L-Nutra, Inc., Plano, TX 75024, USA; (A.W.H.); (M.W.); (S.C.); (J.A.)
| | - Min Wei
- L-Nutra, Inc., Plano, TX 75024, USA; (A.W.H.); (M.W.); (S.C.); (J.A.)
| | - Sara Caputo
- L-Nutra, Inc., Plano, TX 75024, USA; (A.W.H.); (M.W.); (S.C.); (J.A.)
| | - Melissa L. Wilson
- Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA;
| | - Joseph Antoun
- L-Nutra, Inc., Plano, TX 75024, USA; (A.W.H.); (M.W.); (S.C.); (J.A.)
| | - William C. Hsu
- L-Nutra, Inc., Plano, TX 75024, USA; (A.W.H.); (M.W.); (S.C.); (J.A.)
| |
Collapse
|
214
|
Dietary Essential Amino Acid Restriction Promotes Hyperdipsia via Hepatic FGF21. Nutrients 2021; 13:nu13051469. [PMID: 33926065 PMCID: PMC8144947 DOI: 10.3390/nu13051469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.
Collapse
|
215
|
Molares-Vila A, Corbalán-Rivas A, Carnero-Gregorio M, González-Cespón JL, Rodríguez-Cerdeira C. Biomarkers in Glycogen Storage Diseases: An Update. Int J Mol Sci 2021; 22:4381. [PMID: 33922238 PMCID: PMC8122709 DOI: 10.3390/ijms22094381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are a group of 19 hereditary diseases caused by a lack of one or more enzymes involved in the synthesis or degradation of glycogen and are characterized by deposits or abnormal types of glycogen in tissues. Their frequency is very low and they are considered rare diseases. Except for X-linked type IX, the different types are inherited in an autosomal recessive pattern. In this study we reviewed the literature from 1977 to 2020 concerning GSDs, biomarkers, and metabolic imbalances in the symptoms of some GSDs. Most of the reported studies were performed with very few patients. Classification of emerging biomarkers between different types of diseases (hepatics GSDs, McArdle and PDs and other possible biomarkers) was done for better understanding. Calprotectin for hepatics GSDs and urinary glucose tetrasaccharide for Pompe disease have been approved for clinical use, and most of the markers mentioned in this review only need clinical validation, as a final step for their routine use. Most of the possible biomarkers are implied in hepatocellular adenomas, cardiomyopathies, in malfunction of skeletal muscle, in growth retardation, neutropenia, osteopenia and bowel inflammation. However, a few markers have lost interest due to a great variability of results, which is the case of biotinidase, actin alpha 2, smooth muscle, aorta and fibroblast growth factor receptor 4. This is the first review published on emerging biomarkers with a potential application to GSDs.
Collapse
Affiliation(s)
- Alberto Molares-Vila
- Bioinformatics Platform, Health Research Institute in Santiago de Compostela (IDIS), SERGAS-USC, 15706 Santiago de Compostela, Spain;
| | - Alberte Corbalán-Rivas
- Local Office of Health Inspection, Health Ministry at Galician Autonomous Region, 27880 Burela, Spain;
| | - Miguel Carnero-Gregorio
- Department of Molecular Diagnosis (Arrays Division), Institute of Cellular and Molecular Studies (ICM), 27003 Lugo, Spain;
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - José Luís González-Cespón
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain;
- Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Meixoeiro Hospital, SERGAS, 36213 Vigo, Spain
| |
Collapse
|
216
|
Wali JA, Solon-Biet SM, Freire T, Brandon AE. Macronutrient Determinants of Obesity, Insulin Resistance and Metabolic Health. BIOLOGY 2021; 10:336. [PMID: 33923531 PMCID: PMC8072595 DOI: 10.3390/biology10040336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Obesity caused by the overconsumption of calories has increased to epidemic proportions. Insulin resistance is often associated with an increased adiposity and is a precipitating factor in the development of cardiovascular disease, type 2 diabetes, and altered metabolic health. Of the various factors contributing to metabolic impairments, nutrition is the major modifiable factor that can be targeted to counter the rising prevalence of obesity and metabolic diseases. However, the macronutrient composition of a nutritionally balanced "healthy diet" are unclear, and so far, no tested dietary intervention has been successful in achieving long-term compliance and reductions in body weight and associated beneficial health outcomes. In the current review, we briefly describe the role of the three major macronutrients, carbohydrates, fats, and proteins, and their role in metabolic health, and provide mechanistic insights. We also discuss how an integrated multi-dimensional approach to nutritional science could help in reconciling apparently conflicting findings.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Therese Freire
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Amanda E Brandon
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
217
|
Zini E, Salesov E, Willing A, Palizzotto C, Lutz TA, Reusch CE. Serum insulin-like growth factor-1 concentrations in healthy cats before and after weight gain and weight loss. J Vet Intern Med 2021; 35:1274-1278. [PMID: 33830548 PMCID: PMC8163131 DOI: 10.1111/jvim.16119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Measurement of serum concentrations of insulin‐like growth factor (IGF)‐1 is used to diagnose acromegaly in cats. Hypothesis Changes of body weight do not affect serum concentrations of IGF‐1 in cats. Animals Ten healthy purpose‐bred cats. Methods Prospective study. In lean cats, food availability was stepwise increased during the first week and given ad libitum for a total of 40 weeks to increase their body weight. From week 41 to week 60, food access was limited to reach a weight loss of 1% to 2% each week. Measurement of IGF‐1 was performed at week 0, 16, 40, and 60. Insulin‐like growth factor‐1 was measured by radioimmunoassay. Body weight and IGF‐1 were compared among the 4 time points. Results Body weight increased by 44% from week 0 (4.5 ± 0.4 kg) to week 40 (6.5 ± 1.2 kg) (P < .001) and decreased by 25% from week 40 to week 60 (4.9 ± 0.7 kg) (P < .001). Serum IGF‐1 concentrations did not differ during the study period (week 0, 16, 40, 60: 500 ± 188, 479 ± 247, 470 ± 184, 435 ± 154 ng/mL, respectively; P = .38). Correlations with body weight were not observed. Conclusions and Clinical Importance Insulin‐like growth factor‐1 might not be influenced by changes of body weight in healthy cats, possibly suggesting that the latter is unimportant when interpreting IGF‐1 results in this species.
Collapse
Affiliation(s)
- Eric Zini
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Animal Medicine, Production and Health, University of Padova, Legnaro (PD), Italy.,AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Elena Salesov
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Anke Willing
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello (NO), Italy
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Claudia E Reusch
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
218
|
Kynurenine induces an age-related phenotype in bone marrow stromal cells. Mech Ageing Dev 2021; 195:111464. [PMID: 33631183 DOI: 10.1016/j.mad.2021.111464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 01/02/2023]
Abstract
Advanced age is one of the important contributing factors for musculoskeletal deterioration. Although the exact mechanism behind this degeneration is unknown, it has been previously established that nutritional signaling plays a vital role in musculoskeletal pathophysiology. Our group established the vital role of the essential amino acid, tryptophan, in aging musculoskeletal health. With advanced age, inflammatory factors activate indoleamine 2,3-dioxygenase (IDO1) and accumulate excessive intermediate tryptophan metabolites such as Kynurenine (KYN). With age, Kynurenine accumulates and suppresses osteogenic differentiation, impairs autophagy, promotes early senescence, and alters cellular bioenergetics of bone marrow stem cells. Recent studies have shown that Kynurenine negatively impacts bone marrow stromal cells (BMSCs) and, consequently, promotes bone loss. Overall, understanding the mechanism behind BMSCs losing their ability for osteogenic differentiation can provide insight into the prevention of osteoporosis and the development of targeted therapies. Therefore, in this article, we review Kynurenine and how it plays a vital role in BMSC dysfunction and bone loss with age.
Collapse
|
219
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
220
|
Dommerholt MB, Blankestijn M, Vieira‐Lara MA, van Dijk TH, Wolters H, Koster MH, Gerding A, van Os RP, Bloks VW, Bakker BM, Kruit JK, Jonker JW. Short-term protein restriction at advanced age stimulates FGF21 signalling, energy expenditure and browning of white adipose tissue. FEBS J 2021; 288:2257-2277. [PMID: 33089625 PMCID: PMC8048886 DOI: 10.1111/febs.15604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.
Collapse
Affiliation(s)
- Marleen B. Dommerholt
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Maaike Blankestijn
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Marcel A. Vieira‐Lara
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Henk Wolters
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Mirjam H. Koster
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Albert Gerding
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory MedicineUniversity Medical Center GroningenUniversity of Groningenthe Netherlands
| | - Ronald P. van Os
- Mouse Clinic for Cancer and AgingCentral Animal FacilityUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Vincent W. Bloks
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Barbara M. Bakker
- Sections of Systems Medicine of Metabolism and SignalingDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Janine K. Kruit
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Johan W. Jonker
- Sections of Molecular Metabolism and NutritionDepartment of PediatricsUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
221
|
Wallace MA, Aguirre NW, Marcotte GR, Marshall AG, Baehr LM, Hughes DC, Hamilton KL, Roberts MN, Lopez‐Dominguez JA, Miller BF, Ramsey JJ, Baar K. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell 2021; 20:e13322. [PMID: 33675103 PMCID: PMC8045940 DOI: 10.1111/acel.13322] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action. Twelve‐month‐old mice were assigned to an isocaloric control or KD until 16 or 26 months of age, at which time skeletal muscle was collected for evaluating mass, morphology, and biochemical properties. Skeletal muscle mass was significantly greater at 26 months in the gastrocnemius of mice on the KD. This result in KD mice was associated with a shift in fiber type from type IIb to IIa fibers and a range of molecular parameters including increased markers of NMJ remodeling, mitochondrial biogenesis, oxidative metabolism, and antioxidant capacity, while decreasing endoplasmic reticulum (ER) stress, protein synthesis, and proteasome activity. Overall, this study shows the effectiveness of a long‐term KD in mitigating sarcopenia. The diet preferentially preserved oxidative muscle fibers and improved mitochondrial and antioxidant capacity. These adaptations may result in a healthier cellular environment, decreasing oxidative and ER stress resulting in less protein turnover. These shifts allow mice to better maintain muscle mass and function with age.
Collapse
Affiliation(s)
- Marita A. Wallace
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
- CellMet Performance Health Perth WA Australia
| | - Nicholas W. Aguirre
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
| | - George R. Marcotte
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
| | - Andrea G. Marshall
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
| | - Leslie M. Baehr
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
| | - David C. Hughes
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
| | - Karyn L. Hamilton
- Department of Health and Exercise Science Colorado State University Fort Collins CO USA
| | - Megan N. Roberts
- Department of Molecular Biosciences School of Veterinary Medicine University of California Davis CA USA
| | | | - Benjamin F. Miller
- Aging and Metabolism Research Program Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences School of Veterinary Medicine University of California Davis CA USA
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior University of California Davis CA USA
- Department of Physiology and Membrane Biology School of Medicine University of California Davis CA USA
| |
Collapse
|
222
|
Bustamante-Marin XM, Merlino JL, Devericks E, Carson MS, Hursting SD, Stewart DA. Mechanistic Targets and Nutritionally Relevant Intervention Strategies to Break Obesity-Breast Cancer Links. Front Endocrinol (Lausanne) 2021; 12:632284. [PMID: 33815289 PMCID: PMC8011316 DOI: 10.3389/fendo.2021.632284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The worldwide prevalence of overweight and obesity has tripled since 1975. In the United States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity often display multiple metabolic perturbations, such as insulin resistance and persistent inflammation, which can suppress the immune system. These alterations in homeostatic mechanisms underlie the clinical parameters of metabolic syndrome, an established risk factor for many cancers, including breast cancer. Within the growth-promoting, proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors, cytokines, and other mediators that can enhance breast cancer risk and/or progression. This review synthesizes evidence on the biological mechanisms underlying obesity-breast cancer links, with emphasis on emerging mechanism-based interventions in the context of nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce the burden of obesity on breast cancer.
Collapse
Affiliation(s)
| | - Jenna L. Merlino
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Emily Devericks
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Meredith S. Carson
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Delisha A. Stewart
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| |
Collapse
|
223
|
Metabolic Fingerprinting of Murine L929 Fibroblasts as a Cell-Based Tumour Suppressor Model System for Methionine Restriction. Int J Mol Sci 2021; 22:ijms22063039. [PMID: 33809777 PMCID: PMC8002350 DOI: 10.3390/ijms22063039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Since Otto Warburg reported in 1924 that cancer cells address their increased energy requirement through a massive intake of glucose, the cellular energy level has offered a therapeutic anticancer strategy. Methionine restriction (MetR) is one of the most effective approaches for inducing low-energy metabolism (LEM) due to the central position in metabolism of this amino acid. However, no simple in vitro system for the rapid analysis of MetR is currently available, and this study establishes the murine cell line L929 as such a model system. L929 cells react rapidly and efficiently to MetR, and the analysis of more than 150 different metabolites belonging to different classes (amino acids, urea and tricarboxylic acid cycle (TCA) cycles, carbohydrates, etc.) by liquid chromatography/mass spectrometry (LC/MS) defines a metabolic fingerprint and enables the identification of specific metabolites representing normal or MetR conditions. The system facilitates the rapid and efficient testing of potential cancer therapeutic metabolic targets. To date, MS studies of MetR have been performed using organisms and yeast, and the current LC/MS analysis of the intra- and extracellular metabolites in the murine cell line L929 over a period of 5 days thus provides new insights into the effects of MetR at the cellular metabolic level.
Collapse
|
224
|
Schüler R, Markova M, Osterhoff MA, Arafat A, Pivovarova O, Machann J, Hierholzer J, Hornemann S, Rohn S, Pfeiffer AFH. Similar dietary regulation of IGF-1- and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr 2021; 60:3499-3504. [PMID: 33686453 PMCID: PMC8354897 DOI: 10.1007/s00394-021-02518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Increased animal but not plant protein intake has been associated with increased mortality in epidemiological studies in humans and with reduced lifespan in animal species. Protein intake increases the activity of the IGF-1 system which may provide a link to reduced lifespan. We, therefore, compared the effects of animal versus plant protein intake on circulating levels of IGF-1 and the IGF-binding proteins (IGFBP)-1 and IGFBP-2 over a 6-week period. Thirty seven participants with type 2 diabetes consumed isocaloric diets composed of either 30% energy (EN) animal or plant protein, 30% EN fat and 40% EN carbohydrates for 6 weeks. The participants were clinically phenotyped before and at the end of the study. Both diets induced similar and significant increases of IGF-1 which was unaffected by the different amino acid compositions of plant and animal protein. Despite improvements of insulin sensitivity and major reductions of liver fat, IGFBP2 decreased with both diets while IGFBP-1 was not altered. We conclude that animal and plant protein similarly increase IGF-1 bioavailability while improving metabolic parameters and may be regarded as equivalent in this regard.
Collapse
Affiliation(s)
- Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Ayman Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Section of Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Hierholzer
- Diagnostic and Interventional Radiology, Klinikum Ernst von Bergmann, Academic Teaching Hospital, Charité-Universitätsmedizin Berlin, Potsdam, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Department Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
225
|
Matre ÅO, Van Parys A, Olsen T, Haugsgjerd TR, Baravelli CM, Nygård O, Dierkes J, Lysne V. The Association of Meat Intake With All-Cause Mortality and Acute Myocardial Infarction Is Age-Dependent in Patients With Stable Angina Pectoris. Front Nutr 2021; 8:642612. [PMID: 33748176 PMCID: PMC7969515 DOI: 10.3389/fnut.2021.642612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Red and processed meat intake have been associated with increased risk of morbidity and mortality, and a restricted intake is encouraged in patients with cardiovascular disease. However, evidence on the association between total meat intake and clinical outcomes in this patient group is lacking. Objectives: To investigate the association between total meat intake and risk of all-cause mortality, acute myocardial infarction, cancer, and gastrointestinal cancer in patients with stable angina pectoris. We also investigated whether age modified these associations. Materials and Methods: This prospective cohort study consisted of 1,929 patients (80% male, mean age 62 years) with stable angina pectoris from the Western Norway B-Vitamin Intervention Trial. Dietary assessment was performed by the administration of a semi-quantitative food frequency questionnaire. Cox proportional hazards models were used to investigate the association between a relative increase in total meat intake and the outcomes of interest. Results: The association per 50 g/1,000 kcal higher intake of total meat with morbidity and mortality were generally inconclusive but indicated an increased risk of acute myocardial infarction [HR: 1.26 (95% CI: 0.98, 1.61)] and gastrointestinal cancer [1.23 (0.70, 2.16)]. However, we observed a clear effect modification by age, where total meat intake was associated with an increased risk of mortality and acute myocardial infarction among younger individuals, but an attenuation, and even reversal of the risk association with increasing age. Conclusion: Our findings support the current dietary guidelines emphasizing a restricted meat intake in cardiovascular disease patients but highlights the need for further research on the association between meat intake and health outcomes in elderly populations. Future studies should investigate different types of meat separately in other CVD-cohorts, in different age-groups, as well as in the general population.
Collapse
Affiliation(s)
- Åslaug O Matre
- Department of Clinical Science, Centre for Nutrition, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Teresa R Haugsgjerd
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Carl M Baravelli
- Department of Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, Centre for Nutrition, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vegard Lysne
- Department of Clinical Science, Centre for Nutrition, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
226
|
Zheng J, Zhou R, Li F, Chen L, Wu K, Huang J, Liu H, Huang Z, Xu L, Yuan Z, Mao C, Wu X. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin Nutr 2021; 40:1452-1462. [PMID: 33740515 DOI: 10.1016/j.clnu.2021.02.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Dietary diversity is widely recommended in national and international guidelines; however, whether the beneficial effects on cognitive function still apply in the oldest-old (80+) has rarely been studied. This study aimed to evaluate the associations of dietary diversity with cognitive function among the oldest-old in a large prospective cohort in China. METHODS We conducted a long-term prospective analysis on 11,970 participants aged 80+ (6581 octogenarians, 3730 nonagenarians, and 1659 centenarians). We constructed the baseline dietary diversity score (DDS) based on eight food items of a food frequency questionnaire. Mini-mental state examination (MMSE) was used to classify the participants as having cognitive impairment or not and was also used as a continuous metric. Non-linear associations of DDS with cognitive impairment was evaluated by cox models with penalized splines. We used mixed-effect models for longitudinal data with repeated measurements of MMSE (for up to seven time during the follow-up between 1998 and 2014). RESULTS We documented 4778 cognitive impairment during 46,738 person-years of follow-up. Each one unit increase in DDS was associated with a 4% lower risk of cognitive impairment (adjusted hazard ratio (HR): 0.96; 95% confidential interval (CI): 0.94-0.98). Compared to participants with DDS of 0 score, those with a DDS of 1-2, 3-4, and higher than 5 scores had a lower cognitive impairment risk, the HRs were 0.86 (0.79-0.95), 0.82 (0.74-0.91), and 0.72 (0.64-0.82) respectively, and a significant trend emerged (p < 0.001). Compared with DDS of zero score, a DDS of 1-2,3-4, ≥5 was related to slower MMSE decline (β = 0.128, 0.162, 0.301, respectively, p < 0.01). CONCLUSIONS Even after the age of 80, dietary diversity may offer a simple and straightforward mean of identifying and screening individuals at high risk for cognitive impairment. Recommendation of dietary diversity may be advocated to attenuate cognitive decline and decrease the risk of cognitive impairment in the oldest-old, especially in a low income or middle-income countries.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Furong Li
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Liren Chen
- Department of Regional Research, School of Social Sciences, Waseda University, Tokyo, Japan
| | - Keyi Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Jinghan Huang
- Department of Biostatistics, School of Public Health, Boston University, Boston, USA
| | - Huamin Liu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Xu
- Department of Nutrition and Food Hygiene, School of Public Health (Guangdong Provincial Key Laboratory for Food, Nutrition and Health), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zelin Yuan
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China.
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
227
|
|
228
|
Pataky MW, Young WF, Nair KS. Hormonal and Metabolic Changes of Aging and the Influence of Lifestyle Modifications. Mayo Clin Proc 2021; 96:788-814. [PMID: 33673927 PMCID: PMC8020896 DOI: 10.1016/j.mayocp.2020.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Increased life expectancy combined with the aging baby boomer generation has resulted in an unprecedented global expansion of the elderly population. The growing population of older adults and increased rate of age-related chronic illness has caused a substantial socioeconomic burden. The gradual and progressive age-related decline in hormone production and action has a detrimental impact on human health by increasing risk for chronic disease and reducing life span. This article reviews the age-related decline in hormone production, as well as age-related biochemical and body composition changes that reduce the bioavailability and actions of some hormones. The impact of hormonal changes on various chronic conditions including frailty, diabetes, cardiovascular disease, and dementia are also discussed. Hormone replacement therapy has been attempted in many clinical trials to reverse and/or prevent the hormonal decline in aging to combat the progression of age-related diseases. Unfortunately, hormone replacement therapy is not a panacea, as it often results in various adverse events that outweigh its potential health benefits. Therefore, except in some specific individual cases, hormone replacement is not recommended. Rather, positive lifestyle modifications such as regular aerobic and resistance exercise programs and/or healthy calorically restricted diet can favorably affect endocrine and metabolic functions and act as countermeasures to various age-related diseases. We provide a critical review of the available data and offer recommendations that hopefully will form the groundwork for physicians/scientists to develop and optimize new endocrine-targeted therapies and lifestyle modifications that can better address age-related decline in heath.
Collapse
Affiliation(s)
- Mark W Pataky
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - William F Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN
| | - K Sreekumaran Nair
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
229
|
Pignatelli P, Iezzi L, Pennese M, Raimondi P, Cichella A, Bondi D, Grande R, Cotellese R, Di Bartolomeo N, Innocenti P, Piattelli A, Curia MC. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers (Basel) 2021; 13:1032. [PMID: 33804585 PMCID: PMC7957509 DOI: 10.3390/cancers13051032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intestinal microbiota dysbiosis may enhance the carcinogenicity of colon cancer (CC) by the proliferation and differentiation of epithelial cells. Oral Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) have the ability to invade the gut epithelium, promoting tumor progression. The aim of the study was to assess whether the abundance of these odontopathogenic bacteria was associated with colon cancer. We also investigated how lifestyle factors could influence the oral Fn and Pg abundance and CC. METHODS Thirty-six CC patients were included in the study to assess the Pg and Fn oral and colon tissue abundance by qPCR. Oral health data, food habits and lifestyles were also recorded. RESULTS Patients had a greater quantity of Fn in the oral cavity than matched CC and adjacent non-neoplastic mucosa (adj t) tissues (p = 0.004 and p < 0.001). Instead, Pg was not significantly detected in colonic tissues. There was an association between the Fn quantity in the oral and CC tissue and a statistically significant relation between the Fn abundance in adenocarcinoma (ADK) and staging (p = 0.016). The statistical analysis revealed a tendency towards a greater Fn quantity in CC (p = 0.073, η2p = 0.12) for high-meat consumers. CONCLUSION In our study, Pg was absent in colon tissues but was correlated with the oral inflammation gingival and plaque indices. For the first time, there was evidence that the Fn oral concentration can influence colon tissue concentrations and predict CC prognosis.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Lorena Iezzi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Martina Pennese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Paolo Raimondi
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Anna Cichella
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Nicola Di Bartolomeo
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Paolo Innocenti
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| |
Collapse
|
230
|
Sun Y, Liu B, Snetselaar LG, Wallace RB, Shadyab AH, Kroenke CH, Haring B, Howard BV, Shikany JM, Valdiviezo C, Bao W. Association of Major Dietary Protein Sources With All-Cause and Cause-Specific Mortality: Prospective Cohort Study. J Am Heart Assoc 2021; 10:e015553. [PMID: 33624505 PMCID: PMC8174240 DOI: 10.1161/jaha.119.015553] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Dietary recommendations regarding protein intake have been focused on the amount of protein. However, such recommendations without considering specific protein sources may be simplistic and insufficient. Methods and Results We included 102 521 postmenopausal women enrolled in the Women’s Health Initiative between 1993 and 1998, and followed them through February 2017. During 1 876 205 person‐years of follow‐up, 25 976 deaths occurred. Comparing the highest with the lowest quintile, plant protein intake was inversely associated with all‐cause mortality (hazard ratio [HR], 0.91 [0.86, 0.96]), cardiovascular disease mortality (HR, 0.88 [0.79, 0.97]), and dementia mortality (HR, 0.79 [0.67, 0.94]). Among major protein sources, comparing the highest with the lowest quintile of consumption, processed red meat (HR, 1.06 [1.01, 1.10]) or eggs (HR, 1.14 [1.10, 1.19]) was associated with higher risk of all‐cause mortality. Unprocessed red meat (HR, 1.12 [1.02, 1.23]), eggs (HR, 1.24 [1.14, 1.34]), or dairy products (HR, 1.11 [1.02, 1.22]) was associated with higher risk of cardiovascular disease mortality. Egg consumption was associated with higher risk of cancer mortality (HR, 1.10 [1.02, 1.19]). Processed red meat consumption was associated with higher risk of dementia mortality (HR, 1.20 [1.05, 1.32]), while consumption of poultry (HR, 0.85 [0.75, 0.97]) or eggs (HR, 0.86 [0.75, 0.98]) was associated with lower risk of dementia mortality. In substitution analysis, substituting of animal protein with plant protein was associated with a lower risk of all‐cause mortality, cardiovascular disease mortality, and dementia mortality, and substitution of total red meat, eggs, or dairy products with nuts was associated with a lower risk of all‐cause mortality. Conclusions Different dietary protein sources have varying associations with all‐cause mortality, cardiovascular disease mortality, and dementia mortality. Our findings support the need for consideration of protein sources in future dietary guidelines.
Collapse
Affiliation(s)
- Yangbo Sun
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Buyun Liu
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Linda G Snetselaar
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Robert B Wallace
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health School of Medicine University of California, San Diego La Jolla CA
| | - Candyce H Kroenke
- Division of Research Kaiser Permanente Northern California Oakland CA
| | - Bernhard Haring
- Department of Medicine I/Cardiology University of Würzburg Germany
| | - Barbara V Howard
- MedStar Health Research Institute and Georgetown/Howard Universities Center for Clinical and Translational Science Washington DC
| | - James M Shikany
- Division of Preventive Medicine School of Medicine University of Alabama at Birmingham Birmingham AL
| | - Carolina Valdiviezo
- Medstar Washington Hospital Center and Georgetown University School of Medicine Washington DC
| | - Wei Bao
- Department of Epidemiology College of Public Health University of Iowa Iowa City IA.,Obesity Research and Education Initiative University of Iowa Iowa City IA.,Fraternal Order of Eagles Diabetes Research Center University of Iowa Iowa City IA
| |
Collapse
|
231
|
Volta M, Turrini E, Carnevale C, Valeri E, Gatta V, Polidori P, Maione M. Co-benefits of changing diet. A modelling assessment at the regional scale integrating social acceptability, environmental and health impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143708. [PMID: 33302065 DOI: 10.1016/j.scitotenv.2020.143708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Several commentaries have suggested that the overconsumption of animal foods exerts several detrimental effects on human and environmental health. However, no studies have accurately estimated the impact of a reduction in animal food consumption on mortality due to the direct effects on metabolic health (i.e. animal protein and saturated fat intake as modulators of pathways leading to cardiovascular disease, cancer and accelerated ageing), and indirect effects on health due to excessive exposure to pollutants (i.e. PM10 concentrations originated by livestock ammonia emissions). The proposed modelling approach is innovative since it integrates social acceptability, environmental and health impacts. It is adopted to investigate different scenarios at a regional scale presenting the Lombardy region case study. The work focuses on the impact on the human and environmental health of diets characterized by three different animal protein intake levels. Our integrated assessment modelling approach faces the issue from two points of view. On one side, it estimates the mortality due to the population exposure to PM10 concentrations including the inorganic fraction originated by livestock ammonia emissions, on the other, it evaluates the mortality (i.e. total, cardiovascular and cancer) due to high dietary animal protein and/or saturated fat intake. The impacts of the mentioned animal protein intake levels of diets are also estimated through the people willingness to change their eating behaviour. The importance of putting in place end-of-pipe and energy measures in order to reduce ammonia and methane emissions from the breeding activities, going further the current EU legislation on air quality and climate, is emphasized.
Collapse
Affiliation(s)
- M Volta
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy.
| | - E Turrini
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - C Carnevale
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| | - E Valeri
- European Commission, Joint Research Centre, Energy, Transport and Climate Directorate, Seville, Spain
| | - V Gatta
- Department of Political Sciences, Roma Tre University, Rome, Italy
| | - P Polidori
- Department of Law, University of Urbino, Urbino, Italy
| | - M Maione
- Department of Pure and Applied Science, University of Urbino, Urbino, Italy
| |
Collapse
|
232
|
Reményi Kissné D, Gede N, Szakács Z, Kiss I. Breast cancer screening knowledge among Hungarian women: a cross-sectional study. BMC WOMENS HEALTH 2021; 21:69. [PMID: 33588813 PMCID: PMC7885515 DOI: 10.1186/s12905-021-01204-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/01/2021] [Indexed: 12/29/2022]
Abstract
Background Breast cancer (BC) is the leading malignant tumor among women worldwide. Although attending regular BC screening effectively reduces cancer-related mortality, surveys testify that screening knowledge is critically low among women. We aimed to conduct a comparative cross-sectional survey to assess BC and BC screening-related knowledge in Hungary. Methods Women between 25 and 65 years of age without a previous history of malignant tumors were included with non-probability sampling in 2017. Respondents were recruited either from primary care (laywomen) or from the waiting rooms of mammography (screening attendees). A self-completion questionnaire was constructed with questions about BC (risk factors, signs and symptoms, curability, and mortality), BC screening (mammography and breast self-examination), and BC-related information sources to assess knowledge among laywomen and screening attendees. In addition to descriptive statistics, odds ratios with 95% confidence intervals were calculated in univariate analysis and logistic regression was used in multivariate analysis. Results Altogether, 480 women completed the questionnaire, of which 429 (227 laywomen and 202 screening attendees) were eligible for inclusion. Laywomen and screening attendees knew the recommended age at first mammography in 35.2% and 86.6%, the recommended frequency of screening in 33.9% and 12.9%, the recommended age at first breast-self examination in 38.8% and 51.2%, had sufficient knowledge of the risk factors of BC in 7.0% and 5.9%, and that of signs and symptoms of BC in 16.7% and 28.9%, respectively. A higher proportion of screening attendees correctly identified the recommended age of first BC screening correctly than that of laywomen (86.6% vs. 35.2%; p < 0.001). The most popular information sources were television among laywomen and general practitioners or specialists among screening attendees. In multivariate analysis, older age, higher education, and place of residency were significant predictors of the right answers. Conclusions Although knowledge was insufficient in almost all fields of the questionnaire, the most prominent gap was observed concerning risk factors and signs and symptoms of BC both in laywomen and, unexpectedly, screening attendees. Most laywomen were lacking knowledge of screening protocol. These results urge breast health and BC knowledge interventions in Hungary. Supplementary information The online version contains supplementary material available at 10.1186/s12905-021-01204-9.
Collapse
Affiliation(s)
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.
| | - Zsolt Szakács
- Institute for Translational Medicine, Medical School, University of Pécs, Szigeti út 12., 7624, Pecs, Hungary.,János Szentágothai Research Center, University of Pécs, Pecs, Hungary
| | - István Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, Pecs, Hungary
| |
Collapse
|
233
|
Huang J, Chan PSF, Lok V, Chen X, Ding H, Jin Y, Yuan J, Lao XQ, Zheng ZJ, Wong MCS. Global incidence and mortality of breast cancer: a trend analysis. Aging (Albany NY) 2021; 13:5748-5803. [PMID: 33592581 PMCID: PMC7950292 DOI: 10.18632/aging.202502] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/18/2020] [Indexed: 04/13/2023]
Abstract
This study aimed to evaluate the global incidence and mortality trends of breast cancer among females by region and age in the past decade. We retrieved country-specific incidence and mortality data from the Global Cancer Observatory up to 2018 and Cancer Incidence in Five Continents volumes I-XI, the Nordic Cancer Registries, the Surveillance, Epidemiology, and End Results, and WHO mortality database up to 2016. The temporal patterns were using Average Annual Percent Change (AAPC) with the 95% confidence interval (CI) by joinpoint regression analysis. Most countries showed an increasing trend in incidence. For the older population aged ≥ 50 years, Japan (5.63, 4.90-6.36), Slovakia (3.63, 3.03-4.22), China (2.86, 2.00-3.72) reported the most prominent increase. For young females (<50 years), Japan (AAPC=3.81, 95% CI=2.71-4.93), Germany (AAPC=2.60, 95% CI=1.41-3.81) and Slovakia (1.91, 1.13-2.69) reported the most drastic rise. Similarly, 12 countries showed an incidence increase among women aged <40 years. As for mortality, the Philippines (4.36, 3.65-5.07), Thailand (4.35, 3.12-5.59), Colombia (0.75, 0.08-1.42), and Brazil (0.44, 0.19-0.68) reported a significant increase. The disease burden of breast cancer showed an increasing trend in a large number of populations. More preventive efforts are recommended for these countries. Further research should explore the underlying reasons for these epidemiological trends.
Collapse
Affiliation(s)
- Junjie Huang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul SF Chan
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Veeleah Lok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Chen
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanyue Ding
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yinzi Jin
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Jinqiu Yuan
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiang-qian Lao
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Martin CS Wong
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Global Health, School of Public Health, Peking University, Beijing, China
- School of Public Health, The Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
234
|
Carballo-Casla A, Ortolá R, García-Esquinas E, Oliveira A, Sotos-Prieto M, Lopes C, Lopez-Garcia E, Rodríguez-Artalejo F. The Southern European Atlantic Diet and all-cause mortality in older adults. BMC Med 2021; 19:36. [PMID: 33557823 PMCID: PMC7871632 DOI: 10.1186/s12916-021-01911-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Southern European Atlantic Diet (SEAD) is the traditional diet of Northern Portugal and North-Western Spain. Higher adherence to the SEAD has been associated with lower levels of some cardiovascular risk factors and reduced risk for myocardial infarction, but whether this translates into lower all-cause mortality is uncertain. We hence examined the association between adherence to the SEAD and all-cause mortality in older adults. METHODS Data were taken from the Seniors-ENRICA-1 cohort, which included 3165 individuals representative of the non-institutionalized population aged ≥ 60 years in Spain. Food consumption was assessed with a validated diet history, and adherence to the SEAD was measured with an index comprising 9 food components: fresh fish, cod, red meat and pork products, dairy products, legumes and vegetables, vegetable soup, potatoes, whole-grain bread, and wine. Vital status was ascertained with the National Death Index of Spain. Statistical analyses were performed with Cox regression models and adjusted for the main confounders. RESULTS During a median follow-up of 10.9 years, 646 deaths occurred. Higher adherence to the SEAD was associated with lower all-cause mortality (fully adjusted hazard ratio [95% confidence interval] per 1-SD increment in the SEAD score 0.86 [0.79, 0.94]; p-trend < 0.001). Most food components of the SEAD showed some tendency to lower all-cause mortality, especially moderate wine consumption (hazard ratio [95% confidence interval] 0.71 [0.59, 0.86]). The results were robust in several sensitivity analyses. The protective association between SEAD and all-cause death was of similar magnitude to that found for the Mediterranean Diet Adherence Screener (hazard ratio [95% confidence interval] per 1-SD increment 0.89 [0.80, 0.98]) and the Alternate Healthy Eating Index (0.83 [0.76, 0.92]). CONCLUSIONS Adherence to the SEAD is associated with a lower risk of all-cause death among older adults in Spain.
Collapse
Affiliation(s)
- Adrián Carballo-Casla
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Rosario Ortolá
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain. .,CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther García-Esquinas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Andreia Oliveira
- EPIUnit-Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Carla Lopes
- EPIUnit-Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.,Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029, Madrid, Spain.,IMDEA Food Institute, CEI UAM+CSIC, Carretera de Canto Blanco 8, 28049, Madrid, Spain
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Avenida de Monforte de Lemos 3-5, 28029, Madrid, Spain.,IMDEA Food Institute, CEI UAM+CSIC, Carretera de Canto Blanco 8, 28049, Madrid, Spain
| |
Collapse
|
235
|
McCarty MF, Assanga SI, Lujan LL. Age-adjusted mortality from pancreatic cancer increased NINE-FOLD in japan from 1950 to 1995 - Was a low-protein quasi-vegan diet a key factor in their former low risk? Med Hypotheses 2021; 149:110518. [PMID: 33582316 DOI: 10.1016/j.mehy.2021.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
During the last half of the twentieth century, age-adjusted mortality from pancreatic cancer in Japan rose about nine-fold in both sexes. Well-characterized risk factors such as smoking, obesity/metabolic syndrome, and heavy alcohol use appear to explain only a modest part of this rise. It is proposed that a diet relatively low in protein, and particularly low in animal protein, was a key determinant of the low risk for pancreatic cancer in mid-century Japan. It is further proposed that pancreatic acinar cells, owing to their extraordinarily high rate of protein synthesis, are at high risk for ER stress; that such stress plays a fundamental role in the induction of most pancreatic cancers; and that low-protein diets help to offset such stress by modulating activities of the kinases GCN2 and mTORC1 while increasing autocrine and systemic production of fibroblast growth factor 21. This model appears to clarify the role of various risk factors and protective factors in pancreatic cancer induction. A vegan or quasi-vegan low-protein diet may have broader potential for decreasing risk for a range of common "Western" cancers.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA, United States.
| | | | | |
Collapse
|
236
|
|
237
|
Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021; 12:1305-1316. [PMID: 33418570 PMCID: PMC8321846 DOI: 10.1093/advances/nmaa161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/14/2022] Open
Abstract
As the largest tissue in the body, skeletal muscle not only plays key roles in movement and glucose uptake and utilization but also mediates insulin sensitivity in the body by myokines. Insulin resistance in the skeletal muscle is a major feature of type 2 diabetes (T2D). A weakened response to insulin could lead to muscle mass loss and dysfunction. Increasing evidence in skeletal muscle cells, rodents, nonhuman primates, and humans has shown that restriction of caloric or protein intake positively mediates insulin sensitivity. Restriction of essential or nonessential amino acids was reported to facilitate glucose utilization and regulate protein turnover in skeletal muscle under certain conditions. Furthermore, some minerals, such as zinc, chromium, vitamins, and some natural phytochemicals such as curcumin, resveratrol, berberine, astragalus polysaccharide, emodin, and genistein, have been shown recently to protect skeletal muscle cells, mice, or humans with or without diabetes from insulin resistance. In this review, we discuss the roles of nutritional interventions in the regulation of skeletal muscle insulin sensitivity. A comprehensive understanding of the nutritional regulation of insulin signaling would contribute to the development of tools and treatment programs for improving skeletal muscle health and for preventing T2D.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meixia Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, China
| | | |
Collapse
|
238
|
Fasting and fasting-mimicking diets for chemotherapy augmentation. GeroScience 2021; 43:1201-1216. [PMID: 33410090 DOI: 10.1007/s11357-020-00317-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022] Open
Abstract
The increasingly older population in most developed countries will likely experience aging-related chronic diseases such as diabetes, metabolic syndrome, heart and lung diseases, osteoporosis, arthritis, dementia, and/or cancer. Genetic and environmental factors, but also lifestyle choices including physical activity and dietary habits, play essential roles in disease onset and progression. Sixty-five percent of Americans diagnosed with cancer now survive more than 5 years, making the need for informed lifestyle choices particularly important to successfully complete their treatment, increase the recovery from the cytotoxic therapy options, and improve cancer-free survival. This review will discuss the findings on the use of prolonged fasting, as well as fasting-mimicking diets to augment cancer treatment. Preclinical studies in rodents strongly support the implementation of these dietary interventions and a small number of clinical trials begin to provide encouraging results for cancer patients and cancer survivors.
Collapse
|
239
|
Noce A, Marrone G, Ottaviani E, Guerriero C, Di Daniele F, Pietroboni Zaitseva A, Di Daniele N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021; 13:nu13010147. [PMID: 33406683 PMCID: PMC7824031 DOI: 10.3390/nu13010147] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Uremic sarcopenia is a frequent condition present in chronic kidney disease (CKD) patients and is characterized by reduced muscle mass, muscle strength and physical performance. Uremic sarcopenia is related to an increased risk of hospitalization and all-causes mortality. This pathological condition is caused not only by advanced age but also by others factors typical of CKD patients such as metabolic acidosis, hemodialysis therapy, low-grade inflammatory status and inadequate protein-energy intake. Currently, treatments available to ameliorate uremic sarcopenia include nutritional therapy (oral nutritional supplement, inter/intradialytic parenteral nutrition, enteral nutrition, high protein and fiber diet and percutaneous endoscopic gastrectomy) and a personalized program of physical activity. The aim of this review is to analyze the possible benefits induced by nutritional therapy alone or in combination with a personalized program of physical activity, on onset and/or progression of uremic sarcopenia.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- Correspondence: (A.N.); (G.M.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2191 (G.M.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Correspondence: (A.N.); (G.M.); Tel.: +39-06-2090-2194 (A.N.); +39-06-2090-2191 (G.M.)
| | - Eleonora Ottaviani
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Cristina Guerriero
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (E.O.); (C.G.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
240
|
Composition of Amino Acids in Foodstuffs for Humans and Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:189-210. [PMID: 34251645 DOI: 10.1007/978-3-030-74180-8_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are the building blocks of proteins that have both structural and metabolic functions in humans and other animals. In mammals, birds, fish, and crustaceans, proteinogenic AAs are alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. All animals can synthesize de novo alanine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and serine, whereas most mammals (including humans and pigs) can synthesize de novo arginine. Results of extensive research over the past three decades have shown that humans and other animals have dietary requirements for AAs that are synthesizable de novo in animal cells. Recent advances in analytical methods have allowed us to determine all proteinogenic AAs in foods consumed by humans, livestock, poultry, fish, and crustaceans. Both plant- and animal-sourced foods contain high amounts of glutamate, glutamine, aspartate, asparagine, and branched-chain AAs. Cysteine, glycine, lysine, methionine, proline, threonine, and tryptophan generally occur in low amounts in plant products but are enriched in animal products. In addition, taurine and creatine (essential for the integrity and function of tissues) are absent from plants but are abundant in meat and present in all animal-sourced foods. A combination of plant- and animal products is desirable for the healthy diets of humans and omnivorous animals. Furthermore, animal-sourced feedstuffs can be included in the diets of farm and companion animals to cost-effectively improve their growth performance, feed efficiency, and productivity, while helping to sustain the global animal agriculture (including aquaculture).
Collapse
|
241
|
Richardson NE, Konon EN, Schuster HS, Mitchell AT, Boyle C, Rodgers AC, Finke M, Haider LR, Yu D, Flores V, Pak HH, Ahmad S, Ahmed S, Radcliff A, Wu J, Williams EM, Abdi L, Sherman DS, Hacker T, Lamming DW. Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. NATURE AGING 2021; 1:73-86. [PMID: 33796866 PMCID: PMC8009080 DOI: 10.1038/s43587-020-00006-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Protein restricted (PR) diets promote health and longevity in many species. While the precise components of a PR diet that mediate the beneficial effects to longevity have not been defined, we recently showed that many metabolic effects of PR can be attributed to reduced dietary levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Here, we demonstrate that restricting dietary BCAAs increases the survival of two different progeroid mouse models, delays frailty and promotes the metabolic health of wild-type C57BL/6J mice when started in midlife, and leads to a 30% increase in lifespan and a reduction in frailty in male, but not female, wild-type mice when fed lifelong. Our results demonstrate that restricting dietary BCAAs can increase healthspan and longevity in mice, and suggest that reducing dietary BCAAs may hold potential as a translatable intervention to promote healthy aging.
Collapse
Affiliation(s)
- Nicole E. Richardson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth N. Konon
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Haley S. Schuster
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Alexis T. Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Colin Boyle
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | | | - Megan Finke
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Lexington R. Haider
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Deyang Yu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Victoria Flores
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi H. Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Soha Ahmad
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Sareyah Ahmed
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Abigail Radcliff
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Jessica Wu
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Elizabeth M. Williams
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Lovina Abdi
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Dawn S. Sherman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Timothy Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
242
|
Mirisola MG. Diet and Calorie Restriction. ENCYCLOPEDIA OF GERONTOLOGY AND POPULATION AGING 2021:1425-1434. [DOI: 10.1007/978-3-030-22009-9_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
243
|
Zhang MY, Hu P, Feng D, Zhu YZ, Shi Q, Wang J, Zhu WY. The role of liver metabolism in compensatory-growth piglets induced by protein restriction and subsequent protein realimentation. Domest Anim Endocrinol 2021; 74:106512. [PMID: 32653740 DOI: 10.1016/j.domaniend.2020.106512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/31/2020] [Accepted: 06/13/2020] [Indexed: 11/21/2022]
Abstract
The aim of this work was to study the role of hepatic metabolism of compensatory growth in piglets induced by protein restriction and subsequent protein realimentation. Thirty-six weaned piglets were randomly distributed in a control group and a treatment group. The control group piglets were fed with a normal protein level diet (18.83% CP) for the entire experimental period (day 1-28). The treatment group piglets were fed with a protein-restriction diet (13.05% CP) for day 1 to day 14, and the diet was restored to normal protein level diet for day 15 to day 28. RNA-seq is used to analyze samples of liver metabolism on day 14 and day 28, respectively. Hepatic RNA-sequencing analysis revealed that some KEGG signaling pathways involved in glycolipid metabolism (eg, "AMPK signaling pathway," "insulin signaling pathway," and "glycolysis or gluconeogenesis") were significantly enriched on day 14 and day 28. On day 14, protein restriction promoted hepatic lipogenesis by increasing the genes expression level of ACACA, FASN, GAPM, and SREBP1C, decreasing protein phosphorylation levels of AMPKɑ and ACC in AMPK signaling pathway. In contrast, on day 28, protein realimentation promoted hepatic gluconeogenesis by increasing the concentration of G6Pase and PEPCK, decreasing protein phosphorylation levels of IRS1, Akt, and FoXO1 in insulin signaling pathway. In addition, protein realimentation activated the GH-IGF1 axis between the liver and skeletal muscle. Overall, these findings revealed the importance of liver metabolism in achieving compensatory growth.
Collapse
Affiliation(s)
- M Y Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - P Hu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - D Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Y Z Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Q Shi
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - J Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - W Y Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
244
|
Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C, Okbay A, Turley P, Rietveld CA, Fontana MA, Ghanbari M, Imamura F, McMahon G, van der Most PJ, Voortman T, Wade KH, Anderson EL, Braun KVE, Emmett PM, Esko T, Gonzalez JR, Kiefte-de Jong JC, Langenberg C, Luan J, Muka T, Ring S, Rivadeneira F, Snieder H, van Rooij FJA, Wolffenbuttel BHR, Smith GD, Franco OH, Forouhi NG, Ikram MA, Uitterlinden AG, van Vliet-Ostaptchouk JV, Wareham NJ, Cesarini D, Harden KP, Lee JJ, Benjamin DJ, Chow CC, Koellinger PD. Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. Mol Psychiatry 2021; 26:2056-2069. [PMID: 32393786 PMCID: PMC7767645 DOI: 10.1038/s41380-020-0697-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
Collapse
Affiliation(s)
- S. Fleur W. Meddens
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands ,grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Ronald de Vlaming
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Peter Bowers
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Casper A. P. Burik
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Richard Karlsson Linnér
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Chanwook Lee
- grid.38142.3c000000041936754XDepartment of Economics, Harvard University, 1805 Cambridge St, Cambridge, MA 02138 USA
| | - Aysu Okbay
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Patrick Turley
- grid.32224.350000 0004 0386 9924Analytical and Translational Genetics Unit, Massachusetts General Hospital, Richard B. Simches Research building, 185 Cambridge St, CPZN-6818, Boston, MA 02114 USA ,grid.66859.34Stanley Center for Psychiatric Genomics, The Broad Institute at Harvard and MIT, 75 Ames St, Cambridge, MA 02142 USA ,grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Cornelius A. Rietveld
- grid.6906.90000000092621349Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Burgemeester, Oudlaan 50, 3062 PA Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.6906.90000000092621349Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus School of Economics, Erasmus, University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Mark Alan Fontana
- grid.239915.50000 0001 2285 8823Center for the Advancement of Value in Musculoskeletal Care, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 USA ,grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, 402 East 67th Street, New York, NY 10065 USA
| | - Mohsen Ghanbari
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.411583.a0000 0001 2198 6209Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Azadi Square, University Campus, 9177948564 Mashhad, Iran
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - George McMahon
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Peter J. van der Most
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Trudy Voortman
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Kaitlin H. Wade
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Emma L. Anderson
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Kim V. E. Braun
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Pauline M. Emmett
- grid.5337.20000 0004 1936 7603Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8, 2BN, Bristol, UK
| | - Tonũ Esko
- grid.10939.320000 0001 0943 7661Estonian Genome Center, University of Tartu, Riia 23b, Tartu, 51010 Estonia
| | - Juan R. Gonzalez
- grid.434607.20000 0004 1763 3517Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, Barcelona, 8003 Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Ramon Trias Fargas 25-27, Barcelona, 8005 Spain ,grid.413448.e0000 0000 9314 1427CIBER Epidemiología y Salud Pública (CIBERESP), Pabellón 11, Calle Monforte de Lemos, 3-5, Madrid, 280229 Spain
| | - Jessica C. Kiefte-de Jong
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands ,grid.5132.50000 0001 2312 1970Leiden University College, Anna van Buerenplein 301, 2595 DG Den Haag, The Netherlands
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Jian’an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - Taulant Muka
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Susan Ring
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Fernando Rivadeneira
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Harold Snieder
- grid.4494.d0000 0000 9558 4598Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frank J. A. van Rooij
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | - George Davey Smith
- grid.5337.20000 0004 1936 7603Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, BS8 2BN Bristol, UK
| | - Oscar H. Franco
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - M. Arfan Ikram
- grid.5645.2000000040459992XDepartment of Epidemiology, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- grid.5645.2000000040459992XDepartment of Internal Medicine, Erasmus MC University Medical Center, Wytemaweg 80, 3015 GE Rotterdam, The Netherlands
| | - Jana V. van Vliet-Ostaptchouk
- grid.4494.d0000 0000 9558 4598Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus Cambridge, CB2 0QQ Cambridge, UK
| | - David Cesarini
- grid.137628.90000 0004 1936 8753Department of Economics, New York University, 19 W. 4th Street, New York, NY 10012 USA
| | - K. Paige Harden
- grid.89336.370000 0004 1936 9924Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop #A8000, Austin, TX 78704 USA
| | - James J. Lee
- grid.17635.360000000419368657Department of Psychology, University of Minnesota Twin Cities, 75 East River Parkway, Minneapolis, MN 55455 USA
| | - Daniel J. Benjamin
- grid.42505.360000 0001 2156 6853Behavioral and Health Genomics Center, Center for Economic and Social Research, University of Southern, California, 635 Downey Way, Los Angeles, CA 90089 USA ,grid.250279.b0000 0001 0940 3170National Bureau of Economic Research, 1050 Massachusetts Ave, Cambridge, MA 02138 USA ,grid.42505.360000 0001 2156 6853Department of Economics, University of Southern California, 635 Downey Way, Los Angeles, CA 90089 USA
| | - Carson C. Chow
- grid.94365.3d0000 0001 2297 5165Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National, Institutes of Health, Bethesda, MD 20892 USA
| | - Philipp D. Koellinger
- grid.12380.380000 0004 1754 9227Department of Economics, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
245
|
Morita M, Kudo K, Shima H, Tanuma N. Dietary intervention as a therapeutic for cancer. Cancer Sci 2020; 112:498-504. [PMID: 33340176 PMCID: PMC7893991 DOI: 10.1111/cas.14777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer metabolism is influenced by availability of nutrients in the microenvironment and can to some extent be manipulated by dietary modifications that target oncogenic metabolism. As yet, few dietary interventions have been scientifically proven to mitigate disease progression or enhance any other kind of therapy in human cancer. However, recent advances in the understanding of cancer metabolism enable us to predict or devise effective dietary interventions that might antagonize tumor growth. In fact, evidence emerging from preclinical models suggests that appropriate combinations of specific cancer therapies with dietary interventions could critically impact therapeutic efficacy. Here, we review the potential benefits of precision nutrition approaches in augmenting the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Mami Morita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kei Kudo
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
246
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
247
|
Dietary Constituents: Relationship with Breast Cancer Prognostic (MCC-SPAIN Follow-Up). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010084. [PMID: 33374289 PMCID: PMC7794807 DOI: 10.3390/ijerph18010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to characterize the relationship between the intake of the major nutrients and prognosis in breast cancer. A cohort based on 1350 women with invasive (stage I-IV) breast cancer (BC) was followed up. Information about their dietary habits before diagnosis was collected using a semi-quantitative Food Frequency Questionnaire. Participants without FFQ or with implausible energy intake were excluded. The total amount consumed of each nutrient (Kcal/day) was divided into tertiles, considering as “high intakes” those above third tertile. The main effect studied was overall survival. Cox regression was used to assess the association between death and nutrient intake. During a median follow-up of 6.5 years, 171 deaths were observed. None of the nutrients analysed was associated with mortality in the whole sample. However, in normal-weight women (BMI 18.5–25 kg/m2) a high intake of carbohydrates (≥809 Kcal/day), specifically monosaccharides (≥468 Kcal/day), worsened prognostic compared to lowest (≤352 Kcal/day). Hazard Ratios (HRs) for increasing tertiles of intake were HR:2.22 95% CI (1.04 to 4.72) and HR:2.59 95% CI (1.04 to 6.48), respectively (p trend = 0.04)). Conversely, high intakes of polyunsaturated fats (≥135 Kcal/day) improved global survival (HR: 0.39 95% CI (0.15 to 1.02) p-trend = 0.05) compared to the lowest (≤92.8 kcal/day). In addition, a protective effect was found substituting 100 kcal of carbohydrates with 100 kcal of fats in normal-weight women (HR: 0.76 95% CI (0.59 to 0.98)). Likewise, in premenopausal women a high intake of fats (≥811 Kcal/day) showed a protective effect (HR:0.20 95% CI (0.04 to 0.98) p trend = 0.06). Finally, in Estrogen Receptors (ER) negative tumors, we found a protective effect of high intake of animal proteins (≥238 Kcal/day, HR: 0.24 95% CI (0.06 to 0.98). According to our results, menopausal status, BMI and ER status could play a role in the relationship between diet and BC survival and must be taken into account when studying the influence of different nutrients.
Collapse
|
248
|
Thelen M, Brown-Borg HM. Does Diet Have a Role in the Treatment of Alzheimer's Disease? Front Aging Neurosci 2020; 12:617071. [PMID: 33424583 PMCID: PMC7785773 DOI: 10.3389/fnagi.2020.617071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs. changes that occur with normal aging. Current FDA-approved therapeutic options for AD patients have proven to be ineffective and indicate the need for alternative therapies. Aging interventions including alterations in diet (such as caloric restriction, fasting, or methionine restriction) have been shown to be effective in mediating increased health and lifespan in mice and other model organisms. Because aging is the greatest risk factor for the development of neurodegenerative diseases, certain dietary interventions should be explored as they have the potential to act as a future treatment option for AD patients.
Collapse
Affiliation(s)
- Mitchell Thelen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
249
|
Crupi AN, Haase J, Brandhorst S, Longo VD. Periodic and Intermittent Fasting in Diabetes and Cardiovascular Disease. Curr Diab Rep 2020; 20:83. [PMID: 33301104 DOI: 10.1007/s11892-020-01362-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is one of the leading causes of death globally. Nutrition plays a central role in CVD risk by affecting aging, adiposity, glycemia, blood pressure, cholesterol, inflammation, and other risk factors and can affect CVD risk not only based on calorie intake and dietary composition but also the timing and range of meals. This review evaluates the effects of fasting, fasting-mimicking diets, and time-restricted eating on the reduction of CVD risk factors and provides initial data on their potential to serve as CVD prevention and treatment therapies. RECENT FINDINGS Intermittent fasting (IF), time-restricted eating (TRE), prolonged fasting (PF), and fasting-mimicking diets (FMD) show promise in the reduction of CVD risk factors. Results on IF, TRE, PF, and FMD on CVD risk factors are significant and often independent of weight loss, yet long-term studies on their effect on CVD are still lacking. Coupling periodic and prolonged, or intermittent and more frequent cycles of fasting or fasting-mimicking diets, designed to maximize compliance and minimize side effects, has the potential to play a central role in the prevention and treatment of CVD and metabolic syndrome.
Collapse
Affiliation(s)
- Annunziata Nancy Crupi
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jonathan Haase
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sebastian Brandhorst
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
250
|
Growth Hormone Upregulates Mediators of Melanoma Drug Efflux and Epithelial-to-Mesenchymal Transition In Vitro and In Vivo. Cancers (Basel) 2020; 12:cancers12123640. [PMID: 33291663 PMCID: PMC7761932 DOI: 10.3390/cancers12123640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Growth hormone (GH) action is strongly implicated in the progression and therapy resistance in several types of solid tumors which overexpress the GH receptor (GHR). The aim of our study was to characterize the effects of GH and its downstream effector insulin-like growth factor 1 (IGF-1) on melanoma using in vitro and in vivo models. We confirmed an IGF-1-independent role of elevated circulating GH in upregulating key mechanisms of therapy resistance and malignancy with analyses conducted at the molecular and cellular level. We identified that GH upregulates key mechanisms of therapy resistance and metastases in melanoma tumors in an IGF-1 dependent and independent manner by upregulating multidrug efflux pumps and EMT transcription factors. Our study reveals that GH action renders an intrinsic drug resistance phenotype to the melanoma tumors—a clinically crucial property of GH verifiable in other human cancers with GHR expression. Abstract Growth hormone (GH) and the GH receptor (GHR) are expressed in a wide range of malignant tumors including melanoma. However, the effect of GH/insulin-like growth factor (IGF) on melanoma in vivo has not yet been elucidated. Here we assessed the physical and molecular effects of GH on mouse melanoma B16-F10 and human melanoma SK-MEL-30 cells in vitro. We then corroborated these observations with syngeneic B16-F10 tumors in two mouse lines with different levels of GH/IGF: bovine GH transgenic mice (bGH; high GH, high IGF-1) and GHR gene-disrupted or knockout mice (GHRKO; high GH, low IGF-1). In vitro, GH treatment enhanced mouse and human melanoma cell growth, drug retention and cell invasion. While the in vivo tumor size was unaffected in both bGH and GHRKO mouse lines, multiple drug-efflux pumps were up regulated. This intrinsic capacity of therapy resistance appears to be GH dependent. Additionally, epithelial-to-mesenchymal transition (EMT) gene transcription markers were significantly upregulated in vivo supporting our current and recent in vitro observations. These syngeneic mouse melanoma models of differential GH/IGF action can be valuable tools in screening for therapeutic options where lowering GH/IGF-1 action is important.
Collapse
|