251
|
Childhood obesity: the impact on long-term risk of metabolic and CVD is not necessarily inevitable. Proc Nutr Soc 2014; 73:389-96. [DOI: 10.1017/s0029665114000111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The worldwide prevalence of overweight and obesity in the adult population is estimated to be 35 %. These trends are reflected in childhood obesity prevalence, and the potential impact of early-onset obesity is of great concern. The aim of this review was to investigate the long-term implications of childhood obesity for metabolic and cardiovascular health, focusing on the independent contribution of childhood obesity to adult disease risk, as distinct from associations mediated by tracking of obesity across the lifespan. The data systematically reviewed provide little evidence to suggest that childhood overweight and obesity are independent risk factors for metabolic and cardiovascular risk during adulthood. Instead, the data demonstrate that the relationships observed are dependent on tracking of BMI between childhood and adulthood, alongside persistence of dietary patterns and physical activity. Adjustment for adult BMI uncovers unexpected negative associations between childhood BMI and adult disease, suggesting a protective effect of childhood obesity at any given level of adult BMI. Further work is required to explain these findings, both in terms of pathways and statistical artefacts. To conclude, it must be stressed that it is not suggested that childhood obesity is without negative consequence. Childhood obesity is clearly associated with a range of adverse physical and psychological outcomes. However, the data are important in supporting a positive message that the long-term consequences of childhood obesity are avoidable; and that there remains opportunity for intervention across the lifespan. This nuance in understanding long-term risk is important when considering the effectiveness of interventions at different stages of the lifespan.
Collapse
|
252
|
Carbohydrate intake and glycemic index affect substrate oxidation during a controlled weight cycle in healthy men. Eur J Clin Nutr 2014; 68:1060-6. [PMID: 25005676 DOI: 10.1038/ejcn.2014.132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Because both, glycemic index (GI) and carbohydrate content of the diet increase insulin levels and could thus impair fat oxidation, we hypothesized that refeeding a low GI, moderate-carbohydrate diet facilitates weight maintenance. SUBJECTS/METHODS Healthy men (n=32, age 26.0±3.9 years; BMI 23.4±2.0 kg/m(2)) followed 1 week of controlled overfeeding, 3 weeks of caloric restriction and 2 weeks of hypercaloric refeeding (+50, -50 and +50% energy requirement) with low vs high GI (41 vs 74) and moderate vs high CHO intake (50% vs 65% energy). We measured adaptation of fasting macronutrient oxidation and the capacity to supress fat oxidation during an oral glucose tolerance test. Changes in fat mass were measured by quantitative magnetic resonance. RESULTS During overfeeding, participants gained 1.9±1.2 kg body weight, followed by a weight loss of -6.3±0.6 kg and weight regain of 2.8±1.0 kg. Subjects with 65% CHO gained more body weight compared with 50% CHO diet (P<0.05) particularly with HGI meals (P<0.01). Refeeding a high-GI diet led to an impaired basal fat oxidation when compared with a low-GI diet (P<0.02), especially at 65% CHO intake. Postprandial metabolic flexibility was unaffected by refeeding at 50% CHO but clearly impaired by 65% CHO diet (P<0.05). Impairment in fasting fat oxidation was associated with regain in fat mass (r=0.43, P<0.05) and body weight (r=0.35; P=0.051). CONCLUSIONS Both higher GI and higher carbohydrate content affect substrate oxidation and thus the regain in body weight in healthy men. These results argue in favor of a lower glycemic load diet for weight maintenance after weight loss.
Collapse
|
253
|
Liu S, Alexander RK, Lee CH. Lipid metabolites as metabolic messengers in inter-organ communication. Trends Endocrinol Metab 2014; 25:356-63. [PMID: 24895003 PMCID: PMC4077945 DOI: 10.1016/j.tem.2014.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 01/08/2023]
Abstract
Metabolic homeostasis is achieved through coordinated regulation across several tissues. Studies using mouse genetic models have shown that perturbation of specific pathways of lipid metabolism in metabolically active tissues impacts systemic metabolic homeostasis. The use of metabolomic technologies combined with genetic models has helped to identify several potential lipid mediators that serve as metabolic messengers to communicate energy status and modulate substrate utilization among tissues. When provided exogenously, these lipid metabolites exhibit biological effects on glucose and lipid metabolism, indicating a therapeutic potential for treating metabolic diseases. In this review we summarize recent advances in inter-organ communication through novel mechanisms, with a focus on lipid mediators synthesized de novo or derived from dietary sources, and discuss challenges and future directions.
Collapse
Affiliation(s)
- Sihao Liu
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ryan K Alexander
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, Boston, MA 02115, USA
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
254
|
Mizgier ML, Casas M, Contreras-Ferrat A, Llanos P, Galgani JE. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obes Rev 2014; 15:587-97. [PMID: 24618283 DOI: 10.1111/obr.12166] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 01/03/2023]
Abstract
Pancreatic beta cells sense glucose flux and release as much insulin as required in order to maintain glycaemia within a narrow range. Insulin secretion is regulated by many factors including glucose, incretins, and sympathetic and parasympathetic tones among other physiological factors. To identify the mechanisms linking obesity-related insulin resistance with impaired insulin secretion represents a central challenge. Recently, it has been argued that a crosstalk between skeletal muscle and the pancreas may regulate insulin secretion. Considering that skeletal muscle is the largest organ in non-obese subjects and a major site of insulin- and exercise-stimulated glucose disposal, it appears plausible that muscle might interact with the pancreas and modulate insulin secretion for appropriate peripheral intracellular glucose utilization. There is growing evidence that muscle can secrete so-called myokines that can have auto/para/endocrine actions. Although it is unclear in which direction they act, interleukin-6 seems to be a possible muscle-derived candidate protein mediating such inter-organ communication. We herein review some of the putative skeletal muscle-derived factors mediating this interaction. In addition, the evidence coming from in vitro, animal and human studies that support such inter-organ crosstalk is thoroughly discussed.
Collapse
Affiliation(s)
- M L Mizgier
- Departmento de Nutrición, Diabetes y Metabolismo, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
255
|
Kelder T, Stroeve JHM, Bijlsma S, Radonjic M, Roeselers G. Correlation network analysis reveals relationships between diet-induced changes in human gut microbiota and metabolic health. Nutr Diabetes 2014; 4:e122. [PMID: 24979151 PMCID: PMC4079927 DOI: 10.1038/nutd.2014.18] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background: Recent evidence suggests that the gut microbiota plays an important role in human metabolism and energy homeostasis and is therefore a relevant factor in the assessment of metabolic health and flexibility. Understanding of these host–microbiome interactions aids the design of nutritional strategies that act via modulation of the microbiota. Nevertheless, relating gut microbiota composition to host health states remains challenging because of the sheer complexity of these ecosystems and the large degrees of interindividual variation in human microbiota composition. Methods: We assessed fecal microbiota composition and host response patterns of metabolic and inflammatory markers in 10 apparently healthy men subjected to a high-fat high-caloric diet (HFHC, 1300 kcal/day extra) for 4 weeks. DNA was isolated from stool and barcoded 16S rRNA gene amplicons were sequenced. Metabolic health parameters, including anthropomorphic and blood parameters, where determined at t=0 and t=4 weeks. Results: A correlation network approach revealed diet-induced changes in Bacteroides levels related to changes in carbohydrate oxidation rates, whereas the change in Firmicutes correlates with changes in fat oxidation. These results were confirmed by multivariate models. We identified correlations between microbial diversity indices and several inflammation-related host parameters that suggest a relation between diet-induced changes in gut microbiota diversity and inflammatory processes. Conclusions: This approach allowed us to identify significant correlations between abundances of microbial taxa and diet-induced shifts in several metabolic health parameters. Constructed correlation networks provide an overview of these relations, revealing groups of correlations that are of particular interest for explaining host health aspects through changes in the gut microbiota.
Collapse
Affiliation(s)
- T Kelder
- Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| | - J H M Stroeve
- Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| | - S Bijlsma
- Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| | - M Radonjic
- Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| | - G Roeselers
- Microbiology and Systems Biology, TNO, Zeist, The Netherlands
| |
Collapse
|
256
|
Saben JL, Bales ES, Jackman MR, Orlicky D, MacLean PS, McManaman JL. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One 2014; 9:e98066. [PMID: 24849657 PMCID: PMC4029960 DOI: 10.1371/journal.pone.0098066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.
Collapse
Affiliation(s)
- Jessica L. Saben
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Graduate Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew R. Jackman
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James L. McManaman
- Division of Basic Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Graduate Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
257
|
Cappelli AP, Zoppi CC, Barbosa-Sampaio HC, Costa JM, Protzek AO, Morato PN, Boschero AC, Carneiro EM. Taurine-induced insulin signalling improvement of obese malnourished mice is associated with redox balance and protein phosphatases activity modulation. Liver Int 2014; 34:771-83. [PMID: 23998525 DOI: 10.1111/liv.12291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/24/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Obese protein malnourished mice display liver insulin resistance and taurine (TAU) seems to attenuate this effect. The association between early-life malnutrition and hepatic redox balance in diet-induced insulin resistance is unknown. We investigated TAU supplementation effects upon liver redox state and insulin signalling in obese protein malnourished mice. METHODS Weaned male C57BL-6 mice were fed a control (14% protein - C) or a protein-restricted diet (6% protein - R) for 6 weeks. Afterwards, mice received a high-fat diet (34% fat - HFD) for 8 weeks (CH - RH). Half of the HFD-mice were supplemented with TAU (5%) throughout the treatment (CHT - RHT). Body and tissues' weight, respiratory quotient (RQ), glucose tolerance and insulin sensitivity, hepatic oxidant and antioxidant markers and insulin cascade proteins were assessed. RESULTS Protein restriction leads to typical features whereas HFD was able to induce a catch-up growth in RH. HFD-groups showed higher energy intake and adiposity, lower energy expenditure and altered RQ. Glucose tolerance and insulin sensitivity were impaired in HFD-groups and TAU attenuated these effects. H2 O2 content was increased in CHT and RHT despite no differences in antioxidant enzymes and GSH concentration. AKT and PTEN phosphorylation were significantly increased in CHT but not in RHT. CONCLUSION Our data provide evidence for an association between TAU-induced improved glycaemic control because of PTEN inactivation and higher AKT phosphorylation. These effects seem to be related with altered hepatic redox balance in obese mice, and this effect is impaired by protein malnutrition.
Collapse
Affiliation(s)
- Ana P Cappelli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
258
|
Silver HJ, Kang H, Keil CD, Muldowney JA, Kocalis H, Fazio S, Vaughan DE, Niswender KD. Consuming a balanced high fat diet for 16 weeks improves body composition, inflammation and vascular function parameters in obese premenopausal women. Metabolism 2014; 63:562-73. [PMID: 24559846 PMCID: PMC4306330 DOI: 10.1016/j.metabol.2014.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Inflammation, insulin resistance and vascular dysfunction characterize obesity and predict development of cardiovascular disease (CVD). Although women experience CVD events at an older age, vascular dysfunction is evident 10years prior to coronary artery disease. Questions remain whether replacing SFA entirely with MUFA or PUFA is the optimal approach for cardiometabolic benefits. This study tested the hypotheses that: a) body composition, inflammation and vascular function would improve with a high fat diet (HFD) when type of fat is balanced as 1/3 SFA, 1/3 MUFA and 1/3 PUFA; and b) body composition, inflammation and vascular function would improve more when balanced HFD is supplemented with 18C fatty acids, in proportion to the degree of 18C unsaturation. METHODS Obese premenopausal women were stabilized on balanced HFD and randomized to consume 9g/d of encapsulated stearate (18:0), oleate (18:1), linoleate (18:2) or placebo. RESULTS Significant improvements occurred in fat oxidation rate (↑6%), body composition (%fat: ↓2.5±2.1%; %lean: ↑2.5±2.1%), inflammation (↓ IL-1α, IL-1β, 1L-12, Il-17, IFNγ, TNFα, TNFβ) and vascular function (↓BP, ↓PAI-1, ↑tPA activity). When compared to HFD+placebo, HFD+stearate had the greatest effect on reducing IFNγ (↓74%) and HFD+linoleate had the greatest effect on reducing PAI-1 (↓31%). CONCLUSIONS Balancing the type of dietary fat consumed (SFA/MUFA/PUFA) is a feasible strategy to positively affect markers of CVD risk. Moreover, reductions in inflammatory molecules involved in vascular function might be enhanced when intake of certain 18C fatty acids is supplemented. Long term effects need to be determined for this approach.
Collapse
Affiliation(s)
- Heidi J Silver
- Vanderbilt University, Department of Medicine, Nashville, TN, USA.
| | - Hakmook Kang
- Vanderbilt University, Department of Biostatistics, Nashville, TN, USA
| | - Charles D Keil
- Vanderbilt University, Department of Medicine, Nashville, TN, USA
| | | | - Heidi Kocalis
- Vanderbilt University, Department of Medicine, Nashville, TN, USA
| | - Sergio Fazio
- Vanderbilt University, Department of Cardiology, Nashville, TN, USA
| | | | - Kevin D Niswender
- Vanderbilt University, Department of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
259
|
Isacco L, Thivel D, Duclos M, Aucouturier J, Boisseau N. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women. DIABETES & METABOLISM 2014; 40:215-9. [PMID: 24698815 DOI: 10.1016/j.diabet.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/24/2022]
Abstract
AIM Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. METHODS Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. RESULTS The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P < 0.001). Total and abdominal fat mass measurements were negatively associated with Lipox(max) (r = -0.57 and r = -0.64, respectively; P < 0.01) and MLOR [r = -0.63 (P < 0.01) and r = -0.76 (P < 0.001), respectively]. CONCLUSION These findings indicate that, in normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR.
Collapse
Affiliation(s)
- L Isacco
- Laboratory Culture Sport Health Society, EA 4660, and Exercise Performance, Health, Innovation Platform, Franche-Comte University, 25000 Besançon, France.
| | - D Thivel
- EA 3533, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Clermont University, Blaise Pascal University, BP 10448, 63000 Clermont-Ferrand, France.
| | - M Duclos
- Department of Sport Medicine and Functional Explorations, Clermont-Ferrand University Hospital (CHU), G. Montpied Hospital, 63003 Clermont-Ferrand, France; INRA, UMR 1019, 63001 Clermont-Ferrand, France; University Clermont 1, UFR Medicine, 63001 Clermont-Ferrand, France; CRNH-Auvergne, 63001 Clermont-Ferrand, France.
| | - J Aucouturier
- EA4488, Lille Nord de France University, "Physical Activity, muscle, Health", 59790 Ronchin, France.
| | - N Boisseau
- EA 3533, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Clermont University, Blaise Pascal University, BP 10448, 63000 Clermont-Ferrand, France.
| |
Collapse
|
260
|
Jacome-Sosa MM, Borthwick F, Mangat R, Uwiera R, Reaney MJ, Shen J, Quiroga AD, Jacobs RL, Lehner R, Proctor SD, Nelson RC. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. J Nutr Biochem 2014; 25:692-701. [PMID: 24775093 DOI: 10.1016/j.jnutbio.2014.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats.
Collapse
Affiliation(s)
- M Miriam Jacome-Sosa
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Richard Uwiera
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Martin J Reaney
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianheng Shen
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ariel D Quiroga
- Department of Pediatrics, Group on Molecular and Cell Biology of Lipids, University of Alberta, AB, Canada
| | - René L Jacobs
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Richard Lehner
- Department of Pediatrics, Group on Molecular and Cell Biology of Lipids, University of Alberta, AB, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
261
|
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Citation(s) in RCA: 1503] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2) is a transcription factor that regulates the cellular redox status. Nrf2 is controlled through a complex transcriptional/epigenetic and post-translational network that ensures its activity increases during redox perturbation, inflammation, growth factor stimulation and nutrient/energy fluxes, thereby enabling the factor to orchestrate adaptive responses to diverse forms of stress. Besides mediating stress-stimulated induction of antioxidant and detoxification genes, Nrf2 contributes to adaptation by upregulating the repair and degradation of damaged macromolecules, and by modulating intermediary metabolism. In the latter case, Nrf2 inhibits lipogenesis, supports β-oxidation of fatty acids, facilitates flux through the pentose phosphate pathway, and increases NADPH regeneration and purine biosynthesis; these observations suggest Nrf2 directs metabolic reprogramming during stress.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| |
Collapse
|
262
|
Keildson S, Fadista J, Ladenvall C, Hedman ÅK, Elgzyri T, Small KS, Grundberg E, Nica AC, Glass D, Richards JB, Barrett A, Nisbet J, Zheng HF, Rönn T, Ström K, Eriksson KF, Prokopenko I, Spector TD, Dermitzakis ET, Deloukas P, McCarthy MI, Rung J, Groop L, Franks PW, Lindgren CM, Hansson O. Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity. Diabetes 2014; 63:1154-65. [PMID: 24306210 PMCID: PMC3931395 DOI: 10.2337/db13-1301] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using an integrative approach in which genetic variation, gene expression, and clinical phenotypes are assessed in relevant tissues may help functionally characterize the contribution of genetics to disease susceptibility. We sought to identify genetic variation influencing skeletal muscle gene expression (expression quantitative trait loci [eQTLs]) as well as expression associated with measures of insulin sensitivity. We investigated associations of 3,799,401 genetic variants in expression of >7,000 genes from three cohorts (n = 104). We identified 287 genes with cis-acting eQTLs (false discovery rate [FDR] <5%; P < 1.96 × 10(-5)) and 49 expression-insulin sensitivity phenotype associations (i.e., fasting insulin, homeostasis model assessment-insulin resistance, and BMI) (FDR <5%; P = 1.34 × 10(-4)). One of these associations, fasting insulin/phosphofructokinase (PFKM), overlaps with an eQTL. Furthermore, the expression of PFKM, a rate-limiting enzyme in glycolysis, was nominally associated with glucose uptake in skeletal muscle (P = 0.026; n = 42) and overexpressed (Bonferroni-corrected P = 0.03) in skeletal muscle of patients with T2D (n = 102) compared with normoglycemic controls (n = 87). The PFKM eQTL (rs4547172; P = 7.69 × 10(-6)) was nominally associated with glucose uptake, glucose oxidation rate, intramuscular triglyceride content, and metabolic flexibility (P = 0.016-0.048; n = 178). We explored eQTL results using published data from genome-wide association studies (DIAGRAM and MAGIC), and a proxy for the PFKM eQTL (rs11168327; r(2) = 0.75) was nominally associated with T2D (DIAGRAM P = 2.7 × 10(-3)). Taken together, our analysis highlights PFKM as a potential regulator of skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Sarah Keildson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Joao Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Åsa K. Hedman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | - Targ Elgzyri
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Elin Grundberg
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Alexandra C. Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Daniel Glass
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
| | - J. Brent Richards
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - James Nisbet
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Hou-Feng Zheng
- Department of Medicine, Human Genetics, Epidemiology and Biostatistics, McGill University, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tina Rönn
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Kristoffer Ström
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
| | | | | | | | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, U.K
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, U.K
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, U.K
| | - Johan Rung
- European Molecular Biology Laboratory–European Bioinformatics Institute, Cambridge, U.K
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Ola Hansson
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
- Corresponding author: Ola Hansson,
| |
Collapse
|
263
|
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond) 2014; 11:10. [PMID: 24520982 PMCID: PMC3925357 DOI: 10.1186/1743-7075-11-10] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/08/2014] [Indexed: 01/26/2023] Open
Abstract
Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. The ability to alter substrate oxidation in response to nutritional state depends on the genetically influenced balance between oxidation and storage capacities. Competition between fatty acids and glucose for oxidation occurs at the level of the pyruvate dehydrogenase complex (PDC). The PDC is normally active in most tissues in the fed state, and suppressing PDC activity by pyruvate dehydrogenase (PDH) kinase (PDK) is crucial to maintain energy homeostasis under some extreme nutritional conditions in mammals. Conversely, inappropriate suppression of PDC activity might promote the development of metabolic diseases. This review summarizes PDKs’ pivotal role in control of metabolic flexibility under various nutrient conditions and in different tissues, with emphasis on the best characterized PDK4. Understanding the regulation of PDC and PDKs and their roles in energy homeostasis could be beneficial to alleviate metabolic inflexibility and to provide possible therapies for metabolic diseases, including type 2 diabetes (T2D).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA USA.
| |
Collapse
|
264
|
Prior SJ, Ryan AS, Stevenson TG, Goldberg AP. Metabolic inflexibility during submaximal aerobic exercise is associated with glucose intolerance in obese older adults. Obesity (Silver Spring) 2014; 22:451-7. [PMID: 23983100 PMCID: PMC3875833 DOI: 10.1002/oby.20609] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVE People with type 2 diabetes have reduced cardiorespiratory fitness and metabolic impairments that are linked to obesity and often occur prior to the development of type 2 diabetes. We hypothesized that obese, older adults with impaired glucose tolerance (IGT) have lower ability to shift from fat to carbohydrate oxidation when transitioning from rest to submaximal exercise than normal glucose tolerant (NGT) controls. DESIGN AND METHODS Glucose tolerance, body composition, and substrate oxidation (measured by RER:respiratory exchange ratio) during submaximal exercise (50% and 60% VO₂max ) and insulin infusion (3-hour hyperinsulinemic-euglycemic clamp) were assessed in 23 sedentary, overweight-obese, older men and women. RESULTS Obese subjects with NGT (n = 13) and IGT (n = 10) had similar resting RER, but during submaximal exercise those with IGT had a lower RER and less transition to carbohydrate oxidation than the NGT group (P < 0.05). The IGT group also oxidized less carbohydrate during insulin infusion than NGT (P < 0.05). RER at each exercise intensity independently correlated with 120-minute postprandial glucose (r = -0.54 to -0.58, P < 0.05), but not with body composition, VO₂max , or RER during insulin infusion. CONCLUSIONS Obese, older adults have metabolic inflexibility during exercise that is associated with the degree of glucose intolerance independent of age and body composition.
Collapse
Affiliation(s)
- Steven J. Prior
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, MD
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Alice S. Ryan
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, MD
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Troy G. Stevenson
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, MD
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Andrew P. Goldberg
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, MD
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
265
|
Whigham LD, Butz DE, Dashti H, Tonelli M, Johnson LK, Cook ME, Porter WP, Eghbalnia HR, Markley JL, Lindheim SR, Schoeller DA, Abbott DH, Assadi-Porter FM. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome. ACTA ACUST UNITED AC 2014; 2:269-278. [PMID: 24765590 DOI: 10.2174/2213235x01666131203230512] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p<0.030) lipid use as a metabolic substrate during overnight fasting in PCOS compared to normal women. Accompanying urinary analyses showed a trending correlation (p<0.057) between overnight total nitrogen and circulating testosterone in PCOS women, alone. Serum analyzed by NMR spectroscopy following overnight, fast and at 2 h following an oral glucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain.
Collapse
Affiliation(s)
- Leah D Whigham
- Paso del Norte Institute for Healthy Living, 500 W. University Ave, El Paso, TX 79968, USA
| | - Daniel E Butz
- Animal Sciences Department, UW-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Hesam Dashti
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Luann K Johnson
- Paso del Norte Institute for Healthy Living, 500 W. University Ave, El Paso, TX 79968, USA
| | - Mark E Cook
- Animal Sciences Department, UW-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Warren P Porter
- Department of Zoology, UW-Madison, 1117 W. Johnson St. Madison, WI 53706, USA
| | - Hamid R Eghbalnia
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert B. Sabin Way, Cincinnati, OH 45267-0576, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Biochemistry, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA
| | - Steven R Lindheim
- Arizona Reproductive Institute 1775 E Skyline Drive, Tucson, AZ 85718, USA
| | - Dale A Schoeller
- Department of Nutritional Sciences, UW-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, UW-Madison, 1223 Capitol Court, Madison, WI 53715, USA
| | - Fariba M Assadi-Porter
- National Magnetic Resonance Facility at Madison, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Biochemistry, UW-Madison, 433 Babcock Drive, Madison WI 53706, USA ; Department of Nutritional and Human Health Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, 79409, USA
| |
Collapse
|
266
|
Nguyen D, Hsu JW, Jahoor F, Sekhar RV. Effect of increasing glutathione with cysteine and glycine supplementation on mitochondrial fuel oxidation, insulin sensitivity, and body composition in older HIV-infected patients. J Clin Endocrinol Metab 2014; 99:169-77. [PMID: 24081740 PMCID: PMC3879663 DOI: 10.1210/jc.2013-2376] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND HIV-infected patients are reported to have impaired oxidation of fatty acids despite increased availability, suggesting a mitochondrial defect. We investigated whether diminished levels of a key mitochondrial antioxidant, glutathione (GSH), was contributing to defective fatty acid oxidation in older HIV-infected patients, and if so, the metabolic mechanisms contributing to GSH deficiency in these patients. METHODS In an open-label design, 8 older GSH-deficient HIV-infected males were studied before and after 14 days of oral supplementation with the GSH precursors cysteine and glycine. A combination of stable-isotope tracers, calorimetry, hyperinsulinemic-euglycemic clamp, and dynamometry were used to measure GSH synthesis, fasted and insulin-stimulated (fed) mitochondrial fuel oxidation, insulin sensitivity, body composition, anthropometry, forearm-muscle strength, and lipid profiles. RESULTS Impaired synthesis contributed to GSH deficiency in the patients and was restored with cysteine plus glycine supplementation. GSH improvement was accompanied by marked improvements in fasted and fed mitochondrial fuel oxidation. Associated benefits included improvements in insulin sensitivity, body composition, anthropometry, muscle strength, and dyslipidemia. CONCLUSIONS This work identifies 2 novel findings in older HIV-infected patients: 1) diminished synthesis due to decreased availability of cysteine and glycine contributes to GSH deficiency and can be rapidly corrected by dietary supplementation of these precursors and 2) correction of GSH deficiency is associated with improvement of mitochondrial fat and carbohydrate oxidation in both fasted and fed states and with improvements in insulin sensitivity, body composition, and muscle strength. The role of GSH on ameliorating metabolic complications in older HIV-infected patients warrants further investigation.
Collapse
Affiliation(s)
- Dan Nguyen
- Translational Metabolism Unit (D.N., R.V.S.), Division of Diabetes, Endocrinology, and Metabolism; Diabetes and Endocrinology Research Center (D.N., R.V.S.); and Department of Medicine (J.W.H., F.J.), U.S. Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
267
|
The impact of dietary methionine restriction on biomarkers of metabolic health. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:351-76. [PMID: 24373243 DOI: 10.1016/b978-0-12-800101-1.00011-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calorie restriction without malnutrition, commonly referred to as dietary restriction (DR), results in a well-documented extension of life span. DR also produces significant, long-lasting improvements in biomarkers of metabolic health that begin to accrue soon after its introduction. The improvements are attributable in part to the effects of DR on energy balance, which limit fat accumulation through reduction in energy intake. Accumulation of excess body fat occurs when energy intake chronically exceeds the energy costs for growth and maintenance of existing tissue. The resulting obesity promotes the development of insulin resistance, disordered lipid metabolism, and increased expression of inflammatory markers in peripheral tissues. The link between the life-extending effects of DR and adiposity is the subject of an ongoing debate, but it is clear that decreased fat accumulation improves insulin sensitivity and produces beneficial effects on overall metabolic health. Over the last 20 years, dietary methionine restriction (MR) has emerged as a promising DR mimetic because it produces a comparable extension in life span, but surprisingly, does not require food restriction. Dietary MR also reduces adiposity but does so through a paradoxical increase in both energy intake and expenditure. The increase in energy expenditure fully compensates for increased energy intake and effectively limits fat deposition. Perhaps more importantly, the diet increases metabolic flexibility and overall insulin sensitivity and improves lipid metabolism while decreasing systemic inflammation. In this chapter, we describe recent advances in our understanding of the mechanisms and effects of dietary MR and discuss the remaining obstacles to implementing MR as a treatment for metabolic disease.
Collapse
|
268
|
Influence of lipolysis and fatty acid availability on fuel selection during exercise. J Physiol Biochem 2013; 70:583-91. [PMID: 24338384 DOI: 10.1007/s13105-013-0306-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/02/2013] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70% of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70% of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg(-1) body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p = 0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p = 0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p < 0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r (2) = 0.33, p = 0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects.
Collapse
|
269
|
Morris EM, Jackman MR, Meers GME, Johnson GC, Lopez JL, MacLean PS, Thyfault JP. Reduced hepatic mitochondrial respiration following acute high-fat diet is prevented by PGC-1α overexpression. Am J Physiol Gastrointest Liver Physiol 2013; 305:G868-80. [PMID: 24091599 PMCID: PMC3882433 DOI: 10.1152/ajpgi.00179.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in substrate utilization and reduced mitochondrial respiratory capacity following exposure to energy-dense, high-fat diets (HFD) are putatively key components in the development of obesity-related metabolic disease. We examined the effect of a 3-day HFD on isolated liver mitochondrial respiration and whole body energy utilization in obesity-prone (OP) rats. We also examined if hepatic overexpression of peroxisomal proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial respiratory capacity and biogenesis, would modify liver and whole body responses to the HFD. Acute, 3-day HFD (45% kcal) in OP rats resulted in increased daily energy intake, energy balance, weight gain, and adiposity, without an increase in liver triglyceride (triacylglycerol) accumulation. HFD-fed OP rats also displayed decreased whole body substrate switching from the dark to the light cycle, which was paired with reductions in hepatic mitochondrial respiration of multiple substrates in multiple respiratory states. Hepatic PGC-1α overexpression was observed to protect whole body substrate switching, as well as maintain mitochondrial respiration, following the acute HFD. Additionally, liver PGC-1α overexpression did not alter whole body dietary fatty acid oxidation but resulted in greater storage of dietary free fatty acids in liver lipid, primarily as triacylglycerol. Together, these data demonstrate that a short-term HFD can result in a decrease in metabolic flexibility and hepatic mitochondrial respiratory capacity in OP rats that is completely prevented by hepatic overexpression of PGC-1α.
Collapse
Affiliation(s)
- E. Matthew Morris
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri;
| | - Matthew R. Jackman
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Grace M. E. Meers
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri;
| | - Ginger C. Johnson
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Jordan L. Lopez
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - Paul S. MacLean
- 4Center for Human Nutrition, University of Colorado Denver, Denver, Colorado; ,5Department of Physiology and Biophysics, University of Colorado Denver, Denver, Colorado; and ,6Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Colorado Denver, Denver, Colorado
| | - John P. Thyfault
- 1Department of Internal Medicine-Gastroenterology, University of Missouri, Columbia, Missouri; ,2Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; ,3Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri;
| |
Collapse
|
270
|
Prasad V, Lorenz JN, Miller ML, Vairamani K, Nieman ML, Wang Y, Shull GE. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress. J Mol Cell Cardiol 2013; 65:33-42. [PMID: 24080184 PMCID: PMC3883452 DOI: 10.1016/j.yjmcc.2013.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 12/23/2022]
Abstract
Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.
Collapse
Affiliation(s)
- Vikram Prasad
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - John N. Lorenz
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Marian L. Miller
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Michelle L. Nieman
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| | - Gary E. Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0524
| |
Collapse
|
271
|
The PPAR α / γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat. PPAR Res 2013; 2013:305347. [PMID: 24285952 PMCID: PMC3826326 DOI: 10.1155/2013/305347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR) α/γ agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate (Rd) and hepatic glucose output (HGO) were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization (Rg′) were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R)-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of Rd
compared to obese controls. This involved increased insulin stimulation of Rg′
in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (Rfa), and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or Rfa
compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.
Collapse
|
272
|
Montalcini T, Gazzaruso C, Ferro Y, Migliaccio V, Rotundo S, Castagna A, Pujia A. Metabolic fuel utilization and subclinical atherosclerosis in overweight/obese subjects. Endocrine 2013. [PMID: 23188694 DOI: 10.1007/s12020-012-9845-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The utilization of different macronutrients is relevant for the risk of obesity, diabetes, or the appearing of vascular complications. The Respiratory Quotient (RQ) is a parameter measuring the fuel utilizations; in fact, it can indicate the fat stores utilization or lipogenesis activation. Aim of this study was to investigate the link between the RQ and the subclinical carotid atherosclerosis presence in overweight/obese subjects. 132 subjects with body mass index at least 25, at conventional diet, underwent an Indirect Calorimetry for the measurement of the Resting Metabolic Rate as well as the RQ and an evaluation of carotid arteries with ultrasound. Biochemical analyses were also performed. The mean age was 48 ± 12 years. There was a positive relation between carotid intima-media thickness and RQ (p = 0.010), with the high value in the subgroup with high RQ (p = 0.045 vs. group with low RQ). The RQ, an index of fuel utilization, is positively associated to subclinical carotid atherosclerosis in overweight/obese individuals.
Collapse
Affiliation(s)
- Tiziana Montalcini
- Clinical Nutrition Unit, Department of Medical and Surgical Science, University Magna Grecia, Catanzaro, Viale S. Venuta, 88100, Catanzaro, Italy,
| | | | | | | | | | | | | |
Collapse
|
273
|
Jing E, O’Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013; 62:3404-17. [PMID: 23835326 PMCID: PMC3781465 DOI: 10.2337/db12-1650] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sirt3 is an NAD(+)-dependent deacetylase that regulates mitochondrial function by targeting metabolic enzymes and proteins. In fasting mice, Sirt3 expression is decreased in skeletal muscle resulting in increased mitochondrial protein acetylation. Deletion of Sirt3 led to impaired glucose oxidation in muscle, which was associated with decreased pyruvate dehydrogenase (PDH) activity, accumulation of pyruvate and lactate metabolites, and an inability of insulin to suppress fatty acid oxidation. Antibody-based acetyl-peptide enrichment and mass spectrometry of mitochondrial lysates from WT and Sirt3 KO skeletal muscle revealed that a major target of Sirt3 deacetylation is the E1α subunit of PDH (PDH E1α). Sirt3 knockout in vivo and Sirt3 knockdown in myoblasts in vitro induced hyperacetylation of the PDH E1α subunit, altering its phosphorylation leading to suppressed PDH enzymatic activity. The inhibition of PDH activity resulting from reduced levels of Sirt3 induces a switch of skeletal muscle substrate utilization from carbohydrate oxidation toward lactate production and fatty acid utilization even in the fed state, contributing to a loss of metabolic flexibility. Thus, Sirt3 plays an important role in skeletal muscle mitochondrial substrate choice and metabolic flexibility in part by regulating PDH function through deacetylation.
Collapse
Affiliation(s)
- Enxuan Jing
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Brian T. O’Neill
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | | | - André Kleinridders
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Olga R. Ilkeyeva
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - James R. Bain
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Eric M. Verdin
- Gladstone Institute of Virology and Immunology, San Francisco, California
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | | | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
274
|
Fernando Carrasco N, José Eduardo Galgani F, Marcela Reyes J. Síndrome de resistencia a la insulina. estudio y manejo. REVISTA MÉDICA CLÍNICA LAS CONDES 2013. [DOI: 10.1016/s0716-8640(13)70230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
275
|
van der Greef J, van Wietmarschen H, van Ommen B, Verheij E. Looking back into the future: 30 years of metabolomics at TNO. MASS SPECTROMETRY REVIEWS 2013; 32:399-415. [PMID: 23630115 DOI: 10.1002/mas.21370] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 06/02/2023]
Abstract
Metabolites have played an essential role in our understanding of life, health, and disease for thousands of years. This domain became much more important after the concept of metabolism was discovered. In the 1950s, mass spectrometry was coupled to chromatography and made the technique more application-oriented and allowed the development of new profiling technologies. Since 1980, TNO has performed system-based metabolic profiling of body fluids, and combined with pattern recognition has led to many discoveries and contributed to the field known as metabolomics and systems biology. This review describes the development of related concepts and applications at TNO in the biomedical, pharmaceutical, nutritional, and microbiological fields, and provides an outlook for the future.
Collapse
|
276
|
Bergouignan A, Momken I, Lefai E, Antoun E, Schoeller DA, Platat C, Chery I, Zahariev A, Vidal H, Gabert L, Normand S, Freyssenet D, Laville M, Simon C, Blanc S. Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations. Am J Clin Nutr 2013; 98:648-58. [PMID: 23902784 DOI: 10.3945/ajcn.112.057075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. CONCLUSION Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.
Collapse
Affiliation(s)
- Audrey Bergouignan
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique UMR 7178, Université de Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Camargo A, Meneses ME, Rangel-Zuñiga OA, Perez-Martinez P, Marin C, Delgado-Lista J, Paniagua JA, Tinahones FJ, Roche H, Malagon MM, Perez-Jimenez F, Lopez-Miranda J. Endoplasmic reticulum stress in adipose tissue determines postprandial lipoprotein metabolism in metabolic syndrome patients. Mol Nutr Food Res 2013; 57:2166-76. [PMID: 23934773 DOI: 10.1002/mnfr.201300036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/27/2013] [Accepted: 06/04/2013] [Indexed: 12/18/2022]
Abstract
SCOPE Our aim was to ascertain whether the quality and quantity of fat in the diet may influence the ER stress at the postprandial state in adipose tissue by analyzing the gene expression of chaperones, folding enzymes, and activators of the UPR. METHODS AND RESULTS A randomized, controlled trial conducted within the LIPGENE study assigned 39 MetS patients to one of four diets: high-SFA (HSFA; 38% energy (E) from fat, 16% E as SFA), high MUFA (HMUFA; 38% E from fat, 20% E as MUFA), and two low-fat, high-complex carbohydrate (LFHCC; 28% E from fat) diets supplemented with 1.24 g/day of long-chain n-3 PUFA or placebo for 12 wk each. A fat challenge reflecting the same fatty acid composition as the original diets was conducted post intervention. sXBP-1 is induced in the postprandial state irrespective of the diet consumed (p < 0.001). BiP increases postprandially after consumption of diets HMUFA (p = 0.006), LFHCC (p = 0.028), and LFHCC n-3 (p = 0.028). Postprandial mRNA expression levels of CRL, CNX, PDIA3, and GSTP1 in AT did not differ between the different types of diets. CONCLUSION Our results suggest that upregulation of the unfolded protein response at the postprandial state may represent an adaptive mechanism to counteract diet-induced stress.
Collapse
Affiliation(s)
- Antonio Camargo
- Lipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Rogowski MP, Flowers MT, Stamatikos AD, Ntambi JM, Paton CM. SCD1 activity in muscle increases triglyceride PUFA content, exercise capacity, and PPARδ expression in mice. J Lipid Res 2013; 54:2636-46. [PMID: 23918045 DOI: 10.1194/jlr.m035865] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stearoyl-CoA desaturase (SCD)1 converts saturated fatty acids into monounsaturated fatty acids. Using muscle overexpression, we sought to determine the role of SCD1 expression in glucose and lipid metabolism and its effects on exercise capacity in mice. Wild-type C57Bl/6 (WT) and SCD1 muscle transgenic (SCD1-Tg) mice were generated, and expression of the SCD1 transgene was restricted to skeletal muscle. SCD1 overexpression was associated with increased triglyceride (TG) content. The fatty acid composition of the muscle revealed a significant increase in polyunsaturated fatty acid (PUFA) content of TG, including linoleate (18:2n6). Untrained SCD1-Tg mice also displayed significantly increased treadmill exercise capacity (WT = 6.6 ± 3 min, Tg = 71.9 ± 9.5 min; P = 0.0009). SCD1-Tg mice had decreased fasting plasma glucose, glucose transporter (GLUT)1 mRNA, fatty acid oxidation, mitochondrial content, and increased peroxisome proliferator-activated receptor (PPAR)δ and Pgc-1 protein expression in skeletal muscle. In vitro studies in C2C12 myocytes revealed that linoleate (18:2n6) and not oleate (18:1n9) caused a 3-fold increase in PPARδ and a 9-fold increase in CPT-1b with a subsequent increase in fat oxidation. The present model suggests that increasing delta-9 desaturase activity of muscle increases metabolic function, exercise capacity, and lipid oxidation likely through increased PUFA content, which increases PPARδ expression and activity. However, the mechanism of action that results in increased PUFA content of SCD1-Tg mice remains to be elucidated.
Collapse
Affiliation(s)
- Michael P Rogowski
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX; and
| | | | | | | | | |
Collapse
|
279
|
Hursel R, Gonnissen HKJ, Rutters F, Martens EAP, Westerterp-Plantenga MS. Disadvantageous shift in energy balance is primarily expressed in high-quality sleepers after a decline in quality sleep because of disturbance. Am J Clin Nutr 2013; 98:367-73. [PMID: 23803894 DOI: 10.3945/ajcn.112.054924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Epidemiologic studies have shown an inverse or U-shaped relation between sleep duration and body mass index (BMI; in kg/m(2)). Moreover, associations between energy balance (EB) and characteristics of quality sleep (QS) have recently been reported. OBJECTIVE We assessed the relation between total energy expenditure (TEE) as well as substrate oxidation and QS after disturbed compared with nondisturbed sleep in EB. DESIGN Fifteen healthy men (mean ± SD BMI: 24.1 ± 1.9; age: 23.7 ± 3.5 y) were included in a randomized crossover study. TEE and substrate oxidation were measured twice for 48 h in a respiration chamber, whereas slow-wave sleep (SWS), rapid eye movement (REM)-sleep, total sleeping time (TST), sleep stage 2 (S2), and QS [(SWS + REM) ÷ TST × 100%] were determined by using electroencephalography. During 2 nights, sleep (2330-0730) was either disturbed or nondisturbed (control). RESULTS Positive correlations were shown for TEE, activity-induced energy expenditure corrected for body mass (AEE/BM), respiratory quotient (RQ), and carbohydrate oxidation with QS and SWS during nondisturbed sleep. Fat oxidation was inversely correlated with QS and SWS. RQ and carbohydrate oxidation were inversely related to REM sleep. During the disturbed condition SWS, REM, TST, and S2 were reduced, and positive correlations were shown between TEE and AEE/BM with QS. The reduction in QS was stronger in high-quality sleepers; QS reduction was positively associated with increases in energy intake, TEE, and EB. CONCLUSION A disadvantageous shift in energy balance is primarily expressed in high-quality sleepers after a decline in QS because of disturbance, implying that good sleepers are most liable to a positive energy balance because of sleep disturbance. This trial was registered at ISRCTN as NTR1919.
Collapse
Affiliation(s)
- Rick Hursel
- Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.
| | | | | | | | | |
Collapse
|
280
|
Nadkarni NA, Chaumontet C, Azzout-Marniche D, Piedcoq J, Fromentin G, Tomé D, Even PC. The carbohydrate sensitive rat as a model of obesity. PLoS One 2013; 8:e68436. [PMID: 23935869 PMCID: PMC3728328 DOI: 10.1371/journal.pone.0068436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sensitivity to obesity is highly variable in humans, and rats fed a high fat diet (HFD) are used as a model of this inhomogeneity. Energy expenditure components (basal metabolism, thermic effect of feeding, activity) and variations in substrate partitioning are possible factors underlying the variability. Unfortunately, in rats as in humans, results have often been inconclusive and measurements usually made after obesity onset, obscuring if metabolism was a cause or consequence. Additionally, the role of high carbohydrate diet (HCD) has seldom been studied. METHODOLOGY/FINDINGS Rats (n=24) were fed for 3 weeks on HCD and then 3 weeks on HFD. Body composition was tracked by MRI and compared to energy expenditure components measured prior to obesity. RESULTS 1) under HFD, as expected, by adiposity rats were variable enough to be separable into relatively fat resistant (FR) and sensitive (FS) groups, 2) under HCD, and again by adiposity, rats were also variable enough to be separable into carbohydrate resistant (CR) and sensitive (CS) groups, the normal body weight of CS rats hiding viscerally-biased fat accumulation, 3) HCD adiposity sensitivity was not related to that under HFD, and both HCD and HFD adiposity sensitivities were not related to energy expenditure components (BMR, TEF, activity cost), and 4) only carbohydrate to fat partitioning in response to an HCD test meal was related to HCD-induced adiposity. CONCLUSIONS/SIGNIFICANCE The rat model of human obesity is based on substantial variance in adiposity gains under HFD (FR/FS model). Here, since we also found this phenomenon under HCD, where it was also linked to an identifiable metabolic difference, we should consider the existence of another model: the carbohydrate resistant (CR) or sensitive (CS) rat. This new model is potentially complementary to the FR/FS model due to relatively greater visceral fat accumulation on a low fat high carbohydrate diet.
Collapse
Affiliation(s)
- Nachiket A. Nadkarni
- Chaire Aliment, Nutrition, Comportement Alimentaire, AgroParisTech, Paris, France
| | - Catherine Chaumontet
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Dalila Azzout-Marniche
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Julien Piedcoq
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Gilles Fromentin
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Daniel Tomé
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
| | - Patrick C. Even
- Unité Mixte Recherche 914, Nutrition Physiology and Ingestive Behavior, AgroParisTech, Institut Nationale de Recherche, Agronomique, Paris, France
- * E-mail:
| |
Collapse
|
281
|
Guebre-Egziabher F, Alix PM, Koppe L, Pelletier CC, Kalbacher E, Fouque D, Soulage CO. Ectopic lipid accumulation: A potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 2013; 95:1971-9. [PMID: 23896376 DOI: 10.1016/j.biochi.2013.07.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023]
Abstract
Ectopic lipid accumulation is now known to be a mechanism that contributes to organ injury in the context of metabolic diseases. In muscle and liver, accumulation of lipids impairs insulin signaling. This hypothesis accounts for the mechanism of insulin resistance in obesity, type 2 diabetes, aging and lipodystrophy. Increasing data suggest that lipid accumulation in the kidneys could also contribute to the alteration of kidney function in the context of metabolic syndrome and obesity. Furthermore and more unexpectedly, animal models of kidney disease exhibit a decreased adiposity and ectopic lipid redistribution suggesting that kidney disease may be a state of lipodystrophy. However, whether this abnormal lipid partitioning during chronic kidney disease (CKD) may have any functional impact in these tissues needs to be investigated. Here, we provide a perspective by defining the problem and analyzing the possible causes and consequences. Further human studies are required to strengthen these observations, and provide novel therapeutic approaches.
Collapse
Affiliation(s)
- Fitsum Guebre-Egziabher
- Université de Lyon, INSERM U1060, CarMeN, INSA de Lyon, Univ Lyon-1, F-69621 Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon F-69003, France.
| | | | | | | | | | | | | |
Collapse
|
282
|
Hong SL, Longo KA, Gosney E, Kopchick JJ. Increased metabolic flexibility and complexity in a long-lived growth hormone insensitive mouse model. J Gerontol A Biol Sci Med Sci 2013; 69:274-81. [PMID: 23788654 DOI: 10.1093/gerona/glt090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The goal of this study was to test whether the "loss of the complexity" hypothesis can be applied to compare the metabolic patterns of mouse models with known differences in metabolic and endocrine function as well as life span. Here, we compare the complexity of locomotor activity and metabolic patterns (energy expenditure, VO₂, and respiratory quotient) of the long-lived growth hormone receptor gene deleted mice (GHR(-/-)) and their wild-type littermates. Using approximate entropy as a measure of complexity, we observed greater metabolic complexity, as indicated by greater irregularity in the physiological fluctuations of the GHR(-/-) mice. Further analysis of the data also revealed lower energy costs of locomotor activity and a stronger relationship between locomotor activity and respiratory quotient in the GHR(-/-) mice relative to controls. These findings suggest underlying differences in metabolic modulation in the GHR(-/-) mice revealed especially through measures of complexity of their time-dependent fluctuations.
Collapse
Affiliation(s)
- S Lee Hong
- Irvine Hall 246, 1 Ohio University, Athens, OH 45701.
| | | | | | | |
Collapse
|
283
|
Green CJ, Bunprajun T, Pedersen BK, Scheele C. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate. J Physiol 2013; 591:4621-35. [PMID: 23774280 DOI: 10.1113/jphysiol.2013.251421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture. Metabolic differences were then investigated in the basal state or after chronic palmitate treatment. At basal, myocytes from sedentary individuals exhibited higher CD36 and HSP70 protein expression as well as elevated phosphorylation of c-Jun NH2-terminal kinase (JNK) and insulin receptor substrate 1 (IRS1) serine(307) compared to myocytes from active individuals. Despite equal lipid accumulation following palmitate treatment, myocytes from sedentary individuals exhibited delayed acetyl coenzyme A carboxylase phosphorylation compared to the active group. Myocytes from sedentary individuals had significantly higher basal glucose uptake and palmitate promoted insulin resistance in sedentary myocytes. Importantly, myocytes from active individuals were partially protected from palmitate-induced insulin resistance. Palmitate treatment enhanced IRS1 serine307 phosphorylation in myocytes from sedentary individuals and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance, a dysregulated function could have profound effects on health. Therefore the effects of lifestyle on satellite cells needs to be delineated.
Collapse
Affiliation(s)
- C J Green
- C. J. Green: Centre of Inflammation and Metabolism, Rigshospitalet - Section 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
284
|
Di Sarra D, Tosi F, Bonin C, Fiers T, Kaufman JM, Signori C, Zambotti F, Dall'Alda M, Caruso B, Zanolin ME, Bonora E, Moghetti P. Metabolic inflexibility is a feature of women with polycystic ovary syndrome and is associated with both insulin resistance and hyperandrogenism. J Clin Endocrinol Metab 2013; 98:2581-8. [PMID: 23596136 DOI: 10.1210/jc.2013-1161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Metabolic inflexibility, ie, the impaired ability of the body to switch from fat to carbohydrate oxidation under insulin-stimulated conditions, is associated with insulin resistance. This alteration in metabolic plasticity can lead to organ dysfunction and is considered a key issue among the abnormalities of the metabolic syndrome. It is still unknown whether this phenomenon occurs in women with polycystic ovary syndrome (PCOS). OBJECTIVE Our objective was to examine whether metabolic inflexibility is a feature of PCOS women and whether hyperandrogenism may contribute to this phenomenon. DESIGN AND PATIENTS Eighty-nine Caucasian women with PCOS were submitted to hyperinsulinemic-euglycemic clamp. Respiratory exchange ratios were evaluated at baseline and during hyperinsulinemia by indirect calorimetry to quantify substrate oxidative metabolism. Total testosterone was measured by liquid chromatography mass spectrometry and free testosterone by equilibrium dialysis. SETTING Outpatients were seen in a tertiary care academic center. MAIN OUTCOME MEASURE Metabolic flexibility was assessed by the change in respiratory quotient upon insulin stimulation. RESULTS Sixty-five of the 89 PCOS women (73%) had increased serum free testosterone, 68 (76%) were insulin resistant, and 62 (70%) had an impaired metabolic flexibility. Comparison of hyperandrogenemic and normoandrogenemic women showed that the 2 subgroups were of similar age but differed in terms of several anthropometric and metabolic features. In particular, hyperandrogenemic women had greater body mass index (32.9 ± 1.0 vs 24.7 ± 0.9 kg/m(2), P < .001) and lower glucose utilization during the clamp (9.2 ± 0.4 vs 10.9 ± 0.7 mg/kg fat-free mass · min, P = .023) and metabolic flexibility (0.09 ± 0.06 vs 0.12 ± 0.01, P = .014). In univariate analysis, metabolic flexibility was associated with several anthropometric, endocrine, and metabolic features. In multivariate analysis, this feature was directly associated with baseline respiratory quotient and insulin sensitivity and inversely with free testosterone and free fatty acids concentrations under insulin suppression (R(2) = 0.634, P < .001). CONCLUSIONS Metabolic inflexibility is a feature of PCOS women. Both insulin resistance and androgen excess might contribute to this abnormality.
Collapse
Affiliation(s)
- Daniela Di Sarra
- Department of Endocrinology, Diabetes and Metabolism, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, I-37126 Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Bonomini M, Di Liberato L, Del Rosso G, Stingone A, Marinangeli G, Consoli A, Bertoli S, De Vecchi A, Bosi E, Russo R, Corciulo R, Gesualdo L, Giorgino F, Cerasoli P, Di Castelnuovo A, Monaco MP, Shockley T, Rossi C, Arduini A. Effect of an L-carnitine-containing peritoneal dialysate on insulin sensitivity in patients treated with CAPD: a 4-month, prospective, multicenter randomized trial. Am J Kidney Dis 2013; 62:929-38. [PMID: 23725973 DOI: 10.1053/j.ajkd.2013.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND In peritoneal dialysis, the high glucose load absorbed from dialysis fluid contributes to several metabolic abnormalities, including insulin resistance. We evaluate the efficacy of a peritoneal dialysis solution containing l-carnitine as an additive to improve insulin sensitivity. STUDY DESIGN Multicenter parallel randomized controlled trial. SETTING & PARTICIPANTS Nondiabetic uremic patients on continuous ambulatory peritoneal dialysis enrolled in 8 peritoneal dialysis centers. INTERVENTION Patients were randomly assigned to receive peritoneal dialysis diurnal exchanges with either a standard glucose-based solution (1.5% or 2.5% according to the patient's need) or a glucose-based solution (identical glucose amount) enriched with l-carnitine (0.1%, weight/volume; 2 g/bag) for 4 months, the nocturnal exchange with icodextrin being unmodified. OUTCOMES & MEASUREMENTS The primary outcome was insulin sensitivity, measured by the magnitude of change from baseline in glucose infusion rate (in milligrams per kilogram of body weight per minute) during a euglycemic hyperinsulinemic clamp. Secondary outcomes were safety and tolerability, body fluid management, peritoneal dialysis efficiency parameters, and biochemistry tests. RESULTS 35 patients were randomly assigned, whereas 27 patients (standard solution, n=12; experimental solution, n = 15) were analyzed. Adverse events were not attributable to treatment. Glucose infusion rates in the l-carnitine-treated group increased from 3.8 ± 2.0 (SD) mg/kg/min at baseline to 5.0 ± 2.2 mg/kg/min at day 120 (P = 0.03) compared with 4.8 ± 2.4 mg/kg/min at baseline and 4.7 ± 2.4 mg/kg/min at day 120 observed in the control group (P = 0.8). The difference in glucose infusion rates between groups was 1.3 (95% CI, 0.0-2.6) mg/kg/min. In patients treated with l-carnitine-containing solution, urine volume did not change significantly (P = 0.1) compared to a significant diuresis reduction found in the other group (P = 0.02). For peritoneal function, no differences were observed during the observation period. LIMITATIONS Small sample size. CONCLUSIONS The use of l-carnitine in dialysis solutions may represent a new approach to improving insulin sensitivity in nondiabetic peritoneal dialysis patients.
Collapse
Affiliation(s)
- Mario Bonomini
- Department of Medicine, Institute of Nephrology, G. d'Annunzio University, Chieti-Pescara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Russell RD, Kraemer RR, Nelson AG. Metabolic dysfunction in diabetic offspring: deviations in metabolic flexibility. Med Sci Sports Exerc 2013; 45:8-15. [PMID: 22811035 DOI: 10.1249/mss.0b013e31826909d3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED In type 2 diabetes (T2D), insulin resistance is related to comorbidities, including high lipotoxicity, poor glucoregulation, and loss of metabolic flexibility. Controversy exists regarding whether reduced metabolic flexibility precedes insulin resistance or vice versa. PURPOSE The purpose of this study was to determine whether a family history of T2D leads to metabolic inflexibility. METHODS To examine potential loss of metabolic flexibility at early stages, we used a hooded metabolic cart to compare metabolic characteristics in people with T2D, family history of T2D (FH+), and controls (FH-) 1) at rest, 2) with passive stretching (PS) and recovery, and 3) with oral glucose load. Testing of 9 T2D, 11 FH+, and 9 FH- occurred after a 12-h fast under resting conditions. Expired gas and blood glucose (BG) were measured before and after each condition. RESULTS PS lowered BG (P < 0.05) in FH- and FH+ (mean ± SD, -2.7 ± 5.9 and -5.8 ± 7.5 mg·mL(-1)) compared with T2D (-0.9 ± 7.7). CHO use (kcal·min(-1)) increased with PS in all groups (0.04 ± 0.18, 0.03 ± 0.26, and 0.22 ± 1.6 mg·mL(-1) in FH-, FH+, and T2D, respectively). For oral glucose load, different metabolic flexibility existed between FH- as well as FH+ (0.16 ± 0.07) as well as T2D (0.16 ± 0.07), with no difference between FH- and T2D. CONCLUSION PS increases glycolytic activity without affecting BG in T2D, and reductions in metabolic flexibility exist in T2D and FH+ without glucoregulatory impairment in FH+, indicating early stage of mitochondrial dysfunction in FH+. Findings indicate PS is an important tool for assessing metabolic flexibility.
Collapse
Affiliation(s)
- Ryan D Russell
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA.
| | | | | |
Collapse
|
287
|
Kurland IJ, Accili D, Burant C, Fischer SM, Kahn BB, Newgard CB, Ramagiri S, Ronnett GV, Ryals JA, Sanders M, Shambaugh J, Shockcor J, Gross SS. Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann N Y Acad Sci 2013; 1287:1-16. [PMID: 23659636 PMCID: PMC3709136 DOI: 10.1111/nyas.12116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabesity has become a popular term to describe the specific form of diabetes that develops late in life and is associated with obesity. While there is a correlation between diabetes and obesity, the association is not universally predictive. Defining the metabolic characteristics of obesity that lead to diabetes, and how obese individuals who develop diabetes different from those who do not, are important goals. The use of large-scale omics analyses (e.g., metabolomic, proteomic, transcriptomic, and lipidomic) of diabetes and obesity may help to identify new targets to treat these conditions. This report discusses how various types of omics data can be integrated to shed light on the changes in metabolism that occur in obesity and diabetes.
Collapse
Affiliation(s)
- Irwin J Kurland
- Department of Medicine, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine Diabetes Center, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
|
289
|
Wijngaarden MA, van der Zon GC, van Dijk KW, Pijl H, Guigas B. Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am J Physiol Endocrinol Metab 2013; 304:E1012-21. [PMID: 23512807 DOI: 10.1152/ajpendo.00008.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity in humans is often associated with metabolic inflexibility, but the underlying molecular mechanisms remain incompletely understood. The aim of the present study was to investigate how adaptation to prolonged fasting affects energy/nutrient-sensing pathways and metabolic gene expression in skeletal muscle from lean and obese individuals. Twelve lean and 14 nondiabetic obese subjects were fasted for 48 h. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed. In response to fasting, body weight loss was similar in both groups, but the decrease in plasma insulin and leptin and the concomitant increase in growth hormone were significantly attenuated in obese subjects. The fasting-induced shift from glucose toward lipid oxidation was also severely blunted. At the molecular level, the expression of insulin receptor-β (IRβ) was lower in skeletal muscle from obese subjects at baseline, whereas the fasting-induced reductions in insulin signaling were similar in both groups. The protein expression of mitochondrial respiratory chain components, although not modified by fasting, was significantly reduced in obese subjects. Some minor differences in metabolic gene expression were observed at baseline and in response to fasting. Surprisingly, fasting reduced AMPK activity in lean but not in obese subjects, whereas the expression of AMPK subunits was not affected. We conclude that whole body metabolic inflexibility in response to prolonged fasting in obese humans is associated with lower skeletal muscle IRβ and mitochondrial respiratory chain content as well as a blunted decline of AMPK activity.
Collapse
Affiliation(s)
- Marjolein A Wijngaarden
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
290
|
Malin SK, Viskochil R, Oliver C, Braun B. Mild fasting hyperglycemia shifts fuel reliance toward fat during exercise in adults with impaired glucose tolerance. J Appl Physiol (1985) 2013; 115:78-83. [PMID: 23599396 DOI: 10.1152/japplphysiol.00084.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired glucose tolerance (IGT) is characterized by decreased oxidative capacity and reduced carbohydrate utilization during exercise. However, it is unclear if the presence of impaired fasting glucose (IFG) affects fuel utilization during exercise in adults with IGT. We tested the hypothesis that the presence of IFG in adults with IGT decreases reliance on carbohydrate during exercise. Middle-aged, obese, sedentary individuals (n = 6, IGT and n = 6, IFG+IGT) were compared during exercise at 60% peak O2 consumption for 45 min on a cycle ergometer. Glucose rates of appearance and disposal and muscle glycogen were assessed by stable isotope dilution methods, and fat utilization was estimated via indirect calorimetry. A 75-g oral glucose tolerance test was used to determine fasting and 2-h glucose concentrations. A glucose intolerance severity z-score was calculated from the oral glucose tolerance test. Glucose flux (i.e., rates of appearance and disposal) was not different between groups. However, individuals with IFG+IGT had lower muscle glycogen use (P < 0.05) and elevated fat oxidation (P < 0.01) during exercise compared with those with isolated IGT. Plasma nonesterified fatty acids and glucose were significantly higher during exercise in subjects with IFG+IGT vs. IGT alone (P < 0.05). Fat utilization during exercise correlated with fasting glucose (r = 0.57, P = 0.05), glucose intolerance severity z-score (r = 0.66, P = 0.01), and nonesterified fatty acids (trend; r = 0.55, P = 0.08). The presence of IFG shifts fuel selection toward increased fat oxidation and decreased muscle glycogen utilization during exercise in adults with IGT. Whether these differences in substrate use contribute to, or are the result of, movement along the continuum from prediabetes to type 2 diabetes awaits further work.
Collapse
Affiliation(s)
- Steven K Malin
- Energy Metabolism Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
291
|
Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Berriel Diaz M, Vegiopoulos A, Herzig S. Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab 2013; 17:575-85. [PMID: 23499424 DOI: 10.1016/j.cmet.2013.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.
Collapse
Affiliation(s)
- Maria Rohm
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Flatt JP. Misconceptions in body weight regulation: implications for the obesity pandemic. Crit Rev Clin Lab Sci 2013; 49:150-65. [PMID: 22913406 DOI: 10.3109/10408363.2012.712904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Energy is a concept of universal importance. In applying it to body weight regulation, the focus has been on energy balance and how this balance is affected by intakes and expenditures. However, energy is an abstract concept without biological equivalent and applying it to explain body weight regulation has led to various misconceptions and created intellectual obstacles in understanding the obesity problem. When nutrient and substrate interactions are considered, instead, a number of important issues pertaining to body weight regulation and to the obesity epidemic can be much more pertinently addressed.
Collapse
Affiliation(s)
- J P Flatt
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
293
|
Liang H, Tantiwong P, Sriwijitkamol A, Shanmugasundaram K, Mohan S, Espinoza S, Defronzo RA, Dubé JJ, Musi N. Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol 2013; 591:2897-909. [PMID: 23529132 DOI: 10.1113/jphysiol.2012.247510] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Free fatty acids (FFAs) have been implicated in the pathogenesis of insulin resistance. Reducing plasma FFA concentration in obese and type 2 diabetic (T2DM) subjects improves insulin sensitivity. However, the molecular mechanism by which FFA reduction improves insulin sensitivity in human subjects is not fully understood. In the present study, we tested the hypothesis that pharmacological FFA reduction enhances insulin action by reducing local (muscle) inflammation, leading to improved insulin signalling. Insulin-stimulated total glucose disposal (TGD), plasma FFA species, muscle insulin signalling, IBα protein, c-Jun phosphorylation, inflammatory gene (toll-like receptor 4 and monocyte chemotactic protein 1) expression, and ceramide and diacylglycerol (DAG) content were measured in muscle from a group of obese and T2DM subjects before and after administration of the antilipolytic drug acipimox for 7 days, and the results were compared to lean individuals. We found that obese and T2DM subjects had elevated saturated and unsaturated FFAs in plasma, and acipimox reduced all FFA species. Acipimox-induced reductions in plasma FFAs improved TGD and insulin signalling in obese and T2DM subjects. Acipimox increased IBα protein (an indication of decreased IB kinase-nuclear factor B signalling) in both obese and T2DM subjects, but did not affect c-Jun phosphorylation in any group. Acipimox also decreased inflammatory gene expression, although this reduction only occurred in T2DM subjects. Ceramide and DAG content did not change. To summarize, pharmacological FFA reduction improves insulin signalling in muscle from insulin-resistant subjects. This beneficial effect on insulin action could be related to a decrease in local inflammation. Notably, the improvements in insulin action were more pronounced in T2DM, indicating that these subjects are more susceptible to the toxic effect of FFAs.
Collapse
Affiliation(s)
- Hanyu Liang
- N. Musi: Audie L. Murphy VA Medical Center, 7400 Merton Minter, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Bergouignan A, Antoun E, Momken I, Schoeller DA, Gauquelin-Koch G, Simon C, Blanc S. Effect of contrasted levels of habitual physical activity on metabolic flexibility. J Appl Physiol (1985) 2013; 114:371-9. [DOI: 10.1152/japplphysiol.00458.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The factors regulating the body's ability to switch from fat to carbohydrate oxidation in response to fuel availability changes, or metabolic flexibility (MF), are currently intensively investigated in the context of metabolic diseases. Although numerous metabolic diseases are associated with sedentary behaviors and metabolic inflexibility, the effect of habitual physical activity level (PAL) on MF regulation is surprisingly poorly known. We investigated how PAL affects MF in cross-sectional and interventional studies. MF was assessed in 44 subjects: normal-weight and overweight sedentary men submitted to 2 mo of exercise at current recommendations, normal-weight active men submitted to 1 mo of reduced PAL and normal-weight women submitted to 1 mo of bed rest, with or without exercise. MF was evaluated, before and after interventions, following two standard meals as the relationship between individual mathematical variances in insulin and nonprotein respiratory quotient (NPRQ) daily kinetics. Daily NPRQ and insulin variances differed according to habitual PAL ( P = 0.002 and P = 0.009, respectively); active subjects had higher variances in NPRQ for lower variances in insulin than sedentary subjects, indicating a better MF. Detraining increased insulin variance ( P = 0.009) and decreased NPRQ variance ( P = 0.003), while training tended to have opposite effects. Insulin and NPRQ variances were negatively related along the PAL continuum ( R2 = 0.70, P < 0.001). Variance in NPRQ was also positively related to PAL ( R2 = 0.52, P < 0.001). By assessing MF with mathematical surrogates in conditions of daily pattern in meal's intake, we showed that habitual PAL is associated with MF status, and that MF is modulated by changes in PAL.
Collapse
Affiliation(s)
- Audrey Bergouignan
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie et Ethologie, UMR 7178 Centre National de la Recherche Scientifique, Strasbourg, France
| | - Edwina Antoun
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie et Ethologie, UMR 7178 Centre National de la Recherche Scientifique, Strasbourg, France
- University of Strasbourg, EA1801, Medicine Faculty, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Iman Momken
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie et Ethologie, UMR 7178 Centre National de la Recherche Scientifique, Strasbourg, France
| | - Dale A. Schoeller
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Chantal Simon
- University of Strasbourg, EA1801, Medicine Faculty, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- CARMEN, Institut National de la Santé et de la Recherche Médicale U1060, University of Lyon 1, Institute National de la Recherche Agronomique U1235, CRNH Rhône-Alpes, Lyon, France
| | - Stéphane Blanc
- Institut Pluridisciplinaire Hubert Curien, Département d'Ecologie, Physiologie et Ethologie, UMR 7178 Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
295
|
Carstens MT, Goedecke JH, Dugas L, Evans J, Kroff J, Levitt NS, Lambert EV. Fasting substrate oxidation in relation to habitual dietary fat intake and insulin resistance in non-diabetic women: a case for metabolic flexibility? Nutr Metab (Lond) 2013; 10:8. [PMID: 23317295 PMCID: PMC3561280 DOI: 10.1186/1743-7075-10-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/15/2012] [Indexed: 12/02/2022] Open
Abstract
Background Metabolic flexibility described as “the capacity of the body to match fuel oxidation to fuel availability” has been implicated in insulin resistance. We examined fasting substrate oxidation in relation to dietary macronutrient intake, and markers of insulin resistance in otherwise healthy women, with and without a family history of diabetes mellitus (FH DM). Methods We measured body composition (dual x-ray absorptiometry), visceral and subcutaneous adipose tissue area (VAT, SAT, using Computerised Tomography), fasting [glucose], [insulin], [free fatty acids], [blood lipids], insulin resistance (HOMA-IR), resting energy expenditure (REE), respiratory exchange ratio(RER) and self-reported physical activity in a convenience sample of 180 women (18-45 yrs). A food frequency questionnaire was used to assess energy intake (EI) and calculate the RER: Food Quotient (FQ) ratio. Only those with EI:REE (1.05 -2.28) were included (N=140). Insulin resistance was defined HOMA-IR (>1.95). Results The Insulin Resistant (IR) group had higher energy, carbohydrate and protein intakes (p < 0.05) and lower PA levels than Insulin Sensitive (IS) group (P < 0.001), but there were no differences in RER or RER:FQ between groups. However, nearly 50% of the variance in HOMA-IR was explained by age, body fat %, VAT, RER:FQ and FH DM (adjusted R2 = 0.50, p < 0.0001). Insulin-resistant women, and those with FH DM had a higher RER:FQ than their counterparts (p < 0.01), independent of body fat % or distribution. Conclusion In these apparently healthy, weight-stable women, insulin resistance and FH DM were associated with lower fat oxidation in relation to dietary fat intake, suggesting lower metabolic flexibility.
Collapse
Affiliation(s)
- Madelaine T Carstens
- MRC/UCT Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, PO BOX 115, , Newlands, Cape Town, 7725, South Africa.
| | | | | | | | | | | | | |
Collapse
|
296
|
Battaglia GM, Zheng D, Hickner RC, Houmard JA. Effect of exercise training on metabolic flexibility in response to a high-fat diet in obese individuals. Am J Physiol Endocrinol Metab 2012; 303:E1440-5. [PMID: 23047988 PMCID: PMC3532462 DOI: 10.1152/ajpendo.00355.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obese individuals typically exhibit a reduced capacity for metabolic flexibility by failing to increase fatty acid oxidation (FAO) upon the imposition of a high-fat diet (HFD). Exercise training increases FAO in the skeletal muscle of obese individuals, but whether this intervention can restore metabolic flexibility is unclear. The purpose of this study was to compare FAO in the skeletal muscle of lean and obese subjects in response to a HFD before and after exercise training. Twelve lean (means ± SE) (age 21.8 ± 1.1 yr, BMI 22.6 ± 0.7 kg/m²) and 10 obese men (age 22.4 ± 0.8 yr, BMI 33.7 ± 0.7 kg/m²) consumed a eucaloric HFD (70% of energy from fat) for 3 days. After a washout period, 10 consecutive days of aerobic exercise (1 h/day, 70% V(O₂(peak))) were performed, with the HFD repeated during days 8-10. FAO and indices of mitochondrial content were determined from muscle biopsies. In response to the HFD, lean subjects increased complete FAO (27.3 ± 7.4%, P = 0.03) in contrast to no change in their obese counterparts (1.0 ± 7.9%). After 7 days of exercise, citrate synthase activity and FAO increased (P < 0.05) regardless of body habitus; addition of the HFD elicited no further increase in FAO. These data indicate that obese, in contrast to lean, individuals do not increase FAO in skeletal muscle in response to a HFD. The increase in FAO with exercise training, however, enables the skeletal muscle of obese individuals to respond similarly to their lean counterparts when confronted with short-term excursion in dietary lipid.
Collapse
Affiliation(s)
- Gina M Battaglia
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
297
|
|
298
|
Cellular heterogeneity in superficial and deep subcutaneous adipose tissues in overweight patients. J Physiol Biochem 2012. [DOI: 10.1007/s13105-012-0225-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
299
|
Kim DH, Sartor MA, Bain JR, Sandoval D, Stevens RD, Medvedovic M, Newgard CB, Woods SC, Seeley RJ. Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 2012; 61:2299-310. [PMID: 22733798 PMCID: PMC3425411 DOI: 10.2337/db11-1579] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A peptide designed to induce apoptosis of endothelium in white adipose tissue (WAT) decreases adiposity. The goal of this work is to determine whether targeting of WAT endothelium results in impaired glucose regulation as a result of impaired WAT function. Glucose tolerance tests were performed on days 2 and 3 of treatment with vehicle (HF-V) or proapoptotic peptide (HF-PP) and mice pair-fed to HF-PP (HF-PF) in obese mice on a high-fat diet (HFD). Serum metabolic variables, including lipid profile, adipokines, individual fatty acids, and acylcarnitines, were measured. Microarray analysis was performed in epididymal fat of lean or obese mice treated with vehicle or proapoptotic peptide (PP). PP rapidly and potently improved glucose tolerance of obese mice in a weight- and food intake-independent manner. Serum insulin and triglycerides were decreased in HF-PP relative to HF-V. Levels of fatty acids and acylcarnitines were distinctive in HF-PP compared with HF-V or HF-PF. Microarray analysis in AT revealed that pathways involved in mitochondrial dysfunction, oxidative phosphorylation, and branched-chain amino acid degradation were changed by exposure to HFD and were reversed by PP administration. These studies suggest a novel role of the AT vasculature in glucose homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Maureen A. Sartor
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - James R. Bain
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Darleen Sandoval
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Robert D. Stevens
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Mario Medvedovic
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Christopher B. Newgard
- Departments of Pharmacology and Cancer Biology and Medicine, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina
| | - Stephen C. Woods
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Randy J. Seeley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
- Corresponding author: Randy J. Seeley,
| |
Collapse
|
300
|
Horakova O, Medrikova D, van Schothorst EM, Bunschoten A, Flachs P, Kus V, Kuda O, Bardova K, Janovska P, Hensler M, Rossmeisl M, Wang-Sattler R, Prehn C, Adamski J, Illig T, Keijer J, Kopecky J. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice. PLoS One 2012; 7:e43764. [PMID: 22952760 PMCID: PMC3432031 DOI: 10.1371/journal.pone.0043764] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/25/2012] [Indexed: 11/19/2022] Open
Abstract
Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinediones (TZDs), anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F), cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI), cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.
Collapse
Affiliation(s)
- Olga Horakova
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Dasa Medrikova
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Evert M. van Schothorst
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Annelies Bunschoten
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Pavel Flachs
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Vladimir Kus
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Kristina Bardova
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Michal Hensler
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jaap Keijer
- Department of Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic
| |
Collapse
|