401
|
Cabrera CP, Ng FL, Nicholls HL, Gupta A, Barnes MR, Munroe PB, Caulfield MJ. Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Hum Mol Genet 2019; 28:R151-R161. [PMID: 31411675 PMCID: PMC6872427 DOI: 10.1093/hmg/ddz197] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) remains the major heritable and modifiable risk factor for cardiovascular disease. Persistent high BP, or hypertension, is a complex trait with both genetic and environmental interactions. Despite swift advances in genomics, translating new discoveries to further our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci implicated in the regulation of BP have been revealed by genome-wide association studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1000. Even with the large number of loci now associated to BP, the genetic variance explained by all loci together remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion of the BP loci were discovered and reported simultaneously by multiple research groups, creating a knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, we review the BP-associated genetic variants reported across GWAS studies and investigate their potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, gene ontology and genetic pleiotropy.
Collapse
Affiliation(s)
- Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fu Liang Ng
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Hannah L Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ajay Gupta
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Michael R Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
402
|
Abdellaoui A, Sanchez-Roige S, Sealock J, Treur JL, Dennis J, Fontanillas P, Elson S, The 23andme Research Team, Nivard MG, Ip HF, van der Zee M, Baselmans BML, Hottenga JJ, Willemsen G, Mosing M, Lu Y, Pedersen NL, Denys D, Amin N, M van Duijn C, Szilagyi I, Tiemeier H, Neumann A, Verweij KJH, Cacioppo S, Cacioppo JT, Davis LK, Palmer AA, Boomsma DI. Phenome-wide investigation of health outcomes associated with genetic predisposition to loneliness. Hum Mol Genet 2019; 28:3853-3865. [PMID: 31518406 PMCID: PMC6935385 DOI: 10.1093/hmg/ddz219] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Humans are social animals that experience intense suffering when they perceive a lack of social connection. Modern societies are experiencing an epidemic of loneliness. Although the experience of loneliness is universally human, some people report experiencing greater loneliness than others. Loneliness is more strongly associated with mortality than obesity, emphasizing the need to understand the nature of the relationship between loneliness and health. Although it is intuitive that circumstantial factors such as marital status and age influence loneliness, there is also compelling evidence of a genetic predisposition toward loneliness. To better understand the genetic architecture of loneliness and its relationship with associated outcomes, we extended the genome-wide association study meta-analysis of loneliness to 511 280 subjects, and detect 19 significant genetic variants from 16 loci, including four novel loci, as well as 58 significantly associated genes. We investigated the genetic overlap with a wide range of physical and mental health traits by computing genetic correlations and by building loneliness polygenic scores in an independent sample of 18 498 individuals with EHR data to conduct a PheWAS with. A genetic predisposition toward loneliness was associated with cardiovascular, psychiatric, and metabolic disorders and triglycerides and high-density lipoproteins. Mendelian randomization analyses showed evidence of a causal, increasing, the effect of both BMI and body fat on loneliness. Our results provide a framework for future studies of the genetic basis of loneliness and its relationship to mental and physical health.
Collapse
Affiliation(s)
- Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Julia Sealock
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- School of Experimental Psychology, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jessica Dennis
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | | | | | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hill Fung Ip
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs van der Zee
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Bart M L Baselmans
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Mosing
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Epidemiology, Faculty Science, Leiden University, Leiden, The Netherlands
| | - Ingrid Szilagyi
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephanie Cacioppo
- Center for Cognitive and Social Neuroscience, Department of Psychology, The University of Chicago, Chicago, Illinois, USA
| | - John T Cacioppo
- Center for Cognitive and Social Neuroscience, Department of Psychology, The University of Chicago, Chicago, Illinois, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
403
|
Fu S, Chang Z, Luo L, Deng J. Therapeutic Progress and Knowledge Basis on the Natriuretic Peptide System in Heart Failure. Curr Top Med Chem 2019; 19:1850-1866. [PMID: 31448711 DOI: 10.2174/1568026619666190826163536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Notwithstanding substantial improvements in diagnosis and treatment, Heart Failure (HF) remains a major disease burden with high prevalence and poor outcomes worldwide. Natriuretic Peptides (NPs) modulate whole cardiovascular system and exhibit multiple cardio-protective effects, including the counteraction of the Renin-Angiotensin-Aldosterone System (RAAS) and Sympathetic Nervous System (SNS), promotion of vasodilatation and natriuresis, and inhibition of hypertrophy and fibrosis. Novel pharmacological therapies based on NPs may achieve a valuable shift in managing patients with HF from inhibiting RAAS and SNS to a reversal of neurohormonal imbalance. Enhancing NP bioavailability through exogenous NP administration and inhibiting Neutral Endopeptidase (NEP) denotes valuable therapeutic strategies for HF. On the one hand, NEP-resistant NPs may be more specific as therapeutic choices in patients with HF. On the other hand, NEP Inhibitors (NEPIs) combined with RAAS inhibitors have proved to exert beneficial effects and reduce adverse events in patients with HF. Highly effective and potentially safe Angiotensin Receptor Blocker Neprilysin Inhibitors (ARNIs) have been developed after the failure of NEPIs and Vasopeptidase Inhibitors (VPIs) due to lacking efficacy and safety. Therapeutic progress and knowledge basis on the NP system in HF are summarized in the current review.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhenyu Chang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Juelin Deng
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
404
|
Buford TW, Manini TM, Kairalla JA, McDermott MM, Vaz Fragoso CA, Chen H, Fielding RA, King AC, Newman AB, Tranah GJ. Mitochondrial DNA Sequence Variants Associated With Blood Pressure Among 2 Cohorts of Older Adults. J Am Heart Assoc 2019; 7:e010009. [PMID: 30371200 PMCID: PMC6222953 DOI: 10.1161/jaha.118.010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Age‐related changes in blood pressure are associated with a variety of poor health outcomes. Genetic factors are proposed contributors to age‐related increases in blood pressure, but few genetic loci have been identified. We examined the role of mitochondrial genomic variation in blood pressure by sequencing the mitochondrial genome. Methods and Results Mitochondrial DNA (mtDNA) data from 1755 participants from the LIFE (Lifestyle Interventions and Independence for Elders) studies and 788 participants from the Health ABC (Health, Aging, and Body Composition) study were evaluated using replication analysis followed by meta‐analysis. Participants were aged ≥69 years, of diverse racial backgrounds, and assessed for systolic blood pressure (SBP), diastolic blood pressure, and mean arterial pressure. After meta‐analysis across the LIFE and Health ABC studies, statistically significant associations of mtDNA variants with higher SBP (m.3197T>C, 16S rRNA; P=0.0005) and mean arterial pressure (m.15924A>G, t‐RNA‐thr; P=0.004) were identified in white participants. Among black participants, statistically significant associations with higher SBP (m.93A>G, HVII; m.16183A>C, HVI; both P=0.0001) and mean arterial pressure (m.16172T>C, HVI; m.16183A>C, HVI; m.16189T>C, HVI; m.12705C>T; all P's<0.0004) were observed. Significant pooled effects on SBP were observed across all transfer RNA regions (P=0.0056) in white participants. The individual and aggregate variant results are statistically significant after multiple comparisons adjustment for the number of mtDNA variants and mitochondrial regions examined. Conclusions These results suggest that mtDNA‐encoded variants are associated with variation in SBP and mean arterial pressure among older adults. These results may help identify mitochondrial activities to explain differences in blood pressure in older adults and generate new hypotheses surrounding mtDNA variation and the regulation of blood pressure. Clinical Trial Registration URL: http://www.ClinicalTrials.gov. Unique identifiers: NCT01072500 and NCT00116194.
Collapse
Affiliation(s)
- Thomas W Buford
- 1 Department of Medicine University of Alabama at Birmingham AL
| | - Todd M Manini
- 2 Department of Aging and Geriatric Research University of Florida Gainesville FL
| | - John A Kairalla
- 3 Department of Biostatistics University of Florida Gainesville FL
| | - Mary M McDermott
- 4 Department of Medicine and Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL
| | | | - Haiying Chen
- 7 Department of Biostatistical Sciences Wake Forest School of Medicine Winston-Salem NC
| | - Roger A Fielding
- 8 Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University Boston MA
| | - Abby C King
- 9 Department of Health Research and Policy and Stanford Prevention Research Center Stanford University Stanford CA
| | - Anne B Newman
- 10 Department of Epidemiology University of Pittsburgh PA
| | - Gregory J Tranah
- 11 California Pacific Medical Center Research Institute, San Francisco San Francisco CA
| |
Collapse
|
405
|
Chen Y, Zhu L, Fang Z, Jin Y, Shen C, Yao Y, Zhou C. Soluble guanylate cyclase contribute genetic susceptibility to essential hypertension in the Han Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:620. [PMID: 31930021 DOI: 10.21037/atm.2019.11.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Animal study found that soluble guanylate cyclase (sGC) plays an important role in development of hypertension (HT) by affecting the NO-sGC-CGMP signaling pathway. This study aims to evaluate the association of sGC with essential hypertension (EH) in the Han Chinese population. Methods This case-control study included 2,012 hypertensive cases and 2,210 controls, and 6 tagging single nucleotide polymorphisms (SNPs) were selected (rs3806777, rs3806782, rs3796576 and rs7698460 in GUCY1A3, as well as rs2229202 and rs1459853 in GUCY1B3). Then the association of the six SNPs with EH was further evaluated in this study. Results The results indicated that the A/A genotype of rs1459853 in GUCY1B3 was associated with higher HT risk, and the odds ratio (OR) of its recessive model was 1.191 (P=0.044). After adjusting for covariates, the association was still significant. Further stratification analyses showed that rs1459853 in non-drinking subjects and rs7698460 in women were associated with EH. In the follow-up study, rs1459853 were related to increased HT risk in men and smoker subjects. In adolescents, rs2229202 that in GUCY1B3 had significant association with prehypertension (Pre-HT), HT, and prehypertension with hypertension (Pre-HT + HT). After adjusted for covariates, the association was remaining significant. And in girls, rs3806782 was significantly connected with HT and Pre-HT + HT. Conclusions Overall, our findings suggest that sGC may contribute to the genetic susceptibility to EH, and it was validated for the first time in adolescents.
Collapse
Affiliation(s)
- Yan Chen
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Chengchao Zhou
- Department of Social Medicine and Maternal & Child Health, School of Public Health, Shandong University, Jinan 250012, China.,NHC Key Laboratory of Health Economics and Policy Research, Shandong University, Jinan 250012, China
| |
Collapse
|
406
|
Lello L, Raben TG, Yong SY, Tellier LCAM, Hsu SDH. Genomic Prediction of 16 Complex Disease Risks Including Heart Attack, Diabetes, Breast and Prostate Cancer. Sci Rep 2019; 9:15286. [PMID: 31653892 PMCID: PMC6814833 DOI: 10.1038/s41598-019-51258-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023] Open
Abstract
We construct risk predictors using polygenic scores (PGS) computed from common Single Nucleotide Polymorphisms (SNPs) for a number of complex disease conditions, using L1-penalized regression (also known as LASSO) on case-control data from UK Biobank. Among the disease conditions studied are Hypothyroidism, (Resistant) Hypertension, Type 1 and 2 Diabetes, Breast Cancer, Prostate Cancer, Testicular Cancer, Gallstones, Glaucoma, Gout, Atrial Fibrillation, High Cholesterol, Asthma, Basal Cell Carcinoma, Malignant Melanoma, and Heart Attack. We obtain values for the area under the receiver operating characteristic curves (AUC) in the range ~0.58-0.71 using SNP data alone. Substantially higher predictor AUCs are obtained when incorporating additional variables such as age and sex. Some SNP predictors alone are sufficient to identify outliers (e.g., in the 99th percentile of polygenic score, or PGS) with 3-8 times higher risk than typical individuals. We validate predictors out-of-sample using the eMERGE dataset, and also with different ancestry subgroups within the UK Biobank population. Our results indicate that substantial improvements in predictive power are attainable using training sets with larger case populations. We anticipate rapid improvement in genomic prediction as more case-control data become available for analysis.
Collapse
Affiliation(s)
- Louis Lello
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
| | - Timothy G Raben
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
| | - Soke Yuen Yong
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
| | - Laurent C A M Tellier
- Genomic Prediction, North Brunswick, NJ, USA.
- Cognitive Genomics Laboratory, Shenzhen Key Laboratory of Neurogenomics, China National GeneBank, BGI-Shenzhen, Shenzhen, China.
| | - Stephen D H Hsu
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.
- Genomic Prediction, North Brunswick, NJ, USA.
- Cognitive Genomics Laboratory, Shenzhen Key Laboratory of Neurogenomics, China National GeneBank, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
407
|
Jordan DM, Verbanck M, Do R. HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol 2019; 20:222. [PMID: 31653226 PMCID: PMC6815001 DOI: 10.1186/s13059-019-1844-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023] Open
Abstract
Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important for our understanding of the genetic architecture of human phenotypes. We develop a method to quantify horizontal pleiotropy using genome-wide association summary statistics and apply it to 372 heritable phenotypes measured in 361,194 UK Biobank individuals. Horizontal pleiotropy is pervasive throughout the human genome, prominent among highly polygenic phenotypes, and enriched in active regulatory regions. Our results highlight the central role horizontal pleiotropy plays in the genetic architecture of human phenotypes. The HOrizontal Pleiotropy Score (HOPS) method is available on Github at https://github.com/rondolab/HOPS.
Collapse
Affiliation(s)
- Daniel M Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Marie Verbanck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.,Université de Paris, EA 7537 BioSTM, Paris, France
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
| |
Collapse
|
408
|
Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol 2019; 10:1317. [PMID: 31708793 PMCID: PMC6822570 DOI: 10.3389/fphys.2019.01317] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging findings resulting from pathological processes of various etiologies affecting cerebral arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a challenge to visualize small vessels in vivo, hence the difficulty to directly monitor the natural progression of the disease. CSVD might progress for many years during the early stage of the disease as it remains asymptomatic. Prevalent among elderly individuals, CSVD has been alarmingly reported as an important precursor of full-blown stroke and vascular dementia. Growing evidence has also shown a significant association between CSVD's radiological manifestation with dementia and Alzheimer's disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory on the pathomechanism of the disease remains elusive, hence the lack of effective therapeutic approaches. Thus, this chapter consolidates the contemporary insights from numerous experimental animal models of CSVD, to date: from the available experimental animal models of CSVD and its translational research value; the pathomechanical aspects of the disease; relevant aspects on systems biology; opportunities for early disease biomarkers; and finally, converging approaches for future therapeutic directions of CSVD.
Collapse
Affiliation(s)
- Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Niferiti Aminuddin
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
409
|
Lima TRD, González-Chica DA, Moreno YMF, Silva DAS. Healthy lifestyle moderates the relationship between cardiovascular disease with blood pressure, body composition, carotid intima-media thickness, and glycated hemoglobin among adults. Appl Physiol Nutr Metab 2019; 45:539-546. [PMID: 31644883 DOI: 10.1139/apnm-2019-0515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigate whether the adherence to healthy lifestyle recommendations (regular physical activity, healthy diet, reduced alcohol consumption, nonsmoking) moderates the relationship between cardiovascular disease (CVD) and its risk factors (obesity, diabetes, dyslipidemia, and hypertension) with clinical variables among adults. This cross-sectional population-based study comprised 862 adults (39.3 ± 11.4 years, 46.4% men) from Florianópolis, Brazil. Clinical variables were systolic (SBP) and diastolic blood pressure, waist circumference, body mass index (BMI), percentage of body fat, muscular strength, carotid intima-media thickness (IMT), high sensitive C-reactive protein, and lipid and glucose metabolism markers. Multiple linear regression adjusted for confounding factors was used. Reduced IMT and HbA1c were observed in males with CVD or its risk factors who adopted healthy lifestyle recommendations (p < 0.001), and lower SBP levels were observed in females without CVD or its risk factors (p = 0.034). Females with CVD or its risk factors who followed healthy lifestyle recommendations showed higher BMI (p = 0.035). Adherence to number of healthy lifestyle recommendations moderated cardiovascular health in adults with CVD and without CVD. Novelty The adherence to healthy lifestyle recommendations moderated the relationship between IMT and HbA1c with CVD or its risk factors among males. The lower values of SBP among females without CVD or its risk factors were moderated by the adherence to healthy lifestyle recommendations.
Collapse
Affiliation(s)
- Tiago Rodrigues de Lima
- Research Center in Kinanthropometry and Human Performance, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | | | - Yara Maria Franco Moreno
- Department of Nutrition, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| | - Diego Augusto Santos Silva
- Research Center in Kinanthropometry and Human Performance, Federal University of Santa Catarina, Florianopolis, SC 88040-900, Brazil
| |
Collapse
|
410
|
Wang X, Mo X, Zhang H, Zhang Y, Shen Y. Identification of Phosphorylation Associated SNPs for Blood Pressure, Coronary Artery Disease and Stroke from Genome-wide Association Studies. Curr Mol Med 2019; 19:731-738. [PMID: 31456518 DOI: 10.2174/1566524019666190828151540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Phosphorylation-related SNP (phosSNP) is a non-synonymous SNP that might influence protein phosphorylation status. The aim of this study was to assess the effect of phosSNPs on blood pressure (BP), coronary artery disease (CAD) and ischemic stroke (IS). METHODS We examined the association of phosSNPs with BP, CAD and IS in shared data from genome-wide association studies (GWAS) and tested if the disease loci were enriched with phosSNPs. Furthermore, we performed quantitative trait locus analysis to find out if the identified phosSNPs have impacts on gene expression, protein and metabolite levels. RESULTS We found numerous phosSNPs for systolic BP (count=148), diastolic BP (count=206), CAD (count=20) and IS (count=4). The most significant phosSNPs for SBP, DBP, CAD and IS were rs1801131 in MTHFR, rs3184504 in SH2B3, rs35212307 in WDR12 and rs3184504 in SH2B3, respectively. Our analyses revealed that the associated SNPs identified by the original GWAS were significantly enriched with phosSNPs and many well-known genes predisposing to cardiovascular diseases contain significant phosSNPs. We found that BP, CAD and IS shared for phosSNPs in loci that contain functional genes involve in cardiovascular diseases, e.g., rs11556924 (ZC3HC1), rs1971819 (ICA1L), rs3184504 (SH2B3), rs3739998 (JCAD), rs903160 (SMG6). Four phosSNPs in ADAMTS7 were significantly associated with CAD, including the known functional SNP rs3825807. Moreover, the identified phosSNPs seemed to have the potential to affect transcription regulation and serum levels of numerous cardiovascular diseases-related proteins and metabolites. CONCLUSION The findings suggested that phosSNPs may play important roles in BP regulation and the pathological mechanisms of CAD and IS.
Collapse
Affiliation(s)
- Xingchen Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123
| | - Yueping Shen
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
411
|
Veluchamy A, Ballerini L, Vitart V, Schraut KE, Kirin M, Campbell H, Joshi PK, Relan D, Harris S, Brown E, Vaidya SS, Dhillon B, Zhou K, Pearson ER, Hayward C, Polasek O, Deary IJ, MacGillivray T, Wilson JF, Trucco E, Palmer CNA, Doney ASF. Novel Genetic Locus Influencing Retinal Venular Tortuosity Is Also Associated With Risk of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2019; 39:2542-2552. [PMID: 31597446 PMCID: PMC6882544 DOI: 10.1161/atvbaha.119.312552] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Supplemental Digital Content is available in the text. The retina may provide readily accessible imaging biomarkers of global cardiovascular health. Increasing evidence suggests variation in retinal vascular traits is highly heritable. This study aimed to identify the genetic determinants of retinal vascular traits.
Collapse
Affiliation(s)
- Abirami Veluchamy
- From the Division of Population Health and Genomics (A.V., E.R.P., C.N.A.P., A.S.F.D.), University of Dundee, United Kingdom
| | - Lucia Ballerini
- Ninewells Hospital and Medical School and VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing) (L.B., E.T.), University of Dundee, United Kingdom.,VAMPIRE project, Centre for Clinical Brain Sciences, Chancellor's Building, Royal Infirmary of Edinburgh, Scotland, United Kingdom (L.B., D.R., B.D., T.M.)
| | - Veronique Vitart
- MRC Human Genetics Unit (V.V., C.H., J.F.W.), MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, United Kingdom (K.E.S., M.K., H.C., P.K.J., J.F.W.).,Centre for Cardiovascular Science (K.E.S.), Queen's Medical Research Institute, University of Edinburgh, Royal Infirmary of Edinburgh, Scotland, United Kingdom
| | - Mirna Kirin
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, United Kingdom (K.E.S., M.K., H.C., P.K.J., J.F.W.).,Department of Public Health, University of Split, School of Medicine, Croatia (M.K., O.P.)
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, United Kingdom (K.E.S., M.K., H.C., P.K.J., J.F.W.)
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, United Kingdom (K.E.S., M.K., H.C., P.K.J., J.F.W.)
| | - Devanjali Relan
- VAMPIRE project, Centre for Clinical Brain Sciences, Chancellor's Building, Royal Infirmary of Edinburgh, Scotland, United Kingdom (L.B., D.R., B.D., T.M.).,Department of Computer Science, BML Munjal University, Gurgaon, Haryana, India (D.R.)
| | - Sarah Harris
- Medical Genetics Section, Centre for Genomic and Experimental Medicine (S.H.), MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology (S.H., I.J.D.), University of Edinburgh, United Kingdom.,Department of Psychology (S.H.), University of Edinburgh, United Kingdom
| | - Ellie Brown
- Clinical Research Imaging Centre (E.B., S.S.V.), Queen's Medical Research Institute, University of Edinburgh, Royal Infirmary of Edinburgh, Scotland, United Kingdom
| | - Suraj S Vaidya
- Clinical Research Imaging Centre (E.B., S.S.V.), Queen's Medical Research Institute, University of Edinburgh, Royal Infirmary of Edinburgh, Scotland, United Kingdom
| | - Baljean Dhillon
- VAMPIRE project, Centre for Clinical Brain Sciences, Chancellor's Building, Royal Infirmary of Edinburgh, Scotland, United Kingdom (L.B., D.R., B.D., T.M.)
| | - Kaixin Zhou
- Renji Hospital, University of Chinese Academy of Sciences, Chongqing, China (K.Z.)
| | - Ewan R Pearson
- From the Division of Population Health and Genomics (A.V., E.R.P., C.N.A.P., A.S.F.D.), University of Dundee, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit (V.V., C.H., J.F.W.), MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom
| | - Ozren Polasek
- Department of Public Health, University of Split, School of Medicine, Croatia (M.K., O.P.)
| | - Ian J Deary
- Department of Psychology (I.J.D.), University of Edinburgh, United Kingdom.,Centre for Cognitive Ageing and Cognitive Epidemiology (S.H., I.J.D.), University of Edinburgh, United Kingdom
| | - Thomas MacGillivray
- VAMPIRE project, Centre for Clinical Brain Sciences, Chancellor's Building, Royal Infirmary of Edinburgh, Scotland, United Kingdom (L.B., D.R., B.D., T.M.)
| | - James F Wilson
- MRC Human Genetics Unit (V.V., C.H., J.F.W.), MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, United Kingdom.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, United Kingdom (K.E.S., M.K., H.C., P.K.J., J.F.W.)
| | - Emanuele Trucco
- Ninewells Hospital and Medical School and VAMPIRE project, Computer Vision and Image Processing Group, School of Science and Engineering (Computing) (L.B., E.T.), University of Dundee, United Kingdom
| | - Colin N A Palmer
- From the Division of Population Health and Genomics (A.V., E.R.P., C.N.A.P., A.S.F.D.), University of Dundee, United Kingdom
| | - Alexander S F Doney
- From the Division of Population Health and Genomics (A.V., E.R.P., C.N.A.P., A.S.F.D.), University of Dundee, United Kingdom
| |
Collapse
|
412
|
Turchin MC, Stephens M. Bayesian multivariate reanalysis of large genetic studies identifies many new associations. PLoS Genet 2019; 15:e1008431. [PMID: 31596850 PMCID: PMC6802844 DOI: 10.1371/journal.pgen.1008431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/21/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
Genome-wide association studies (GWAS) have now been conducted for hundreds of phenotypes of relevance to human health. Many such GWAS involve multiple closely-related phenotypes collected on the same samples. However, the vast majority of these GWAS have been analyzed using simple univariate analyses, which consider one phenotype at a time. This is despite the fact that, at least in simulation experiments, multivariate analyses have been shown to be more powerful at detecting associations. Here, we conduct multivariate association analyses on 13 different publicly-available GWAS datasets that involve multiple closely-related phenotypes. These data include large studies of anthropometric traits (GIANT), plasma lipid traits (GlobalLipids), and red blood cell traits (HaemgenRBC). Our analyses identify many new associations (433 in total across the 13 studies), many of which replicate when follow-up samples are available. Overall, our results demonstrate that multivariate analyses can help make more effective use of data from both existing and future GWAS. Genome-wide association studies (GWAS) have become a common and powerful tool for identifying significant correlations between markers of genetic variation and physical traits of interest. Often these studies are conducted by comparing genetic variation against single traits one at a time (‘univariate’); however, it has previously been shown that it is possible to increase your power to detect significant associations by comparing genetic variation against multiple traits simultaneously (‘multivariate’). Despite this apparent increase in power though, researchers still rarely conduct multivariate GWAS, even when studies have multiple traits readily available. Here, we reanalyze 13 previously published GWAS using a multivariate method and find >400 additional associations. Our method makes use of univariate GWAS summary statistics and is available as a software package, thus making it accessible to other researchers interested in conducting the same analyses. We also show, using studies that have multiple releases, that our new associations have high rates of replication. Overall, we argue multivariate approaches in GWAS should no longer be overlooked and how, often, there is low-hanging fruit in the form of new associations by running these methods on data already collected.
Collapse
Affiliation(s)
- Michael C. Turchin
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
413
|
Ference BA, Bhatt DL, Catapano AL, Packard CJ, Graham I, Kaptoge S, Ference TB, Guo Q, Laufs U, Ruff CT, Cupido A, Hovingh GK, Danesh J, Holmes MV, Smith GD, Ray KK, Nicholls SJ, Sabatine MS. Association of Genetic Variants Related to Combined Exposure to Lower Low-Density Lipoproteins and Lower Systolic Blood Pressure With Lifetime Risk of Cardiovascular Disease. JAMA 2019; 322:1381-1391. [PMID: 31475726 PMCID: PMC6724415 DOI: 10.1001/jama.2019.14120] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/16/2019] [Indexed: 01/21/2023]
Abstract
IMPORTANCE The relationship between exposure to lower low-density lipoprotein cholesterol (LDL-C) and lower systolic blood pressure (SBP) with the risk of cardiovascular disease has not been reliably quantified. OBJECTIVE To assess the association of lifetime exposure to the combination of both lower LDL-C and lower SBP with the lifetime risk of cardiovascular disease. DESIGN, SETTING, AND PARTICIPANTS Among 438 952 participants enrolled in the UK Biobank between 2006 and 2010 and followed up through 2018, genetic LDL-C and SBP scores were used as instruments to divide participants into groups with lifetime exposure to lower LDL-C, lower SBP, or both. Differences in plasma LDL-C, SBP, and cardiovascular event rates between the groups were compared to estimate associations with lifetime risk of cardiovascular disease. EXPOSURES Differences in plasma LDL-C and SBP compared with participants with both genetic scores below the median. Genetic risk scores higher than the median were associated with lower LDL-C and lower SBP. MAIN OUTCOMES AND MEASURES Odds ratio (OR) for major coronary events, defined as coronary death, nonfatal myocardial infarction, or coronary revascularization. RESULTS The mean age of the 438 952 participants was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 24 980 experienced a first major coronary event. Compared with the reference group, participants with LDL-C genetic scores higher than the median had 14.7-mg/dL lower LDL-C levels and an OR of 0.73 for major coronary events (95% CI, 0.70-0.75; P < .001). Participants with SBP genetic scores higher than the median had 2.9-mm Hg lower SBP and an OR of 0.82 for major coronary events (95% CI, 0.79-0.85, P < .001). Participants in the group with both genetic scores higher than the median had 13.9-mg/dL lower LDL-C, 3.1-mm Hg lower SBP, and an OR of 0.61 for major coronary events (95% CI, 0.59-0.64; P < .001). In a 4 × 4 factorial analysis, exposure to increasing genetic risk scores and lower LDL-C levels and SBP was associated with dose-dependent lower risks of major coronary events. In a meta-regression analysis, combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was associated with an OR of 0.22 for major coronary events (95% CI, 0.17-0.26; P < .001), and 0.32 for cardiovascular death (95% CI, 0.25-0.40; P < .001). CONCLUSIONS AND RELEVANCE Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk. However, these findings cannot be assumed to represent the magnitude of benefit achievable from treatment of these risk factors.
Collapse
Affiliation(s)
- Brian A. Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Deepak L. Bhatt
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Multimedica IRCCS, Milano, Italy
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian Graham
- School of Medicine, Trinity College, Dublin, Ireland
| | - Stephen Kaptoge
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Thatcher B. Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
| | - Qi Guo
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Ulrich Laufs
- Department of Cardiology, University of Leipzig, Leipzig, Germany
| | - Christian T. Ruff
- Thrombolysis in Myocardial Infarction (TIMI) Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arjen Cupido
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michael V. Holmes
- MRC Population Health Research Unit, Clinical Trial Service Unit, and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kausik K. Ray
- School of Public Health, Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
| | | | - Marc S. Sabatine
- Thrombolysis in Myocardial Infarction (TIMI) Study Group, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
414
|
Lule SA, Mentzer AJ, Namara B, Muwenzi AG, Nassanga B, kizito D, Akurut H, Lubyayi L, Tumusiime J, Zziwa C, Akello F, Gurdasani D, Sandhu M, Smeeth L, Elliott AM, Webb EL. A genome-wide association and replication study of blood pressure in Ugandan early adolescents. Mol Genet Genomic Med 2019; 7:e00950. [PMID: 31469255 PMCID: PMC6785527 DOI: 10.1002/mgg3.950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genetic association studies of blood pressure (BP) have mostly been conducted in non-African populations. Using the Entebbe Mother and Baby Study (EMaBS), we aimed to identify genetic variants associated with BP among Ugandan adolescents. METHODS Systolic and diastolic BP were measured among 10- and 11-year olds. Whole-genome genotype data were generated using Illumina omni 2.5M arrays and untyped variants were imputed. Genome-wide association study (GWAS) was conducted using linear mixed model regression to account for population structure. Linear regression analysis was used to assess whether variants previously associated with BP (p < 5.0 × 10-8 ) in published BP GWASs were replicated in our study. RESULTS Of the 14 million variants analyzed among 815 adolescents, none reached genome-wide significance (p < 5.0×10-8 ) for association with systolic or diastolic BP. The most strongly associated variants were rs181430167 (p = 6.8 × 10-7 ) for systolic BP and rs12991132 (p = 4.0 × 10-7 ) for diastolic BP. Thirty-three (17 single nucleotide polymorphisms (SNPs) for systolic BP, 15 SNPs for diastolic BP and one SNP for both) of 330 variants previously identified as associated with BP were replicated in this study, but none remained significant after accounting for multiple testing. CONCLUSION Variants showing suggestive associations are worthy of future investigation. Replication results suggest that variants influencing adolescent BP may overlap somewhat with those already established in previous studies, largely based on adults in Western settings.
Collapse
Affiliation(s)
- Swaib A. Lule
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Alexander J. Mentzer
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
- Big Data Institute, Li Ka Shing Centre for Health Information and DiscoveryUniversity of OxfordOxfordUK
| | | | | | | | | | - Helen Akurut
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | | | | | | | | | - Deept Gurdasani
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Manjinder Sandhu
- Wellcome Trust Sanger InstituteCambridgeUK
- University of CambridgeCambridgeUK
| | - Liam Smeeth
- London School of Hygiene and Tropical MedicineLondonUK
| | - Alison M. Elliott
- London School of Hygiene and Tropical MedicineLondonUK
- MRC/UVRI & LSHTM Uganda Research UnitEntebbeUganda
| | - Emily L. Webb
- London School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
415
|
Censin JC, Peters SAE, Bovijn J, Ferreira T, Pulit SL, Mägi R, Mahajan A, Holmes MV, Lindgren CM. Causal relationships between obesity and the leading causes of death in women and men. PLoS Genet 2019; 15:e1008405. [PMID: 31647808 PMCID: PMC6812754 DOI: 10.1371/journal.pgen.1008405] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022] Open
Abstract
Obesity traits are causally implicated with risk of cardiometabolic diseases. It remains unclear whether there are similar causal effects of obesity traits on other non-communicable diseases. Also, it is largely unexplored whether there are any sex-specific differences in the causal effects of obesity traits on cardiometabolic diseases and other leading causes of death. We constructed sex-specific genetic risk scores (GRS) for three obesity traits; body mass index (BMI), waist-hip ratio (WHR), and WHR adjusted for BMI, including 565, 324, and 337 genetic variants, respectively. These GRSs were then used as instrumental variables to assess associations between the obesity traits and leading causes of mortality in the UK Biobank using Mendelian randomization. We also investigated associations with potential mediators, including smoking, glycemic and blood pressure traits. Sex-differences were subsequently assessed by Cochran's Q-test (Phet). A Mendelian randomization analysis of 228,466 women and 195,041 men showed that obesity causes coronary artery disease, stroke (particularly ischemic), chronic obstructive pulmonary disease, lung cancer, type 2 and 1 diabetes mellitus, non-alcoholic fatty liver disease, chronic liver disease, and acute and chronic renal failure. Higher BMI led to higher risk of type 2 diabetes in women than in men (Phet = 1.4×10-5). Waist-hip-ratio led to a higher risk of chronic obstructive pulmonary disease (Phet = 3.7×10-6) and higher risk of chronic renal failure (Phet = 1.0×10-4) in men than women. Obesity traits have an etiological role in the majority of the leading global causes of death. Sex differences exist in the effects of obesity traits on risk of type 2 diabetes, chronic obstructive pulmonary disease, and renal failure, which may have downstream implications for public health.
Collapse
Affiliation(s)
- Jenny C. Censin
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sanne A. E. Peters
- The George Institute for Global Health, University of Oxford, Oxford, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jonas Bovijn
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Teresa Ferreira
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Sara L. Pulit
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Michael V. Holmes
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Big Data Institute Building, Roosevelt Drive, University of Oxford, Oxford, United Kingdom
| | - Cecilia M. Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
416
|
Tragante V, Hemerich D, Alshabeeb M, Brænne I, Lempiäinen H, Patel RS, den Ruijter HM, Barnes MR, Moore JH, Schunkert H, Erdmann J, Asselbergs FW. Druggability of Coronary Artery Disease Risk Loci. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001977. [PMID: 30354342 DOI: 10.1161/circgen.117.001977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Genome-wide association studies have identified multiple loci associated with coronary artery disease and myocardial infarction, but only a few of these loci are current targets for on-market medications. To identify drugs suitable for repurposing and their targets, we created 2 unique pipelines integrating public data on 49 coronary artery disease/myocardial infarction-genome-wide association studies loci, drug-gene interactions, side effects, and chemical interactions. METHODS We first used publicly available genome-wide association studies results on all phenotypes to predict relevant side effects, identified drug-gene interactions, and prioritized candidates for repurposing among existing drugs. Second, we prioritized gene product targets by calculating a druggability score to estimate how accessible pockets of coronary artery disease/myocardial infarction-associated gene products are, then used again the genome-wide association studies results to predict side effects, excluded loci with widespread cross-tissue expression to avoid housekeeping and genes involved in vital processes and accordingly ranked the remaining gene products. RESULTS These pipelines ultimately led to 3 suggestions for drug repurposing: pentolinium, adenosine triphosphate, and riociguat (to target CHRNB4, ACSS2, and GUCY1A3, respectively); and 3 proteins for drug development: LMOD1 (leiomodin 1), HIP1 (huntingtin-interacting protein 1), and PPP2R3A (protein phosphatase 2, regulatory subunit b-double prime, α). Most current therapies for coronary artery disease/myocardial infarction treatment were also rediscovered. CONCLUSIONS Integration of genomic and pharmacological data may prove beneficial for drug repurposing and development, as evidence from our pipelines suggests.
Collapse
Affiliation(s)
- Vinicius Tragante
- Division of Heart and Lungs, Department of Cardiology (V.T., D.H., F.W.A.)
| | - Daiane Hemerich
- Division of Heart and Lungs, Department of Cardiology (V.T., D.H., F.W.A.).,University Medical Center Utrecht, Utrecht University, The Netherlands. CAPES Foundation, Ministry of Education of Brazil, Brasília (D.H.)
| | - Mohammad Alshabeeb
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia (M.A.)
| | - Ingrid Brænne
- Institute for Cardiogenetics, University of Lübeck, Germany (I.B., J.E.)
| | | | - Riyaz S Patel
- Institute of Cardiovascular Science, University College London, United Kingdom (R.P., F.W.A.). Bart's Heart Centre, St Bartholomew's Hospital, London, United Kingdom (R.P.).,William Harvey Research Institute, Centre for Translational Bioinformatics, Barts and The London School of Medicine and Dentistry, Charterhouse Square, United Kingdom (M.R.B.)
| | | | - Michael R Barnes
- William Harvey Research Institute, Centre for Translational Bioinformatics, Barts and The London School of Medicine and Dentistry, Charterhouse Square, United Kingdom (M.R.B.)
| | - Jason H Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia (J.H.M.)
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Germany (H.S.).,DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Germany (H.S.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Germany (I.B., J.E.).,DZHK (German Research Center for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Munich, Germany (J.E.).,University Heart Center Lübeck, Germany (J.E.)
| | - Folkert W Asselbergs
- Division of Heart and Lungs, Department of Cardiology (V.T., D.H., F.W.A.).,Institute of Cardiovascular Science, University College London, United Kingdom (R.P., F.W.A.). Bart's Heart Centre, St Bartholomew's Hospital, London, United Kingdom (R.P.).,Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht (F.W.A.).,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, United Kingdom (F.W.A.)
| |
Collapse
|
417
|
Holmes JB, Speed D, Balding DJ. Summary statistic analyses can mistake confounding bias for heritability. Genet Epidemiol 2019; 43:930-940. [PMID: 31541496 DOI: 10.1002/gepi.22259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/28/2019] [Accepted: 08/09/2019] [Indexed: 11/11/2022]
Abstract
Linkage disequilibrium SCore regression (LDSC) has become a popular approach to estimate confounding bias, heritability, and genetic correlation using only genome-wide association study (GWAS) test statistics. SumHer is a newly introduced alternative with similar aims. We show using theory and simulations that both approaches fail to adequately account for confounding bias, even when the assumed heritability model is correct. Consequently, these methods may estimate heritability poorly if there was an inadequate adjustment for confounding in the original GWAS analysis. We also show that the choice of a summary statistic for use in LDSC or SumHer can have a large impact on resulting inferences. Further, covariate adjustments in the original GWAS can alter the target of heritability estimation, which can be problematic for test statistics from a meta-analysis of GWAS with different covariate adjustments.
Collapse
Affiliation(s)
- John B Holmes
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Doug Speed
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.,UCL Genetics Institute, University College London, London, UK
| | - David J Balding
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.,UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
418
|
Jian X, Chen J, Li Z, Song Z, Zhou J, Xu W, Liu Y, Shen J, Wang Y, Yi Q, Shi Y. SLC39A8 is a risk factor for schizophrenia in Uygur Chinese: a case-control study. BMC Psychiatry 2019; 19:293. [PMID: 31533672 PMCID: PMC6751796 DOI: 10.1186/s12888-019-2240-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Schizophrenia is a severe mental disease with high morbidity and heritability. The SLC39A8 gene is located in 4q24 and encodes a protein that transports many metal ions. Multiple previous studies found that one of the most pleiotropic single nucleotide polymorphisms (SNPs) in SLC39A8, rs13107325, is associated with schizophrenia in the European population. However, the polymorphism of this locus is rare in other populations. In China, the Han Chinese and the Uygur Chinese are two ethnic populations that originate from different races. METHODS A case-control study was conducted with 983 schizophrenia cases and 1230 healthy controls of the Chinese Uygur population. To validate the most promising SNP, meta-analyses were conducted with the Han Chinese and the European PGC2 data sets reported previously. RESULTS A susceptible locus, rs10014145 (pallele = 0.014, pallele = 0.098 after correction; pgenotype = 0.004, pgenotype = 0.032 after correction) was identified in case-control study of the Chinese Uygur population. Further, the association between rs10014145 and schizophrenia was supported by a meta-analysis of Han and Uygur Chinese samples (pooled OR [95% CI] =1.10 [1.03-1.17], Z = 2.73, p = 0.006). The association between rs10014145 and schizophrenia was not significant in a meta-analysis of combined Chinese and European samples (pooled OR [95% CI] =1.07 [1.00-1.14], Z = 1.88, and p = 0.06). In addition, the "CCAC" haplotype of rs4698844-rs233814-rs13114343-rs151394 was significantly associated with schizophrenia in Uygur Chinese (P = 0.003, corrected p = 0.012). CONCLUSIONS The results of this study support that SLC39A8 is a susceptible gene for schizophrenia in the populations of Han Chinese and Uygur Chinese in China, further studies are suggested to validate the association.
Collapse
Affiliation(s)
- Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Wei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Qizhong Yi
- Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai key laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, People's Republic of China.
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Shanghai Changning Mental Health Center, Shanghai, 200030, People's Republic of China.
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People's Republic of China.
| |
Collapse
|
419
|
Jiang S, Wang X, Wei J, Zhang G, Zhang J, Xie P, Xu L, Wang L, Zhao L, Li L, Wilcox CS, Chen J, Lai EY, Liu R. NaHCO 3 Dilates Mouse Afferent Arteriole Via Na +/HCO 3- Cotransporters NBCs. Hypertension 2019; 74:1104-1112. [PMID: 31522618 DOI: 10.1161/hypertensionaha.119.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sodium bicarbonate has long been used to treat chronic kidney disease. It has been demonstrated to slow the decline in glomerular filtration rate in chronic kidney disease patient; however, the mechanisms are not completely understood. We hypothesized that NaHCO3 dilates afferent arterioles (Af-Art) by stimulating nitric oxide (NO) release mediated by the Na+/HCO3- cotransporter (NBC) contributing to the elevation in glomerular filtration rate. Isolated microperfused mouse renal Af-Art, preconstricted with norepinephrine (1 µmol/L), dilated 45±2% (n=6, P<0.05) in response to NaHCO3 (44 mmol/L). Whereas, NaCl solution containing the same Na+ concentration was not effective. The mRNA for NBCn1 and NBCe1 were detected in microdissected Af-Art using reverse transcription-polymerase chain reaction and quantitative polymerase chain reaction. The Af-Art intracellular pH measured with 2',7'-bis-(2-carboxyethyl)-5-(and-6) carboxyfluorescein, acetoxymethyl ester increased significantly by 0.29±0.02 (n=6; P<0.05) in the presence of NaHCO3, which was blunted by N-cyanosulphonamide compound (S0859) that is an inhibitor of the NBC family. After clamping the intracellular pH with 10 μM nigericin, changing the bath solution pH from 7.4 to 7.8 still dilates the Af-Art by 53±4% (n=7; P<0.005) and increases NO generation by 22±3% (n=7; P<0.005). Both pH-induced NO generation and vasodilation were blocked by L-NG-Nitroarginine Methyl Ester. NaHCO3 increased NO generation in Af-Art by 19±4% (n=5; P<0.005) and elevated glomerular filtration rate in conscious mice by 36% (233 versus 318 ul/min; n=9-10; P<0.0001). S0859 and L-NG-nitroarginine methyl ester blocked NaHCO3-induced increases in NO generation and vasodilation. We conclude that NBCn1 and NBCe1 are expressed in Af-Art and that NaHCO3 dilates Af-Art via NBCs mediated by NO that increases the glomerular filtration rate.
Collapse
Affiliation(s)
- Shan Jiang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Ximing Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.).,Shandong Provincial Hospital, Affiliated Hospital of Shandong University, Jinan, China (X.W.)
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Gensheng Zhang
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Peng Xie
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa (L.X.)
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| | - Liang Zhao
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Lingli Li
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, and Hypertension Center, Georgetown University, Washington, DC (L.L., C.S.W.)
| | - Jianghua Chen
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.)
| | - En Yin Lai
- From Kidney Disease Center, the First Affiliated Hospital, and Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China (S.J., G.Z., P.X., L.Z., L.L., J.C., E.Y.L.).,Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, China (L.Z., E.Y.L.).,Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Germany (L.Z., E.Y.L.)
| | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (S.J., X.W., J.W., G.Z., J.Z., L.W., R.L.)
| |
Collapse
|
420
|
Špiranec K, Chen W, Werner F, Nikolaev VO, Naruke T, Koch F, Werner A, Eder-Negrin P, Diéguez-Hurtado R, Adams RH, Baba HA, Schmidt H, Schuh K, Skryabin BV, Movahedi K, Schweda F, Kuhn M. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation 2019; 138:494-508. [PMID: 29626067 DOI: 10.1161/circulationaha.117.033383] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in vascular SMCs have unaltered blood pressure. METHODS We analyzed whether the vasodilating response to CNP changes along the vascular tree, ie, whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMCs and capillary pericytes. Intravital microscopy, invasive and noninvasive hemodynamics, fluorescence energy transfer studies of pericyte cAMP levels in situ, and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. RESULTS Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases toward small-diameter arterioles and capillaries. CNP consistently did not prevent endothelin-1-induced acute constrictions of proximal arterioles, but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, ie, in pericytes. It is notable that the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion, but abolished in mice lacking GC-B in microcirculatory SMCs and pericytes. CNP, via GC-B/cGMP signaling, modulates 2 signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator-activated phosphoprotein, and it inhibits phosphodiesterase 3A, thereby enhancing pericyte cAMP levels. These pathways ultimately prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMCs and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. CONCLUSIONS Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMCs and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.
Collapse
Affiliation(s)
- Katarina Špiranec
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Wen Chen
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Werner
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Takashi Naruke
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Koch
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Andrea Werner
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Petra Eder-Negrin
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Rodrigo Diéguez-Hurtado
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Hideo A Baba
- Faculty of Medicine, University of Münster, Germany. Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany (H.A.B.)
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany (H.S.)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Boris V Skryabin
- Core Facility Transgenic Animal and genetic engineering Models (B.V.S.)
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, Vesalius Research Center, Center for Inflammation Research, and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium (K.M.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| |
Collapse
|
421
|
Nebert DW, Liu Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 2019; 13:51. [PMID: 31521203 PMCID: PMC6744627 DOI: 10.1186/s40246-019-0233-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023] Open
Abstract
SLC39A8 is an evolutionarily highly conserved gene that encodes the ZIP8 metal cation transporter in all vertebrates. SLC39A8 is ubiquitously expressed, including pluripotent embryonic stem cells; SLC39A8 expression occurs in every cell type examined. Uptake of ZIP8-mediated Mn2+, Zn2+, Fe2+, Se4+, and Co2+ represents endogenous functions-moving these cations into the cell. By way of mouse genetic differences, the phenotype of "subcutaneous cadmium-induced testicular necrosis" was assigned to the Cdm locus in the 1970s. This led to identification of the mouse Slc39a8 gene, its most closely related Slc39a14 gene, and creation of Slc39a8-overexpressing, Slc39a8(neo/neo) knockdown, and cell type-specific conditional knockout mouse lines; the Slc39a8(-/-) global knockout mouse is early-embryolethal. Slc39a8(neo/neo) hypomorphs die between gestational day 16.5 and postnatal day 1-exhibiting severe anemia, dysregulated hematopoiesis, hypoplastic spleen, dysorganogenesis, stunted growth, and hypomorphic limbs. Not surprisingly, genome-wide association studies subsequently revealed human SLC39A8-deficiency variants exhibiting striking pleiotropy-defects correlated with clinical disorders in virtually every organ, tissue, and cell-type: numerous developmental and congenital disorders, the immune system, cardiovascular system, kidney, lung, liver, coagulation system, central nervous system, musculoskeletal system, eye, and gastrointestinal tract. Traits with which SLC39A8-deficiency variants are currently associated include Mn2+-deficient hypoglycosylation; numerous birth defects; Leigh syndrome-like mitochondrial redox deficiency; decreased serum high-density lipoprotein-cholesterol levels; increased body mass index; greater risk of coronary artery disease, hypotension, cardiovascular death, allergy, ischemic stroke, schizophrenia, Parkinson disease, inflammatory bowel disease, Crohn disease, myopia, and adolescent idiopathic scoliosis; systemic lupus erythematosus with primary Sjögren syndrome; decreased height; and inadvertent participation in the inflammatory progression of osteoarthritis.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA.
- Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, 45229-2899, USA.
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
422
|
Ehret G. Measured and Genotyped Differences in Blood Pressure and the Usefulness of Precise Extreme Phenotypes Based on Cardiovascular Magnetic Resonance. Hypertension 2019; 74:747-748. [PMID: 31476914 DOI: 10.1161/hypertensionaha.119.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Georg Ehret
- From the Division of Cardiology, Geneva University Hospitals, Switzerland
| |
Collapse
|
423
|
Hendriks T, Said MA, Janssen LMA, van der Ende MY, van Veldhuisen DJ, Verweij N, van der Harst P. Effect of Systolic Blood Pressure on Left Ventricular Structure and Function: A Mendelian Randomization Study. Hypertension 2019; 74:826-832. [PMID: 31476911 DOI: 10.1161/hypertensionaha.119.12679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We aimed to estimate the effects of a lifelong exposure to high systolic blood pressure (SBP) on left ventricular (LV) structure and function using Mendelian randomization. A total of 5596 participants of the UK Biobank were included for whom cardiovascular magnetic resonance imaging and genetic data were available. Major exclusion criteria included nonwhite ethnicity, major cardiovascular disease, and body mass index >30 or <18.5 kg/m2. A genetic risk score to estimate genetically predicted SBP (gSBP) was constructed based on 107 previously established genetic variants. Manual cardiovascular magnetic resonance imaging postprocessing analyses were performed in 300 individuals at the extremes of gSBP (150 highest and lowest). Multivariable linear regression analyses of imaging biomarkers were performed using gSBP as continuous independent variable. All analyses except myocardial strain were validated using previously derived imaging parameters in 2530 subjects. The mean (SD) age of the study population was 62 (7) years, and 52% of subjects were female. Corrected for age, sex, and body surface area, each 10 mm Hg increase in gSBP was significantly (P<0.0056) associated with 4.01 g (SE, 1.28; P=0.002) increase in LV mass and with 2.80% (SE, 0.97; P=0.004) increase in LV global radial strain. In the validation cohort, after correction for age, sex, and body surface area, each 10 mm Hg increase in gSBP was associated with 5.27 g (SE, 1.50; P<0.001) increase in LV mass. Our study provides a novel line of evidence for a causal relationship between SBP and increased LV mass and with increased LV global radial strain.
Collapse
Affiliation(s)
- Tom Hendriks
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - M Abdullah Said
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Lara M A Janssen
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - M Yldau van der Ende
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dirk J van Veldhuisen
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- From the Department of Cardiology, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
424
|
Singh S, El Rouby N, McDonough CW, Gong Y, Bailey KR, Boerwinkle E, Chapman AB, Gums JG, Turner ST, Cooper‐DeHoff RM, Johnson JA. Genomic Association Analysis Reveals Variants Associated With Blood Pressure Response to Beta-Blockers in European Americans. Clin Transl Sci 2019; 12:497-504. [PMID: 31033190 PMCID: PMC6742943 DOI: 10.1111/cts.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
European Americans (EA) have a better antihypertensive response to β-blockers when compared with African Americans, albeit with some variability. We undertook a genomewide association study to elucidate the underlying genetic determinants in EA contributing to this variability in blood pressure (BP) response. A discovery genomewide association study of change in BP post-metoprolol treatment was performed in EA participants (n = 201) from the Pharmacogenomic Evaluation of Antihypertensive Responses-2 (PEAR-2) study and tested for replication in the atenolol-treated EA from the PEAR study (n = 233). Rs294610 in the FGD5, which encodes for FYVE, RhoGEF and PH Domain Containing 5, (expression quantitative trait loci for FGD5 in the small intestine) was significantly associated with increased diastolic BP response to β-blockers in the PEAR-2 study (P = 3.41 × 10-6 , β = -2.70) and replicated (P = 0.01, β = -1.17) in the PEAR study. Post-meta-analysis of these studies, an additional single nucleotide polymorphism rs45545233 in the SLC4A1, encoding for Solute Carrier Family 4 Member 1, (expression quantitative trait loci for dual specificity phosphatase 3 in the artery tibial) was identified that was significantly associated with a poor response to β-blockers (P = 3.43 × 10-6 , β = 4.57) and was replicated in the atenolol add-on cohort (P = 0.007, β = 4.97). We identified variants in FGD5 and SLC4A1, which have been previously cited as candidate genes for hypertension, to be associated with a β-blocker BP response in EA. Further elucidation is warranted of the underlying mechanisms of these variants and genes by which they influence the BP response to β-blockers.
Collapse
Affiliation(s)
- Sonal Singh
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Nihal El Rouby
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Kent R. Bailey
- Department of Health Sciences ResearchDivision of BiostatisticsMayo ClinicRochesterMinnesotaUSA
| | - Eric Boerwinkle
- Human Genetics and Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | | | - John G. Gums
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
| | - Stephen T. Turner
- Division of Nephrology and HypertensionMayo ClinicRochesterMinnesotaUSA
| | - Rhonda M. Cooper‐DeHoff
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
- Department of MedicineDivision of Cardiovascular MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for PharmacogenomicsUniversity of FloridaGainesvilleFloridaUSA
- Department of MedicineDivision of Cardiovascular MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
425
|
Dugbartey GJ, Quinn B, Luo L, Mickelsen DM, Ture SK, Morrell CN, Czyzyk J, Doyley MM, Yan C, Berk BC, Korshunov VA. The Protective Role of Natriuretic Peptide Receptor 2 against High Salt Injury in the Renal Papilla. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1721-1731. [PMID: 31220449 PMCID: PMC6724224 DOI: 10.1016/j.ajpath.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Sara K Ture
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Jan Czyzyk
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Chen Yan
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York; Department of Medicine, Neurorestoration Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| | - Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| |
Collapse
|
426
|
Couto Alves A, De Silva NMG, Karhunen V, Sovio U, Das S, Taal HR, Warrington NM, Lewin AM, Kaakinen M, Cousminer DL, Thiering E, Timpson NJ, Bond TA, Lowry E, Brown CD, Estivill X, Lindi V, Bradfield JP, Geller F, Speed D, Coin LJM, Loh M, Barton SJ, Beilin LJ, Bisgaard H, Bønnelykke K, Alili R, Hatoum IJ, Schramm K, Cartwright R, Charles MA, Salerno V, Clément K, Claringbould AAJ, BIOS Consortium, van Duijn CM, Moltchanova E, Eriksson JG, Elks C, Feenstra B, Flexeder C, Franks S, Frayling TM, Freathy RM, Elliott P, Widén E, Hakonarson H, Hattersley AT, Rodriguez A, Banterle M, Heinrich J, Heude B, Holloway JW, Hofman A, Hyppönen E, Inskip H, Kaplan LM, Hedman AK, Läärä E, Prokisch H, Grallert H, Lakka TA, Lawlor DA, Melbye M, Ahluwalia TS, Marinelli M, Millwood IY, Palmer LJ, Pennell CE, Perry JR, Ring SM, Savolainen MJ, Rivadeneira F, Standl M, Sunyer J, Tiesler CMT, Uitterlinden AG, Schierding W, O’Sullivan JM, Prokopenko I, Herzig KH, Smith GD, O'Reilly P, Felix JF, Buxton JL, Blakemore AIF, Ong KK, Jaddoe VWV, Grant SFA, Sebert S, McCarthy MI, Järvelin MR, Early Growth Genetics (EGG) Consortium. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. SCIENCE ADVANCES 2019; 5:eaaw3095. [PMID: 31840077 PMCID: PMC6904961 DOI: 10.1126/sciadv.aaw3095] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/06/2019] [Indexed: 05/29/2023]
Abstract
Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies.
Collapse
Affiliation(s)
- Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - N. Maneka G. De Silva
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Shikta Das
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - H. Rob Taal
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Nicole M. Warrington
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Alexandra M. Lewin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Marika Kaakinen
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - Diana L. Cousminer
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom A. Bond
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Estelle Lowry
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Christopher D. Brown
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xavier Estivill
- Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Virpi Lindi
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
| | - Jonathan P. Bradfield
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Doug Speed
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
- UCL Genetics Institute, University College London, London, UK
| | - Lachlan J. M. Coin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Marie Loh
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR) Singapore, Singapore
| | - Sheila J. Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lawrence J. Beilin
- Medical School, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - Hans Bisgaard
- COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rohia Alili
- CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
| | - Ida J. Hatoum
- CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
- Obesity, Metabolism, and Nutrition Institute and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Katharina Schramm
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Rufus Cartwright
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute for Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Marie-Aline Charles
- Inserm, UMR 1153 (CRESS), Paris Descartes University, Villejuif, Paris, France
| | - Vincenzo Salerno
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Karine Clément
- CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
- Inserm, UMR 1153 (CRESS), Paris Descartes University, Villejuif, Paris, France
| | - Annique A. J. Claringbould
- University Medical Centre Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - BIOS Consortium
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, Sophia Children’s Hospital, Rotterdam, Netherlands
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Surrey, UK
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Sidra Medical and Research Center, Doha, Qatar
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
- UCL Genetics Institute, University College London, London, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR) Singapore, Singapore
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical School, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
- COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
- Obesity, Metabolism, and Nutrition Institute and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
- Institute for Reproductive and Developmental Biology, Imperial College London, London, UK
- Inserm, UMR 1153 (CRESS), Paris Descartes University, Villejuif, Paris, France
- University Medical Centre Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
- Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
- National Institute for Health Research, Imperial College Biomedical Research Centre, London, UK
- Health Data Research UK London, Imperial College London, London, UK
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Psychology, College of Social Science, University of Lincoln Brayford Pool Lincoln, Lincolnshire, UK
- Human Genetics and Medical Genomics, Faculty of Medicine, University of Southampton, Southampton, UK
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Great Ormond Street Hospital Institute of Child Health, University College London, London, UK
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, North Terrace, Adelaide, South Australia, Australia
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University Medical School, Stanford, CA, USA
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Old Road Campus, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Oxford, UK
- School of Public Health and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Avon Longitudinal Study of Parents and Children, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Division of Internal Medicine, and Biocenter of Oulu, Faculty of Medicine, Oulu University, Oulu, Finland
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start—National Science, Challenge, University of Auckland, Auckland, New Zealand
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Biomedicine, University Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena Moltchanova
- Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Johan G. Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
| | - Cathy Elks
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Claudia Flexeder
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
| | - Stephen Franks
- Institute for Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Timothy M. Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
| | - Rachel M. Freathy
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research, Imperial College Biomedical Research Centre, London, UK
- Health Data Research UK London, Imperial College London, London, UK
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hakon Hakonarson
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Psychology, College of Social Science, University of Lincoln Brayford Pool Lincoln, Lincolnshire, UK
| | - Marco Banterle
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
| | - Barbara Heude
- Inserm, UMR 1153 (CRESS), Paris Descartes University, Villejuif, Paris, France
| | - John W. Holloway
- Human Genetics and Medical Genomics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Albert Hofman
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elina Hyppönen
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Great Ormond Street Hospital Institute of Child Health, University College London, London, UK
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Hazel Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lee M. Kaplan
- Obesity, Metabolism, and Nutrition Institute and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Asa K. Hedman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Esa Läärä
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo A. Lakka
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Tarunveer S. Ahluwalia
- COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcella Marinelli
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Iona Y. Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Old Road Campus, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Oxford, UK
| | - Lyle J. Palmer
- School of Public Health and Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Craig E. Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| | - John R. Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Avon Longitudinal Study of Parents and Children, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Markku J. Savolainen
- Division of Internal Medicine, and Biocenter of Oulu, Faculty of Medicine, Oulu University, Oulu, Finland
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
| | - Jordi Sunyer
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Carla M. T. Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andre G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Justin M. O’Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start—National Science, Challenge, University of Auckland, Auckland, New Zealand
| | - Inga Prokopenko
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Surrey, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - Karl-Heinz Herzig
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Biomedicine, University Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Paul O'Reilly
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica L. Buxton
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - Alexandra I. F. Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ken K. Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Struan F. A. Grant
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvain Sebert
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Early Growth Genetics (EGG) Consortium
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatrics, Erasmus MC, Sophia Children’s Hospital, Rotterdam, Netherlands
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
- Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Surrey, UK
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Biomedicine, Department of Physiology, University of Eastern Finland, Kuopio, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr von Hauner Children’s Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Integrative Epidemiology Unit at the University of Bristol and NIHR Bristol Biomedical Research Center, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Catalonia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Sidra Medical and Research Center, Doha, Qatar
- Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
- UCL Genetics Institute, University College London, London, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR) Singapore, Singapore
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Medical School, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
- COPSAC, The Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- CRNH Ile de France, Hôpital Pitié-Salpêtrière, Paris, France
- Obesity, Metabolism, and Nutrition Institute and Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Institute of Human Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, München, Germany
- Institute for Reproductive and Developmental Biology, Imperial College London, London, UK
- Inserm, UMR 1153 (CRESS), Paris Descartes University, Villejuif, Paris, France
- University Medical Centre Groningen, Department of Genetics, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
- Department of General Practice and Primary Health Care, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter, UK
- National Institute for Health Research, Imperial College Biomedical Research Centre, London, UK
- Health Data Research UK London, Imperial College London, London, UK
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- School of Psychology, College of Social Science, University of Lincoln Brayford Pool Lincoln, Lincolnshire, UK
- Human Genetics and Medical Genomics, Faculty of Medicine, University of Southampton, Southampton, UK
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Great Ormond Street Hospital Institute of Child Health, University College London, London, UK
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, North Terrace, Adelaide, South Australia, Australia
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford University Medical School, Stanford, CA, USA
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Old Road Campus, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU) at the University of Oxford, Oxford, UK
- School of Public Health and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Avon Longitudinal Study of Parents and Children, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Division of Internal Medicine, and Biocenter of Oulu, Faculty of Medicine, Oulu University, Oulu, Finland
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Liggins Institute, University of Auckland, Auckland, New Zealand
- A Better Start—National Science, Challenge, University of Auckland, Auckland, New Zealand
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Research Unit of Biomedicine, University Oulu, Oulu, Finland
- Medical Research Center and Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, De Crespigny Park, London, UK
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
427
|
Evangelou E, Gao H, Chu C, Ntritsos G, Blakeley P, Butts AR, Pazoki R, Suzuki H, Koskeridis F, Yiorkas AM, Karaman I, Elliott J, Luo Q, Aeschbacher S, Bartz TM, Baumeister SE, Braund PS, Brown MR, Brody JA, Clarke TK, Dimou N, Faul JD, Homuth G, Jackson AU, Kentistou KA, Joshi PK, Lemaitre RN, Lind PA, Lyytikäinen LP, Mangino M, Milaneschi Y, Nelson CP, Nolte IM, Perälä MM, Polasek O, Porteous D, Ratliff SM, Smith JA, Stančáková A, Teumer A, Tuominen S, Thériault S, Vangipurapu J, Whitfield JB, Wood A, Yao J, Yu B, Zhao W, Arking DE, Auvinen J, Liu C, Männikkö M, Risch L, Rotter JI, Snieder H, Veijola J, Blakemore AI, Boehnke M, Campbell H, Conen D, Eriksson JG, Grabe HJ, Guo X, van der Harst P, Hartman CA, Hayward C, Heath AC, Jarvelin MR, Kähönen M, Kardia SLR, Kühne M, Kuusisto J, Laakso M, Lahti J, Lehtimäki T, McIntosh AM, Mohlke KL, Morrison AC, Martin NG, Oldehinkel AJ, Penninx BWJH, Psaty BM, Raitakari OT, Rudan I, Samani NJ, Scott LJ, Spector TD, Verweij N, Weir DR, Wilson JF, Levy D, Tzoulaki I, Bell JD, Matthews PM, Rothenfluh A, Desrivières S, Schumann G, Elliott P. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat Hum Behav 2019; 3:950-961. [PMID: 31358974 PMCID: PMC7711277 DOI: 10.1038/s41562-019-0653-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d-1) from the UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - He Gao
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Congying Chu
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Blakeley
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, ITMAT Data Science Group, Imperial College London, London, UK
| | - Andrew R Butts
- Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Raha Pazoki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Hideaki Suzuki
- Centre for Restorative Neurosciences, Division of Brain Sciences, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Fotios Koskeridis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Andrianos M Yiorkas
- Department of Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Joshua Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Sebastian E Baumeister
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Chair of Epidemiology, Ludwig-Maximilians-Universitat Munchen, UNIKA-T Augsburg, Augsburg, Germany
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Toni-Kim Clarke
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Niki Dimou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and LHealth Technology, Tampere University, Tampere, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas Foundation Trust, London, UK
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Ilja M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mia-Maria Perälä
- Folkhälsan Research Center, Helsinki, Finland
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - David Porteous
- Generation Scotland, Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Scott M Ratliff
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Samuli Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alexis Wood
- Department of Pediatrics/Nutrition, Baylor College of Medicine, Houston, TX, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Oulunkaari Health Center, Ii, Finland
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lorenz Risch
- Institute of Clinical Chemistry, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Labormedizinisches Zentrum Dr. Risch, Vaduz, Liechtenstein
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Juha Veijola
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
- Department of Psychiatry, University Hospital of Oulu, Oulu, Finland
- Medical research Center Oulu, University and University Hospital of Oulu, Oulu, Finland
| | - Alexandra I Blakemore
- Department of Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Greifswald, Germany
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Catharina A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Andrew C Heath
- Department of Psychiatry, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Kühne
- Cardiology Division, University Hospital Basel, Basel, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and LHealth Technology, Tampere University, Tampere, Finland
| | - Andrew M McIntosh
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Albertine J Oldehinkel
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James F Wilson
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, UK
| | - Paul M Matthews
- Centre for Restorative Neurosciences, Division of Brain Sciences, Department of Medicine, Hammersmith Campus, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Adrian Rothenfluh
- Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Departments of Psychiatry, Neurobiology & Anatomy, Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany and Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P.R. China.
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare NHS Trust and Imperial College London, London, UK.
- Health Data Research UK London Substantive Site, London, UK.
| |
Collapse
|
428
|
Riis J, Nordestgaard BG, Jensen GB, Afzal S. Secular trends in risk of stroke according to body mass index and blood pressure, 1976–2017. Neurology 2019; 93:e1397-e1407. [DOI: 10.1212/wnl.0000000000008193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/10/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo test the hypothesis that the associations of body mass index (BMI) and BMI-related risk factors with risk of stroke have attenuated over time using cohorts recruited from the general population over 4 decades.MethodsWe undertook prospective studies of 2 cohorts enrolled in 1976 to 1978 (13,567 participants from the Copenhagen City Heart Study) and 2003 to 2015 (107,040 participants from the Copenhagen General Population Study). Each cohort was recruited randomly from the Danish general population 20 to 100 years of age. Participants were followed up from the date of examination to date of emigration, death, or stroke event, whichever occurred first. Follow-up ended in March 2017. We did not lose track of any individual. BMI and blood pressure were modeled with splines and in categories. Main outcome was incident stroke, including ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage.ResultsThe crude incidence of stroke declined in extreme categories of BMI and blood pressure from 1977 to 2017. The multivariable-adjusted hazard ratios for stroke in participants with BMI ≥30 vs 18.5 to 24.9 kg/m2 were 1.4 (95% confidence interval 1.2–1.6) in the 1976–1978 cohort and 1.1 (1.0–1.2) in the 2003–2015 cohort (p = 0.008 for 1976–1978 vs 2003–2015). The corresponding hazard ratios (confidence intervals) in participants with blood pressure ≥160/100 vs <140/90 mm Hg were 2.1 (1.9–2.3) and 1.5 (1.4–1.7), respectively (p < 0.001). Similar secular trends were observed for diabetes mellitus but were not obvious for other risk factors.ConclusionThe associations of high BMI and high blood pressure with higher risk of stroke were attenuated across 2 Danish cohorts enrolled from 1976 through 2015.
Collapse
|
429
|
Funck-Brentano T, Nethander M, Movérare-Skrtic S, Richette P, Ohlsson C. Causal Factors for Knee, Hip, and Hand Osteoarthritis: A Mendelian Randomization Study in the UK Biobank. Arthritis Rheumatol 2019; 71:1634-1641. [PMID: 31099188 PMCID: PMC6790695 DOI: 10.1002/art.40928] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE There is no curative treatment for osteoarthritis (OA), which is the most common form of arthritis. This study was undertaken to identify causal risk factors of knee, hip, and hand OA. METHODS Individual-level data from 384,838 unrelated participants in the UK Biobank study were analyzed. Mendelian randomization (MR) analyses were performed to test for causality for body mass index (BMI), bone mineral density (BMD), serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglyceride levels, type 2 diabetes, systolic blood pressure (BP), and C-reactive protein (CRP) levels. The primary outcome measure was OA determined using hospital diagnoses (all sites, n = 48,431; knee, n = 19,727; hip, n = 11,875; hand, n = 2,330). Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. RESULTS MR analyses demonstrated a robust causal association of genetically determined BMI with all OA (OR per SD increase 1.57 [95% CI 1.44-1.71]), and with knee OA and hip OA, but not with hand OA. Increased genetically determined femoral neck BMD was causally associated with all OA (OR per SD increase 1.14 [95% CI 1.06-1.22]), knee OA, and hip OA. Low systolic BP was causally associated with all OA (OR per SD decrease 1.55 [95% CI 1.29-1.87]), knee OA, and hip OA. There was no evidence of causality for the other tested metabolic factors or CRP level. CONCLUSION Our findings indicate that BMI exerts a major causal effect on the risk of OA at weight-bearing joints, but not at the hand. Evidence of causality of all OA, knee OA, and hip OA was also observed for high femoral neck BMD and low systolic BP. However, we found no evidence of causality for other metabolic factors or CRP level.
Collapse
Affiliation(s)
| | | | | | - Pascal Richette
- AP-HP, Hospital Lariboisière, INSERM U1132, Université Paris Diderot, Université de Paris, Paris, France
| | | |
Collapse
|
430
|
Kim JS, Azarbarzin A, Wang R, Djonlagic IE, Punjabi NM, Zee PC, Koo BB, Soliman EZ, Younes M, Redline S. Association of novel measures of sleep disturbances with blood pressure: the Multi-Ethnic Study of Atherosclerosis. Thorax 2019; 75:57-63. [PMID: 31439722 DOI: 10.1136/thoraxjnl-2019-213533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mechanisms underlying blood pressure (BP) changes in obstructive sleep apnoea (OSA) are incompletely understood. We assessed the associations between BP and selected polysomnography (PSG) traits: sleep depth, airflow limitation measurements and OSA-specific hypoxic burden. METHODS This cross-sectional analysis included 2055 participants from the Multi-Ethnic Study of Atherosclerosis who underwent PSG and BP measurements in 2010-2013. Sleep depth was assessed using the 'OR product', a continuous measure of arousability. Airflow limitation was assessed by duty cycle (Ti/Tt) and % of breaths with flow limitation, and hypoxia by 'hypoxic burden'. Primary outcomes were medication-adjusted systolic BP (SBP) and diastolic BP (DBP). We used generalised linear models adjusted for age, sex, race/ethnicity, smoking, education, body mass index, alcohol use, periodic limb movements and alternative physiological disturbances. RESULTS The sample had a mean age of 68.4 years and apnoea-hypopnoea index of 14.8 events/hour. Sleep depth was not significantly associated with BP. Every 1 SD increment in log-transformed non-rapid eye movement duty cycle was associated with 0.9% decrease in SBP (95% CI: 0.1% to 1.6%), even after adjusting for sleep depth and hypoxic burden. Every 1 SD increment in log-transformed hypoxic burden was associated with a 1.1% increase in SBP (95% CI: 0.1% to 2.1%) and 1.9% increase in DBP (95% CI: 1.0% to 2.8%) among those not using hypertension medications. CONCLUSIONS Higher duty cycle was associated with lower SBP overall and hypoxic burden with higher SBP and DBP among non-BP medication users. These findings suggest changes in both respiratory effort and oxygenation during sleep influence BP.
Collapse
Affiliation(s)
- John S Kim
- Department of Medicine, Columbia University Medical Center, New York City, New York, USA
| | - Ali Azarbarzin
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rui Wang
- Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, United States.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States
| | - Ina E Djonlagic
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Naresh M Punjabi
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Phyllis C Zee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian B Koo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elsayed Z Soliman
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Magdy Younes
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
431
|
Vandenwijngaert S, Ledsky CD, Lahrouchi N, Khan MAF, Wunderer F, Ames L, Honda T, Diener JL, Bezzina CR, Buys ES, Bloch DB, Newton-Cheh C. Blood Pressure-Associated Genetic Variants in the Natriuretic Peptide Receptor 1 Gene Modulate Guanylate Cyclase Activity. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002472. [PMID: 31430210 DOI: 10.1161/circgen.119.002472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Human genetic variation in the NPR1 (natriuretic peptide receptor 1 gene, encoding NPR-A, atrial natriuretic peptide receptor 1) was recently shown to affect blood pressure (BP). NPR-A catalyzes the intracellular conversion of guanosine triphosphate to cGMP (cyclic 3',5'-guanosine monophosphate) on binding of ANP, BNP (atrial or brain natriuretic peptide). Increased levels of cGMP decrease BP by inducing natriuresis, diuresis, and vasodilation. METHODS We performed a meta-analysis of low-frequency and rare NPR1 variants for BP association in up to 491 584 unrelated individuals. To examine whether the identified BP-associated variants affect NPR-A function, the cGMP response to ANP and BNP was measured in cells expressing wild-type NPR1 and cells expressing the NPR1 variants. RESULTS In this study, we identified BP associations of 3 amino acid altering variants of NPR1. The minor alleles of rs35479618 (p.E967K, gnomAD non-Finnish European allele frequency 0.017) and rs116245325 (p.L1034F, allele frequency 0.0007) were associated with higher BP (P=4.0×10-25 and P=9.9×10-8, respectively), while the minor allele of rs61757359 (p.G541S, allele frequency 0.003) was associated with lower BP (P=1.8×10-9). Cells transiently expressing 967K or 1034F NPR-A displayed decreased cGMP production in response to ANP and BNP (all P<10-6), while cells expressing 541S NPR-A produced more cGMP compared with cells expressing wild-type NPR-A (P≤4.13×10-5 for ANP and P≤4.24×10-3 for BNP). CONCLUSIONS In summary, the loss or gain of guanylate cyclase activity for these NPR1 allelic variants could explain the higher or lower BP observed for carriers in large population-based studies.
Collapse
Affiliation(s)
- Sara Vandenwijngaert
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Clara D Ledsky
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Najim Lahrouchi
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Mohsin A F Khan
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Florian Wunderer
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, UniversityHospital Frankfurt, Germany (F.W.)
| | - Lisa Ames
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - John L Diener
- Novartis Institutes for BioMedical Research (L.A., T.H., J.L.D.)
| | - Connie R Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center (M.A.F.K., C.R.B.).,Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, the Netherlands (N.L., M.A.F.K., C.R.B.)
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Donald B Bloch
- Department of Anesthesia, Critical Care, and Pain Medicine (S.V., C.D.L., F.W., E.S.B., D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Division of Rheumatology, Allergy and Immunology, Department of Medicine (D.B.B.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston
| | - Christopher Newton-Cheh
- Center for Genomic Medicine (N.L., C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Cardiovascular Research Center, Department of Medicine (C.N.-C.), Massachusetts General Hospital Research Institute and Harvard Medical School, Boston.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (C.N.-C.)
| | | |
Collapse
|
432
|
Miralles F, Collinot H, Boumerdassi Y, Ducat A, Duché A, Renault G, Marchiol C, Lagoutte I, Bertholle C, Andrieu M, Jacques S, Méhats C, Vaiman D. Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia. Sci Rep 2019; 9:11918. [PMID: 31417152 PMCID: PMC6695383 DOI: 10.1038/s41598-019-48427-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adverse long-term cardiovascular (CV) consequences of PE are well established in women. However, the mechanism responsible for that risk remains unknown. Here, we mated wild-type female mice of the FVB/N strain to STOX1A-overexpressing mice to mimic severe PE and investigated the long-term consequences on the maternal cardiovascular system. Ultrasonography parameters were analyzed in mice before pregnancy and at 3 and 6 months post-pregnancy. At 6 months post-pregnancy, cardiac stress test induced by dobutamine injection revealed an abnormal ultrasonography Doppler profile in mice with previous PE. Eight months post-pregnancy, the heart, endothelial cells (ECs) and plasma of females were analyzed and compared to controls. The heart of mice with PE showed left-ventricular hypertrophy associated with altered histology (fibrosis). Transcriptomic analysis revealed the deregulation of 1149 genes in purified ECs and of 165 genes in the hearts, many being involved in heart hypertrophy. In ECs, the upregulated genes were associated with inflammation and cellular stress. Systems biology analysis identified interleukin 6 (IL-6) as a hub gene connecting these pathways. Plasma profiling of 33 cytokines showed that, 8 of them (Cxcl13, Cxcl16, Cxcl11, IL-16, IL-10, IL-2, IL-4 and Ccl1) allowed to discriminate mice with previous PE from controls. Thus, PE triggers female long-term CV consequences on the STOX1 mouse model.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Hélène Collinot
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Yasmine Boumerdassi
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Aurélien Ducat
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Gilles Renault
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Carmen Marchiol
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Isabelle Lagoutte
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Céline Bertholle
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Muriel Andrieu
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Céline Méhats
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
433
|
Li AL, Fang X, Zhang YY, Peng Q, Yin XH. Familial aggregation and heritability of hypertension in Han population in Shanghai China: a case-control study. Clin Hypertens 2019; 25:17. [PMID: 31428454 PMCID: PMC6694643 DOI: 10.1186/s40885-019-0122-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Background To explore the familial aggregation and heritability of hypertension in Han in Shanghai China. Methods According to l:l matched pairs design, 342 patients of hypertension and 342 controls were selected and investigate their nuclear family members in the case-control study. The method of genetic epidemiology research was used to explore the familial aggregation and heritability of hypertension. Results The prevalence rate of hypertension of first-degree relatives was significantly higher (34.44%) than that of second- degree relatives (17.60%) and third-degree relatives (13.51%) in Han Population in Shanghai China. Separation ratio p was 0.217, and prevalence rate of case group relatives was higher than that of control group relatives. The results showed a phenomenon of familial aggregation in the distribution of hypertension. The heritability of first- degree relatives was 49.51%; that of second-degree relatives and third-degree relatives were respectively 23.42 and 21.41%. Conclusion The distribution of essential hypertension has phenomenon of familial aggregation in Han Population in Shanghai China. The separation ratio of essential hypertension in this study shows that essential hypertension conform to the characteristics of multigene genetic disease. The heritability of first-degree relatives is bigger than that of second-degree relatives and third-degree relatives.
Collapse
Affiliation(s)
- An-le Li
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xiang Fang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Yi-Ying Zhang
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Qian Peng
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| | - Xian-Hong Yin
- Jiading District Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
434
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
435
|
Dashti HS, Merino J, Lane JM, Song Y, Smith CE, Tanaka T, McKeown NM, Tucker C, Sun D, Bartz TM, Li-Gao R, Nisa H, Reutrakul S, Lemaitre RN, Alshehri TM, de Mutsert R, Bazzano L, Qi L, Knutson KL, Psaty BM, Mook-Kanamori DO, Perica VB, Neuhouser ML, Scheer FAJL, Rutter MK, Garaulet M, Saxena R. Genome-wide association study of breakfast skipping links clock regulation with food timing. Am J Clin Nutr 2019; 110:473-484. [PMID: 31190057 PMCID: PMC6669061 DOI: 10.1093/ajcn/nqz076] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/08/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Little is known about the contribution of genetic variation to food timing, and breakfast has been determined to exhibit the most heritable meal timing. As breakfast timing and skipping are not routinely measured in large cohort studies, alternative approaches include analyses of correlated traits. OBJECTIVES The aim of this study was to elucidate breakfast skipping genetic variants through a proxy-phenotype genome-wide association study (GWAS) for breakfast cereal skipping, a commonly assessed correlated trait. METHODS We leveraged the statistical power of the UK Biobank (n = 193,860) to identify genetic variants related to breakfast cereal skipping as a proxy-phenotype for breakfast skipping and applied several in silico approaches to investigate mechanistic functions and links to traits/diseases. Next, we attempted validation of our approach in smaller breakfast skipping GWAS from the TwinUK (n = 2,006) and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (n = 11,963). RESULTS In the UK Biobank, we identified 6 independent GWAS variants, including those implicated for caffeine (ARID3B/CYP1A1), carbohydrate metabolism (FGF21), schizophrenia (ZNF804A), and encoding enzymes important for N6-methyladenosine RNA transmethylation (METTL4, YWHAB, and YTHDF3), which regulates the pace of the circadian clock. Expression of identified genes was enriched in the cerebellum. Genome-wide correlation analyses indicated positive correlations with anthropometric traits. Through Mendelian randomization (MR), we observed causal links between genetically determined breakfast skipping and higher body mass index, more depressive symptoms, and smoking. In bidirectional MR, we demonstrated a causal link between being an evening person and skipping breakfast, but not vice versa. We observed association of our signals in an independent breakfast skipping GWAS in another British cohort (P = 0.032), TwinUK, but not in a meta-analysis of non-British cohorts from the CHARGE consortium (P = 0.095). CONCLUSIONS Our proxy-phenotype GWAS identified 6 genetic variants for breakfast skipping, linking clock regulation with food timing and suggesting a possible beneficial role of regular breakfast intake as part of a healthy lifestyle.
Collapse
Affiliation(s)
- Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA,Department of Anesthesia, Critical Care, and Pain Medicine,Address correspondence to HSD (e-mail:
| | - Jordi Merino
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA,Diabetes Unit, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, MA
| | - Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA,Department of Anesthesia, Critical Care, and Pain Medicine
| | - Yanwei Song
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | | | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD
| | - Nicola M McKeown
- Nutritional Epidemiology Program, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Chandler Tucker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, WA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hoirun Nisa
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Sirimon Reutrakul
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Tahani M Alshehri
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lydia Bazzano
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kristen L Knutson
- Center for Circadian and Sleep Medicine, Department of Neurology, Northwestern University, Chicago, IL
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA,Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Vesna Boraska Perica
- Department for Medical Biology, University of Split School of Medicine, Split, Croatia
| | - Marian L Neuhouser
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Frank A J L Scheer
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA,Division of Sleep Medicine, Harvard Medical School, Boston, MA,Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes, and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom,Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain,IMIB-Arrixaca, Murcia, Spain
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA,Department of Anesthesia, Critical Care, and Pain Medicine,E-mail: )
| |
Collapse
|
436
|
Askarpour M, Ghaedi E, Roshanravan N, Hadi A, Mohammadi H, Symonds ME, Miraghajani M. Policosanol supplementation significantly improves blood pressure among adults: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2019; 45:89-97. [PMID: 31331588 DOI: 10.1016/j.ctim.2019.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS Policosanol contains a mixture of concentrated primary aliphatic alcohols extracted from sugar cane wax and is recognized as a cholesterol-lowering drug but previous studies reported that it could be helpful for reducing blood pressure as well. We aimed to systematically review all randomized control trials (RCTs) evaluating the efficacy of policosanol supplementation for lowering high blood pressure. METHODS AND RESULTS The following databases were searched up to March 2019: PubMed, Scopus, ISI Web of Science and the Cochrane library. Eligible RCTs were included if they investigate the effects of policosanol supplementation on systolic (SBP) and diastolic (DBP) blood pressure. Pooled effect size was measured using random effect model (DerSimmonon method). A total of nineteen studies with twenty-four arms were considered. Pooled effect size showed that SBP (WMD: -3.423 mmHg, 95% CI: -5.315, -1.531; p < 0.001) and DBP (WMD: -1.468 mmHg 95% CI: -2.632, -0.304, p = 0.013). decrease significantly after policosanol supplementation with significant heterogeneity among included studies (I2 = 78.5% and 78.9% for SBP and DBP respectively). All subgroups showed a significant effect of policosanol supplementation except patients with mixed dyslipidemia for SBP and DBP and overweight subjects for DBP. CONCLUSION Policosanol could lower SBP and DBP significantly; future long term studies are required to confirm these findings in the general population.
Collapse
Affiliation(s)
- Moein Askarpour
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ghaedi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences Tabriz, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael E Symonds
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, The School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Centre, The School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, University ofNottingham, Nottingham, UK.
| |
Collapse
|
437
|
Rosticci M, Pervjakova N, Kaakinen M, Cicero AF, Feufer AP, Marullo L, Mägi R, Fischer K, Jiang L, D'Addato S, Rizzoli E, Massimo G, Giovannini M, Angelini S, Hrelia P, Scapoli C, Borghi C, Prokopenko I. A meta-analysis of Italian and Estonian individuals shows an effect of common variants in HMGCR on blood apoB levels. Biomark Med 2019; 13:931-940. [PMID: 30191727 DOI: 10.2217/bmm-2017-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of the study was to explore the effects of variants at HMGCR-KIF6loci on a range of cardio-metabolic phenotypes. Methods: We analyzed the range of variants within Genetics in Brisighella Health Study and KIF6 genes using an additive genetic model on 18 cardiometabolic phenotypes in a sample of 1645 individuals from the Genetics in Brisighella Health Study and replicated in 10,662 individuals from the Estonian Genome Center University of Tartu. Results: We defined directly the effects of rs3846662:C>A at HMGCR on apoB levels. The analysis also confirmed effects of on low-density lipoprotein-cholesterol and total cholesterol levels. Variants in KIF6 gene did not reveal any associations with cardiometabolic phenotypes. Conclusion: This study highlights effect of HMGCR locus on assay-determined apoB levels, an infrequent measure of blood lipids in large studies.
Collapse
Affiliation(s)
- Martina Rosticci
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu, Estonia.,Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Marika Kaakinen
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK.,Pharmacology & Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Arrigo F Cicero
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Arne P Feufer
- Institute of Bioinformatics & Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Letizia Marullo
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Longda Jiang
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Sergio D'Addato
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisabetta Rizzoli
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianmichele Massimo
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Marina Giovannini
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Chiara Scapoli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudio Borghi
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Inga Prokopenko
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
438
|
Sung YJ, de las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee WJ, Lin KH, Luan J, Lyytikäinen LP, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, et alSung YJ, de las Fuentes L, Winkler TW, Chasman DI, Bentley AR, Kraja AT, Ntalla I, Warren HR, Guo X, Schwander K, Manning AK, Brown MR, Aschard H, Feitosa MF, Franceschini N, Lu Y, Cheng CY, Sim X, Vojinovic D, Marten J, Musani SK, Kilpeläinen TO, Richard MA, Aslibekyan S, Bartz TM, Dorajoo R, Li C, Liu Y, Rankinen T, Smith AV, Tajuddin SM, Tayo BO, Zhao W, Zhou Y, Matoba N, Sofer T, Alver M, Amini M, Boissel M, Chai JF, Chen X, Divers J, Gandin I, Gao C, Giulianini F, Goel A, Harris SE, Hartwig FP, He M, Horimoto ARVR, Hsu FC, Jackson AU, Kammerer CM, Kasturiratne A, Komulainen P, Kühnel B, Leander K, Lee WJ, Lin KH, Luan J, Lyytikäinen LP, McKenzie CA, Nelson CP, Noordam R, Scott RA, Sheu WHH, Stančáková A, Takeuchi F, van der Most PJ, Varga TV, Waken RJ, Wang H, Wang Y, Ware EB, Weiss S, Wen W, Yanek LR, Zhang W, Zhao JH, Afaq S, Alfred T, Amin N, Arking DE, Aung T, Barr RG, Bielak LF, Boerwinkle E, Bottinger EP, Braund PS, Brody JA, Broeckel U, Cade B, Campbell A, Canouil M, Chakravarti A, Cocca M, Collins FS, Connell JM, de Mutsert R, de Silva HJ, Dörr M, Duan Q, Eaton CB, Ehret G, Evangelou E, Faul JD, Forouhi NG, Franco OH, Friedlander Y, Gao H, Gigante B, Gu CC, Gupta P, Hagenaars SP, Harris TB, He J, Heikkinen S, Heng CK, Hofman A, Howard BV, Hunt SC, Irvin MR, Jia Y, Katsuya T, Kaufman J, Kerrison ND, Khor CC, Koh WP, Koistinen HA, Kooperberg CB, Krieger JE, Kubo M, Kutalik Z, Kuusisto J, Lakka TA, Langefeld CD, Langenberg C, Launer LJ, Lee JH, Lehne B, Levy D, Lewis CE, Li Y, Lifelines Cohort Study, Lim SH, Liu CT, Liu J, Liu J, Liu Y, Loh M, Lohman KK, Louie T, Mägi R, Matsuda K, Meitinger T, Metspalu A, Milani L, Momozawa Y, Mosley, Jr TH, Nalls MA, Nasri U, O'Connell JR, Ogunniyi A, Palmas WR, Palmer ND, Pankow JS, Pedersen NL, Peters A, Peyser PA, Polasek O, Porteous D, Raitakari OT, Renström F, Rice TK, Ridker PM, Robino A, Robinson JG, Rose LM, Rudan I, Sabanayagam C, Salako BL, Sandow K, Schmidt CO, Schreiner PJ, Scott WR, Sever P, Sims M, Sitlani CM, Smith BH, Smith JA, Snieder H, Starr JM, Strauch K, Tang H, Taylor KD, Teo YY, Tham YC, Uitterlinden AG, Waldenberger M, Wang L, Wang YX, Wei WB, Wilson G, Wojczynski MK, Xiang YB, Yao J, Yuan JM, Zonderman AB, Becker DM, Boehnke M, Bowden DW, Chambers JC, Chen YDI, Weir DR, de Faire U, Deary IJ, Esko T, Farrall M, Forrester T, Freedman BI, Froguel P, Gasparini P, Gieger C, Horta BL, Hung YJ, Jonas JB, Kato N, Kooner JS, Laakso M, Lehtimäki T, Liang KW, Magnusson PKE, Oldehinkel AJ, Pereira AC, Perls T, Rauramaa R, Redline S, Rettig R, Samani NJ, Scott J, Shu XO, van der Harst P, Wagenknecht LE, Wareham NJ, Watkins H, Wickremasinghe AR, Wu T, Kamatani Y, Laurie CC, Bouchard C, Cooper RS, Evans MK, Gudnason V, Hixson J, Kardia SLR, Kritchevsky SB, Psaty BM, van Dam RM, Arnett DK, Mook-Kanamori DO, Fornage M, Fox ER, Hayward C, van Duijn CM, Tai ES, Wong TY, Loos RJF, Reiner AP, Rotimi CN, Bierut LJ, Zhu X, Cupples LA, Province MA, Rotter JI, Franks PW, Rice K, Elliott P, Caulfield MJ, Gauderman WJ, Munroe PB, Rao DC, Morrison AC. A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure. Hum Mol Genet 2019; 28:2615-2633. [PMID: 31127295 PMCID: PMC6644157 DOI: 10.1093/hmg/ddz070] [Show More Authors] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.
Collapse
Affiliation(s)
- Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Daniel I Chasman
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ioanna Ntalla
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Xiuqing Guo
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nora Franceschini
- Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Yingchang Lu
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa A Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yanhua Zhou
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marzyeh Amini
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Jasmin Divers
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ilaria Gandin
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Anuj Goel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Fernando P Hartwig
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Meian He
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
| | - Andrea R V R Horimoto
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Fang-Chi Hsu
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Anne U Jackson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candace M Kammerer
- Department of Public Health, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Anuradhani Kasturiratne
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Pirjo Komulainen
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Brigitte Kühnel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Keng-Hung Lin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Jian’an Luan
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Colin A McKenzie
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Raymond Noordam
- Internal Medicine, Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert A Scott
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Wayne H H Sheu
- Endocrinology and Metabolism, Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Robert J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Heming Wang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yajuan Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Erin B Ware
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Ernst Moritz Arndt University Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa R Yanek
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weihua Zhang
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing Hua Zhao
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Saima Afaq
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Tamuno Alfred
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Erwin P Bottinger
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Archie Campbell
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - John M Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, Scotland, UK
| | - Renée de Mutsert
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, USA
| | - Charles B Eaton
- Department of Family Medicine and Epidemiology, Alpert Medical School of Brown University, Providence, RI, USA
| | - Georg Ehret
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Specialties of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Evangelos Evangelou
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nita G Forouhi
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - He Gao
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Bruna Gigante
- Medical Research, Taichung Veterans General Hospital, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Preeti Gupta
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Saskia P Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiang He
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat—National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Center for Clinical and Translational Sciences and Department of Medicine, Georgetown–Howard Universities, Washington, DC, USA
| | - Steven C Hunt
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Marguerite R Irvin
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yucheng Jia
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Joel Kaufman
- Epidemiology, Occupational and Environmental Medicine Program, University of Washington, Seattle, WA, USA
| | - Nicola D Kerrison
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
| | - Heikki A Koistinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki Finland
| | - Charles B Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Jose E Krieger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zoltan Kutalik
- Institute of Social Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Timo A Lakka
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Carl D Langefeld
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Joseph H Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Benjamin Lehne
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Daniel Levy
- NHLBI Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cora E Lewis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yize Li
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Sing Hui Lim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Ti Liu
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Jingmin Liu
- WHI CCC, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yeheng Liu
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marie Loh
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore
| | - Kurt K Lohman
- Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Koichi Matsuda
- Laboratory for Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ubaydah Nasri
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, Department of Medicine, University of Split, Split, Croatia
- Psychiatric Hospital ‘Sveti Ivan’, Zagreb, Croatia
- Gen-info Ltd, Zagreb, Croatia
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Västerbotten, Sweden
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul M Ridker
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health—IRCCS ‘Burlo Garofolo’, Trieste, Italy
| | - Jennifer G Robinson
- Department of Epidemiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynda M Rose
- Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | | | - Kevin Sandow
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carsten O Schmidt
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - William R Scott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kent D Taylor
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Yih Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jie Yao
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- General Internal Medicine, GeneSTAR Research Program, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Donald W Bowden
- Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Yii-Der Ida Chen
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Ulf de Faire
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
- Psychology, The University of Edinburgh, Edinburgh, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | - Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Barry I Freedman
- Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Bernardo Lessa Horta
- Postgraduate Programme in Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Yi-Jen Hung
- Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taipei, Taiwan
| | - Jost Bruno Jonas
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center—Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Kae-Woei Liang
- School of Medicine, National Yang-ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Alexandre C Pereira
- Lab Genetics and Molecular Cardiology, Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, CA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Perls
- Geriatrics Section, Boston University Medical Center, Boston, MA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Health), Partner Site Greifswald, Greifswald, Germany
- Institute of Physiology, University of Medicine Greifswald, Greifswald, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen RB, The Netherlands
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Tangchun Wu
- School of Public Health, Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - James Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Donna K Arnett
- Dean’s Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Dennis O Mook-Kanamori
- Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ervin R Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System and National University of Singapore, Singapore, Singapore
- Health Services and Systems Research, Duke–NUS Medical School, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruth J F Loos
- Icahn School of Medicine at Mount Sinai, The Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, The Mindich Child Health and Development Institute, New York, NY, USA
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - L Adrienne Cupples
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome I Rotter
- Division of Genomic Outcomes, Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Harvard T. H. Chan School of Public Health, Department of Nutrition, Harvard University, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Västerbotten, Sweden
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul Elliott
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
439
|
Fjorder AS, Rasmussen MB, Mehrjouy MM, Nazaryan-Petersen L, Hansen C, Bak M, Grarup N, Nørremølle A, Larsen LA, Vestergaard H, Hansen T, Tommerup N, Bache I. Haploinsufficiency of ARHGAP42 is associated with hypertension. Eur J Hum Genet 2019; 27:1296-1303. [PMID: 30903111 PMCID: PMC6777610 DOI: 10.1038/s41431-019-0382-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/18/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
Family studies have established that the heritability of blood pressure is significant and genome-wide association studies (GWAS) have identified numerous susceptibility loci, including one within the non-coding part of Rho GTPase-activating protein 42 gene (ARHGAP42) on chromosome 11q22.1. Arhgap42-deficient mice have significantly elevated blood pressure, but the phenotypic effects of human variants in the coding part of the gene are unknown. In a Danish cohort of carriers with apparently balanced chromosomal rearrangements, we identified a family where a reciprocal translocation t(11;18)(q22.1;q12.2) segregated with hypertension and obesity. Clinical re-examination revealed that four carriers (age 50-77 years) have had hypertension for several years along with an increased body mass index (34-43 kg/m2). A younger carrier (age 23 years) had normal blood pressure and body mass index. Mapping of the chromosomal breakpoints with mate-pair and Sanger sequencing revealed truncation of ARHGAP42. A decreased expression level of ARHGAP42 mRNA in the blood was found in the translocation carriers relative to controls and allele-specific expression analysis showed monoallelic expression in the translocation carriers, confirming that the truncated allele of ARHGAP42 was not expressed. These findings support that haploinsufficiency of ARHGAP42 leads to an age-dependent hypertension. The other breakpoint truncated a regulatory domain of the CUGBP Elav-like family member 4 (CELF4) gene on chromosome 18q12.2 that harbours several GWAS signals for obesity. We thereby provide additional support for an obesity locus in the CELF4 domain.
Collapse
Affiliation(s)
- Amanda S Fjorder
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Malene B Rasmussen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Mana M Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Claus Hansen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Mads Bak
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Anne Nørremølle
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, 2200, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen O, 2100, Denmark.
| |
Collapse
|
440
|
Huang J, Yang J, Li J, Chen Z, Guo X, Huang S, Gu L, Su L. Association of long noncoding RNA H19 polymorphisms with the susceptibility and clinical features of ischemic stroke in southern Chinese Han population. Metab Brain Dis 2019; 34:1011-1021. [PMID: 31041585 DOI: 10.1007/s11011-019-00417-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2019] [Indexed: 01/10/2023]
Abstract
Stroke is the leading cause of death in China. Previous studies have demonstrated that long noncoding RNAs play important roles in ischemic stroke (IS). This study aimed to investigate long noncoding RNA H19 (lncRNA H19) expression in IS cases and the association between lncRNA H19 variants and IS risk and IS-related risk factors. A total of 550 IS cases and 550 controls were recruited for this study. LncRNA H19 expression was detected using quantitative real-time polymerase chain reaction. Genotyping was conducted by the Sequenom MassARRAY technology. LncRNA H19 level in peripheral blood of IS cases was significantly upregulated compared with healthy controls (P = 0.046). No significant association was observed between lncRNA H19 rs217727 and rs4929984 polymorphisms with IS risk in all genetic models, and rs217727-rs4929984 haplotypes are not associated with IS susceptibility. Further meta-analysis also implied that the rs217727 and rs4929984 polymorphisms were not associated with IS in Chinese population. However, rs4929984 is significantly associated with the diastolic blood pressure level of IS patients (additive model: Padj = 0.007; dominant model: Padj = 0.013), whereas rs217727 is associated with international normalized ratio (additive model: Padj = 0.019; recessive model: Padj = 0.004), prothrombin time activity level (additive model: Padj = 0.026; recessive model: Padj = 0.004), and homocysteine level (recessive model: Padj = 0.048) in patients with IS. Our findings suggest that lncRNA H19 level may affect the occurrence of IS, and lncRNA H19 variants may influence blood pressure, coagulation function, and homocysteine metabolism of patients with IS in the southern Chinese Han population.
Collapse
Affiliation(s)
- Jiao Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jinhong Li
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaojing Guo
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Siyun Huang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
441
|
The association between genetic risk score and blood pressure is modified by coffee consumption: Gene–diet interaction analysis in a population-based study. Clin Nutr 2019; 38:1721-1728. [DOI: 10.1016/j.clnu.2018.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
|
442
|
Brown RB, Traylor M, Burgess S, Sawcer S, Markus HS. Do Cerebral Small Vessel Disease and Multiple Sclerosis Share Common Mechanisms of White Matter Injury? Stroke 2019; 50:1968-1972. [PMID: 31221055 PMCID: PMC6661245 DOI: 10.1161/strokeaha.118.023649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Background and Purpose- The role of inflammation in ischemic white matter disease is increasingly recognized, and further understanding of the pathophysiology might inform future treatment strategies. Multiple sclerosis (MS) is a chronic autoimmune condition in which inflammation plays a central role that also affects the white matter. We hypothesized that white matter injury might share common mechanisms and used statistical genetics techniques to assess whether having genetically elevated white matter hyperintensity (WMH) volume was associated with increased MS risk. Methods- We investigated the genetic association in 2 cohorts with magnetic resonance imaging-quantified ischemic white matter lesion volume (WMH in stroke; n=2797 and UK Biobank; n=8353) and 14 802 cases of MS and 26 703 controls from the International Multiple Sclerosis Genetics Consortium. We further performed individual-level polygenic risk score calculations for MS and measures of structural white matter disease in UK Biobank. Finally, we looked for evidence of overlapping risk across the whole genome. Results- There was no association of genetic variants influencing MS with WMH volume using summary statistics in the WMH in stroke cohort (relative risk score =1.014; 95% CI, 0.936-1.110) or in the UK Biobank cohort (relative risk score =1.030; 95% CI, 0.932-1.117). Conversely, assessing the contribution of single nucleotide polymorphisms significantly associated with WMH on the risk of MS there was no significant association (relative risk score =0.930; 95% CI, 0.736-1.191). There were no significant associations between polygenic risk scores calculations; these results were robust to the selection of single nucleotide polymorphisms at a range of significance thresholds. Whole genome analysis did not reveal any overlap of risk between the traits. Conclusions- Our results do not provide evidence to suggest a shared mechanism of white matter damage in ischemia and MS. We propose that inflammation acts in distinct pathways because of the differing nature of the primary insult.
Collapse
Affiliation(s)
- Robin B. Brown
- From the Department of Clinical Neurosciences (R.B.B., M.T., S.S., H.S.M.), University of Cambridge, United Kingdom
| | - Matthew Traylor
- From the Department of Clinical Neurosciences (R.B.B., M.T., S.S., H.S.M.), University of Cambridge, United Kingdom
| | - Stephen Burgess
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care (S.B.), University of Cambridge, United Kingdom
- MRC Biostatistics Unit, Cambridge Institute of Public Health, United Kingdom (S.B.)
| | - Stephen Sawcer
- From the Department of Clinical Neurosciences (R.B.B., M.T., S.S., H.S.M.), University of Cambridge, United Kingdom
| | - Hugh S. Markus
- From the Department of Clinical Neurosciences (R.B.B., M.T., S.S., H.S.M.), University of Cambridge, United Kingdom
| |
Collapse
|
443
|
Erdmann J, Kessler T, Munoz Venegas L, Schunkert H. A decade of genome-wide association studies for coronary artery disease: the challenges ahead. Cardiovasc Res 2019; 114:1241-1257. [PMID: 29617720 DOI: 10.1093/cvr/cvy084] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize current knowledge on the genetics of coronary artery disease, based on 10 years of genome-wide association studies. The discoveries began with individual studies using 200K single nucleotide polymorphism arrays and progressed to large-scale collaborative efforts, involving more than a 100 000 people and up to 40 Mio genetic variants. We discuss the challenges ahead, including those involved in identifying causal genes and deciphering the links between risk variants and disease pathology. We also describe novel insights into disease biology based on the findings of genome-wide association studies. Moreover, we discuss the potential for discovery of novel treatment targets through the integration of different layers of 'omics' data and the application of systems genetics approaches. Finally, we provide a brief outlook on the potential for precision medicine to be enhanced by genome-wide association study findings in the cardiovascular field.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| | - Loreto Munoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Maria-Geoppert-Str. 1, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany.,University Heart Center Lübeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Lazarettstraβe 36, Munich, Germany.,DZHK (German Center for Cardiovascular Research) e.V., Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
444
|
van der Ende MY, Said MA, van Veldhuisen DJ, Verweij N, van der Harst P. Genome-wide studies of heart failure and endophenotypes: lessons learned and future directions. Cardiovasc Res 2019; 114:1209-1225. [PMID: 29912321 DOI: 10.1093/cvr/cvy083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/16/2018] [Indexed: 12/28/2022] Open
Abstract
Heart failure (HF) is a complex clinical syndrome resulting from structural or functional impairments of ventricular filling or ejection of blood. HF has a poor prognosis and the burden to society remains tremendous. The unfulfilled expectation is that expanding our knowledge of the genetic architecture of HF will help to quickly advance the quality of risk assessment, diagnoses, and treatment. To date, genome-wide association studies (GWAS) of HF have led to disappointing results with only limited progress in our understanding and tempering the earlier expectations. However, the analyses of traits closely related to HF (also called 'endophenotypes') have led to promising and novel findings. For example, GWAS of NT-proBNP levels not only identified variants in the NNPA-NPPB locus but also substantiated data suggesting that natriuretic peptides in itself are associated with a lower risk of hypertension and HF. Many other genetic associates currently await experimental follow-up in which genes are prioritized based on bioinformatic analyses and various model organisms are employed to obtain functional insights. Promising genes with identified function could later be used in personalized medicine. Also, targeting specific pathogenic gene mutations is promising to protect future generations from HF, such as recently done in human embryos carrying the cardiomyopathy-associated MYBPC3 mutation. This review discusses the current status of GWAS of HF and its endophenotypes. In addition, future directions such as functional follow-up and application of GWAS results are discussed.
Collapse
Affiliation(s)
- Maaike Yldau van der Ende
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Mir Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Dirk Jan van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, RB Groningen, The Netherlands
| |
Collapse
|
445
|
Zoccal DB, Colombari DSA, Colombari E, Flor KC, da Silva MP, Costa-Silva JH, Machado BH, Moraes DJA, Murphy D, Paton JFR. Centrally acting adrenomedullin in the long-term potentiation of sympathetic vasoconstrictor activity induced by intermittent hypoxia in rats. Exp Physiol 2019; 104:1371-1383. [PMID: 31328309 DOI: 10.1113/ep087613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Adrenomedullin in the rostral ventrolateral medulla (RVLM) increases sympathetic activity; given that adrenomedullin is released during hypoxia, what are the effects of its agonism and antagonism in the RVLM after chronic intermitent hypoxia (CIH) exposure? What is the main finding and its importance? CIH exposure sensitizes adrenomedullin-dependent mechanisms in the RVLM, supporting its role as a sympathoexcitatory neuromodulator. A novel mechanism was identified for the generation of sympathetic overdrive and hypertension associated with hypoxia, providing potential guidance on new therapeutic approaches for controlling sympathetic hyperactivity in diseases such as sleep apnoea and neurogenic hypertension. ABSTRACT Adrenomedullin in the rostral ventrolateral medulla (RVLM) has been shown to increase sympathetic activity whereas the antagonism of its receptors inhibited this autonomic activity lowering blood pressure in conditions of hypertension. Given that hypoxia is a stimulant for releasing adrenomedullin, we hypothesized that the presence of this peptide in the RVLM associated with chronic intermittent hypoxia (CIH) would cause sympathetic overdrive. Juvenile male rats (50-55 g) submitted to CIH (6% oxygen every 9 min, 8 h day-1 for 10 days) were studied in an arterially perfused in situ preparation where sympathetic activity was recorded. In control rats (n = 6), exogenously applied adrenomedullin in the RVLM raised baseline sympathetic activity when combined with episodic activation of peripheral chemoreceptors (KCN 0.05%, 5 times every 5 min). This sympathoexcitatory response was markedly amplified in rats previously exposed to CIH (n = 6). The antagonism of adrenomedullin receptors in the RVLM caused a significant reduction in sympathetic activity in the CIH group (n = 7), but not in controls (n = 8). The transient reflex-evoked sympathoexcitatory response to peripheral chemoreceptor stimulation was not affected by either adrenomedullin or adrenomedullin receptor antagonism in the RVLM of control and CIH rats. Our findings indicate that CIH sensitizes the sympathoexcitatory networks within the RVLM to adrenomedullin, supporting its role as an excitatory neuromodulator when intermittent hypoxia is present. These data reveal novel state-dependent mechanistic insights into the generation of sympathetic overdrive and provide potential guidance on possible unique approaches for controlling sympathetic discharge in diseases such as sleep apnoea and neurogenic hypertension.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Debora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Karine C Flor
- Department of Physiology and Pathology, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - João H Costa-Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - David Murphy
- Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.,Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
446
|
Brown IAM, Diederich L, Good ME, DeLalio LJ, Murphy SA, Cortese-Krott MM, Hall JL, Le TH, Isakson BE. Vascular Smooth Muscle Remodeling in Conductive and Resistance Arteries in Hypertension. Arterioscler Thromb Vasc Biol 2019; 38:1969-1985. [PMID: 30354262 DOI: 10.1161/atvbaha.118.311229] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and accounts for >17.3 million deaths per year, with an estimated increase in incidence to 23.6 million by 2030. 1 Cardiovascular death represents 31% of all global deaths 2 -with stroke, heart attack, and ruptured aneurysms predominantly contributing to these high mortality rates. A key risk factor for cardiovascular disease is hypertension. Although treatment or reduction in hypertension can prevent the onset of cardiovascular events, existing therapies are only partially effective. A key pathological hallmark of hypertension is increased peripheral vascular resistance because of structural and functional changes in large (conductive) and small (resistance) arteries. In this review, we discuss the clinical implications of vascular remodeling, compare the differences between vascular smooth muscle cell remodeling in conductive and resistance arteries, discuss the genetic factors associated with vascular smooth muscle cell function in hypertensive patients, and provide a prospective assessment of current and future research and pharmacological targets for the treatment of hypertension.
Collapse
Affiliation(s)
- Isola A M Brown
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Lukas Diederich
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Pharmacology (L.J.D.)
| | - Sara A Murphy
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.)
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany (L.D., M.M.C.-K.)
| | - Jennifer L Hall
- Lillehei Heart Institute (J.L.H.).,Division of Cardiology, Department of Medicine (J.L.H.), University of Minnesota, Minneapolis.,American Heart Association, Dallas, TX (J.L.H.)
| | - Thu H Le
- Division of Nephrology, Department of Medicine (T.H.L.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (I.A.M.B., M.E.G., L.J.D., S.A.M., B.E.I.).,Department of Molecular Physiology and Biophysics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
447
|
Improved detection of common variants in coronary artery disease and blood pressure using a pleiotropy cFDR method. Sci Rep 2019; 9:10340. [PMID: 31316127 PMCID: PMC6637206 DOI: 10.1038/s41598-019-46808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/04/2019] [Indexed: 11/24/2022] Open
Abstract
Plenty of genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) for coronary artery disease (CAD) and blood pressure (BP). However, these SNPs only explain a small proportion of the heritability of two traits/diseases. Although high BP is a major risk factor for CAD, the genetic intercommunity between them remain largely unknown. To recognize novel loci associated with CAD and BP, a genetic-pleiotropy-informed conditional false discovery rate (cFDR) method was applied on two summary statistics of CAD and BP from existing GWASs. Stratified Q-Q and fold enrichment plots showed a high pleiotropic enrichment of SNPs associated with two traits. Adopting a cFDR of 0.05 as a threshold, 55 CAD-associated loci (25 variants being novel) and 47 BP loci (18 variants being novel) were identified, 25 of which were pleiotropic loci (13 variants being novel) for both traits. Among the 32 genes these 25 SNPs were annotated to, 20 genes were newly detected compared to previous GWASs. This study showed the cFDR approach could improve gene discovery by incorporating GWAS datasets of two related traits. These findings may provide novel understanding of etiology relationships between CAD and BP.
Collapse
|
448
|
Zilbermint M, Gaye A, Berthon A, Hannah‐Shmouni F, Faucz FR, Lodish MB, Davis AR, Gibbons GH, Stratakis CA. ARMC 5 Variants and Risk of Hypertension in Blacks: MH- GRID Study. J Am Heart Assoc 2019; 8:e012508. [PMID: 31266387 PMCID: PMC6662143 DOI: 10.1161/jaha.119.012508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Background We recently found that ARMC 5 variants may be associated with primary aldosteronism in blacks. We investigated a cohort from the MH - GRID (Minority Health Genomics and Translational Research Bio-Repository Database) and tested the association between ARMC 5 variants and blood pressure in black s. Methods and Results Whole exome sequencing data of 1377 black s were analyzed. Target single-variant and gene-based association analyses of hypertension were performed for ARMC 5, and replicated in a subset of 3015 individuals of African descent from the UK Biobank cohort. Sixteen rare variants were significantly associated with hypertension ( P=0.0402) in the gene-based (optimized sequenced kernel association test) analysis; the 16 and one other, rs116201073, together, showed a strong association ( P=0.0003) with blood pressure in this data set. The presence of the rs116201073 variant was associated with lower blood pressure. We then used human embryonic kidney 293 and adrenocortical H295R cells transfected with an ARMC 5 construct containing rs116201073 (c.*920T>C). The latter was common in both the discovery ( MH - GRID ) and replication ( UK Biobank) data and reached statistical significance ( P=0.044 [odds ratio, 0.7] and P=0.007 [odds ratio, 0.76], respectively). The allele carrying rs116201073 increased levels of ARMC5 mRNA , consistent with its protective effect in the epidemiological data. Conclusions ARMC 5 shows an association with hypertension in black s when rare variants within the gene are considered. We also identified a protective variant of the ARMC 5 gene with an effect on ARMC 5 expression confirmed in vitro. These results extend our previous report of ARMC 5's possible involvement in the determination of blood pressure in blacks.
Collapse
Affiliation(s)
- Mihail Zilbermint
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
- Division of Endocrinology, Diabetes, and MetabolismJohns Hopkins University School of MedicineBaltimoreMD
- Johns Hopkins Community Physicians at Suburban HospitalBethesdaMD
- Johns Hopkins University Carey Business SchoolBaltimoreMD
| | - Amadou Gaye
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
| | - Annabel Berthon
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fady Hannah‐Shmouni
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Fabio R. Faucz
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Maya B. Lodish
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| | - Adam R. Davis
- Technological Research and InnovationUniformed Services UniversityBethesdaMD
| | - Gary H. Gibbons
- Genomics of Metabolic, Cardiovascular and Inflammatory Disease Branch, Cardiovascular SectionNational Human Genome Research InstituteBethesdaMD
- National Heart, Lung, and Blood InstituteBethesdaMD
| | - Constantine A. Stratakis
- Section on Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMD
| |
Collapse
|
449
|
Zhang N, Chen H, Jia J, Ye X, Ding H, Zhan Y. The CYP17A1 gene polymorphisms are associated with hypercholesterolemia in Han Chinese. J Gene Med 2019; 21:e3102. [PMID: 31170334 DOI: 10.1002/jgm.3102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/30/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The CYP17A1 gene has been identified to associate with hypertension in Chinese population. However, the association between CYP17A1 polymorphisms and hypertension-related factors is unclear. The present study aimed to investigate the relation between CYP17A1 single nucleotide polymorphisms (SNPs) and serum lipid profiles. METHODS In total, 1350 participants were included in the study. Six SNPs in or near CYP17A1 gene were genotyped in a Han Chinese population in two stages. RESULTS There was a statistically significant association of rs1004467 (adjusted odds ratio = 0.783, 95% confidence interval = 0.667-0.919, p < 0.05) and rs11191548 (adjusted odds ratio = 0.788, 95% confidence interval = 0.672-0.925, p < 0.05) with hypercholesterolemia after adjustment for potential factors. Additionally, the rs1004467 minor G-allele and the rs11191548 minor C-allele were significantly associated with the lower serum total cholesterol levels (p < 0.05 for all). CONCLUSIONS The rs1004467 and rs11191548 in the CYP17A1 gene are associated with a decreased risk of hypercholesterolemia and lower serum TC levels in Han Chinese.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huimei Chen
- Jiangsu Key Laboratory of Molecular Medicine, Department of Medical Genetics, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Jia
- Department of General Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoman Ye
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Ding
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiyang Zhan
- Department of Geriatric Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
450
|
Zeng P, Zhou X. Causal Association Between Birth Weight and Adult Diseases: Evidence From a Mendelian Randomization Analysis. Front Genet 2019; 10:618. [PMID: 31354785 PMCID: PMC6635582 DOI: 10.3389/fgene.2019.00618] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/13/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose: Birth weight has a profound long-term impact on individual’s predisposition to various diseases at adulthood—a hypothesis commonly referred to as the fetal origins of adult diseases. However, it is not fully clear to what extent the fetal origins of adult diseases hypothesis holds and it is also not completely known what types of adult diseases are causally affected by birth weight. Materials and methods: Mendelian randomization using multiple genetic instruments associated with birth weight was performed to explore the causal relationship between birth weight and adult diseases. The causal relationship between birth weight and 21 adult diseases as well as 38 other complex traits was examined based on data collected from 37 large-scale genome-wide association studies with up to 340,000 individuals of European ancestry. Causal effects of birth weight were estimated using inverse-variance weighted methods. The identified causal relationships between birth weight and adult diseases were further validated through extensive sensitivity analyses, bias calculation, and simulations. Results: Among the 21 adult diseases, three were identified to be inversely causally affected by birth weight after the Bonferroni correction. The measurement unit of birth weight was defined as its standard deviation (i.e., 488 g), and one unit lower birth weight was causally related to an increased risk of coronary artery disease (CAD), myocardial infarction (MI), type 2 diabetes (T2D), and BMI-adjusted T2D, with the estimated odds ratios of 1.34 [95% confidence interval (CI) 1.17–1.53], 1.30 (95% CI 1.13–1.51), 1.41 (95% CI 1.15–1.73), and 1.54 (95% CI 1.25–1.89), respectively. All these identified causal associations were robust across various sensitivity analyses that guard against various confounding due to pleiotropy or maternal effects as well as reverse causation. In addition, analysis on 38 additional complex traits did not identify candidate traits that may mediate the causal association between birth weight and CAD/MI/T2D. Conclusions: The results suggest that lower birth weight is causally associated with an increased risk of CAD, MI, and T2D in later life, supporting the fetal origins of adult diseases hypothesis.
Collapse
Affiliation(s)
- Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States.,Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|