1
|
Qin Q, Zeng S, Duan G, Liu Y, Han X, Yu R, Huang Y, Zhang C, Han J, Jiang S. "Bottom-up" and "top-down" strategies toward strong cellulose-based materials. Chem Soc Rev 2024; 53:9306-9343. [PMID: 39143951 DOI: 10.1039/d4cs00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cellulose, as the most abundant natural polymer on Earth, has long captured researchers' attention due to its high strength and modulus. Nevertheless, transferring its exceptional mechanical properties to macroscopic 2D and 3D materials poses numerous challenges. This review provides an overview of the research progress in the development of strong cellulose-based materials using both the "bottom-up" and "top-down" approaches. In the "bottom-up" strategy, various forms of regenerated cellulose-based materials and nanocellulose-based high-strength materials assembled by different methods are discussed. Under the "top-down" approach, the focus is on the development of reinforced cellulose-based materials derived from wood, bamboo, rattan and straw. Furthermore, a brief overview of the potential applications fordifferent types of strong cellulose-based materials is given, followed by a concise discussion on future directions.
Collapse
Affiliation(s)
- Qin Qin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ruizhi Yu
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, Zhejiang, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Wu J, Yun Z, Song W, Yu T, Xue W, Liu Q, Sun X. Highly oriented hydrogels for tissue regeneration: design strategies, cellular mechanisms, and biomedical applications. Theranostics 2024; 14:1982-2035. [PMID: 38505623 PMCID: PMC10945336 DOI: 10.7150/thno.89493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Many human tissues exhibit a highly oriented architecture that confers them with distinct mechanical properties, enabling adaptation to diverse and challenging environments. Hydrogels, with their water-rich "soft and wet" structure, have emerged as promising biomimetic materials in tissue engineering for repairing and replacing damaged tissues and organs. Highly oriented hydrogels can especially emulate the structural orientation found in human tissue, exhibiting unique physiological functions and properties absent in traditional homogeneous isotropic hydrogels. The design and preparation of highly oriented hydrogels involve strategies like including hydrogels with highly oriented nanofillers, polymer-chain networks, void channels, and microfabricated structures. Understanding the specific mechanism of action of how these highly oriented hydrogels affect cell behavior and their biological applications for repairing highly oriented tissues such as the cornea, skin, skeletal muscle, tendon, ligament, cartilage, bone, blood vessels, heart, etc., requires further exploration and generalization. Therefore, this review aims to fill that gap by focusing on the design strategy of highly oriented hydrogels and their application in the field of tissue engineering. Furthermore, we provide a detailed discussion on the application of highly oriented hydrogels in various tissues and organs and the mechanisms through which highly oriented structures influence cell behavior.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Tao Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Hovanová V, Hovan A, Humenik M, Sedlák E. Only kosmotrope anions trigger fibrillization of the recombinant core spidroin eADF4(C16) from Araneus diadematus. Protein Sci 2023; 32:e4832. [PMID: 37937854 PMCID: PMC10661072 DOI: 10.1002/pro.4832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Recombinant core spidroin eADF4(C16) has received increasing attention due to its ability to form micro- and nano-structured scaffolds, which are based on nanofibrils with great potential for biomedical and biotechnological applications. Phosphate anions have been demonstrated to trigger the eADF4(C16) self-assembly into cross-beta fibrils. In the present work, we systematically addressed the effect of nine sodium anions, namely SO4 2- , HPO4 2- (Pi), F- , Cl- , Br- , NO3 - , I- , SCN- , and ClO4 - from the Hofmeister series on the in vitro self-assembly kinetics of eADF4(C16). We show that besides the phosphate anions, only kosmotropic anions such as sulfate and fluoride can initiate the eADF4(C16) fibril formation. Global analysis of the self-assembly kinetics, utilizing the platform AmyloFit, showed the nucleation-based mechanism with a major role of secondary nucleation, surprisingly independent of the type of the kosmotropic anion. The rate constant of the fibril elongation in mixtures of phosphate anions with other studied anions correlated with their kosmotropic or chaotropic position in the Hofmeister series. Our findings suggest an important role of anion hydration in the eADF4(C16) fibrillization process.
Collapse
Affiliation(s)
- Veronika Hovanová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Martin Humenik
- Department of Biomaterials, Faculty of Engineering ScienceUniversity BayreuthBayreuthGermany
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
6
|
Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LH, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater 2023; 29:151-176. [PMID: 37502678 PMCID: PMC10368849 DOI: 10.1016/j.bioactmat.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.
Collapse
Affiliation(s)
- Filipe V. Ferreira
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Alana G. Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
| | - Lucas P. de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Hernane S. Barud
- Biopolymers and Biomaterials Laboratory (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara, 14801-340, São Paulo, Brazil
| | - Derval dos S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Luiz H.C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and, Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
7
|
Arumughan V, Özeren H, Hedenqvist M, Skepö M, Nypelö T, Hasani M, Larsson A. Anion-Specific Adsorption of Carboxymethyl Cellulose on Cellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15014-15021. [PMID: 37817605 PMCID: PMC10601536 DOI: 10.1021/acs.langmuir.3c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Integration of fiber modification step with a modern pulp mill is a resource efficient way to produce functional fibers. Motivated by the need to integrate polymer adsorption with the current pulping system, anion-specific effects in carboxymethylcellulose (CMC) adsorption have been studied. The QCM-D adsorption experiments revealed that CMC adsorption to the cellulose model surface is prone to anion-specific effects. A correlation was observed between the adsorbed CMC and the degree of hydration of the co-ions present in the magnesium salts. The presence of a chaotropic co-ion such as nitrate increased the adsorption of CMC on cellulose compared to the presence of the kosmotropic sulfate co-ion. However, anion-specificity was not significant in the case of salts containing zinc cations. The hydration of anions determines the distribution of the ions at the interface. Chaotropic ions, such as nitrates, are likely to be distributed near the chaotropic cellulose surface, causing changes in the ordering of water molecules and resulting in greater entropy gain once released from the surface, thus increasing CMC adsorption.
Collapse
Affiliation(s)
- Vishnu Arumughan
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
- AvanCell, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
| | - Hüsamettin
Deniz Özeren
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Polymeric
Materials Division, Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mikael Hedenqvist
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Polymeric
Materials Division, Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
- FibRe
Vinnova Competence Center, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden
| | - Marie Skepö
- Division
of Theoretical Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Tiina Nypelö
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
| | - Merima Hasani
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
- AvanCell, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
| | - Anette Larsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
- AvanCell, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
- Wallenberg
Wood Science Center, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
- FibRe
Vinnova Competence Center, Chalmers University
of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
8
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
9
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
10
|
Mattos BD, Zhu Y, Tardy BL, Beaumont M, Ribeiro ACR, Missio AL, Otoni CG, Rojas OJ. Versatile Assembly of Metal-Phenolic Network Foams Enabled by Tannin-Cellulose Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209685. [PMID: 36734159 DOI: 10.1002/adma.202209685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metal-phenolic network (MPN) foams are prepared using colloidal suspensions of tannin-containing cellulose nanofibers (CNFs) that are ice-templated and thawed in ethanolic media in the presence of metal nitrates. The MPN facilitates the formation of solid foams by air drying, given the strength and self-supporting nature of the obtained tannin-cellulose nanohybrid structures. The porous characteristics and (dry and wet) compression strength of the foams are rationalized by the development of secondary, cohesive metal-phenolic layers combined with a hydrogen bonding network involving the CNF. The shrinkage of the MPN foams is as low as 6% for samples prepared with 2.5-10% tannic acid (or condensed tannin at 2.5%) with respect to CNF content. The strength of the MPN foams reaches a maximum at 10% tannic acid (using Fe(III) ions), equivalent to a compressive strength 70% higher than that produced with tannin-free CNF foams. Overall, a straightforward framework is introduced to synthesize MPN foams whose physical and mechanical properties are tailored by the presence of tannins as well as the metal ion species that enable the metal-phenolic networking. Depending on the metal ion, the foams are amenable to modification according to the desired application.
Collapse
Affiliation(s)
- Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076, Espoo, Finland
- Technological Development Center, Materials Science and Engineering (PPGCEM), Federal University of Pelotas (UFPel), Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Ya Zhu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076, Espoo, Finland
| | - Blaise L Tardy
- Department of Chemical Engineering, Research and Innovation Center on CO2 and Hydrogen, Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Ana Carolina R Ribeiro
- Technological Development Center, Materials Science and Engineering (PPGCEM), Federal University of Pelotas (UFPel), Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - André L Missio
- Technological Development Center, Materials Science and Engineering (PPGCEM), Federal University of Pelotas (UFPel), Gomes Carneiro 1, Pelotas, RS, 96010-610, Brazil
| | - Caio G Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), Rod. Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, FI-00076, Espoo, Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
11
|
Giurlani W, Fidi A, Anselmi E, Pizzetti F, Bonechi M, Carretti E, Lo Nostro P, Innocenti M. SPECIFIC ION EFFECTS ON COPPER ELECTROPLATING. Colloids Surf B Biointerfaces 2023; 225:113287. [PMID: 37004387 DOI: 10.1016/j.colsurfb.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The main goal of this work is to open new perspectives in the field of electrodeposition and provide green alternatives to the electroplating industry. The effect of different anions (SO42-, ClO3-, NO3-, ClO4-, BF4-, PF6-) in solution on the electrodeposition of copper was investigated. The solutions, containing only the copper precursor and the background electrolyte, were tailored to minimize the environmental impact and reduce the use of organic additives and surfactants. The study is based on electrochemical measurements carried out to verify that no metal complexation takes place. We assessed the nucleation and growth mechanism, we performed a morphological characterization through scanning electron microscopy and deposition efficiency by measuring the film thickness through X-ray fluorescence spectroscopy. Significant differences in the growth mechanism and in the morphology of the electrodeposited films, were observed as a function of the background electrolyte.
Collapse
Affiliation(s)
- Walter Giurlani
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; INSTM, Via G. Giusti 9, 50121 Firenze (FI), Italy
| | - Alberto Fidi
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Erasmo Anselmi
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Federico Pizzetti
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Bonechi
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; INSTM, Via G. Giusti 9, 50121 Firenze (FI), Italy
| | - Emiliano Carretti
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Massimo Innocenti
- Dept. Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; INSTM, Via G. Giusti 9, 50121 Firenze (FI), Italy; CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy; ICCOM - CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Acar M, Tatini D, Ninham BW, Rossi F, Marchettini N, Lo Nostro P. The Lyotropic Nature of Halates: An Experimental Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238519. [PMID: 36500616 PMCID: PMC9739596 DOI: 10.3390/molecules27238519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Unlike halides, where the kosmotropicity decreases from fluoride to iodide, the kosmotropic nature of halates apparently increases from chlorate to iodate, in spite of the lowering in the static ionic polarizability. In this paper, we present an experimental study that confirms the results of previous simulations. The lyotropic nature of aqueous solutions of sodium halates, i.e., NaClO3, NaBrO3, and NaIO3, is investigated through density, conductivity, viscosity, and refractive index measurements as a function of temperature and salt concentration. From the experimental data, we evaluate the activity coefficients and the salt polarizability and assess the anions' nature in terms of kosmotropicity/chaotropicity. The results clearly indicate that iodate behaves as a kosmotrope, while chlorate is a chaotrope, and bromate shows an intermediate nature. This experimental study confirms that, in the case of halates XO3-, the kosmotropic-chaotropic ranking reverses with respect to halides. We also discuss and revisit the role of the anion's polarizability in the interpretation of Hofmeister phenomena.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Duccio Tatini
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
| | - Barry W. Ninham
- Materials Physics (Formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT 2612, Australia
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry “Ugo Schiff” and CSGI, University of Florence, 50019 Firenze, Italy
- Correspondence: ; Tel.: +39-055-4573010
| |
Collapse
|
13
|
Reyes G, King AWT, Koso TV, Penttilä PA, Kosonen H, Rojas OJ. Cellulose dissolution and gelation in NaOH(aq) under controlled CO 2 atmosphere: supramolecular structure and flow properties. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8029-8035. [PMID: 36324640 PMCID: PMC9578387 DOI: 10.1039/d2gc02916b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
We investigate the interplay between cellulose crystallization and aggregation with interfibrillar interactions, shear forces, and the local changes in the medium's acidity. The latter is affected by the CO2 chemisorbed from the surrounding atmosphere, which, combined with shear forces, explain cellulose gelation. Herein, rheology, nuclear magnetic resonance (NMR), small and wide-angle X-ray scattering (SAXS/WAXS), and focused ion beam scanning electron microscopy (FIB-SEM) are combined to unveil the fundamental factors that limit cellulose gelation and maximize its dissolution in NaOH(aq). The obtained solutions are then proposed for developing green and environmentally friendly cellulose-based materials.
Collapse
Affiliation(s)
- Guillermo Reyes
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Espoo Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd Tietotie 4e FI-02150 Espoo Finland
| | - Tetyana V Koso
- Materials Chemistry Division, Department of Chemistry, University of Helsinki FI-00560 Helsinki Finland
| | - Paavo A Penttilä
- Biobased Materials Structure, Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Harri Kosonen
- UPM Pulp Research and Innovations, UPM Paloasemantie 19 FI-53200 Lappeenranta Finland
| | - Orlando J Rojas
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Espoo Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia Vancouver BC V6T 1Z3 Canada
| |
Collapse
|
14
|
Ren N, Chen S, Cui M, Huang R, Qi W, He Z, Su R. Ultrastrong and flame-retardant microfibers via microfluidic wet spinning of phosphorylated cellulose nanofibrils. Carbohydr Polym 2022; 296:119945. [DOI: 10.1016/j.carbpol.2022.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
|
15
|
Guo T, Wan Z, Yu Y, Chen H, Wang Z, Li D, Song J, Rojas OJ, Jin Y. Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16809-16819. [PMID: 35353500 PMCID: PMC9011349 DOI: 10.1021/acsami.1c25227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
We investigate the mechanism of binding of dopamine-conjugated carboxymethyl cellulose (DA-CMC) with carbon nanotubes (CNTs) and the strain-induced interfacial strengthening that takes place upon wet drawing and stretching filaments produced by wet-spinning. The filaments are known for their tensile strength (as high as 972 MPa and Young modulus of 84 GPa) and electrical conductivity (241 S cm-1). The role of axial orientation in the development of interfacial interactions and structural changes, enabling shear load bearing, is studied by molecular dynamics simulation, which further reveals the elasto-plasticity of the system. We propose that the reversible torsion of vicinal molecules and DA-CMC wrapping around CNTs are the main contributions to the interfacial strengthening of the filaments. Such effects play important roles in impacting the properties of filaments, including those related to electrothermal heating and sensing. Our findings contribute to a better understanding of high aspect nanoparticle assembly and alignment to achieve high-performance filaments.
Collapse
Affiliation(s)
- Tianyu Guo
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yan Yu
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hui Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhifeng Wang
- Testing
Center, Yangzhou University, 48# Wenhui East Road, Yangzhou 225002, P. R. China
| | - Dagang Li
- College
of Material Science and Engineering, Nanjing
Forestry University, Nanjing 210037, P. R. China
| | - Junlong Song
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16300, FI-00076 Aalto, Finland
| | - Yongcan Jin
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, and Jiangsu Provincial Key Lab of Pulp and Paper Science
and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
16
|
Khuu N, Kheiri S, Kumacheva E. Structurally anisotropic hydrogels for tissue engineering. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Li H, Roth SV, Freychet G, Zhernenkov M, Asta N, Wågberg L, Pettersson T. Structure Development of the Interphase between Drying Cellulose Materials Revealed by In Situ Grazing-Incidence Small-Angle X-ray Scattering. Biomacromolecules 2021; 22:4274-4283. [PMID: 34541856 PMCID: PMC8512666 DOI: 10.1021/acs.biomac.1c00845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/07/2021] [Indexed: 11/29/2022]
Abstract
The nano- to microscale structures at the interface between materials can define the macroscopic material properties. These structures are extremely difficult to investigate for complex material systems, such as cellulose-rich materials. The development of new model cellulose materials and measuring techniques has opened new possibilities to resolve this problem. We present a straightforward approach combining micro-focusing grazing-incidence small-angle X-ray scattering and atomic force microscopy (AFM) to investigate the structural rearrangements of cellulose/cellulose interfaces in situ during drying. Based on the results, we propose that molecular interdiffusion and structural rearrangement play a major role in the development of the properties of the cellulose/cellulose interphase; this model is representative of the development of the properties of joint/contact points between macroscopic cellulose fibers.
Collapse
Affiliation(s)
- Hailong Li
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
- Department
of Physics, AlbaNova University Center, Stockholm University, Stockholm 10691, Sweden
| | - Stephan V. Roth
- Deutsches
Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Guillaume Freychet
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Mikhail Zhernenkov
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Nadia Asta
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
| | - Lars Wågberg
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| | - Torbjörn Pettersson
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 58, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm 10044, Sweden
| |
Collapse
|
18
|
Dhar M, Das A, Shome A, Borbora A, Manna U. Design of 'tolerant and hard' superhydrophobic coatings to freeze physical deformation. MATERIALS HORIZONS 2021; 8:2717-2725. [PMID: 34617554 DOI: 10.1039/d1mh00857a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the development of mechanically durable and abrasion tolerant superhydrophobicity on a rigid substrates itself remains a highly challenging task, the design of superhydrophobic coatings that can restrict both the tensile and compressive deformations of soft and deformable substrates is unprecedented-and such an approach would be of potential interest in various applied and fundamental contexts. In this communication, a reaction mixture was developed following a simple 1,4-conjugate addition reaction between selected small molecules and appropriate crosslinkers for achieving 'tolerant and hard' superhydrophobicity-which is not just capable of surviving under severe conditions-but also restricts both the tensile and compressive deformations of the selected soft substrates. The compressive and tensile moduli of the selected soft substrates increased by 2.2 × 104% and 1.8 × 104%, respectively, after the deposition of the appropriate reaction mixtures. Moreover, the integration of the crosslinkers in the reaction mixture provided a facile basis to resist the physical erosion/rupture of the selected soft substrates under severe abrasive conditions. Thus, a simple and elegant chemical approach not only controlled the mechanical properties of the porous and fibrous soft substrates under ambient conditions-but also provided highly tolerant superhydrophobicity-which likely leads to various outdoor applications.
Collapse
Affiliation(s)
- Manideepa Dhar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Arpita Shome
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Angana Borbora
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- School of Health Science & Technology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
19
|
Brouzet C, Mittal N, Rosén T, Takeda Y, Söderberg LD, Lundell F, Takana H. Effect of Electric Field on the Hydrodynamic Assembly of Polydisperse and Entangled Fibrillar Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8339-8347. [PMID: 34176263 DOI: 10.1021/acs.langmuir.1c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamics of colloidal particles can be controlled by the application of electric fields at micrometer-nanometer length scales. Here, an electric field-coupled microfluidic flow-focusing device is designed for investigating the effect of an externally applied alternating current (AC) electric field on the hydrodynamic assembly of cellulose nanofibrils (CNFs). We first discuss how the nanofibrils align parallel to the direction of the applied field without flow. Then, we apply an electric field during hydrodynamic assembly in the microfluidic channel and observe the effects on the mechanical properties of the assembled nanostructures. We further discuss the nanoscale orientational dynamics of the polydisperse and entangled fibrillar suspension of CNFs in the channel. It is shown that electric fields induced with the electrodes locally increase the degree of orientation. However, hydrodynamic alignment is demonstrated to be much more efficient than the electric field for aligning CNFs. The results are useful for understanding the development of the nanostructure when designing high-performance materials with microfluidics in the presence of external stimuli.
Collapse
Affiliation(s)
- Christophe Brouzet
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Nitesh Mittal
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Tomas Rosén
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yusuke Takeda
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - L Daniel Söderberg
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Fredrik Lundell
- Wallenberg Wood Science Center and Linné FLOW Centre, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hidemasa Takana
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
20
|
Rosén T, Hsiao BS, Söderberg LD. Elucidating the Opportunities and Challenges for Nanocellulose Spinning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001238. [PMID: 32830341 PMCID: PMC11468825 DOI: 10.1002/adma.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/31/2020] [Indexed: 05/07/2023]
Abstract
Man-made continuous fibers play an essential role in society today. With the increase in global sustainability challenges, there is a broad spectrum of societal needs where the development of advanced biobased fibers could provide means to address the challenges. Biobased regenerated fibers, produced from dissolved cellulose are widely used today for clothes, upholstery, and linens. With new developments in the area of advanced biobased fibers, it would be possible to compete with high-performance synthetic fibers such as glass fibers and carbon fibers as well as to provide unique functionalities. One possible development is to fabricate fibers by spinning filaments from nanocellulose, Nature's nanoscale high-performance building block, which will require detailed insights into nanoscale assembly mechanisms during spinning, as well as knowledge regarding possible functionalization. If successful, this could result in a new class of man-made biobased fibers. This work aims to identify the progress made in the field of spinning of nanocellulose filaments, as well as outline necessary steps for efficient fabrication of such nanocellulose-based filaments with controlled and predictable properties.
Collapse
Affiliation(s)
- Tomas Rosén
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmS‐100 44Sweden
| | - Benjamin S. Hsiao
- Chemistry DepartmentStony Brook UniversityStony BrookNY11794‐3400USA
| | - L. Daniel Söderberg
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmS‐100 44Sweden
| |
Collapse
|
21
|
Tu H, Zhu M, Duan B, Zhang L. Recent Progress in High-Strength and Robust Regenerated Cellulose Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000682. [PMID: 32686231 DOI: 10.1002/adma.202000682] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Indexed: 05/22/2023]
Abstract
High-strength petroleum-based materials like plastics have been widely used in various fields, but their nonbiodegradability has caused serious pollution problems. Cellulose, as the most abundant sustainable polymer, has a great chance to act as the ideal substitute for plastics due to its low cost, wide availability, biodegradability, etc. Herein, the recent achievements for developing cellulose "green" solvents and regenerated cellulose materials with high strength via the "bottom-up" route are presented. Cellulose can be regenerated to produce films/membranes, hydrogels/aerogels, filaments/fibers, microspheres/beads, bioplastics, etc., which show potential applications in textiles, biomedicine, energy storage, packaging, etc. Importantly, these cellulose-based materials can be biodegraded in soil and oceans, reducing environmental pollution. The cellulose solvents, dissolving mechanism, and strategies for constructing the regenerated cellulose functional materials with high strength and performances, together with the current achievements and urgent challenges are summarized, and some perspectives are also proposed. The near future will be an exciting era for high-strength biodegradable and renewable materials. The hope is that many environmentally friendly materials with good properties and low cost will be produced for commercial use, which will be beneficial for sustainable development in the world.
Collapse
Affiliation(s)
- Hu Tu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
22
|
Li K, Clarkson CM, Wang L, Liu Y, Lamm M, Pang Z, Zhou Y, Qian J, Tajvidi M, Gardner DJ, Tekinalp H, Hu L, Li T, Ragauskas AJ, Youngblood JP, Ozcan S. Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS NANO 2021; 15:3646-3673. [PMID: 33599500 DOI: 10.1021/acsnano.0c07613] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into different materials owing to their good properties. The alignment of cellulose nanofibers is reported to significantly influence the performance of cellulose nanofiber-based materials. The alignment of cellulose nanofibers can bridge the nanoscale and macroscale, bringing enhanced nanoscale properties to high-performance macroscale materials. However, compared with extensive reviews on the alignment of cellulose nanocrystals, reviews focusing on cellulose nanofibers are seldom reported, possibly because of the challenge of aligning cellulose nanofibers. In this review, the alignment of cellulose nanofibers, including cellulose nanofibrils and bacterial cellulose, is extensively discussed from different aspects of the driving force, evaluation, strategies, properties, and applications. Future perspectives on challenges and opportunities in cellulose nanofiber alignment are also briefly highlighted.
Collapse
Affiliation(s)
- Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Caitlyn M Clarkson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Lu Wang
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Yu Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Meghan Lamm
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yubing Zhou
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ji Qian
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Mehdi Tajvidi
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Douglas J Gardner
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, Maine 04469, United States
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee 37996, United States
- UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| |
Collapse
|
23
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
24
|
Yun G, Kang DG, Rheem HB, Lee H, Han SY, Park J, Cho WK, Han SM, Choi IS. Reversed Anionic Hofmeister Effect in Metal-Phenolic-Based Film Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15552-15557. [PMID: 33325235 DOI: 10.1021/acs.langmuir.0c02928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although metal-phenolic species have emerged as one of the versatile material-independent-coating materials, providing attractive tools for interface engineering, mechanistic understanding of their film formation and growth still remains largely unexplored. Especially, the anions have been overlooked despite their high concentration in the coating solution. Considering that the anions are critical in the reactivity of metal-organic complex and the formation and/or property of functional materials, we investigated the anionic effects on the characteristics of film formation, such as film thickness and properties, in the Fe3+-tannic acid coating. We found that the film characteristics were strongly dictated by the counteranions (e.g., SO42-, Cl-, and Br-) of the Fe3+ ion. Specifically, the film thickness and properties (i.e., mechanical modulus, permeability, and stability) followed the reversed anionic Hofmeister series (Br- > Cl- > SO42-). Mechanistic studies suggested that more chaotropic anions, such as Br-, might induce a more widely extended structure of the Fe3+-TA complexes in the coating solution, leading to thicker, harder, but more porous films. The reversed anionic Hofmeister effect was further confirmed by the additive effects of various sodium salts (NaF, NaCl, NaBr, and NaClO4).
Collapse
Affiliation(s)
- Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong Gyu Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Seung Min Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
25
|
Talantikite M, Stimpson TC, Gourlay A, Le-Gall S, Moreau C, Cranston ED, Moran-Mirabal JM, Cathala B. Bioinspired Thermoresponsive Xyloglucan-Cellulose Nanocrystal Hydrogels. Biomacromolecules 2020; 22:743-753. [PMID: 33332094 DOI: 10.1021/acs.biomac.0c01521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermoresponsive hydrogels present unique properties, such as tunable mechanical performance or changes in volume, which make them attractive for applications including wound healing dressings, drug delivery vehicles, and implants, among others. This work reports the implementation of bioinspired thermoresponsive hydrogels composed of xyloglucan (XG) and cellulose nanocrystals (CNCs). Starting from tamarind seed XG (XGt), thermoresponsive XG was obtained by enzymatic degalactosylation (DG-XG), which reduced the galactose residue content by ∼50% and imparted a reversible thermal transition. XG with native composition and comparable molar mass to DG-XG was produced by an ultrasonication treatment (XGu) for a direct comparison of behavior. The hydrogels were prepared by simple mixing of DG-XG or XGu with CNCs in water. Phase diagrams were established to identify the ratios of DG-XG or XGu to CNCs that yielded a viscous liquid, a phase-separated mixture, a simple gel, or a thermoresponsive gel. Gelation occurred at a DG-XG or XGu to CNC ratio higher than that needed for the full surface coverage of CNCs and required relatively high overall concentrations of both components (tested concentrations up to 20 g/L XG and 30 g/L CNCs). This is likely a result of the increase in effective hydrodynamic volume of CNCs due to the formation of XG-CNC complexes. Investigation of the adsorption behavior indicated that DG-XG formed a more rigid layer on CNCs compared to XGu. Rheological properties of the hydrogels were characterized, and a reversible thermal transition was found for DG-XG/CNC gels at 35 °C. This thermoresponsive behavior provides opportunities to apply this system widely, especially in the biomedical field, where the mechanical properties could be further tuned by adjusting the CNC content.
Collapse
Affiliation(s)
| | - Taylor C Stimpson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | | | | | | | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.,Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | | |
Collapse
|
26
|
Valencia L, Nomena EM, Monti S, Rosas-Arbelaez W, Mathew AP, Kumar S, Velikov KP. Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials' properties. NANOSCALE 2020; 12:15652-15662. [PMID: 32496493 DOI: 10.1039/d0nr02888f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.
Collapse
Affiliation(s)
- Luis Valencia
- Division of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
27
|
Wang L, Ezazi NZ, Liu L, Ajdary R, Xiang W, Borghei M, Santos HA, Rojas OJ. Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Adv 2020; 10:29450-29459. [PMID: 35521134 PMCID: PMC9059162 DOI: 10.1039/d0ra06178f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Partially deacetylated chitin nanofibers (ChNF) were isolated from shell residues derived from crab biomass and used to prepare hydrogels, which were easily transformed into continuous microfibers by wet-spinning. We investigated the effect of ChNF solid content, extrusion rate and coagulant type, which included organic (acetone) and alkaline (NaOH and ammonia) solutions, on wet spinning. The properties of the microfibers and associated phenomena were assessed by tensile strength, quartz crystal microgravimetry, dynamic vapor sorption (DVS), thermogravimetric analysis and wide-angle X-ray scattering (WAXS). The as-spun microfibers (14 GPa stiffness) comprised hierarchical structures with fibrils aligned in the lateral direction. The microfibers exhibited a remarkable water sorption capacity (up to 22 g g-1), while being stable in the wet state (50% of dry strength), which warrants consideration as biobased absorbent systems. In addition, according to cell proliferation and viability of rat cardiac myoblast H9c2 and mouse bone osteoblast K7M2, the wet-spun ChNF microfibers showed excellent results and can be considered as fully safe for biomedical uses, such as in sutures, wound healing patches and cell culturing.
Collapse
Affiliation(s)
- Ling Wang
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Nazanin Zanjanizadeh Ezazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI 00014 Helsinki Finland
| | - Liang Liu
- College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Wenchao Xiang
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI 00014 Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki FI 00014 Helsinki Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Wood Science, University of British Columbia 2360 East Mall Vancouver V6T 1Z3 BC Canada
| |
Collapse
|
28
|
Cai Y, Geng L, Chen S, Shi S, Hsiao BS, Peng X. Hierarchical Assembly of Nanocellulose into Filaments by Flow-Assisted Alignment and Interfacial Complexation: Conquering the Conflicts between Strength and Toughness. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32090-32098. [PMID: 32551523 DOI: 10.1021/acsami.0c04504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Filaments comprising solely cellulose nanofibrils (CNFs) have been fabricated by flow-assisted assembling, where the strength can be improved greatly with the sacrifice of toughness. Inspired by the architecture of natural nacre and plant cell wall, the combined technique of convergent microfluidic spinning and in situ interfacial complexation between CNF and chitosan molecules was used to construct the filaments with hierarchical assembly of highly oriented CNFs locked by chitosan complexes, showing simultaneous enhancements of strength and toughness. In specific, the best performing filament exhibited a toughness of 88.9 kJ/m3 and a tensile strength of 1289 MPa because of the strong interfacial complexation interactions between CNFs and chitosan molecules. The tensile strength was further raised to 1627 MPa when the filaments were cross-linked synergistically by using Ca2+, surpassing the reported values in the literature. Molecular dynamics simulations revealed the possible fracture mechanism of the filaments under tension. With excellent mechanical performance and biocompatibility, the resulting CNF/chitosan filament system showed a promising application potential as nonabsorbable surgical sutures. The demonstrated spinning technology also offered a new avenue for the fabrication of high-performance filaments.
Collapse
Affiliation(s)
- Yuhua Cai
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
| | - Song Chen
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
| | - Shuo Shi
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350108, China
| |
Collapse
|
29
|
He X, Ewing AG. Counteranions in the Stimulation Solution Alter the Dynamics of Exocytosis Consistent with the Hofmeister Series. J Am Chem Soc 2020; 142:12591-12595. [PMID: 32598145 PMCID: PMC7386575 DOI: 10.1021/jacs.0c05319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
We
show that the Hofmeister series of ions can be used to explain
the cellular changes in exocytosis observed by single-cell amperometry
for different counteranions. The formation, expansion, and closing
of the membrane fusion pore during exocytosis was found to be strongly
dependent on the counteranion species in solution. With stimulation
of chaotropic anions (e.g., ClO4–), the
expansion and closing time of the fusion pore are longer, suggesting
chaotropes can extend the duration of exocytosis compared with kosmotropic
anions (e.g., Cl–). At a concentration of 30 mM,
the two parameters (e.g., t1/2 and tfall) that define the duration of exocytosis
vary with the Hofmeister series (Cl– < Br– < NO3– ≤ ClO4– < SCN–). More interestingly,
fewer (e.g., Nfoot/Nevents) and smaller (e.g., Ifoot) prespike events are observed when chaotropes are counterions in
the stimulation solution, and the values can be sorted by the reverse
Hofmeister series (Cl– ≥ Br– > NO3– > ClO4– > SCN–). Based on ion specificity,
an adsorption-repulsion
mechanism, we suggest that the exocytotic Hofmeister series effect
originates from a looser swelling lipid bilayer structure due to the
adsorption and electrostatic repulsion of chaotropes on the hydrophobic
portion of the membrane. Our results provide a chemical link between
the Hofmeister series and the cellular process of neurotransmitter
release via exocytosis and provide a better physical framework to
understand this important phenomenon.
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
30
|
Niinivaara E, Cranston ED. Bottom-up assembly of nanocellulose structures. Carbohydr Polym 2020; 247:116664. [PMID: 32829792 DOI: 10.1016/j.carbpol.2020.116664] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Nanocelluloses, both cellulose nanofibrils and cellulose nanocrystals, are gaining research traction due to their viability as key components in commercial applications and industrial processes. Significant efforts have been made to understand both the potential of assembling nanocelluloses, and the limits and prospectives of the resulting structures. This Review focuses on bottom-up techniques used to prepare nanocellulose-only structures, and details the intermolecular and surface forces driving their assembly. Additionally, the interactions that contribute to their structural integrity are discussed along with alternate pathways and suggestions for improved properties. Six categories of nanocellulose structures are presented: (1) powders, beads, and droplets; (2) capsules; (3) continuous fibres; (4) films; (5) hydrogels; and (6) aerogels and dried foams. Although research on nanocellulose assembly often focuses on fundamental science, this Review also provides insight on the potential utilization of such structures in a wide array of applications.
Collapse
Affiliation(s)
- Elina Niinivaara
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-0076 Aalto, Espoo, Finland.
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
31
|
Walther A, Lossada F, Benselfelt T, Kriechbaum K, Berglund L, Ikkala O, Saito T, Wågberg L, Bergström L. Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules 2020; 21:2536-2540. [PMID: 32233473 DOI: 10.1021/acs.biomac.0c00330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nanocellulose-based materials and nanocomposites show extraordinary mechanical properties with high stiffness, strength, and toughness. Although the last decade has witnessed great progress in understanding the mechanical properties of these materials, a crucial challenge is to identify pathways to introduce high wet strength, which is a critical parameter for commercial applications. Because of the waterborne fabrication methods, nanocellulose-based materials are prone to swelling by both adsorption of moist air or liquid water. Unfortunately, there is currently no best practice on how to take the swelling into account when reporting mechanical properties at different relative humidity or when measuring the mechanical properties of fully hydrated materials. This limits and in parts fully prevents comparisons between different studies. We review current approaches and propose a best practice for measuring and reporting mechanical properties of wet nanocellulose-based materials, highlighting the importance of swelling and the correlation between mechanical properties and volume expansion.
Collapse
Affiliation(s)
- Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,DFG Cluster of Excellence "Living, Adaptive and Energy-Autonomous Materials Systems" (livMatS), 79110 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Francisco Lossada
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.,Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Lars Berglund
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Olli Ikkala
- Molecular Materials, Department of Applied Physics, Aalto University, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.,Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry, Stockholm University, Arrhenius Laboratory, Svante Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Huang Z, Wang X, Wu N, Chu F, Luo J. TheFinite Element Modeling and Experimental Study of Sandwich Plates with Frequency-Dependent Viscoelastic Material Model. MATERIALS 2020; 13:ma13102296. [PMID: 32429289 PMCID: PMC7288149 DOI: 10.3390/ma13102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 12/03/2022]
Abstract
Athree-layer composite plate element is developed for finite element modeling and vibration analysis of sandwich plate with frequency-dependent viscoelastic material core. The plate element is quadrilateral element bounded by four-node with 7-degree-of-freedom per node. The frequency-dependent characteristics of viscoelastic material parameters are described using the Biot model. The method of identifying the parameters of the Biot model is given. By introducing auxiliary coordinates, the Biot model is combined with the finite element equation of the viscoelastic sandwich plate. Through a series of mathematical transformations, the equation is transformed into a standard second-order steady linear system equation form to simplify the solution process. Finally, the vibration characteristics of the viscoelastic sandwich plate are analyzed and experimentally studied. The results show that the method in this paper is correct and reliable, and it has certain reference and application value for solving similar engineering vibration problems.
Collapse
Affiliation(s)
- Zhicheng Huang
- Jingdezhen Ceramic Institute, College of Mechanical and Electrical Engineering, Jingdezhen 333001, China; (Z.H.); (N.W.)
| | - Xingguo Wang
- Jingdezhen Ceramic Institute, College of Mechanical and Electrical Engineering, Jingdezhen 333001, China; (Z.H.); (N.W.)
- Correspondence:
| | - Nanxing Wu
- Jingdezhen Ceramic Institute, College of Mechanical and Electrical Engineering, Jingdezhen 333001, China; (Z.H.); (N.W.)
| | - Fulei Chu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
| | - Jing Luo
- Beijing Research Institute of Automation for Machinery Industry Co., Ltd., Beijing 100120, China;
| |
Collapse
|
33
|
Ecofriendly Preparation and Characterization of a Cassava Starch/Polybutylene Adipate Terephthalate Film. Processes (Basel) 2020. [DOI: 10.3390/pr8030329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and mechanical properties of the composite membrane decreased, while the water vapor transmittance and water absorption increased. The mechanical properties of the composite can be significantly improved by adding nano-ZnO at a lower concentration (optimum content is 1 wt%).
Collapse
|
34
|
He H, Yang C, Wang F, Wei Z, Shen J, Chen D, Fan C, Zhang H, Liu K. Mechanically Strong Globular‐Protein‐Based Fibers Obtained Using a Microfluidic Spinning Technique. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dong Chen
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
35
|
He H, Yang C, Wang F, Wei Z, Shen J, Chen D, Fan C, Zhang H, Liu K. Mechanically Strong Globular‐Protein‐Based Fibers Obtained Using a Microfluidic Spinning Technique. Angew Chem Int Ed Engl 2020; 59:4344-4348. [DOI: 10.1002/anie.201915262] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Haonan He
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Chenjing Yang
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dong Chen
- Institute of Process EquipmentCollege of energy engineeringZhejiang University Hangzhou 310027 China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
36
|
Reyes G, Lundahl MJ, Alejandro-Martín S, Arteaga-Pérez LE, Oviedo C, King AWT, Rojas OJ. Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid. Biomacromolecules 2020; 21:878-891. [PMID: 31895545 DOI: 10.1021/acs.biomac.9b01559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogels of TEMPO-oxidized nanocellulose were stabilized for dry-jet wet spinning using a shell of cellulose dissolved in 1,5-diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]), a protic ionic liquid (PIL). Coagulation in an acidic water bath resulted in continuous core-shell filaments (CSFs) that were tough and flexible with an average dry (and wet) toughness of ∼11 (2) MJ·m-3 and elongation of ∼9 (14) %. The CSF morphology, chemical composition, thermal stability, crystallinity, and bacterial activity were assessed using scanning electron microscopy with energy-dispersive X-ray spectroscopy, liquid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, pyrolysis gas chromatography-mass spectrometry, wide-angle X-ray scattering, and bacterial cell culturing, respectively. The coaxial wet spinning yields PIL-free systems carrying on the surface the cellulose II polymorph, which not only enhances the toughness of the filaments but facilities their functionalization.
Collapse
Affiliation(s)
- Guillermo Reyes
- Departamento de Ingeniería en Maderas , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción , Chile
| | - Meri J Lundahl
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , Espoo 02150 , Finland
| | - Serguei Alejandro-Martín
- Departamento de Ingeniería en Maderas , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción , Chile.,Nanomaterials and Catalysts for Sustainable Processes (NanoCatpPS) , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción 4051381 , Chile
| | - Luis E Arteaga-Pérez
- Departamento de Ingeniería en Maderas , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción , Chile.,Nanomaterials and Catalysts for Sustainable Processes (NanoCatpPS) , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción 4051381 , Chile
| | - Claudia Oviedo
- Departamento de Química , Universidad del Bı́o-Bı́o , Av. Collao 1202, Casilla 5-C , Concepción 4051381 , Chile
| | - Alistair W T King
- Materials Chemistry Division, Department of Chemistry , University of Helsinki , Helsinki 00100 , Finland
| | - Orlando J Rojas
- Biobased Colloids and Materials, Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , Espoo 02150 , Finland.,Departments of Chemical & Biological Engineering, Chemistry and Wood Science , The University of British Columbia , 2360 East Mall , Vancouver BC V6T 1Z3 , Canada
| |
Collapse
|
37
|
Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T. Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules 2020; 25:E179. [PMID: 31906348 PMCID: PMC6983239 DOI: 10.3390/molecules25010179] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 01/12/2023] Open
Abstract
The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-β-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Sulaiman A. Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Kholod A. Otaif
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed S. Mostafa
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Taher Sahlabji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| |
Collapse
|
38
|
Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wågberg L, Söderberg LD. Ion-Specific Assembly of Strong, Tough, and Stiff Biofibers. Angew Chem Int Ed Engl 2019; 58:18562-18569. [PMID: 31600016 PMCID: PMC6916401 DOI: 10.1002/anie.201910603] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/01/2019] [Indexed: 11/29/2022]
Abstract
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic- to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow-assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m-3 ) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high-performance materials with absolute structural control.
Collapse
Affiliation(s)
- Nitesh Mittal
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02142USA
| | - Tobias Benselfelt
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Farhan Ansari
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305-2205USA
| | - Korneliya Gordeyeva
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - Stephan V. Roth
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Deutsches Elektronen-Synchrotron (DESY)22607HamburgGermany
| | - Lars Wågberg
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Department of Fibre and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| | - L. Daniel Söderberg
- Linné FLOW CentreDepartment of MechanicsKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSE-100 44Sweden
| |
Collapse
|