1
|
Zhang B, Wang J, Chen X, Xue T, Xin J, Liu Y, Wang X, Li X. Laminaria japonica Polysaccharide Regulates Fatty Hepatosis Through Bile Acids and Gut Microbiota in Diabetes Rat. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024:10.1007/s10126-024-10365-1. [PMID: 39207652 DOI: 10.1007/s10126-024-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, β-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.
Collapse
Affiliation(s)
- Bo Zhang
- Linyi University, Linyi, Shandong, China
| | - Jiacai Wang
- Linyi University, Linyi, Shandong, China
- Guizhou University, Guiyang, Guizhou, China
| | | | - Tao Xue
- Linyi University, Linyi, Shandong, China
| | - Jie Xin
- Linyi University, Linyi, Shandong, China
| | | | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xinpeng Li
- Linyi University, Linyi, Shandong, China.
| |
Collapse
|
2
|
Lammi C, Ottaviano E, Fiore G, Bollati C, d'Adduzio L, Fanzaga M, Ceccarani C, Vizzuso S, Zuccotti G, Borghi E, Verduci E. Effect of docosahexaenoic acid as an anti-inflammatory for Caco-2 cells and modulating agent for gut microbiota in children with obesity (the DAMOCLE study). J Endocrinol Invest 2024:10.1007/s40618-024-02444-w. [PMID: 39186221 DOI: 10.1007/s40618-024-02444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Docosahexaenoic acid (DHA) is a long-chain omega-3 polyunsaturated fatty acid. We investigated the dual health ability of DHA to modulate gut microbiota in children with obesity and to exert anti-inflammatory activity on human intestinal Caco-2 cells. METHODS In a pilot study involving 18 obese children (8-14 years), participants received a daily DHA supplement (500 mg/day) and dietary intervention from baseline (T0) to 4 months (T1), followed by dietary intervention alone from 4 months (T1) to 8 months (T2). Fecal samples, anthropometry, biochemicals and dietary assessment were collected at each timepoint. At preclinical level, we evaluated DHA's antioxidant and anti-inflammatory effects on Caco-2 cells stimulated with Hydrogen peroxide (H2O2) and Lipopolysaccharides (LPS), by measuring also Inducible nitric oxide synthase (iNOS) levels and cytokines, respectively. RESULTS Ten children were included in final analysis. No major changes were observed for anthropometric and biochemical parameters, and participants showed a low dietary compliance at T1 and T2. DHA supplementation restored the Firmicutes/Bacteroidetes ratio that was conserved also after the DHA discontinuation at T2. DHA supplementation drove a depletion in Ruminococcaceae and Dialisteraceae, and enrichment in Bacteroidaceae, Oscillospiraceae, and Akkermansiaceae. At genus level, Allisonella was the most decreased by DHA supplementation. In Caco-2 cells, DHA decreased H2O2-induced reactive oxygen species (ROS) and nitric oxide (NO) production via iNOS pathway modulation. Additionally, DHA modulated proinflammatory (IL-1β, IL-6, IFN-γ, TNF-α) and anti-inflammatory (IL-10) cytokine production in LPS-stimulated Caco-2 cells. CONCLUSION An improvement in gut dysbiosis of children with obesity seems to be triggered by DHA and to continue after discontinuation. The ability to modulate gut microbiota, matches also with an anti-inflammatory effect of DHA on Caco-2 cells.
Collapse
Affiliation(s)
- C Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - E Ottaviano
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
| | - G Fiore
- Department of Health Sciences, University of Milan, 20142, Milan, Italy.
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy.
| | - C Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - L d'Adduzio
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - M Fanzaga
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - C Ceccarani
- Institute for Biomedical Technologies, CNR, Segrate, Italy
| | - S Vizzuso
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy
| | - G Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Via Lodovico Castelvetro 32, 20154, Milan, Italy
- Department of Biomedical and Clinical Sciences, University of Milan, 20157, Milan, Italy
| | - E Borghi
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
| | - E Verduci
- Department of Health Sciences, University of Milan, 20142, Milan, Italy
- Metabolic Diseases Unit, Department of Paediatrics, Vittore Buzzi Children's Hospital, University of Milan, 20157, Milan, Italy
| |
Collapse
|
3
|
Lu D, Yao D, Hu G, Zhou J, Shen X, Qian L. Maternal docosahexaenoic acid supplementation during lactation improves exercise performance, enhances intestinal glucose absorption and modulates gut microbiota in weaning offspring mice. Front Nutr 2024; 11:1423576. [PMID: 39036494 PMCID: PMC11258037 DOI: 10.3389/fnut.2024.1423576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Intestinal dysfunction induced by weaning stress is common during breastfeeding period. Docosahexaenoic acid (DHA) is well known for promoting visual and brain development, but its effects on early intestinal development remain unknown. This study investigated the impact of maternal DHA supplementation during lactation on intestinal glucose absorption and gut microbiota in weaning offspring mice. Materials and methods Dams were supplemented with vehicle (control), 150 mg/(kg body weight · day) DHA (L-DHA), or 450 mg/(kg body weight · day) DHA (H-DHA) throughout lactation by oral administration. After weaning, pups were randomly divided into three groups for athletic analysis, microbial and proteomic analysis, biochemical analysis, 4-deoxy-4-fluoro-D-glucose (4-FDG) absorption test, and gene expression quantitation of glucose transport-associated proteins and mTOR signaling components. Results The H-DHA group exhibited enhanced grip strength and prolonged swimming duration compared to the control group. Additionally, there were significant increases in jejunal and ileal villus height, and expanded surface area of jejunal villi in the H-DHA group. Microbial analyses revealed that maternal DHA intake increased the abundance of beneficial gut bacteria and promoted metabolic pathways linked to carbohydrate and energy metabolism. Proteomic studies indicated an increased abundance of nutrient transport proteins and enrichment of pathways involved in absorption and digestion in the H-DHA group. This group also showed higher concentrations of glucose in the jejunum and ileum, as well as elevated glycogen levels in the liver and muscles, in contrast to lower glucose levels in the intestinal contents and feces compared to the control group. The 4-FDG absorption test showed more efficient absorption after oral 4-FDG gavage in the H-DHA group. Moreover, the expressions of glucose transport-associated proteins, GLUT2 and SGLT1, and the activation of mTOR pathway were enhanced in the H-DHA group compared to the control group. The L-DHA group also showed similar but less pronounced improvements in these aspects relative to the H-DHA group. Conclusion Our findings suggested that maternal DHA supplementation during lactation improves the exercise performance, enhances the intestinal glucose absorption by increasing the expressions of glucose transporters, and beneficially alters the structure of gut microbiome in weaning offspring mice.
Collapse
Affiliation(s)
- Dalu Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Die Yao
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gaoli Hu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linxi Qian
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu R, Yang Y, Shi G, Zhang L. Branched-chain amino acid supplementation drives dynamic changes in gut microbiota without impairing glucose and lipid homeostasis at the different stages of insulin resistance in mice on a high-fat diet. Nutrition 2024; 123:112410. [PMID: 38579382 DOI: 10.1016/j.nut.2024.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE The potential role of dietary branched-chain amino acids on circulating branched-chain amino acid levels and their relationship with metabolic health are complex, and the literature is inconsistent. We aimed to explore the dynamic effects of branched-chain amino acid supplementation on glucose and lipid homeostasis at different stages of insulin resistance in high-fat diet-fed mice. METHODS Male C57BL/6J mice were fed with a normal chow diet, high-fat diet, or high-fat diet supplemented with 100% branched-chain amino acids for 12 or 24 wk. Metabolic parameters and gut microbiota profiling were performed at these two time points. RESULTS High-fat diet feeding caused varying degrees of branched-chain amino acid metabolic disorders in two different stages of insulin resistance. Supplementing with branched-chain amino acids further exacerbated branched-chain amino acid accumulation in the early stage of insulin resistance (12 wk), while adding branched-chain amino acids did not further elevate branched-chain amino acid levels in the hyperglycemia and hyperinsulinemia stage (24 wk). Compared with the high-fat diet group, branched-chain amino acid supplementation did not affect body weight; liver total cholesterol and triacylglycerol levels; and serum glucose, insulin, total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels as well as glucose tolerance at these two time points but triggered dynamic changes in the gut bacterial diversity and gut microbiota composition and abundance, especially in the genus associated with obesity and related metabolic disorders. CONCLUSION Dietary branched-chain amino acid supplementation drives dynamic changes in circulating branched-chain amino acid levels and gut microbiome without subsequent effects on glucose and lipid homeostasis in high-fat diet-induced obese mice within the parameters of our study.
Collapse
Affiliation(s)
- Rui Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, China.
| | - Yang Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guanjin Shi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhang
- Department of Chinese Medicine, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Das UN. The Dysregulation of Essential Fatty Acid (EFA) Metabolism May Be a Factor in the Pathogenesis of Sepsis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:934. [PMID: 38929553 PMCID: PMC11205989 DOI: 10.3390/medicina60060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
I propose that a deficiency of essential fatty acids (EFAs) and an alteration in their (EFAs) metabolism could be a major factor in the pathogenesis of sepsis and sepsis-related mortality. The failure of corticosteroids, anti-TNF-α, and anti-interleukin-6 monoclonal antibodies can be attributed to this altered EFA metabolism in sepsis. Vitamin C; folic acid; and vitamin B1, B6, and B12 serve as co-factors necessary for the activity of desaturase enzymes that are the rate-limiting steps in the metabolism of EFAs. The altered metabolism of EFAs results in an imbalance in the production and activities of pro- and anti-inflammatory eicosanoids and cytokines resulting in both hyperimmune and hypoimmune responses seen in sepsis. This implies that restoring the metabolism of EFAs to normal may form a newer therapeutic approach both in the prevention and management of sepsis and other critical illnesses.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St., Battle Ground, WA 98604, USA; ; Tel.: +1-508-904-5376
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Sangareddy 502285, India
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
6
|
Branković M, Gmizić T, Dukić M, Zdravković M, Daskalović B, Mrda D, Nikolić N, Brajković M, Gojgić M, Lalatović J, Kralj Đ, Pantić I, Vojnović M, Milovanović T, Đurašević S, Todorović Z. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants (Basel) 2024; 13:600. [PMID: 38790705 PMCID: PMC11117950 DOI: 10.3390/antiox13050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also modulates gut microbiota. This is due to anti-inflammatory, antioxidant, analgesic, antimicrobial, and immunomodulatory features. Additionally, PEA has shown beneficial effects in several GI diseases, particularly irritable bowel syndrome and inflammatory bowel diseases, as various studies have shown, and it is important to emphasize its relative lack of toxicity, even at high dosages. Unfortunately, there is not enough endogenous PEA to treat disturbed gut homeostasis, even though it is produced in the GI tract in response to inflammatory stimuli, so exogenous intake is mandatory to achieve homeostasis. Intake of PEA could be through animal and/or vegetable food, but bearing in mind that a high dosage is needed to achieve a therapeutic effect, it must be compensated through dietary supplements. There are still open questions pending to be answered, so further studies investigating PEA's effects and mechanisms of action, especially in humans, are crucial to implementing PEA in everyday clinical practice.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Davor Mrda
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Gojgić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Jovana Lalatović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Đorđe Kralj
- University Hospital Medical Center Zvezdara, 11000 Belgrade, Serbia;
| | - Ivana Pantić
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Siniša Đurašević
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
8
|
Shi C, Chen J, He S, Zhang Y, Zhang Y, Yu L. Cross-talk between the gut microbiota and hypothyroidism: a bidirectional two-sample Mendelian randomization study. Front Nutr 2024; 11:1286593. [PMID: 38562485 PMCID: PMC10982496 DOI: 10.3389/fnut.2024.1286593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Background Multiple observational studies suggest a connection between the composition of the gut microbiota and hypothyroidism. However, it has yet to be determined whether the gut microbiota has a causal effect on hypothyroidism. Methods To investigate the connection between the gut microbiota and hypothyroidism, two-sample Mendelian randomization was performed using data from a genome-wide association study meta-analysis (n = 18,430) conducted by the MiBioGen consortium. Summary statistics for hypothyroidism (26,342 cases and 59,827 controls) were obtained using the data from the FinnGen consortium R8 release data. To investigate the causal link between the gut microbiota and hypothyroidism, various methods, including MR-Egger, weighted median, weighted model, simple model, MR-PRESSO, and inverse variance weighted (IVW), were employed. The bacteria that were causally linked to hypothyroidism in forward Mendelian randomization analysis were subjected to reverse Mendelian randomization analysis. Cochran's Q statistics were utilized to gauge the heterogeneity of the instrumental variables. Results The results indicated that Akkermansia had a positive impact on hypothyroidism, with an odds ratio of 0.84 (95% CI 0.74-0.95, p = 0.01) based on the inverse variance-weighted estimates. Additionally, Anaerostipes (OR = 1.17, 95% CI 1.01-1.36, p = 0.04), Butyrivibrio (OR = 0.93, 95% CI 0.88-0.99, p = 0.02), Holdemania (OR = 0.89, 95% CI 0.81-0.99, p = 0.03), Intestinimonas (OR = 1.13, 95% CI 1.02-1.26, p = 0.03), Ruminiclostridium5 (OR = 1.19, 95% CI 1.01-1.41, p = 0.04), and Ruminococcaceae UCG-011 (OR = 0.91, 95% CI 0.84-0.99, p = 0.03) were identified. The gut microbiota was not significantly affected by hypothyroidism, as indicated by the results of the reverse MR analysis. There was no significant variation in the instrumental variables or horizontal pleiotropy. Conclusion The findings of this study using two-sample Mendelian randomization indicate a causal relationship between Akkermansia and hypothyroidism. Increased Akkermansia inhibits the onset and progression of hypothyroidism. Additional randomized controlled experiments are necessary to elucidate the beneficial impact of probiotics on hypothyroidism and their distinct protective mechanisms.
Collapse
Affiliation(s)
- Chao Shi
- Department of Laboratory, Jinhua Central Hospital, Zhejiang, Jinhua, China
| | | | | | | | | | | |
Collapse
|
9
|
Xiao N, He W, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Egg Yolk Lipids Alleviated Dextran Sulfate Sodium-Induced Colitis by Inhibiting NLRP3 Inflammasome and Regulating Gut Microbiota. Mol Nutr Food Res 2024; 68:e2300509. [PMID: 38037542 DOI: 10.1002/mnfr.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Indexed: 12/02/2023]
Abstract
The increasing incidence of inflammatory bowel disease (IBD) has become a global phenomenon. Egg yolk lipids are one of the essential dietary foods, but its effects on intestinal immunity remain unclear. Here, egg yolk lipids are obtained using ethanol extraction and a total of 601 kinds of lipids are detected via lipidomics, including 251 kinds of triglycerides, 133 kinds of phosphatidylcholines, 44 kinds of phosphatidylethanolamines. Then, the study finds that egg yolk lipids significantly alleviate dextran sulfate sodium-induced colitis and reduce the production of inflammatory factors. Meanwhile, egg yolk lipids also maintain intestinal barrier integrity and decrease lipopolysaccharide translocation by alleviating intestinal structure damage and increasing the numbers of goblet cells and mucin 2. Mechanistically, egg yolk lipids attenuate colitis by inhibiting the assembly and activation of NLRP3 inflammasome. Moreover, the study also finds that egg yolk lipids reverse gut microbiota dysbiosis referring to increased relative abundance of Bacteroides acidifaciens and decrease relative abundance of Akkermansia muciniphila, as well as increased short chain fatty acids concentration in the gut. Together, the study elucidates the anti-colitis effect of egg yolk lipids and provides positive evidences for egg yolk lipids involving in dietary strategy and IBD therapy.
Collapse
Affiliation(s)
- Nanhai Xiao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wen He
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
10
|
Zhang K, Ji J, Li N, Yin Z, Fan G. Integrated Metabolomics and Gut Microbiome Analysis Reveals the Efficacy of a Phytochemical Constituent in the Management of Ulcerative Colitis. Mol Nutr Food Res 2024; 68:e2200578. [PMID: 38012477 DOI: 10.1002/mnfr.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 07/09/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Cinnamaldehyde (CAH), a phytochemical constituent isolated from cinnamon, is gaining attention due to its nutritional and medicinal benefits. This study aimed to investigate the potential role of CAH in the treatment of ulcerative colitis (UC). METHODS AND RESULTS Integrated metabolomics and gut microbiome analysis are performed for 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced UC rats. The effect of CAH on colonic inflammation, lipid peroxidation, metabolic profiles, and gut microbiota is systematically explored. It finds that CAH improves the colitis-related symptoms, decreases disease activity index, increases the colon length and body weight, and alleviates histologic inflammation of UC rats. These therapeutic effects of CAH are due to suppression of inflammation and lipid peroxidation. Moreover, multi-omics analysis reveals that CAH treatment cause changes in plasma metabolome and gut microbiome in UC rats. CAH regulates lipid metabolic processes, especially phosphatidylcholines, lysophosphatidylcholines, and polyunsaturated fatty acids. Meanwhile, CAH modulates the gut microbial structure by restraining pathogenic bacteria (such as Helicobacter) and increasing probiotic bacteria (such as Bifidobacterium and Lactobacillus). CONCLUSIONS These results indicate that CAH exerts a beneficial role in UC by synergistic modulating the balance in gut microbiota and the associated metabolites, and highlights the nutritional and medicinal value of CAH in UC management.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Nana Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, People's Republic of China
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, People's Republic of China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| |
Collapse
|
11
|
Li R, Fu R, Cui ZQ, Guo L, Chen YH, Bai J, Yang JB, Tan QR, Peng ZW. Effects of low-frequency rTMS combined with risperidone on the gut microbiome in hospitalized patients with chronic schizophrenia. Brain Res 2023; 1819:148539. [PMID: 37598899 DOI: 10.1016/j.brainres.2023.148539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used in treating schizophrenia (SCH). However, the effects of the low frequency of rTMS combined with antipsychotics on the gut microbiome in chronic SCH have been poorly investigated. In the present study, psychiatric symptoms were assessed and the stool samples obtained from 33 adult patients with chronic SCH (at baselinephase), 27 after 2 weeks of treatment (rTMS combined with risperidone, SCH-2W), and 37 healthy controls (HC) were analyzed by 16S rRNA gene sequencing. We found that the reduction of phylum Proteobacteria, family Enterobacteriaceae and genera Escherichia-Shigella as well as the increase of genera norank_f_Lachnospiraceae might be related to the antipsychotic effect of rTMS combined with risperidone. These findings indicate that the brain-gut-microbiota axis might be involved in the therapeutic effect of rTMS combined with antipsychotic drugs.
Collapse
Affiliation(s)
- Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Rui Fu
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Zhi-Quan Cui
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Jie Bai
- Department of Psychiatry, Gaoxin Hospital, Xi'an 710077, China
| | - Jia-Bin Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China
| | - Qing-Rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an 710000, China; Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Dong L, Xu Z, Huang G, Zhang R, Deng M, Huang F, Su D. Lychee Pulp-Derived Dietary Fiber-Bound Phenolic Complex Upregulates the SCFAs-GPRs-ENS Pathway and Aquaporins in Loperamide-Induced Constipated Mice by Reshaping Gut Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15087-15096. [PMID: 37814441 DOI: 10.1021/acs.jafc.3c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the effects of the lychee pulp-derived dietary fiber-bound phenolic complex (DF-BPC) on a murine model of loperamide-induced constipation and its molecular mechanism associated with gut microbiota modification. DF-BPC supplementation mitigated loperamide-induced dyschezia, intestinal hypomotility, and colonic impairment, as evidenced by the increased gastro-intestinal transit rate and mucus cell counts. By comparison, short-chain fatty acids (SCFAs) contents and relative abundances of associated genera (Butyricimonas, Clostridium, and Lactobacillus) were effectively upregulated following DF-BPC supplementation. Notably, DF-BPC significantly enhanced expressions of G protein-coupled receptor (GPR) 41 and 43, reaching 1.43- and 1.62-fold increase, respectively. Neurotransmitter secretions were simultaneously altered in DF-BPC-treated mice, suggesting upregulation of the SCFAs-GPRs-enteric nervous system pathway. The overexpression of aquaporins (AQP3, 8, and 9) was stimulated partly through GPRs activation. Mild inflammation associated with constipation was inhibited by suppressing LBP-TLR4-NF-κB signaling translocation. These findings suggest that DF-BPC from lychee pulp has the potential to alleviate constipation in mice through modifying the gut microbiome.
Collapse
Affiliation(s)
- Lihong Dong
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Zhuohui Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Guitao Huang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Mei Deng
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Fei Huang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou 510610, PR China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
13
|
Coe GL, Krout IN, Munro-Ehrlich M, Beamish CR, Vorojeikina D, Colman DR, Boyd EJ, Walk ST, Rand MD. Assessing the role of the gut microbiome in methylmercury demethylation and elimination in humans and gnotobiotic mice. Arch Toxicol 2023; 97:2399-2418. [PMID: 37392210 PMCID: PMC10913183 DOI: 10.1007/s00204-023-03548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
The risk of methylmercury (MeHg) toxicity following ingestion of contaminated foodstuffs (e.g., fish) is directly related to the kinetics of MeHg elimination among individuals. Yet, the factors driving the wide range of inter-individual variability in MeHg elimination within a population are poorly understood. Here, we investigated the relationship between MeHg elimination, gut microbiome demethylation activity, and gut microbiome composition using a coordinated human clinical trial and gnotobiotic mouse modeling approach together with metagenomic sequence analysis. We first observed MeHg elimination half-lives (t1/2) ranging from 28 to 90 days across 27 volunteers. Subsequently, we found that ingestion of a prebiotic induced changes in the gut microbiome and mixed effects (increased, decrease, and no effect) on elimination in these same individuals. Nonetheless, elimination rates were found to correlate with MeHg demethylation activity in cultured stool samples. In mice, attempts to remove the microbiome via generation of germ-free (GF) animals or through antibiotic (Abx) treatment both diminished MeHg demethylation to a similar extent. While both conditions substantially slowed elimination, Abx treatment resulted in significantly slower elimination than the GF condition, indicating an additional role for host-derived factors in supporting elimination. Human fecal microbiomes transplanted to GF mice restored elimination rates to that seen in control mice. Metagenomic sequence analysis of human fecal DNA did not identify genes encoding proteins typically involved in demethylation (e.g., merB, organomercury lyase). However, the abundance of several anaerobic taxa, notably Alistipes onderdonkii, were positively correlated with MeHg elimination. Surprisingly, mono-colonization of GF free mice with A. onderdonkii did not restore MeHg elimination to control levels. Collectively, our findings indicate the human gut microbiome uses a non-conventional pathway of demethylation to increase MeHg elimination that relies on yet to be resolved functions encoded by the gut microbes and the hostClinical Trial NCT04060212, prospectively registered 10/1/2019.
Collapse
Affiliation(s)
- Genevieve L Coe
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Ian N Krout
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mason Munro-Ehrlich
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Catherine R Beamish
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daria Vorojeikina
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric J Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
14
|
Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional Support for Liver Diseases. Nutrients 2023; 15:3640. [PMID: 37630830 PMCID: PMC10459677 DOI: 10.3390/nu15163640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a key organ that is responsible for the metabolism of proteins, fats, and carbohydrates and the absorption and storage of micronutrients. Unfortunately, the prevalence of chronic liver diseases at various stages of advancement in the world population is significant. Due to the physiological function of the liver, its dysfunction can lead to malnutrition and sarcopenia, and the patient's nutritional status is an important prognostic factor. This review discusses key issues related to the diet therapy of patients with chronic liver diseases, as well as those qualified for liver transplantation and in the postoperative period.
Collapse
Affiliation(s)
- Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Hołowko-Ziółek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
15
|
Pirozzi C, Coretti L, Opallo N, Bove M, Annunziata C, Comella F, Turco L, Lama A, Trabace L, Meli R, Lembo F, Mattace Raso G. Palmitoylethanolamide counteracts high-fat diet-induced gut dysfunction by reprogramming microbiota composition and affecting tryptophan metabolism. Front Nutr 2023; 10:1143004. [PMID: 37599675 PMCID: PMC10434518 DOI: 10.3389/fnut.2023.1143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Lorena Coretti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Nicola Opallo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Federica Comella
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Turco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Liu H, Bai Y, Yu Y, Qi Z, Zhang G, Li G, Yu Y, An T. Maternal transfer of resorcinol-bis(diphenyl)-phosphate perturbs gut microbiota development and gut metabolism of offspring in rats. ENVIRONMENT INTERNATIONAL 2023; 178:108039. [PMID: 37336026 DOI: 10.1016/j.envint.2023.108039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Resorcinol-bis(diphenyl)-phosphate (RDP), an emerging organophosphate flame retardant, is increasingly used as a primary alternative for decabromodiphenyl ether and is frequently detected in global environmental matrices. However, the long-term effects of its exposure to humans remain largely unknown. To investigate its intergenerational transfer capacity and health risks, female Sprague Dawley rats were orally exposed to RDP from the beginning of pregnancy to the end of the lactation period. The RDP content, gut microbiota homeostasis, and metabolic levels were determined. RDP accumulation occurred in the livers of maternal rats and offspring and increased with exposure time. 16S rRNA gene sequencing showed that exposure to RDP during pregnancy and/or lactation significantly disrupted gut microbiota homeostasis, as evidenced by decreased abundance and diversity. In particular, the abundance of Turicibacter, Adlercreutzia, and YRC22 decreased, correlating significantly with glycollipic metabolism. This finding was consistent with the reduced levels of short-chain fatty acids, the crucial gut microbial metabolites. Meanwhile, RDP exposure resulted in changes in gut microbiome-related metabolism. Nine critical overlapping KEGG metabolic pathways were identified, and the levels of related differential metabolites decreased. Our results suggest that the significant adverse impacts of RDP on gut microbiota homeostasis and metabolic function may increase the long-term risks related to inflammation, obesity, and metabolic diseases.
Collapse
Affiliation(s)
- Hongli Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yixiu Bai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingying Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
18
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
19
|
Beckers KF, Schulz CJ, Liu CC, Barras ED, Childers GW, Stout RW, Sones JL. Effects of fenbendazole on fecal microbiome in BPH/5 mice, a model of hypertension and obesity, a brief report. PLoS One 2023; 18:e0287145. [PMID: 37294797 PMCID: PMC10256194 DOI: 10.1371/journal.pone.0287145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023] Open
Abstract
Fenbendazole (FBZ) is a common antiparasitic treatment used in research rodent colonies for biosecurity purposes. The effect of this compound has been studied in C57 mice, but never before in a strain of mice that has co-morbidities, such as the blood pressure high (BPH)/5. The BPH/5 mouse is an inbred genetic model of hypertension. While both male and female BPH/5 have high blood pressure, there is a metabolic sexual dimorphism with females displaying key features of obesity. The obese gut microbiome has been linked to hypertension. Therefore, we hypothesized that fenbendazole treatment will alter the gut microbiome in hypertensive mice in a sex dependent manner. To test the influence of FBZ on the BPH/5 gut microbiota, fecal samples were collected pre- and post-treatment from adult BPH/5 mice (males and non-pregnant females). The mice were treated with fenbendazole impregnated feed for five weeks. Post-treatment feces were collected at the end of the treatment period and DNA was extracted, and the V4 region of 16S rRNA was amplified and sequenced using the Illumina MiSeq system. The purpose was to analyze the fecal microbiome before and after FBZ treatment, the results demonstrate changes with treatment in a sex dependent manner. More specifically, differences in community composition were detected in BPH/5 non-pregnant female and males using Bray-Curtis dissimilarity as a measure of beta-diversity (treatment p = 0.002). The ratio of Firmicutes to Bacteroidetes, which has been identified in cases of obesity, was not altered. Yet, Verrucomicrobia was increased in BPH/5 males and females post-treatment and was significantly different by sex (treatment p = 5.85e-05, sex p = 0.0151, and interaction p = 0.045), while Actinobacteria was decreased in the post-treatment mice (treatment p = 0.00017, sex p = 0.5, interaction p = 0.2). These results are indicative of gut dysbiosis compared to pre-treatment controls. Lactobacillus was decreased with FBZ treatment in BPH/5 females only. In conclusion, fenbendazole does alter the gut microbial communities, most notable in the male rather than female BPH/5 mouse. This provides evidence that caution should be taken when providing any gut altering treatments before or during mouse experiments.
Collapse
Affiliation(s)
- Kalie F. Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Christopher J. Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Elise D. Barras
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gary W. Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Rhett W. Stout
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jenny L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
20
|
Shaikh SR, Bazinet RP. Heterogeneity in the response to n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2023; 26:284-287. [PMID: 36943155 PMCID: PMC10794042 DOI: 10.1097/mco.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW A central goal in the study of long chain n-3 polyunsaturated fatty acids (PUFA) is to translate findings from the basic sciences to the population level to improve human health and prevent chronic diseases. A tenet of this vision is to think in terms of precision medicine and nutrition, that is, stratification of individuals into differing groups that will have different needs across the lifespan for n-3 PUFAs. Therefore, there is a critical need to identify the sources of heterogeneity in the human population in the dietary response to n-3 PUFA intervention. RECENT FINDINGS We briefly review key sources of heterogeneity in the response to intake of long chain n-3 PUFAs. These include background diet, host genome, composition of the gut microbiome, and sex. We also discuss the need to integrate data from newer rodent models (e.g. population-based approaches), multi -omics, and analyses of big data using machine learning and data-driven cluster analyses. SUMMARY Accounting for vast heterogeneity in the human population, particularly with the use of big data integrated with preclinical evidence, will drive the next generation of precision nutrition studies and randomized clinical trials with long-chain n-3 PUFAs.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Wang J, Fasina OB, Manzoor M, Wang Y, Liu Q, Mo J, Ohno H, Osada H, Xiang L, Qi J. A new gentiopicroside derivative improves cognitive deficits of AD mice via activation of Wnt signaling pathway and regulation of gut microbiota homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154730. [PMID: 36878094 DOI: 10.1016/j.phymed.2023.154730] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous study, we found that gentiopicroside (GPS) isolated from Gentiana rigescens Franch has a significant antiaging activity via regulation of mitophagy and oxidative stress. In order to increase the anti-aging activity of GPS, several compounds based on the chemical structure of GPS were synthesized and evaluated for bioactivity with yeast replicative lifespan assay, and 2H-gentiopicroside (2H-GPS) as leading compound was selected for AD treatment. PURPOSE AND METHODS To investigate whether 2H-GPS has anti- Alzheimer's disease effects, we used D-galactose (Dgal)-induced model mice to evaluate the effect of 2H-GPS on AD mice. Furthermore, we explored the action mechanism of this compound with RT-PCR, Western Blot, ELISA and 16S rRNA gene sequence analysis. RESULTS Memory dysfunction and reduction in the number of neurons in the brain of mice were observed in Dgal treated group. These symptoms of AD mice were significantly relieved by administering 2H-GPS and donepezil (Done), respectively. In the Dgal only treated group, the protein levels of β-catenin, REST and phosphorylated GSK-3β, involved in the Wnt signaling pathway were significantly decreased, whereas the protein levels of GSK-3β, Tau, phosphorylated Tau, P35 and PEN-2 were significantly increased. Importantly, treatment with 2H-GPS resulted in restoration of memory dysfunction and levels of these proteins. Furthermore, the composition of the gut microbiota after 2H-GPS administration was explored through 16S rRNA gene sequence analysis. Moreover, the mice, in which depleted gut microbiota with antibiotic cocktail (ABX), were used for evaluation of whether the gut microbiota is involved to the effect of 2H-GPS. Significant changes in gut microbiota composition were observed between AD and 2H-GPS-treated AD mice, and ABX partially eliminated the AD-restoring effect of 2H-GPS. CONCLUSION 2H-GPS improves the symptoms of AD mice through combination of the regulation of Wnt signaling pathway and the microbiota-gut-brain axis, and the mechanism of action of 2H-GPS is distinct from that of Done.
Collapse
Affiliation(s)
- Jianyu Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Opeyemi B Fasina
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Majid Manzoor
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Ying Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Qian Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Jianxia Mo
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Intestinal Ecosystem, Yokohama 230- 0045, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako-shi, Saitama 351-0198, Japan
| | - Lan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China.
| | - Jianhua Qi
- College of Pharmaceutical Science, Zhejiang University, 866 Yu Hangtang Road, Hangzhou, China.
| |
Collapse
|
22
|
Liu L, Yu S, Bu T, He G, Li S, Wu J. Casein Hydrolysate Alleviates Adipose Chronic Inflammation in High Fat-Diet Induced Obese C57BL/6J Mice through MAPK Pathway. Nutrients 2023; 15:nu15081813. [PMID: 37111032 PMCID: PMC10146021 DOI: 10.3390/nu15081813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity-induced adipose chronic inflammation is closely related to the development of insulin resistance and T2DM. Tripeptides l-valyl-l-prolyl-l-proline (VPP) and l-isoleucyl-l-prolyl-L-proline (IPP) derived from bovine casein have been reported to prevent inflammatory changes and mitigate insulin resistance in adipocytes. In this study, we aimed to investigate the influence of casein hydrolysates (CH) containing VPP and IPP on a high fat diet (HFD)-induced obese mice and cytokine TNF-α-induced adipocytes. Our data showed that CH alleviated chronic inflammation both in vivo and in vitro. 4% CH suppressed HFD-induced systemic inflammatory factors, hypertrophic white adipocytes, and macrophage infiltration. More importantly, CH was able to improve adipocyte dysfunction induced by TNF-α by increasing the expression of CCAAT/enhancer binding protein α (C/EBP-α) rather than peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, CH also dose-dependently suppressed mitogen-activated protein kinase (MAPK)-c-Jun N-terminal kinase (JNK) phosphorylation and enhanced the phosphorylation of Erk 1/2, but not nuclear factor-kappa B (NF-κB) p65 phosphorylation, in TNF-α-induced 3T3-L1 cells. These results indicated that CH could ameliorate adipose chronic inflammation through the MAPK pathway. Altogether, our findings suggested that 4% CH supplementation for 6 weeks exerted a protective role in preventing obesity-related inflammation and adipose dysfunction.
Collapse
Affiliation(s)
- Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
23
|
Haneishi Y, Furuya Y, Hasegawa M, Takemae H, Tanioka Y, Mizutani T, Rossi M, Miyamoto J. Polyunsaturated fatty acids-rich dietary lipid prevents high fat diet-induced obesity in mice. Sci Rep 2023; 13:5556. [PMID: 37019935 PMCID: PMC10076282 DOI: 10.1038/s41598-023-32851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Diet is the primary factor affecting host nutrition and metabolism, with excess food intake, especially high-calorie diets, such as high-fat and high-sugar diets, causing an increased risk of obesity and related disorders. Obesity alters the gut microbial composition and reduces microbial diversity and causes changes in specific bacterial taxa. Dietary lipids can alter the gut microbial composition in obese mice. However, the regulation of gut microbiota and host energy homeostasis by different polyunsaturated fatty acids (PUFAs) in dietary lipids remains unknown. Here, we demonstrated that different PUFAs in dietary lipids improved host metabolism in high-fat diet (HFD)-induced obesity in mice. The intake of the different PUFA-enriched dietary lipids improved metabolism in HFD-induced obesity by regulating glucose tolerance and inhibiting colonic inflammation. Moreover, the gut microbial compositions were different among HFD and modified PUFA-enriched HFD-fed mice. Thus, we have identified a new mechanism underlying the function of different PUFAs in dietary lipids in regulating host energy homeostasis in obese conditions. Our findings shed light on the prevention and treatment of metabolic disorders by targeting the gut microbiota.
Collapse
Affiliation(s)
- Yuri Haneishi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuma Furuya
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mayu Hasegawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hitoshi Takemae
- Center for Infectious Diseases Epidemiology and Prevention Research: CEPiR, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuri Tanioka
- Department of International Food and Agricultural Science, Faculty of International Food and Agricultural Studies, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases Epidemiology and Prevention Research: CEPiR, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mauro Rossi
- Institute of Food Sciences, CNR, via Roma 64, 83100, Avellino, Italy
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
24
|
Jiang X, Yang Q, Qu H, Chen Y, Zhu S. Endogenous n-3 PUFAs Improve Non-Alcoholic Fatty Liver Disease through FFAR4-Mediated Gut-Liver Crosstalk. Nutrients 2023; 15:nu15030586. [PMID: 36771292 PMCID: PMC9919706 DOI: 10.3390/nu15030586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The gut-liver axis plays a key role in the development and progression of non-alcoholic fatty liver disease (NAFLD). Due to the complexity and incomplete understanding of the cross-talk between the gut and liver, effective therapeutic targets are largely unknown. Free fatty acid receptors (FFARs) may bridge the cross-talk between the gut and liver. FFAR4 has received considerable attention due to its important role in lipid metabolism. However, the role of FFAR4 in this cross talk in NAFLD remains unclear. In this study, mice with high endogenous n-3 PUFAs but FFAR4 deficiency were generated by crossbreeding Fat-1 and FFAR4 knockout mice. FFAR4 deficiency blocked the protective effects of high endogenous n-3 PUFAs on intestinal barrier dysfunction and hepatic steatosis. In addition, FFAR4 deficiency decreased gut microbiota diversity and enriched Rikenella, Anaerotruncus, and Enterococcus, and reduced Dubosiella, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Coriobacteriaceae UCG-002, Faecalibaculum, Ruminococcaceae UCG-009, and Akkermansia. Notably, FFAR4 deficiency co-regulated pantothenic acid and CoA biosynthesis, β-alanine metabolism, and sphingolipid metabolism pathways in the gut and liver, potentially associated with the aggravation of NAFLD. Together, the beneficial effects of n-3 PUFAs on the gut and liver were mediated by FFAR4, providing insights on the role of FFAR4 in the treatment of NAFLD through the gut-liver axis.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Mahalak KK, Firrman J, Narrowe AB, Hu W, Jones SM, Bittinger K, Moustafa AM, Liu L. Fructooligosaccharides (FOS) differentially modifies the in vitro gut microbiota in an age-dependent manner. Front Nutr 2023; 9:1058910. [PMID: 36712525 PMCID: PMC9879625 DOI: 10.3389/fnut.2022.1058910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Fructooligosaccharides (FOS) are well-known carbohydrates that promote healthy gut microbiota and have been previously demonstrated to enhance levels of Bifidobacterium and Lactobacillus. Its bifidogenic properties are associated with positive health outcomes such as reduced obesity and anti-inflammatory properties, and, therefore, is in use as a prebiotic supplement to support healthy gut microbiota. However, the gut microbiota changes with age, which may lead to differential responses to treatments with prebiotics and other dietary supplements. Methods To address this concern, we implemented a 24-h in vitro culturing method to determine whether FOS treatment in three different adult age groups would have a differential effect. The age groups of interest ranged from 25 to 70 years and were split into young adults, adults, and older adults for the purposes of this analysis. Metagenomics and short-chain fatty acid analysis were performed to determine changes in the structure and function of the microbial communities. Results These analyses found that FOS created a bifidogenic response in all age groups, increased overall SCFA levels, decreased alpha diversity, and shifted the communities to be more similar in beta diversity metrics. However, the age groups differed in which taxa were most prevalent or most affected by FOS treatment. Discussion Overall, the results of this study demonstrate the positive effects of FOS on the gut microbiome, and importantly, how age may play a role in the effectiveness of this prebiotic.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States,*Correspondence: Karley K. Mahalak,
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Adrienne B. Narrowe
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Steven M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
26
|
Zhao J, Pan J, Zhang Z, Chen Z, Mai K, Zhang Y. Fishmeal Protein Replacement by Defatted and Full-Fat Black Soldier Fly Larvae Meal in Juvenile Turbot Diet: Effects on the Growth Performance and Intestinal Microbiota. AQUACULTURE NUTRITION 2023; 2023:8128141. [PMID: 37089257 PMCID: PMC10115534 DOI: 10.1155/2023/8128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology, and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance, intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-β (P < 0.05). Compared to group FF, the communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jintao Pan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhonghao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhichu Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
27
|
Zou T, Xie F, Liang P, Chen J, Wang Z, Du M, You J. Polysaccharide-rich fractions from Enteromorpha prolifera improve hepatic steatosis and gut barrier integrity in high-fat diet-induced obese mice linking to modulation of gut microbiota. Biomed Pharmacother 2023; 157:114034. [PMID: 36434956 DOI: 10.1016/j.biopha.2022.114034] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Polysaccharides from Enteromorpha prolifera (EP) possess important benefits in the management of obesity and associated metabolic diseases, but to date, the underlying mechanism linking this alleviative effect of EP to gut microbiota remains obscure. This study aimed to investigate the effects of EP in improving lipid metabolism disorders and intestinal barrier disruption in mice with high-fat diet (HFD), and its association with modulation of gut microbiota. C57BL/6 mice were fed a control diet or a HFD with or without 5% EP for 12 weeks. Factors related to lipid metabolism, insulin signaling and intestinal barrier integrity, as well as the involvement of gut microbiota and metabolites, were measured. EP supplementation reduced HFD-induced adiposity and mitigated insulin resistance, hepatic steatosis and elevation of serum lipopolysaccharides (LPS). HFD impaired intestinal barrier integrity while improved due to EP. Moreover, EP administration ameliorated HFD-induced gut dysbiosis, as revealed by the increased short-chain fatty acid (SCFA)-producing bacteria (e.g., Bacteroides, Parabacteroides, Alloprevotella, and Ruminococcus) and gut barrier-protective Akkermansia muciniphila and decreased endotoxin-producing bacteria (e.g., Desulfovibrionaceae and Bilophila), accompanied by enrichment in intestinal SCFA content and reduction in circulating LPS level. The change of dominant bacterial genera is significantly correlated with improved metabolic profiles and intestinal permeability induced by EP. In conclusion, our results indicate that EP can attenuate HFD-induced metabolic disorders along with restoration of gut barrier integrity and lowering of circulating endotoxin, and these improvements are associated with modulation of gut microbiota composition and related metabolites. These data deepen mechanistic understanding of the anti-obesity and metabolic improving effects of EP.
Collapse
Affiliation(s)
- Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Fei Xie
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Pengbo Liang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| |
Collapse
|
28
|
Shaikh SR, Virk R, Van Dyke TE. Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Adv Nutr 2022; 13:2316-2328. [PMID: 35709423 PMCID: PMC9776734 DOI: 10.1093/advances/nmac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth
Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of
Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Effects of Omega-3-Rich Pork Lard on Serum Lipid Profile and Gut Microbiome in C57BL/6NJ Mice. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:9269968. [DOI: 10.1155/2022/9269968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Background and Aims. Hyperlipidemia is a risk factor for cardiovascular diseases. This study is aimed at investigating the effects of consuming omega-3-rich pork lard on the serum lipid profile and gut microbiome of the mice model. Methods and Results. We divided 23 C57BL/6NJ males (16-week-old) into 3 groups, and each group received either a control diet, a high-fat diet of coconut oil (coconut oil), or a high-fat diet of omega-3-rich pork lard (omega lard) for 28 days. Thereafter, fasting serum lipids and fecal microbiomes were analyzed. The serum cholesterol, triglyceride, and LDL levels of the omega lard-treated group were significantly reduced compared to the coconut oil-treated group (
). However, the microbiome analysis revealed a significant increase in the abundance of Lachnospiraceae in the omega lard-treated group compared to the coconut oil-treated group (
). Furthermore, Spearman’s correlation analysis revealed that the increased serum lipid content was positively correlated with the abundance of Bacteroidaceae (
) and negatively correlated with the abundance of Lachnospiraceae (
). Conclusions. These findings suggested that omega-3-rich pork lard altered the serum lipid profile and gut microbiome in the mice model. Practical Application. The excellent protection offered by omega-3-rich pork lard against hyperlipidemia indicated that pork lard could be used as alternative cooking oil for health-conscious individuals. It could also be introduced as a functional ingredient for patients with hyperlipidemia.
Collapse
|
30
|
Kaźmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Połom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol 2022; 12:1023806. [PMID: 36389140 PMCID: PMC9643746 DOI: 10.3389/fcimb.2022.1023806] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/05/2022] [Indexed: 07/21/2023] Open
Abstract
Accumulating evidence suggests that selected microbiota-derived metabolites play a significant role in both tumor prevention and supportive treatment of cancer. Short-chain fatty acids (SCFAs), i.e., mainly acetate, proprionate, and butyrate, are one of them. Nowadays, it is known that butyrate is a key microbial metabolite. Therefore, in the current review, we focused on butyrate and sodium butyrate (NaB) in the context of colorectal cancer. Notably, butyrate is characterized by a wide range of beneficial properties/activities. Among others, it influences the function of the immune system, maintains intestinal barrier integrity, positively affects the efficiency of anti-cancer treatment, and may reduce the risk of mucositis induced by chemotherapy. Taking into consideration these facts, we analyzed NaB (which is a salt of butyric acid) and its impact on gut microbiota as well as anti-tumor activity by describing molecular mechanisms. Overall, NaB is available as, for instance, food with special medical purposes (depending on the country's regulation), and its administration seems to be a promising option for colorectal cancer patients.
Collapse
Affiliation(s)
| | - Luigi Marano
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Elvira Merola
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Franco Roviello
- Department of Surgical Oncology, University of Siena, Siena, Italy
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
31
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
32
|
Li JKM, Wang LL, Lau BSY, Tse RTH, Cheng CKL, Leung SCH, Wong CYP, Tsui SKW, Teoh JYC, Chiu PKF, Ng CF. Oral antibiotics perturbation on gut microbiota after prostate biopsy. Front Cell Infect Microbiol 2022; 12:959903. [PMID: 36051239 PMCID: PMC9425026 DOI: 10.3389/fcimb.2022.959903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe use of antibiotics may induce the changes in gut microbiota. Previous studies have shown conflicting results on whether the changed gut microbiota by antibiotics can be recovered. Our study aims to investigate whether the gut microbiota could be recovered after a single dose of oral co-amoxiclav before transrectal ultrasound-guided transperineal prostate biopsy (TPPBx) in 5 weeks’ time.MethodsFifteen patients with elevated serum prostate-specific antigen (PSA) were recruited to provide pre-antibiotic and post-antibiotic fecal samples. The V4 region of 16S rRNA was sequenced. Analysis was performed by QIIME2. Alpha- and beta-diversities were analyzed, as well as the differential enrichment by Linear discriminant analysis Effect Size (LEfSe) analysis.ResultsBoth the alpha- and beta-diversities of the pre- and post-antibiotic fecal samples were significantly different. Genera that are associated with alleviation of inflammation were enriched in the pre-antibiotic fecal samples, while the inflammation-associated genera were more enriched in the post-antibiotic fecal samples.ConclusionA single dose of oral co-amoxiclav before TPPBx could have led to a change of gut microbiota that cannot be recovered in 5 weeks' time. Microbiome studies on prostate cancer patients should be cautioned on the use of post-prostate biopsy fecal sampling. Further studies should be conducted for the impact on gut microbiome for TPPBx alone.
Collapse
Affiliation(s)
- Joseph Kai Man Li
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lynn Lin Wang
- Metabolic Disease Research Centre, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Becky Su Yan Lau
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ryan Tsz Hei Tse
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Carol Ka Lo Cheng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Steven Chi Ho Leung
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christine Yim Ping Wong
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jeremy Yuen Chun Teoh
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Ka Fung Chiu
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Fai Ng
- S.H. Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Chi Fai Ng,
| |
Collapse
|
33
|
Liu MM, Zhou N, Jiang N, Lu KM, Wu CF, Bao JK. Neuroprotective Effects of Oligosaccharides From Periplaneta Americana on Parkinson’s Disease Models In Vitro and In Vivo. Front Pharmacol 2022; 13:936818. [PMID: 35924055 PMCID: PMC9340460 DOI: 10.3389/fphar.2022.936818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Parkinson’s disease (PD) is one of the neurodegenerative diseases that is characterized by obvious motor and some nonmotor symptoms. Various therapeutics failed in the effective treatment of PD because of impaired neurological function in the brain and various complications. Periplaneta Americana oligosaccharides (OPA), the main active ingredients extracted from the medicine residues of Periplaneta Americana (P. Americana), have been reported to exert anti-inflammatory effects. The purpose of this study was to evaluate the possible mechanisms of OPA against 1-methyl-4-phenylpyridinium (MPP+)-induced apotosis in SH-SY5Y cells and its potential neuroprotective effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD subacute model mice. The data demonstrated that OPA significantly reversed the MPP+-induced decrease in SH-SY5Y cell viability, reduced the proportion of apoptotic cells, and protected SH-SY5Y cells from apoptosis in a dose-dependent manner by regulating the expression of apoptosis-related genes. Furthermore, OPA also alleviated the motor dysfunction of PD model mice, prevented the loss of tyrosine hydroxylase positive cells, suppressed the apoptosis of substantia nigra cells, and improved the dysbiosis of gut microbiota in vivo, suggesting that OPA demonstrated a significantly neuroprotective effect on PD model mice. These results indicated that OPA might be the possibility of PD therapeutics with economic utility and high safety.
Collapse
Affiliation(s)
- Miao-Miao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Nan Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Na Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kai-Min Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| | - Jin-Ku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Chuan-Fang Wu, ; Jin-Ku Bao,
| |
Collapse
|
34
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
35
|
Fang J, Zhang Z, Cheng Y, Yang H, Zhang H, Xue Z, Lu S, Dong Y, Song C, Zhang X, Zhou Y. EPA and DHA differentially coordinate the crosstalk between host and gut microbiota and block DSS-induced colitis in mice by a reinforced colonic mucus barrier. Food Funct 2022; 13:4399-4420. [PMID: 35297435 DOI: 10.1039/d1fo03815j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a continuously remitting and relapsing course. Its etiology is closely related to abnormal interactions between host and gut microbiota. The mucus barrier lining the gastrointestinal tract is necessary to coordinate host and gut microbiota interaction by nourishing and modulating the microbiota. Differential effects of the anti-inflammatory fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on UC progression in mice were firstly addressed by our previous work; here, the mechanism for their respective effects were further uncovered from host-microbiome crosstalk based on mucus barrier modulation to pave the way for UC therapy. Methods: Assessment of the disease activity index and histopathology score was conducted in mice with dextran sodium sulfate (DSS)-induced colitis pre-treated with different doses of EPA and DHA. Mucin generation, glycosylation and secretion were evaluated by a combination of electron microscopy, specific mucous staining, and qPCR. Western blotting was used to analyze the underlying molecular events. Fecal short chain fatty acids were detected using gas chromatography, and the gut microbial composition was analyzed using 16S rRNA sequencing. Results: Compared with DHA, the more potent inhibitory effect of high dose EPA on DSS-induced colitis was reconfirmed, which was underlain by a reinforced mucus layer as indicated by increased mucin granule release, mucus layer stratification and markedly upregulated expression of the key modulators involved in goblet cell differentiation. In turn a remarkably enhanced mucus barrier in the EPA group functioned to modulate the gut microbiome, as demonstrated by the enriched abundance of the phylum Bacteroidetes and mucin-degrading bacterium Akkermansia muciniphila producing acetic and propionic acids. Conclusions: EPA and DHA differentially coordinate the interaction between the host and the gut microbiota and relieve mucus barrier disruption in DSS-induced colitis. EPA may develop into a promising adjunctive therapy for UC.
Collapse
Affiliation(s)
- Jian Fang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,College of Medicine, Shaoxing University, 508 Huancheng Road, Shaoxing, Zhejiang Province, 312000, People's Republic of China
| | - ZhuangWei Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yinyin Cheng
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Haitao Yang
- Mingzhou Hospital of Zhejiang University Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, 315040 Zhejiang, People's Republic of China
| | - Hui Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Zhe Xue
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Songtao Lu
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yichen Dong
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Chunyan Song
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China.,Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yuping Zhou
- Department of Gastroenterology and hepatology, The Affiliated Hospital of Medical School, Ningbo University, 247 Renmin Road, Ningbo, Zhejiang, 315020, People's Republic of China. .,Institute of Digestive Disease of Ningbo University, Ningbo, 315020, People's Republic of China
| |
Collapse
|
36
|
Zou H, Zhang M, Zhu X, Zhu L, Chen S, Luo M, Xie Q, Chen Y, Zhang K, Bu Q, Wei Y, Ye T, Li Q, Yan X, Zhou Z, Yang C, Li Y, Zhou H, Zhang C, You X, Zheng G, Zhao G. Ginsenoside Rb1 Improves Metabolic Disorder in High-Fat Diet-Induced Obese Mice Associated With Modulation of Gut Microbiota. Front Microbiol 2022; 13:826487. [PMID: 35516426 PMCID: PMC9062662 DOI: 10.3389/fmicb.2022.826487] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Hong Zou
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Man Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaoting Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Liyan Zhu
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Shuo Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qinglian Xie
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kangxi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qingyun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuchen Wei
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Ye
- Zhejiang Hongguan Bio-Pharma Co., Ltd., Jiaxing, China
| | - Qiang Li
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Li
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Haokui Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Haokui Zhou,
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Chenhong Zhang,
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Xiaoyan You,
| | - Guangyong Zheng
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guangyong Zheng,
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
- Suzhou BiomeMatch Therapeutics Co., Ltd., Shanghai, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Guoping Zhao,
| |
Collapse
|
37
|
Lan Y, Sun Q, Ma Z, Peng J, Zhang M, Wang C, Zhang X, Yan X, Chang L, Hou X, Qiao R, Mulati A, Zhou Y, Zhang Q, Liu Z, Liu X. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct 2022; 13:2925-2937. [PMID: 35191457 DOI: 10.1039/d1fo03147c] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity has been reported to be associated with gut microbiome dysbiosis. seabuckthorn fruits have traditionally been used in Tibetan foods and medicines for thousands of years. Seabuckthorn polysaccharide (SP) is one of the main functional components in seabuckthorn fruits. However, the effects of SP on a high-fat diet (HFD)-induced obesity have not yet been elucidated. The purpose of this study is to explore the amelioration effect of SP on obesity induced by HFD and to reveal its mechanism of gut microbiota and its metabolites. Results showed that 12-week SP (0.1%, w/w) dietary supplementation could significantly reduce body weight gain, serum lipid level and liver triglycerides level in obese mice. Notably, the SP treatment elevated p-AMPKα and PPARα proteins expression stimulated the phosphorylation of ACC1 and inhibited the protein expression of FAS, PPARγ, and CD36 in the mice liver. Further, SP also reorganized the gut microbiome by up-regulating the proportion of Muribaculaceae_unclassified, Bifidobacterium, Rikenellaceae_RC9_gut_group, Alistipes, and Bacteroides, and down-regulating the abundance of Lactobacillus, Firmicutes_unclassified, Dubosiella Bilophila, and Streptococcus in HFD-induced obese mice. Moreover, the production of microbial metabolites short-chain fatty acids (SCFAs) in feces has also increased. In addition, correlation analysis results showed that obesity-ameliorating effects of SP were highly associated with levels of SCFAs in feces. Therefore, the regulation of SP on liver lipid metabolism may be due to the variation of the gut microbiome and raised production of SCFAs. These results indicate that SP could play the part of a potential nutraceutical for ameliorating obesity through regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qingyang Sun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhiyuan Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jing Peng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Mengqi Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xinglin Hou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Ruixue Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Yuan Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qiang Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
38
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
39
|
Liu Z, Yin B. Alterations in the Gut Microbial Composition and Diversity of Tibetan Sheep Infected With Echinococcus granulosus. Front Vet Sci 2022; 8:778789. [PMID: 35097041 PMCID: PMC8792969 DOI: 10.3389/fvets.2021.778789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Hydatidosis/cystic echinococcosis (CE) caused by Echinococcus granulosus is a parasitic zoonotic disease worldwide, threatening animal health and production and public health safety. However, it is still unclear that whether E. granulosus infection can result in the alteration of gut microbiota in Tibetan sheep. Therefore, a study was designed to investigate the influences of E. granulosus infection on gut microbiota of Tibetan sheep. A total of 10 ovine small intestinal contents (five from healthy and five from infected) were obtained and subjected to high-throughput sequencing by MiSeq platform. A total of 2,395,641 sequences and 585 operational taxonomic units (OTUs) were identified. Firmicutes and Proteobacteria were the most dominant phyla in all samples. Moreover, the proportions of Armatimonadetes and Firmicutes in the infected Tibetan sheep were significantly decreased, whereas Actinobacteria, Chloroflexi, and Acidobacteria had significantly increased. At the genus level, the Christensenellaceae_R-7_group and Ruminococcaceae_NK4A214_group were the predominant bacterial genera in all the samples. Furthermore, the healthy Tibetan sheep exhibited higher abundances of Intestinimonas, Butyrivibrio, Pseudobutyrivibrio, Ruminococcaceae, Eubacterium_coprostanoligenes_group, Oxobacter, Prevotella_1, Ruminiclostridium_6, Coprococcus_1, Ruminococcus, Lachnospiraceae_UCG-002, Olsenella, and Acetitomaculum, whereas Kocuria, Clostridium_sensu_stricto_1, Slackia, Achromobacter, and Stenotrophomonas levels were lower. In conclusion, our results conveyed an information that E. granulosus infection may cause an increase in pathogenic bacteria and a decrease in beneficial bacteria. Additionally, a significant dynamical change in gut microbiota could be associated with E. granulosus infection.
Collapse
Affiliation(s)
- Zhigang Liu
- College of Life Science, Anqing Normal University, Anqing, China
- Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, Anqing Normal University, Anqing, China
- *Correspondence: Zhigang Liu
| | - Baishuang Yin
- Jilin Agricultural Science and Technology University, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin, China
- Baishuang Yin
| |
Collapse
|
40
|
Chen S, Yang M, Wang R, Fan X, Tang T, Li P, Zhou X, Qi K. Suppression of high-fat-diet-induced obesity in mice by dietary folic acid supplementation is linked to changes in gut microbiota. Eur J Nutr 2022; 61:2015-2031. [PMID: 34993642 DOI: 10.1007/s00394-021-02769-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate whether the effects of dietary folic acid supplementation on body weight gain are mediated by gut microbiota in obesity. METHODS Male C57 BL/6J conventional (CV) and germ-free (GF) mice both aged three to four weeks were fed a high-fat diet (HD), folic acid-deficient HD (FD-HD), folic acid-supplement HD (FS-HD) and a normal-fat diet (ND) for 25 weeks. Faecal microbiota were analyzed by 16S rRNA high-throughput sequencing, and the mRNA expression of genes was determined by the real-time RT-PCR. Short-chain fatty acids (SCFAs) in faeces and plasma were measured using gas chromatography-mass spectrometry. RESULTS In CV mice, HD-induced body weight gain was inhibited by FS-HD, accompanied by declined energy intake, smaller white adipocyte size, and less whitening of brown adipose tissue. Meanwhile, the HD-induced disturbance in the expression of fat and energy metabolism-associated genes (Fas, Atgl, Hsl, Ppar-α, adiponectin, resistin, Ucp2, etc.) in epididymal fat was diminished, and the dysbiosis in faecal microbiota was lessened, by FS-HD. However, in GF mice with HD feeding, dietary folic acid supplementation had almost no effect on body weight gain and the expression of fat- and energy-associated genes. Faecal or plasma SCFA concentrations in CV and GF mice were not altered by either FD-HD or FS-HD feeding. CONCLUSION Dietary folic acid supplementation differently affected body weight gain and associated genes' expression under HD feeding between CV and GF mice, suggesting that gut bacteria might partially share the responsibility for beneficial effects of dietary folate on obesity.
Collapse
Affiliation(s)
- Si Chen
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Mengyi Yang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Ping Li
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Xinhui Zhou
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition and Development, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institutue, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 Nan-li-shi Road, Beijing, 100045, China.
| |
Collapse
|
41
|
Cao W, Liu F, Li RW, Chin Y, Wang Y, Xue C, Tang Q. Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
He J, Le Q, Wei Y, Yang L, Cai B, Liu Y, Hong B. Effect of piperine on the mitigation of obesity associated with gut microbiota alteration. Curr Res Food Sci 2022; 5:1422-1432. [PMID: 36110383 PMCID: PMC9467908 DOI: 10.1016/j.crfs.2022.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
An obese mouse model induced by high-fat diet (HFD) feeding was used to reveal the role of piperine in modulating gut microbiota (GM). Piperine was administrated at 20 and 40 mg/kg body weight every day. As a result, piperine at 40 mg/kg significantly decreased body weight, liver weight, perirenal fat weight, and lowered serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, and glucose levels in HFD-fed mice. Additionally, piperine significantly attenuated fatty liver and modulated hepatic mRNA expressions of SREBP-1c, SREBP2, and HMGCR. In perirenal fat, FAS, C/EBPα, MCP1, and IL-6 expressions were significantly downregulated by piperine. 16S rRNA sequencing revealed that piperine elevated GM diversity. The relative abundance of Muribaculaceae and Ruminococcaceae were significantly elevated, while Dubosiella and Enterorhabdus genera were suppressed by piperine. The Pearson correlation analysis showed that the altered phylotypes were highly correlated with obesity phenotypes. These findings suggest that piperine modulates energy homeostasis and inflammation to alleviate obesity associated with GM regulation. Piperine significantly attenuates obesity and elevates gut microbiota diversity. Piperine elevates the abundance of Muribaculaceae and Ruminococcaceae families. Piperine suppresses Dubosiella and Enterorhabdus genera. The piperine-altered phylotypes are highly correlated with obesity phenotypes.
Collapse
Affiliation(s)
- Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
| | - Qingqing Le
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
| | - Yufeng Wei
- Department of Chemistry and Biochemistry, New Jersey City University, Jersey City, NJ, 07305, USA
| | - Longhe Yang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
| | - Bing Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
| | - Yuansen Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- Technology Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen, 361005, China
- Fujian Provincial Key Laboratory of Island Conservation and Development (Island Research Center, MNR), Pingtan, 350400, China
- Corresponding author. 184 University Road, Xiamen, 361005, Fujian, China.
| |
Collapse
|
43
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
44
|
Qin Q, Yan S, Yang Y, Chen J, Yan H, Li T, Gao X, Wang Y, Li A, Wang S, Ding S. The Relationship Between Osteoporosis and Intestinal Microbes in the Henan Province of China. Front Cell Dev Biol 2021; 9:752990. [PMID: 34869341 PMCID: PMC8638085 DOI: 10.3389/fcell.2021.752990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is a chronic disease in the elderly, and China is entering an aging demographic trend. In recent years, increasing evidence has demonstrated that probiotics can treat osteoporosis. This study aimed to explore the relevant mechanisms and to validate the beneficial effect on osteoporosis by high-throughput metagenome-wide gene sequencing in humans. In this study, compared with controls, several species had altered abundances, and specific functional pathways were found in the OP group. At the species level, the species that had increased in OP individuals were positively correlated to bone resorption markers and negatively correlated to 25-OH-D3 and bone formation markers, with Streptococcus sanguinis showing the strongest relevance, followed by Streptococcus gordonii, Actinomyces odontolyticus, and Olsenella unclassified. Additionally, Actinomyces graevenitzii, enriched in the OP group, was positively correlated to inflammation indicators that included white blood cell (WBC), neutrophil count (NEC), and the neutrophil-to-lymphocyte ratio (NLR) (p < 0.05). Conversely, the levels of Akkermansia muciniphila, Bacteroides eggerthii, Bacteroides fragilis, Bacteroides uniformis, and Butyricimonas synergistic were increased in the control group, which had a negative correlation with bone resorption markers and positive correlation with bone formation markers and 25-OH-D3. Additionally, Bacteroides fragilis had a negative correlation with inflammation indicators (WBC, NEC, and NLR) and the above pathways (p < 0.05). Functional prediction revealed that 106 metabolic pathways, enriched in the OP group, were significantly higher than in the control group (p < 0.05). In particular, pathways related to LPS biosynthesis, phytate degradation, lactate acid, and ethanol fermentation were more abundant in the OP group than in the control and were positively related to WBC and NEC. Taken together, several species with altered abundances and specific functional pathways were found in OP individuals. The role of phytases in OP provides novel epidemiological evidence to elucidate the underlying microbiota-relevant mechanisms in bone mineralization and should be explored further.
Collapse
Affiliation(s)
- Qian Qin
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Gao
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youxiang Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoujun Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Zhao Q, Hou D, Fu Y, Xue Y, Guan X, Shen Q. Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice. Nutrients 2021; 13:nu13093240. [PMID: 34579118 PMCID: PMC8466346 DOI: 10.3390/nu13093240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Adzuki bean consumption has many health benefits, but its effects on obesity and regulating gut microbiota imbalances induced by a high-fat diet (HFD) have not been thoroughly studied. Mice were fed a low-fat diet, a HFD, and a HFD supplemented with 15% adzuki bean (HFD-AB) for 12 weeks. Adzuki bean supplementation significantly reduced obesity, lipid accumulation, and serum lipid and lipopolysaccharide (LPS) levels induced by HFD. It also mitigated liver function damage and hepatic steatosis. In particular, adzuki bean supplementation improved glucose homeostasis by increasing insulin sensitivity. In addition, it significantly reversed HFD-induced gut microbiota imbalances. Adzuki bean significantly reduced the ratio of Firmicutes/Bacteroidetes (F/B); enriched the occurrence of Bifidobacterium, Prevotellaceae, Ruminococcus_1, norank_f_Muribaculaceae, Alloprevotella, Muribaculum, Turicibacter, Lachnospiraceae_NK4A136_group, and Lachnoclostridium; and returned HFD-dependent taxa (Desulfovibrionaceae, Bilophila, Ruminiclostridium_9, Blautia, and Ruminiclostridium) back to normal status. PICRUSt2 analysis showed that the changes in gut microbiota induced by adzuki bean supplementation may be associated with the metabolism of carbohydrates, lipids, sulfur, and cysteine and methionine; and LPS biosynthesis; and valine, leucine, and isoleucine degradation.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (D.H.); (Y.F.); (Y.X.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Plant Protein and Grain Processing, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6273-7524
| |
Collapse
|
46
|
Jiang J, Xiong J, Ni J, Chen C, Wang K. Live Combined B. subtilis and E. faecium Alleviate Liver Inflammation, Improve Intestinal Barrier Function, and Modulate Gut Microbiota in Mice with Non-Alcoholic Fatty Liver Disease. Med Sci Monit 2021; 27:e931143. [PMID: 34482357 PMCID: PMC8428156 DOI: 10.12659/msm.931143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic, progressive liver disease with an increasing incidence rate. This study investigated the protective effects of live combined Bacillus subtilis and Enterococcus faecium (LCBE) on NAFLD, and its possible mechanisms. Material/Methods Five-week-old C57BL/6 mice were randomly divided into 3 groups: chow, HFD, and HFD+LCBE groups. The levels of serum biochemical markers, glucose tolerance, insulin, the inflammatory cytokines IL-1β, IL-6, and TNF-α, LPS, and histological staining were measured using commercial kits. qPCR was used to examine the mRNA expression levels of inflammatory cytokines in the liver. Western blotting was used to determine the protein levels of TLR4, NF-κB p65, PPAR-α, and CPT-1 in the liver, and occludin and Claudin1 in the intestine. The intestinal flora of the mice was analyzed by high-throughput sequencing of the V3–V4 region of 16S rDNA. Results LCBE significantly lowered the body weight, liver/body weight ratio, and serum glucose level, and increased the serum insulin level in NAFLD mice. In addition, LCBE treatment improved the liver function and lipid profile, decreased the levels of LPS and inflammatory cytokines, and downregulated the expression of TLR4 and NF-κB p65. Moreover, LCBE enhanced the intestinal barrier function by increasing the expression of occludin and Claudin1. Furthermore, LCBE modulated the composition of the gut microbiota by reducing the Firmicutes to Bacteroidetes ratio, and the proportion of inflammation-related and LPS-producing bacteria, thus re-arranging the structure of the gut microbiota. Conclusions LCBE protects against NAFLD by alleviating inflammation, restoring the intestinal barrier, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jianbo Ni
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Congying Chen
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Kezhou Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
47
|
Wang Y, Fu Y, He Y, Kulyar MFEA, Iqbal M, Li K, Liu J. Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. J Fungi (Basel) 2021; 7:jof7070559. [PMID: 34356938 PMCID: PMC8304987 DOI: 10.3390/jof7070559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Development phases are important in maturing immune systems, intestinal functions, and metabolism for the construction, structure, and diversity of microbiome in the intestine during the entire life. Characterizing the gut microbiota colonization and succession based on age-dependent effects might be crucial if a microbiota-based therapeutic or disease prevention strategy is adopted. The purpose of this study was to reveal the dynamic distribution of intestinal bacterial and fungal communities across all development stages in yaks. Dynamic changes (a substantial difference) in the structure and composition ratio of the microbial community were observed in yaks that matched the natural aging process from juvenile to natural aging. This study included a significant shift in the abundance and proportion of bacterial phyla (Planctomycetes, Firmicutes, Bacteroidetes, Spirochaetes, Tenericutes, Proteobacteria, and Cyanobacteria) and fungal phyla (Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Ascomycota, and Basidiomycota) across all development stages in yaks. As yaks grew older, variation reduced, and diversity increased as compared to young yaks. In addition, the intestine was colonized by a succession of microbiomes that coalesced into a more mature adult, including Ruminococcaceae_UCG-005, Romboutsia, Prevotellaceae_UCG-004, Blautia, Clostridium_sensu_stricto_1, Ruminococcus_1, Ruminiclostridium_5, Rikenellaceae_RC9_gut_group, Alloprevotella, Acetitomaculum, Lachnospiraceae_NK3A20_group, Bacteroides, Treponema_2, Olsenella, Escherichia-Shigella, Candidatus_Saccharimonas, and fungal communities Mortierella, Lomentospora, Orpinomyces, and Saccharomyces. In addition, microorganisms that threaten health, such as Escherichia-Shigella, Mortierella, Lomentospora and Hydrogenoanaerobacterium, Corynebacterium_1, Trichosporon, and Coprinellus, were enriched in young and old yaks, respectively, although all yaks were healthy. The significant shifts in microflora composition and structure might reflect adaptation of gut microbiome, which is associated with physicochemical conditions changes and substrate availability in the gut across all development periods of yaks.
Collapse
Affiliation(s)
- Yaping Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.H.); (M.F.-e.-A.K.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (K.L.); (J.L.)
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (K.L.); (J.L.)
| |
Collapse
|
48
|
Wee Y, Yang C, Chen S, Yen Y, Wang C. Inositol hexaphosphate modulates the behavior of macrophages through alteration of gene expression involved in pathways of pro- and anti-inflammatory responses, and resolution of inflammation pathways. Food Sci Nutr 2021; 9:3240-3249. [PMID: 34136188 PMCID: PMC8194914 DOI: 10.1002/fsn3.2286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Inositol hexaphosphate (IP6) is a dietary compound commonly obtained from corn, rice, etc. Although we may consume significant amount of IP6 daily, it is unclear whether this diet will impact macrophages' fate and function. Therefore, we characterized the underlying relationship between IP6 and macrophage polarization in this study. We specifically examined the signature gene expression profiles associated with pro- and anti-inflammatory responses, and resolution of inflammation pathways in macrophages under the influence of IP6. Interestingly, our data suggested that IP6 polarizes bone marrow-derived macrophages (BMDM) into an M2a-like subtype. Our results also demonstrated that IP6 reduces lipopolysaccharide-induced apoptosis and pro-inflammatory responses in macrophages. In contrast, the expression levels of genes related to anti-inflammatory responses and resolution of inflammation pathways are upregulated. Our findings collectively demonstrated that IP6 has profound modulation effects on macrophages, which warrant further research on the therapeutic benefits of IP6 for inflammatory diseases.
Collapse
Affiliation(s)
- Yinshen Wee
- Department of PathologyUniversity of UtahSalt Lake CityUTUSA
| | | | - Shau‐Kwaun Chen
- Institute of NeuroscienceNational Chengchi UniversityTaipeiTaiwan
| | - Yu‐Chun Yen
- Biostatistics CenterOffice of Data ScienceTaipei Medical UniversityTaipeiTaiwan
| | - Ching‐Shuen Wang
- School of DentistryCollege of Oral MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
49
|
Jiang D, Zhang J, Lin S, Wang Y, Chen Y, Fan J. Prolyl Endopeptidase Gene Disruption Improves Gut Dysbiosis and Non-alcoholic Fatty Liver Disease in Mice Induced by a High-Fat Diet. Front Cell Dev Biol 2021; 9:628143. [PMID: 34095107 PMCID: PMC8172602 DOI: 10.3389/fcell.2021.628143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022] Open
Abstract
The gut-liver axis is increasingly recognized as being involved in the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). Prolyl endopeptidase (PREP) plays a role in gut metabolic homeostasis and neurodegenerative diseases. We investigated the role of PREP disruption in the crosstalk between gut flora and hepatic steatosis or inflammation in mice with NAFLD. Wild-type mice (WT) and PREP gene knocked mice (PREPgt) were fed a low-fat diet (LFD) or high-fat diet (HFD) for 16 or 24 weeks. Murine gut microbiota profiles were generated at 16 or 24 weeks. Liver lipogenesis-associated molecules and their upstream mediators, AMP-activated protein kinase (AMPK) and sirtuin1 (SIRT1), were detected using RT-PCR or western blot in all mice. Inflammatory triggers and mediators from the gut or infiltrated inflammatory cells and signal mediators, such as p-ERK and p-p65, were determined. We found that PREP disruption modulated microbiota composition and altered the abundance of several beneficial bacteria such as the butyrate-producing bacteria in mice fed a HFD for 16 or 24 weeks. The level of butyrate in HFD-PREPgt mice significantly increased compared with that of the HFD-WT mice at 16 weeks. Interestingly, PREP disruption inhibited p-ERK and p-p65 and reduced the levels of proinflammatory cytokines in response to endotoxin and proline-glycine-proline, which guided macrophage/neutrophil infiltration in mice fed a HFD for 24 weeks. However, at 16 weeks, PREP disruption, other than regulating hepatic inflammation, displayed improved liver lipogenesis and AMPK/SIRT1 signaling. PREP disruption may target multiple hepatic mechanisms related to the liver, gut, and microbiota, displaying a dynamic role in hepatic steatosis and inflammation during NAFLD. PREP might serve as a therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Daixi Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangzhe Lin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqin Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanwen Chen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Li H, Zhuang P, Zhang Y, Shou Q, Lu Y, Wang G, Qiu J, Wang J, He L, Chen J, Jiao J. Mixed conjugated linoleic acid sex-dependently reverses high-fat diet-induced insulin resistance via the gut-adipose axis. FASEB J 2021; 35:e21466. [PMID: 33734496 DOI: 10.1096/fj.202002161rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Conjugated linoleic acid (CLA) may prevent the development of obesity and metabolic disorders. However, the effects of CLA on inflammation and glucose metabolism are controversial. The underlying mechanisms governing the gut microbiota and sexual dimorphisms have also not been elucidated. The present study assessed the effect of CLA on glucose and lipid metabolism in established obesity and examined the mechanism of action based on gut microbiota. Four-week-old C57BL/6J mice were fed a high-fat diet (HFD) for 10 weeks to induce obesity. The diet-induced obese (DIO) mice were fed an HFD supplemented with mixed CLA (50% cis-9, trans-11 isomer and 50% trans-10, cis-12 isomers, 0.2% wt/wt) for 15 weeks. CLA supplementation remarkably reversed body weight in both sexes. CLA favored anti-inflammatory microbiota in male mice, mediating increased short-chain fatty acids and decreased lipopolysaccharide (LPS) production, which alleviated global inflammation and improved insulin sensitivity via inhibition of the TLR4-NF-κB pathway in adipose tissue. CLA promoted the growth of hydrogen sulfide-producing Desulfovibrio and the release of LPS in female mice, which aggravated adipose inflammation and insulin resistance. Although CLA impaired glucose metabolism in females, brown adipose tissue was significantly activated with browning of white adipose tissue in both sexes, which led to enhanced energy expenditure. Fecal transplantation from CLA-treated mice to DIO mice mimicked the sex-dependent phenotype. In conclusion, CLA decreased body weight and increased energy expenditure but sex-dependently modulated insulin resistance via the gut-adipose axis.
Collapse
Affiliation(s)
- Haoyu Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiyang Shou
- Experimental Animal Research Center, Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Lu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Guangfa Wang
- Department of PET Center of Affiliated First Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieni Qiu
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|