1
|
Campanelli L, Galeano P, Prestia FA, Cuesta C, Dalmasso MC, Flores-López M, Gona C, Irureta N, Kairiyama C, Lisso J, López-Gambero AJ, Mintz I, Medel N, Campuzano KS, Muchnik C, Novack GV, Olivar N, Quiroga I, Requena-Ocaña N, Reyes-Bueno JA, Serrano-Castro P, Sevillano Z, Solis P, Suárez J, Villella I, Wukitsevits N, Castaño EM, Taragano F, Kochen S, Politis DG, Brusco LI, Rodríguez de Fonseca F, Morelli L. Blood levels of cytokines highlight the role of inflammation in Alzheimer's disease. Heliyon 2025; 11:e41725. [PMID: 39872450 PMCID: PMC11770505 DOI: 10.1016/j.heliyon.2025.e41725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Inflammation and angiogenesis have been defined as potential mechanisms associated with clinical progression from a cognitively normal state to Alzheimer's disease (AD). In this observational case-control study, we aimed to determine plasma levels of cytokines as indicators of inflammation involved in cognitive decline. We measured 30 plasma proteins in 49 controls (CTL), 36 individuals with mild cognitive impairment (MCI) and 52 patients diagnosed with probable AD. After applying strict filters for quantification limits, only 13 analytes were included in the analysis. Kruskal-Wallis tests showed significant differences between diagnostic groups for nine cytokines (IL-16, IL-7, VEGF, IL-8, eotaxin, MCP-1, MCP-4, MDC and TARC). Non-parametric MANCOVA showed that sex and diagnosis affected cytokine levels in the blood. To determine the sensitivity and specificity of the markers, we performed receiver operating characteristic (ROC) curve analysis. Only those analytes that showed an area under the curve (AUC) ≥ 0.70 were included in the multivariate logistic regression models to better understand the contribution of cytokines to clinical status. Three models: 1) CTL vs. AD; 2) CTL vs. MCI, and 3) MCI vs. AD were developed, with sex and age as covariates. In each model, two cytokines remained significantly different (model 1: IL-16 and MDC; model 2: eotaxin and MDC and model 3: IL-7 and VEGF). Taken together, this report identifies a set of plasma markers of inflammation and strengthens the role of glial biology in different clinical stages of AD.
Collapse
Affiliation(s)
- Lorenzo Campanelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Galeano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico A. Prestia
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Cuesta
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Maria C. Dalmasso
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
| | - María Flores-López
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Cristian Gona
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nicolás Irureta
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Claudia Kairiyama
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Julieta Lisso
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Antonio Jesús López-Gambero
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Ines Mintz
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nancy Medel
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Karen S. Campuzano
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carolina Muchnik
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela V. Novack
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natividad Olivar
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivana Quiroga
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nerea Requena-Ocaña
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
| | - Jose Antonio Reyes-Bueno
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Pedro Serrano-Castro
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Zulma Sevillano
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Patricia Solis
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Juan Suárez
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
- Departamento of Anatomía Humana, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, Av. Cervantes, 2, 2907, Málaga, Spain
| | - Ivana Villella
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Nancy Wukitsevits
- Asistencia Medica Integral, Hospital El Cruce, Av. Calchaquí 5401, Provincia de Buenos Aires, Florencio Varela, Argentina
| | - Eduardo M. Castaño
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Taragano
- Neuropsychiatric Clinic Nuestra Señora de Las Nieves, Av. Álvarez Thomas 268, C1427CCP, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia Kochen
- Studies in Neuroscience and Complex Systems Unit (CONICET-HEC-UNAJ), Av. Calchaquí 5402, Florencio Varela, Argentina
| | - Daniel G. Politis
- Hospital Interzonal General de Agudos (HIGA) Eva Perón, Av. 101 Dr. Ricardo Balbín 3200, Provincia de Buenos Aires, Buenos Aires, B1650NBN, Argentina
| | - Luis I. Brusco
- Center of Neuropsychiatry and Behavior Neurology, School of Medicine, University of Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain, Puerto de la Torre, 29010, Málaga, Spain
- Unidad de Neurología, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, Malaga, Puerto de la Torre, 29010, Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], Av. Carlos Haya, 88, Pabellon B, 4 planta, 29010, Málaga, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Shimazui T, Oami T, Shimada T, Tomita K, Nakada TA. Age-dependent differences in the association between blood interleukin-6 levels and mortality in patients with sepsis: a retrospective observational study. J Intensive Care 2025; 13:3. [PMID: 39800741 PMCID: PMC11726927 DOI: 10.1186/s40560-025-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a cytokine that predicts clinical outcomes in critically ill patients, including those with sepsis. Elderly patients have blunted and easily dysregulated host responses to infection, which may influence IL-6 kinetics and alter the association between IL-6 levels and clinical outcomes. METHODS This retrospective observational study included patients aged ≥ 16 years who were admitted to the intensive care unit at Chiba University Hospital. The patients were categorized into two groups: non-elderly (< 70 years) and elderly (≥ 70 years). Associations between log-transformed blood IL-6 levels and 28-day in-hospital mortality (primary outcome) and multiple organ dysfunction (MOD) on days 3 and 7 (secondary outcomes) were examined. RESULTS The non-elderly and elderly groups included 272 and 247 patients, respectively. There were no significant differences in the Sequential Organ Failure Assessment score, components of the APACHE II score (Acute physiology score and Chronic health points), MOD at baseline, or any of the outcome measures between the groups. In the non-elderly group, univariate Cox regression analysis showed a significant association between IL-6 levels and mortality (hazard ratio [HR] 1.71, 95% confidence interval [CI] 1.25-2.37, P < 0.001). This association remained significant after adjusting for sex, body mass index, steroid use prior to sepsis onset, and number of chronic organ dysfunctions (HR 1.66, 95% CI 1.20-2.32, P = 0.002). However, no significant association was observed in the elderly group in either the univariate (P = 0.69) or multivariable analyses (P = 0.77). Multivariable logistic regression analysis of MOD on days 3 and 7 revealed significant associations between MOD and IL-6 levels in both groups. CONCLUSIONS Blood IL-6 levels were significantly associated with mortality in non-elderly patients with sepsis, but not in elderly patients. IL-6 levels were associated with MOD in both groups. Therefore, IL-6 levels should be interpreted with caution when predicting mortality in elderly patients with sepsis. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Takashi Shimazui
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan.
| | - Takehiko Oami
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Keisuke Tomita
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, 260-8677, Japan
| |
Collapse
|
3
|
Pinto AP, Sarni ÂAJ, Tavares MEA, da Rocha AL, Carolino ROG, de Sousa Neto IV, Da Silva Ferreira DC, Munoz VR, Teixeira GR, Simabuco FM, Pauli JR, Cintra DE, Ropelle ER, de Freitas EC, da Silva ASR. Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice. Pflugers Arch 2025:10.1007/s00424-024-03048-2. [PMID: 39804464 DOI: 10.1007/s00424-024-03048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 02/02/2025]
Abstract
The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10. Histological analysis, reverse transcription-quantitative polymerase chain reaction, and immunoblotting were performed on the quadriceps and tibialis anterior muscles. A publicly available dataset was analyzed to assess the Notch pathway in older men. In summary, IL-10 knockdown in myoblasts reduced the Notch pathway gene and protein expression. In SAMP8 mice, combined exercise improved muscle fiber organization, enhanced balance and coordination, and increased Notch2 and Hes1 mRNA levels. NOTCH2 mRNA levels were also higher in older men compared to young subjects with similar physical activity levels. These findings suggest that combined physical exercise enhances muscle regeneration via the Notch pathway in aged muscle.
Collapse
Affiliation(s)
- Ana P Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Ângelo Augusto J Sarni
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Maria Eduarda A Tavares
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Alisson L da Rocha
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ruither O Gomes Carolino
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Ivo V de Sousa Neto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Driele C Da Silva Ferreira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Vitor R Munoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Fernando M Simabuco
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ellen C de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Pérez-Castillo IM, Rueda R, Bouzamondo H, Aparicio-Pascual D, Valiño-Marques A, López-Chicharro J, Segura-Ortiz F. Does Lifelong Exercise Counteract Low-Grade Inflammation Associated with Aging? A Systematic Review and Meta-Analysis. Sports Med 2025:10.1007/s40279-024-02152-8. [PMID: 39792347 DOI: 10.1007/s40279-024-02152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Aging is associated with sustained low-grade inflammation, which has been linked to age-related diseases and mortality. Long-term exercise programs have been shown to be effective to for attenuating this process; however, subsequent detraining might negate some of these benefits. Master athletes, as a model of lifelong consistent exercise practice, have been suggested to present similar inflammatory profiles to untrained young adults. Nonetheless, it is unclear whether maintaining training habits throughout life can completely counteract low-grade inflammation associated with aging. OBJECTIVES We aimed to systematically evaluate comparisons of baseline inflammatory profiles in Master athletes, untrained middle-aged and older adults, and untrained young individuals to elucidate whether lifelong exercise can counteract low-grade inflammation associated with aging. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, and a protocol was prospectively registered in PROSPERO (CRD42024521339). Studies reporting baseline systemic levels of proinflammatory and anti-inflammatory markers in Master athletes and untrained controls were eligible for inclusion. A total of six databases (PubMed [MEDLINE], Embase, Cochrane Central Register of Controlled Trials [CENTRAL], Scopus, SPORTDiscus, and Web of Science [WoS]) were searched in September 2024, and studies were independently screened by two reviewers. Risk of bias was assessed using an adapted version of the Joanna Briggs Institute Critical Appraisal tool for cross-sectional trials, and random-effect meta-analyses of standardized mean differences (SMDs) of inflammatory markers were conducted to evaluate comparisons between Master athletes and age-matched untrained middle-aged and older adults as well as Master athletes and young untrained subjects. Subgroup analyses were performed based on exercise intensity and type, and participants' sex. RESULTS A total of 17 studies (n = 649 participants) were included both in qualitative and quantitative synthesis. Lifelong exercise appears to attenuate increases in baseline C-reactive protein, and to elevate anti-inflammatory interleukin (IL)-10 levels compared with untrained middle-aged and older adults (C-reactive protein: SMD - 0.71, 95% confidence interval - 0.97, - 0.45, I2 0%, p = 0.78; IL-10: SMD 1.44, 95% confidence interval 0.55, 2.32, I2 87%, p < 0.00001). Statistical significance was maintained in C-reactive protein and IL-10 sub-analyses. No difference in tumor necrosis factor-α levels was observed between Master athletes and untrained middle-aged and older adults (SMD 0.40, 95% confidence interval - 0.15, 0.96, I2 72%, p = 0.0008). A trend towards decreased IL-6 levels in Master athletes was shown in pooled analyses comparing untrained middle-aged and older adults, and rendered statistically significant in sub-analyses. However, comparisons with young untrained adults indicated that Master athletes still present with elevated levels of tumor necrosis factor-α and IL-6, along with decreased IL-10. CONCLUSIONS Master athletes might exhibit a more anti-inflammatory profile denoted by decreased baseline circulating levels of C-reactive protein and, potentially, IL-6, along with increased IL-10 compared with healthy age-matched untrained peers. However, lifelong exercise might still be insufficient to completely counteract age-related changes in tumor necrosis factor-α, IL-6, and IL-10, as shown in comparisons with untrained young adults.
Collapse
Affiliation(s)
- Iñigo M Pérez-Castillo
- Research and Development, Abbott Nutrition, 68 Camino de Purchil, 18004, Granada, Spain.
| | - Ricardo Rueda
- Research and Development, Abbott Nutrition, 68 Camino de Purchil, 18004, Granada, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Fukumoto T, Shimosawa T, Yakabe M, Yoshida S, Yoshida Y. Recent advances in biomarkers for senescence: Bridging basic research to clinic. Geriatr Gerontol Int 2025. [PMID: 39754295 DOI: 10.1111/ggi.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/31/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers. In addition, each organ or cell has its specific markers. Generally speaking, a combination of biomarkers is required to define age-related changes. When considering the translation of basic research, biomarkers that are highly sensitive, highly specific, with validation and reliability as well as being non-invasive are optimal; however, currently reported markers do not fulfill the prerequisite for biomarkers. In addition, rodent models of aging do not necessarily represent human aging, and markers in rodent or cell models are not applicable in clinical settings. The prerequisite of clinically applicable biomarkers is that they provide useful information for clinical decision-making, such as predicting disease risk, diagnosing disease, monitoring disease progression, or guiding treatment decisions. Therefore, the development of non-invasive robust, reliable, and useful biomarkers in humans is necessary to develop anti-aging therapy for humans. Geriatr Gerontol Int 2025; ••: ••-••.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, Graduate School of Medicine, International University of Health and Welfare, Hyogo, Japan
| | - Mitsutaka Yakabe
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohko Yoshida
- Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Yao B, Zhang Y, Wu Q, Yao H, Peng L, Jiang Z, Yang L, Yuan L. Comprehensive assessment of cellular senescence in intestinal immunity and biologic therapy response in ulcerative colitis. Sci Rep 2024; 14:28127. [PMID: 39548254 PMCID: PMC11568168 DOI: 10.1038/s41598-024-79607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Ulcerative Colitis (UC) is an inflammatory disorder characterized by chronic intestinal inflammation and immune dysregulation. Despite a clear association between cellular senescence and chronic inflammation and immune dysregulation, the mechanisms underlying cellular senescence in UC remain unclear. We screened differentially expressed genes (DEGs) associated with cellular senescence in multiple UC datasets, performed immune infiltration analysis, and constructed clinical diagnostic models. Additionally, we investigated the relationship between key genes related to cellular senescence and disease remission in UC patients undergoing biologic therapy, validating their expression in a single-cell dataset. We identified six DEGs associated with cellular senescence (TWIST1, IGFBP5, MME, IFNG, ME1, FOS). Immune infiltration results indicated strong correlations of four of these genes with immune cells and pathways. Through WGCNA, GO, and KEGG analyses, we found that gene modules strongly associated with the expression of hub genes in cellular senescence were enriched in inflammation-related pathways. In the single-cell dataset, the expression of these six key genes exhibited similarities with Immune infiltration results. Additionally, we constructed a nomogram using these six genes for diagnosing UC, demonstrating good diagnostic capability and clinical efficacy. Kaplan-Meier survival analysis revealed a significant association between changes in the expression levels of these cell genes and disease remission in UC patients undergoing biologic therapy. This study utilizes bioinformatic analysis and machine learning to identify and analyze features associated with cellular senescence in multiple UC datasets. It provides insights into the role of cellular senescence in the premature onset of intestinal aging in UC and offers new perspectives for exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Baojia Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yawei Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Qiang Wu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hengchang Yao
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Liangxin Peng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhixian Jiang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lichao Yang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Lianwen Yuan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Darrah MA, Longtine AG, Greenberg NT, Mahoney SA, Venkatasubramanian R, VanDongen NS, Reisz JA, D'Alessandro A, Seals DR, de Quiros Miranda YB, Clayton ZS. The influence of a human macronutrient-matched diet on phenotypes in old mice. GeroScience 2024:10.1007/s11357-024-01423-6. [PMID: 39514173 DOI: 10.1007/s11357-024-01423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Preclinical rodent models are essential research tools for improving understanding of physiological aging processes in humans. However, the translatability of findings obtained leveraging rodent models to humans is limited, likely due in part to differences in macronutrient composition of the diets. Here, we investigated the impact of a 3-month diet intervention in old male C57BL/6JN mice in which the macronutrient composition was aligned with that of a midlife/older adult in the United States, compared to a traditional rodent diet, and assessed various phenotypes that are typically altered with aging. Following the diet period, mice fed the human macronutrient-matched diet had greater quadricep and subcutaneous adipose and visceral adipose tissue masses compared to animals fed a traditional mouse diet. Frailty, assessed using a clinical frailty index, was lower, while grip strength was higher in mice fed the human-matched diet. Circulating metabolite and inflammatory cytokine profiles were altered in mice fed the human-matched diet. Notably, mortality rate (assessed in animals who died or were euthanized per veterinary recommendation before the pre-determined end of study euthanasia), tended to be lower in mice fed the human-matched diet. The present study underscores the importance of diet in rodent studies of aging, as differences in macronutrient composition can affect various physiological processes in old mice that are relevant to aging research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julie A Reisz
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Zachary S Clayton
- University of Colorado Boulder, Boulder, CO, USA.
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Ragsdale HB, Butler MS, Koning SM, Bas IN, McDade TW. Lower Socioeconomic Status Predicts Increased Proinflammatory Signaling in Late Pregnancy: Evidence From a Filipino Cohort. Am J Hum Biol 2024; 36:e24161. [PMID: 39376133 PMCID: PMC11556435 DOI: 10.1002/ajhb.24161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVES Maternal socioeconomic status (SES) is an important predictor of adverse birth outcomes and postnatal health across global populations. Chronic inflammation is implicated in cardiometabolic disease risk in high-income contexts and is a potential pathway linking maternal adversity to offspring health trajectories. To clarify how socioeconomic inequality shapes pregnancy inflammation in middle-income settings, we investigated SES as a predictor of inflammatory cytokines in late gestation in a sample from the Cebu Longitudinal Health Nutrition Survey in Cebu, Philippines. METHODS We used multiple regression to evaluate maternal SES, reflected in household assets, as a predictor of general inflammation (C-reactive protein), inflammatory cytokines (interleukin-6, interleukin-10), and inflammatory balance (n = 407). Inflammatory markers were measured at 29.9 weeks gestation in dried blood spots, and a measure reflecting relative balance of IL6 and IL10 was calculated to capture pro- versus anti-inflammatory skewed immune profiles. RESULTS Greater household assets significantly predicted lower IL6 concentration (p < 0.001), with a trend toward lower IL6 relative to IL10 (p = 0.084). C-reactive protein and IL10 were not individually related to SES. CONCLUSIONS The inverse relationship between SES and pregnancy inflammation in Cebu is consistent with results from high-income settings. These findings further highlight the influence of socioeconomic conditions on immune regulation during pregnancy. Given the evidence that gestational inflammation impacts offspring fetal growth, our results suggest that social and economic effects on immune function may be an important pathway for the intergenerational transmission of health disparities.
Collapse
Affiliation(s)
- Haley B Ragsdale
- Department of Anthropology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Margaret S Butler
- Center of Excellence in Maternal and Child Health, Division of Community Health Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Isabelita N Bas
- Office of Population Studies Foundation Inc., University of San Carlos, Cebu, Philippines
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Liu H, Magaye R, Kaye DM, Wang BH. Heart failure with preserved ejection fraction: The role of inflammation. Eur J Pharmacol 2024; 980:176858. [PMID: 39074526 DOI: 10.1016/j.ejphar.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Heart failure (HF) is a debilitating clinical syndrome affecting 64.3 million patients worldwide. More than 50% of HF cases are attributed to HF with preserved ejection fraction (HFpEF), an entity growing in prevalence and mortality. Although recent breakthroughs reveal the prognostic benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in HFpEF, there is still a lack of effective pharmacological therapy available. This highlights a major gap in medical knowledge that must be addressed. Current evidence attributes HFpEF pathogenesis to an interplay between cardiometabolic comorbidities, inflammation, and renin-angiotensin-aldosterone-system (RAAS) activation, leading to cardiac remodelling and diastolic dysfunction. However, conventional RAAS blockade has demonstrated limited benefits in HFpEF, which emphasises that alternative therapeutic targets should be explored. Presently, there is limited literature examining the use of anti-inflammatory HFpEF therapies despite growing evidence supporting its importance in disease progression. Hence, this review aims to explore current perspectives on HFpEF pathogenesis, including the importance of inflammation-driven cardiac remodelling and the therapeutic potential of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Hongyi Liu
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Ruth Magaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - David M Kaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Bing H Wang
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
10
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
11
|
Guo L, Zhou J, Xie F, Lang Q, Xu Y, Chen L, Xue Z, Mao Y, Wang R. The profile of oral microbiome in Chinese elderly population associated with aging and systemic health status. BMC Oral Health 2024; 24:895. [PMID: 39103866 PMCID: PMC11299356 DOI: 10.1186/s12903-024-04676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE The health of oral cavity is considered as an important indicator of aging. Oral microbiota is highly associated with the oral health, while the variation of oral microbiome in elderly population and characteristic microbes associated with aging remain unclear. SUBJECTS AND METHODS In this study, 130 elderly subjects were recruited and divided into 3 groups according to their age: Stage I group (65 ≤ years < 70), Stage II group (70 ≤ years < 75), and Stage III group (75 ≤ years < 80). Their physiological indices were analyzed with using Illumina MiSeq platform and the oral microbiome was determined by high-throughput sequencing. RESULTS Along with aging, the level of fasting blood glucose, systolic pressure and monocytes are significantly increased. No significant difference was detected on the whole structure of the oral microbiome among groups. While using Metastats and Spearman's correlation analysis, specific bacteria were identified as potential age- or health index-related bacterial genera including Fusobacterium, Parvimonas, Porphyromonas, Aminobacter, Collinsella, Clostridium and Acinetobacter. CONCLUSION Our study revealed that the composition structure of salivary microbiota in elderly population was relatively stable while specific bacteria were correlated with age and health status, which is promising to be served as health indicators of the elderly after further exploration.
Collapse
Affiliation(s)
- Liqiang Guo
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xie
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Qing Lang
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Yuesong Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luping Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengsheng Xue
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China
| | - Yuejian Mao
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China.
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Fountain WA, Bopp TS, Bene M, Walston JD. Metabolic dysfunction and the development of physical frailty: an aging war of attrition. GeroScience 2024; 46:3711-3721. [PMID: 38400874 PMCID: PMC11226579 DOI: 10.1007/s11357-024-01101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
The World Health Organization recently declared 2021-2030 the decade of healthy aging. Such emphasis on healthy aging requires an understanding of the biologic challenges aging populations face. Physical frailty is a syndrome of vulnerability that puts a subset of older adults at high risk for adverse health outcomes including functional and cognitive decline, falls, hospitalization, and mortality. The physiology driving physical frailty is complex with age-related biological changes, dysregulated stress response systems, chronic inflammatory pathway activation, and altered energy metabolism all likely contributing. Indeed, a series of recent studies suggests circulating metabolomic distinctions can be made between frail and non-frail older adults. For example, marked restrictions on glycolytic and mitochondrial energy production have been independently observed in frail older adults and collectively appear to yield a reliance on the highly fatigable ATP-phosphocreatine (PCr) energy system. Further, there is evidence that age-associated impairments in the primary ATP generating systems (glycolysis, TCA cycle, electron transport) yield cumulative deficits and fail to adequately support the ATP-PCr system. This in turn may acutely contribute to several major components of the physical frailty phenotype including muscular fatigue, weakness, slow walking speed and, over time, result in low physical activity and accelerate reductions in lean body mass. This review describes specific age-associated metabolic declines and how they can collectively lead to metabolic inflexibility, ATP-PCr reliance, and the development of physical frailty. Further investigation remains necessary to understand the etiology of age-associated metabolic deficits and develop targeted preventive strategies that maintain robust metabolic health in older adults.
Collapse
Affiliation(s)
- William A Fountain
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Taylor S Bopp
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Michael Bene
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
van Arkel C, Storms I, Kurver L, Smeenk F, Wielders P, Hoefsloot W, Carpaij N, Boeree MJ, van Crevel R, van Laarhoven A, Magis-Escurra C. Elderly patients with tuberculosis in a low-incidence country - Clinical characteristics, inflammation and outcome. J Infect 2024; 89:106200. [PMID: 38901573 DOI: 10.1016/j.jinf.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Susceptibility to respiratory infections increases with age. Diagnosing and treating tuberculosis in the elderly comes with the challenges of fewer specific symptoms and possibly more side effects of treatment. Much is unknown when it comes to tuberculosis in the elderly, especially in relation to inflammation, which may impact mortality. We, therefore, investigated a clinical cohort of elderly tuberculosis patients. METHODS Patients aged ≥65 years, admitted to our tuberculosis reference center between 2005 and 2021, were retrospectively included in our cohort. Sociodemographic data, clinical characteristics, laboratory results, including inflammatory markers at baseline (monocyte, neutrophil, lymphocyte count, and CRP levels), and treatment outcomes were collected. They were compared to the National Dutch TB Registry and analyzed using descriptive statistics. Survival analysis was performed using univariate Cox regression analysis and a log-rank test. Results were visualized in Kaplan-Meier curves. RESULTS 104 elderly tuberculosis patients, mostly European, with a mean age of 75 years, were included. None were HIV-infected. Miliary tuberculosis cases were overrepresented (14 %) compared to the National Dutch TB Registry (5 % in elderly, 2 % adults). Fever occurred in 77 % (57/74), and the duration of fever decreased with age. Innate immune markers, including monocyte/lymphocyte-ratio, moderately correlated with CRP. Overall mortality was 15 %, and highest (33 %) in patients with CRP levels >100 mg/mL. CONCLUSION In elderly tuberculosis patients in a low-incidence setting, mortality rates are higher in comparison to younger patients. The overrepresentation of miliary tuberculosis may suggest waning immunity, with a subset of patients exhibiting strong inflammation associated with increased mortality.
Collapse
Affiliation(s)
- Cynthia van Arkel
- Department of Pulmonary Disease and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| | - Iris Storms
- Department of Pulmonary Diseases, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Lisa Kurver
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Frank Smeenk
- Department of Pulmonary Diseases, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Pascal Wielders
- Department of Pulmonary Diseases, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Disease and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Neeltje Carpaij
- Department of Pulmonary Disease and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin J Boeree
- Department of Pulmonary Disease and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Cécile Magis-Escurra
- Department of Pulmonary Disease and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
14
|
Benkő S, Dénes Á. Microglial Inflammatory Mechanisms in Stroke: The Jury Is Still Out. Neuroscience 2024; 550:43-52. [PMID: 38364965 DOI: 10.1016/j.neuroscience.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Microglia represent the main immune cell population in the CNS with unique homeostatic roles and contribution to broad neurological conditions. Stroke is associated with marked changes in microglial phenotypes and induction of inflammatory responses, which emerge as key modulators of brain injury, neurological outcome and regeneration. However, due to the limited availability of functional studies with selective targeting of microglia and microglia-related inflammatory pathways in stroke, the vast majority of observations remain correlative and controversial. Because extensive review articles discussing the role of inflammatory mechanisms in different forms of acute brain injury are available, here we focus on some specific pathways that appear to be important for stroke pathophysiology with assumed contribution by microglia. While the growing toolkit for microglia manipulation increasingly allows targeting inflammatory pathways in a cell-specific manner, reconsideration of some effects devoted to microglia may also be required. This may particularly concern the interpretation of inflammatory mechanisms that emerge in response to stroke as a form of sterile injury and change markedly in chronic inflammation and common stroke comorbidities.
Collapse
Affiliation(s)
- Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest H-1083, Hungary.
| |
Collapse
|
15
|
Wells C, Robertson T, Sheth P, Abraham S. How aging influences the gut-bone marrow axis and alters hematopoietic stem cell regulation. Heliyon 2024; 10:e32831. [PMID: 38984298 PMCID: PMC11231543 DOI: 10.1016/j.heliyon.2024.e32831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.
Collapse
Affiliation(s)
- Christopher Wells
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tristan Robertson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Prameet Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Division of Microbiology, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Kingston, Ontario, Canada
| | - Sheela Abraham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Yakar N, Bostanci N, Özdemir G, Atmaca H, Türedi A, Şahin Ç, Köse T, Emingil G. Salivary inflammatory burden in pre- and postmenopausal women: Associations with body mass index, patient-reported health, serum cytokines, and periodontal parameters. J Periodontol 2024; 95:209-218. [PMID: 37851637 DOI: 10.1002/jper.23-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The decline of estrogen levels during menopause impacts weight, mood, and overall health, both orally and systemically. This study assessed salivary levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-10, and IL-7 in postmenopausal (PMW) and regularly menstruating premenopausal (RMPW) women, while considering serum cytokine levels, body mass index (BMI), periodontal health, and self-reported physical and emotional well-being. METHODS In this study, 75 PMW and 71 RMPW were included. Clinical and periodontal parameters were evaluated, and perceived health was assessed with the Women's Health Questionnaire (WHQ). Cytokine levels in both saliva and serum were quantified by enzyme-linked immunosorbent assay (ELISA). Covariate evaluations of salivary cytokines were conducted using hierarchical linear regression modeling. RESULTS Cytokines were detectable in saliva from 71 PMW and 67 RMPW. In the initial unadjusted model, IL-7, IL-10, and TNF-α exibited significant differences between RMPW and PMW. However, these differences became non-significant (p > 0.05) in the final model after adjusting for age, which implies a negligible effect of the investigated covariates on salivary cytokine levels when age was considered. Lower levels of IL-6 in PMW, which initially showed no significant difference, became borderline (p = 0.054) in the final model after adjusting for age. CONCLUSIONS After adjusting for multiple factors, no significant difference was found in the salivary levels of the investigated cytokines between RMPW and PMW. Factors such as BMI, perceived health, serum cytokine levels, and periodontal parameters seem to minimally influence these levels in PMW. However, age may be a stronger confounding factor.
Collapse
Affiliation(s)
- Nil Yakar
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, Izmir, Turkey
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Güven Özdemir
- Department of Biology, Basic and Industrial Microbiology Section, Faculty of Science, Ege University, Izmir, Turkey
| | - Harika Atmaca
- Department of Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Asena Türedi
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Çağdaş Şahin
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
17
|
Bautmans I, Knoop V, Beyer I, Bruunsgaard H, Molbo D, Mortensen EL, Lund R. The relationship between self-perceived fatigue, muscle endurance, and circulating markers of inflammation in participants of the Copenhagen aging and Midlife Biobank (CAMB). Eur Rev Aging Phys Act 2024; 21:2. [PMID: 38297218 PMCID: PMC10829210 DOI: 10.1186/s11556-024-00336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Fatigue, low muscle endurance, muscle weakness and low-grade inflammation are strongly related to frailty at higher age. When signs of self-perceived fatigue and low muscle endurance are interrelated with low-grade inflammation at midlife, they might be used as early markers for frailty. This study investigated whether the interrelationships among self-perceived fatigue, muscle endurance and inflammation can be observed at midlife. METHODS A total of 965 participants of the Copenhagen Aging and Midlife Biobank (aged 52 ± 4 years, 536 males, 426 females) were assessed for self-perceived fatigue (20-item multidimensional fatigue inventory), muscle endurance (grip work), circulating markers of inflammation (hsCRP, IL-6, IL-10, TNF-alpha and IFN-γ), daily physical activity (PAS-2), body composition (%body fat assessed by bio-impedance) and self-reported health status. Participants were categorised (correcting for age and gender) according to high fatigue and/or low muscle endurance, differences in inflammatory profile between fatigue categories were assessed by ANCOVA (corrected for PAS-2, %body fat and presence of inflammatory conditions). RESULTS Overall, muscle endurance, fatigue and inflammatory markers were significantly interrelated. Higher levels of hsCRP (p < 0.001), IL-6 (p < 0.001), IL-10 (p = 0.035) and TNF-alpha (p = 0.028) were observed in participants presenting both low muscle endurance and high fatigue. IFN-γ was highest in those with high fatigue but normal muscle endurance (p = 0.015). CONCLUSIONS Middle-aged participants with higher fatigue in combination with low muscle endurance show higher levels of inflammation, independently from physical activity, body fat and inflammatory pathology. The underlying mechanisms should be identified and future studies should also investigate whether these individuals show early signs of reduced physiological reserve capacity, which in later life come to full expression by means of frailty.
Collapse
Affiliation(s)
- Ivan Bautmans
- Gerontology department (GERO), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium.
- Frailty in Ageing Research Group (FRIA), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium.
- Department of Geriatrics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussel, B-1090, Belgium.
- SOMT University of Physiotherapy, Softwareweg 5, Amersfoort, 3821, The Netherlands.
| | - Veerle Knoop
- Gerontology department (GERO), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium
- Frailty in Ageing Research Group (FRIA), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium
- SOMT University of Physiotherapy, Softwareweg 5, Amersfoort, 3821, The Netherlands
| | - Ingo Beyer
- Gerontology department (GERO), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium
- Frailty in Ageing Research Group (FRIA), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussel, B-1090, Belgium
| | - Helle Bruunsgaard
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Center for Inflammation and Metabolism, National University Hospital, Copenhagen, Denmark
| | - Drude Molbo
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Erik Lykke Mortensen
- Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Institute of Preventive Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Rikke Lund
- Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
de Sousa ARS, Ottestad I, Gjevestad GO, Holven KB, Ulven SM, Christensen JJ. Associations between PBMC whole genome transcriptome, muscle strength, muscle mass, and physical performance in healthy home-dwelling older women. GeroScience 2023; 45:3175-3186. [PMID: 37204640 PMCID: PMC10643614 DOI: 10.1007/s11357-023-00819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/07/2023] [Indexed: 05/20/2023] Open
Abstract
Increasing age is accompanied by many changes, including declining functional skeletal muscle health and immune dysfunction. Peripheral blood mononuclear cells (PBMCs) are circulating cells that assemble an immune response, but their whole genome transcriptome has not been studied in the context of age-related muscle health. Consequently, this article explored associations between three muscle variables indicative of functional muscle health - maximum handgrip strength (muscle strength), appendicular skeletal muscle mass index (ASMI, muscle mass), and gait speed (physical performance) - and two groups of bioinformatics-generated PBMC gene expression features (gene expression-estimated leukocyte subset proportions and gene clusters). We analyzed cross-sectional data from 95 home-dwelling healthy women ≥ 70 years, using "cell-type identification by estimating relative subsets of RNA transcripts" (CIBERSORT) to estimate leukocyte subset proportions and "weighted correlation network analysis" (WGCNA) to generate gene clusters. Associations were studied using linear regression models and relevant gene clusters were subjected to gene set enrichment analysis using gene ontology. Gait speed and ASMI associated with CIBERSORT-estimated monocyte proportions (β = - 0.090, 95% CI = (- 0.146, - 0.034), p-value = 0.002 for gait speed, and β = - 0.206, 95% CI = (- 0.385, - 0.028), p-value = 0.024 for ASMI), and gait speed associated with CIBERSORT-estimated M2 macrophage proportions (β = - 0.026, 95% CI = (- 0.043, - 0.008), p-value = 0.004). Furthermore, maximum handgrip strength associated with nine WGCNA gene clusters, enriched in processes related to immune function and skeletal muscle cells (β in the range - 0.007 to 0.008, p-values < 0.05). These results illustrate interactions between skeletal muscle and the immune system, supporting the notion that age-related functional muscle health and the immune system are closely linked.
Collapse
Affiliation(s)
- Ana R S de Sousa
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- The Clinical Nutrition Outpatient Clinic, Section of Clinical Nutrition, Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372, Oslo, Norway
| | - Gyrd O Gjevestad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- TINE SA, Innovation and Marketing, Postboks 113 Kalbakken, 0902, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway.
- Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373, Oslo, Norway.
| |
Collapse
|
19
|
Capogna E, Watne LO, Sørensen Ø, Guichelaar CJ, Idland AV, Halaas NB, Blennow K, Zetterberg H, Walhovd KB, Fjell AM, Vidal-Piñeiro D. Associations of neuroinflammatory IL-6 and IL-8 with brain atrophy, memory decline, and core AD biomarkers - in cognitively unimpaired older adults. Brain Behav Immun 2023; 113:56-65. [PMID: 37400002 DOI: 10.1016/j.bbi.2023.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Concentrations of pro-inflammatory cytokines -interleukin-6 (IL-6) and interleukin-8 (IL-8) - are increased with age and in Alzheimer's disease (AD). It is not clear whether concentrations of IL-6 and IL-8 in the central nervous system predict later brain and cognitive changes over time nor whether this relationship is mediated by core AD biomarkers. Here, 219 cognitively healthy older adults (62-91 years), with baseline cerebrospinal fluid (CSF) measures of IL-6 and IL-8 were followed over time - up to 9 years - with assessments that included cognitive function, structural magnetic resonance imaging, and CSF measurements of phosphorylated tau (p-tau) and amyloid-β (Aβ-42) concentrations (for a subsample). Higher baseline CSF IL-8 was associated with better memory performance over time in the context of lower levels of CSF p-tau and p-tau/Aβ-42 ratio. Higher CSF IL-6 was related to less CSF p-tau changes over time. The results are in line with the hypothesis suggesting that an up-regulation of IL-6 and IL-8 in the brain may play a neuroprotective role in cognitively healthy older adults with lower load of AD pathology.
Collapse
Affiliation(s)
- Elettra Capogna
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway.
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Ahus, Oslo, Norway
| | - Øystein Sørensen
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Carlijn Jamila Guichelaar
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| | - Ane Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders Martin Fjell
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Centre for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373 Oslo, Norway
| |
Collapse
|
20
|
Sultana S, Elengickal A, Bensreti H, de Chantemèle EB, McGee-Lawrence ME, Hamrick MW. The kynurenine pathway in HIV, frailty and inflammaging. Front Immunol 2023; 14:1244622. [PMID: 37744363 PMCID: PMC10514395 DOI: 10.3389/fimmu.2023.1244622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by enzymes including IDO1 that are induced by inflammatory cytokines such as interferon-gamma. Kyn levels in circulation increase with age and Kyn is implicated in several age-related disorders including neurodegeneration, osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive disease in HIV patients, and antiretroviral therapy does not normalize IDO1 activity in these subjects. Kyn is now recognized as an endogenous agonist of the aryl hydrocarbon receptor, and AhR activation itself has been found to induce muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease matrix formation by osteoblasts, and lead to senescence of bone marrow stem cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer therapies. We propose that some of these drugs may be repurposed to improve musculoskeletal health in older adults living with HIV.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
21
|
Ferretti G, Serafini S, Angiolillo A, Monterosso P, Di Costanzo A, Matrone C. Advances in peripheral blood biomarkers of patients with Alzheimer's disease: Moving closer to personalized therapies. Biomed Pharmacother 2023; 165:115094. [PMID: 37392653 DOI: 10.1016/j.biopha.2023.115094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023] Open
Abstract
Recently, measurable peripheral biomarkers in the plasma of patients with Alzheimer's disease (AD) have gained considerable clinical interest. Several studies have identified one or more blood signatures that may facilitate the development of novel diagnostic and therapeutic strategies. For instance, changes in peripheral amyloid β42 (Aβ42) levels have been largely investigated in patients with AD and correlated with the progression of the pathology, although with controversial results. In addition, tumor necrosis factor α (TNFα) has been identified as an inflammatory biomarker strongly associated with AD, and several studies have consistently suggested the pharmacological targeting of TNFα to reduce systemic inflammation and prevent neurotoxicity in AD. Moreover, alterations in plasma metabolite levels appear to predict the progression of systemic processes relevant to brain functions. In this study, we analyzed the changes in the levels of Aβ42, TNFα, and plasma metabolites in subjects with AD and compared the results with those in healthy elderly (HE) subjects. Differences in plasma metabolites of patients with AD were analyzed with respect to Aβ42, TNFα, and the Mini-Mental State Examination (MMSE) score, searching for plasma signatures that changed simultaneously. In addition, the phosphorylation levels of the Tyr682 residue of the amyloid precursor protein (APP), which we previously proposed as a biomarker of AD, were measured in five HE and five AD patients, in whom the levels of Aβ42, TNFα, and two plasma lipid metabolites increased simultaneously. Overall, this study highlights the potential of combining different plasma signatures to define specific clinical phenotypes of patient subgroups, thus paving the way for the stratification of patients with AD and development of personalized approaches.
Collapse
Affiliation(s)
- Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini, 5 80131 Naples, Italy
| | - Sara Serafini
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini, 5 80131 Naples, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100 Campobasso, Italy
| | - Paola Monterosso
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini, 5 80131 Naples, Italy
| | - Alfonso Di Costanzo
- Department of Medicine and Health Sciences, Center for Research and Training in Aging Medicine, University of Molise, 86100 Campobasso, Italy
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, Via Pansini, 5 80131 Naples, Italy.
| |
Collapse
|
22
|
Ooi SL, Micalos PS, Pak SC. Modified Rice Bran Arabinoxylan by Lentinus edodes Mycelial Enzyme as an Immunoceutical for Health and Aging-A Comprehensive Literature Review. Molecules 2023; 28:6313. [PMID: 37687141 PMCID: PMC10488663 DOI: 10.3390/molecules28176313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Rice bran arabinoxylan compound (RBAC) is derived from defatted rice bran enzymatically treated with Lentinus edodes mycelium. This review explores biologically active compounds and mechanisms of action that support RBAC as an immunomodulating nutraceutical in generally healthy and/or aging individuals. Thirty-seven (n = 37) primary research articles fulfilled the selection criteria for review. Most research is based on Biobran MGN-3, which consists of complex heteropolysaccharides with arabinoxylan as its primary structure while also containing galactan and glucan. RBAC was found to invoke immunological activities through direct absorption via the digestive tract and interaction with immune cells at the Peyer's patches. RBAC was shown to promote innate defence by upregulating macrophage phagocytosis and enhancing natural killer cell activity while lowering oxidative stress. Through induction of dendritic cell maturation, RBAC also augments adaptive immunity by promoting T and B lymphocyte proliferation. RBAC acts as an immunomodulator by inhibiting mast cell degranulation during allergic reactions, attenuating inflammation, and downregulating angiogenesis by modulating cytokines and growth factors. RBAC has been shown to be a safe and effective nutraceutical for improving immune health, notably in aging individuals with reduced immune function. Human clinical trials with geriatric participants have demonstrated RBAC to have prophylactic benefits against viral infection and may improve their quality of life. Further research should explore RBAC's bioavailability, pharmacodynamics, and pharmacokinetics of the complex heteropolysaccharides within. Translational research to assess RBAC as a nutraceutical for the aging population is still required, particularly in human studies with larger sample sizes and cohort studies with long follow-up periods.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia;
| | - Peter S. Micalos
- School of Dentistry and Medical Sciences, Charles Sturt University, Port Macquarie, NSW 2444, Australia;
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia;
| |
Collapse
|
23
|
Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol Rev 2023; 103:1137-1191. [PMID: 36239451 PMCID: PMC9886361 DOI: 10.1152/physrev.00037.2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
"Frailty" is a term used to refer to a state characterized by enhanced vulnerability to, and impaired recovery from, stressors compared with a nonfrail state, which is increasingly viewed as a loss of resilience. With increasing life expectancy and the associated rise in years spent with physical frailty, there is a need to understand the clinical and physiological features of frailty and the factors driving it. We describe the clinical definitions of age-related frailty and their limitations in allowing us to understand the pathogenesis of this prevalent condition. Given that age-related frailty manifests in the form of functional declines such as poor balance, falls, and immobility, as an alternative we view frailty from a physiological viewpoint and describe what is known of the organ-based components of frailty, including adiposity, the brain, and neuromuscular, skeletal muscle, immune, and cardiovascular systems, as individual systems and as components in multisystem dysregulation. By doing so we aim to highlight current understanding of the physiological phenotype of frailty and reveal key knowledge gaps and potential mechanistic drivers of the trajectory to frailty. We also review the studies in humans that have intervened with exercise to reduce frailty. We conclude that more longitudinal and interventional clinical studies are required in older adults. Such observational studies should interrogate the progression from a nonfrail to a frail state, assessing individual elements of frailty to produce a deep physiological phenotype of the syndrome. The findings will identify mechanistic drivers of frailty and allow targeted interventions to diminish frailty progression.
Collapse
Affiliation(s)
- Joseph A Taylor
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - David B Bartlett
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina.,Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Thomas A Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Niharika A Duggal
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, https://ror.org/03angcq70University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Fountain WA, Naruse M, Claiborne A, Trappe S, Trappe TA. Controlling Inflammation Improves Aging Skeletal Muscle Health. Exerc Sport Sci Rev 2023; 51:51-56. [PMID: 36722844 PMCID: PMC10033374 DOI: 10.1249/jes.0000000000000313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is associated with a decline in aging skeletal muscle health. Inflammation also seems to interfere with the beneficial skeletal muscle adaptations conferred by exercise training in older individuals. We hypothesize that the cyclooxygenase pathway is partially responsible for this negative inflammatory influence on aging skeletal muscle health and plasticity.
Collapse
|
25
|
Cudna A, Bronisz E, Jopowicz A, Kurkowska-Jastrzębska I. Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. Seizure 2023; 106:129-137. [PMID: 36841062 DOI: 10.1016/j.seizure.2023.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Seizures have been shown to increase blood-brain barrier (BBB) permeability, yet the role of this phenomenon is not fully understood. Additionally, dysfunction of the BBB leads to initiation and propagation of seizures in animal models. To demonstrate the increased permeability of the BBB in time, we investigated changes of the serum levels of BBB markers in patients with epilepsy after bilateral tonic-clonic seizures. We chose markers that might reflect endothelial activation (ICAM-1, selectins), BBB leakage (MMP-9, S100B) and mechanisms of BBB restoration (TIMP-1, thrombomodulin -TM). METHODS We enrolled 50 consecutive patients hospitalised after bilateral tonic-clonic seizures who agreed to take part in the study and 50 participants with no history of epilepsy. Serum levels of selected markers were measured by ELISA at 1-3, 24, and 72 hours after seizures and one time in the control group. RESULTS We found increased levels of S100B, ICAM-1, MMP-9 and P-selectin at 1-3 and 24 hours after seizures and TIMP-1 and TM at 24 and 72 hours after seizures as compared to the control group. The level of E-selectin was decreased at 72 hours after seizures. CONCLUSIONS Our findings suggest early activation of endothelium and increased BBB permeability after seizures. While we are aware of the limitations due to the non-specificity of the tested proteins, our results might indicate the presence of prolonged BBB impairment due to seizure activity.
Collapse
Affiliation(s)
- Agnieszka Cudna
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Elżbieta Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Jopowicz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | |
Collapse
|
26
|
Goodman GW, Nguyen JN, Blixt FW, Maniskas ME, McCullough LD, Chauhan A. Middle Cerebral Artery Occlusion in Aged Animal Model. Methods Mol Biol 2023; 2616:453-465. [PMID: 36715953 DOI: 10.1007/978-1-0716-2926-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stroke is a devastating brain injury resulting in high mortality and substantial loss of function, affecting >15 million people worldwide annually; the majority of which are over 65 years old (Feigin et al., Lancet 383:245-254, 2014; Feigin et al., Lancet Neurol 2:43-53, 2003; Benjamin et al., Circulation 135:e146-e603, 2017; Writing Group et al., Circulation 133:447-454, 2016; Roy-O'Reilly, McCullough, Endocrinology 159:3120-3131, 2018). Aging is a significant risk factor for stroke, and older patients have higher mortality and poorer functional recovery after stroke compared with younger patients (Arboix et al., J Am Geriatr Soc 48:36-41, 2000; Rojas et al., Eur J Neurol 14:895-899, 2007). Despite the importance of aging in the pathophysiology of stroke, the vast majority of preclinical studies have only used young animals. Understanding the mechanisms underlying stroke-induced brain damage and post-stroke functional recovery in aged animals is an urgent need. This step is essential to the development of therapeutics for treating stroke patients, most of whom are elderly. To understand the pathophysiology of ischemic injury induced by middle cerebral artery occlusion (MCAO), one of the most common type of stroke seen clinically (Writing Group et al., Circulation 133:e38-360, 2016), it is imperative to include older animals in preclinical testing. The purpose of this chapter is to provide insight on successfully reproducing MCAO injury in translationally relevant aged animals.
Collapse
Affiliation(s)
- Grant W Goodman
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Justin N Nguyen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael E Maniskas
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
27
|
DeJesus JE, Wen JJ, Radhakrishnan R. Cytokine Pathways in Cardiac Dysfunction following Burn Injury and Changes in Genome Expression. J Pers Med 2022; 12:jpm12111876. [PMID: 36579591 PMCID: PMC9696755 DOI: 10.3390/jpm12111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
In 2016, an estimated 486,000 individuals sustained burn injuries requiring medical attention. Severe burn injuries lead to a persistent, hyperinflammatory response that may last up to 2 years. The persistent release of inflammatory mediators contributes to end-organ dysfunction and changes in genome expression. Burn-induced cardiac dysfunction may lead to heart failure and changes in cardiac remodeling. Cytokines promote the inflammatory cascade and promulgate mechanisms resulting in cardiac dysfunction. Here, we review the mechanisms by which TNFα, IL-1 beta, IL-6, and IL-10 cause cardiac dysfunction in post-burn injuries. We additionally review changes in the cytokine transcriptome caused by inflammation and burn injuries.
Collapse
|
28
|
Minniti G, Pescinini-Salzedas LM, Minniti GADS, Laurindo LF, Barbalho SM, Vargas Sinatora R, Sloan LA, Haber RSDA, Araújo AC, Quesada K, Haber JFDS, Bechara MD, Sloan KP. Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise. Int J Mol Sci 2022; 23:13452. [PMID: 36362238 PMCID: PMC9655425 DOI: 10.3390/ijms232113452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia is a disease that becomes more prevalent as the population ages, since it is directly linked to the process of senility, which courses with muscle atrophy and loss of muscle strength. Over time, sarcopenia is linked to obesity, being known as sarcopenic obesity, and leads to other metabolic changes. At the molecular level, organokines act on different tissues and can improve or harm sarcopenia. It all depends on their production process, which is associated with factors such as physical exercise, the aging process, and metabolic diseases. Because of the seriousness of these repercussions, the aim of this literature review is to conduct a review on the relationship between organokines, sarcopenia, diabetes, and other metabolic repercussions, as well the role of physical exercise. To build this review, PubMed-Medline, Embase, and COCHRANE databases were searched, and only studies written in English were included. It was observed that myokines, adipokines, hepatokines, and osteokines had direct impacts on the pathophysiology of sarcopenia and its metabolic repercussions. Therefore, knowing how organokines act is very important to know their impacts on age, disease prevention, and how they can be related to the prevention of muscle loss.
Collapse
Affiliation(s)
- Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Department of Internal Medicine, University of Texas Medical Branch-Galveston, Galveston, TX 75904, USA
| | - Rafael Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | | |
Collapse
|
29
|
Seymour F, Carmichael J, Taylor C, Parrish C, Cook G. Immune senescence in multiple myeloma-a role for mitochondrial dysfunction? Leukemia 2022; 36:2368-2373. [PMID: 35879358 DOI: 10.1038/s41375-022-01653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Age-related immune dysfunction is primarily mediated by immunosenescence which results in ineffective clearance of infective pathogens, poor vaccine responses and increased susceptibility to multi-morbidities. Immunosenescence-related immunometabolic abnormalities are associated with accelerated aging, an inflammatory immune response (inflammaging) and ultimately frailty syndromes. In addition, several conditions can accelerate the development of immunosenescence, including cancer. This is a bi-directional interaction since inflammaging may create a permissive environment for tumour development. Multiple myeloma (MM) is a mature B-cell malignancy that presents in the older population. MM exemplifies the interaction of age- (Host Response Biology; HRB) and disease-related immunological dysfunction, contributing to the development of a frailty syndrome which impairs the therapeutic impact of recent advances in treatment strategies. Understanding the mechanisms by which accelerated immunological aging is induced and the ways in which a tumour such as MM influences this process is key to overcoming therapeutic barriers. A link between cellular mitochondrial dysfunction and the acquisition of an abnormal immune phenotype has recently been described and has widespread physiological consequence beyond the impact on the immune system. Here we outline our current understanding of normal immune aging, describe the mechanism of immunometabolic dysfunction in accelerating this process, and propose the role these processes are playing in the pathogenesis of MM.
Collapse
Affiliation(s)
- Frances Seymour
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK.
| | - Jonathan Carmichael
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
| | - Claire Taylor
- Experimental Haematology, Leeds Institute of Medical Research, University of Leeds UK, Leeds, UK
| | - Christopher Parrish
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| | - Gordon Cook
- Department of Haematology, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- NIHR (Leeds) Medtech & In vitro Diagnostic Cooperative, Leeds, UK
- Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trial Research, University of Leeds UK, Leeds, UK
| |
Collapse
|
30
|
Langhein M, Seitz-Holland J, Lyall AE, Pasternak O, Chunga N, Cetin-Karayumak S, Kubicki A, Mulert C, Espinoza RT, Narr KL, Kubicki M. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment - A pilot study. J Affect Disord 2022; 314:78-85. [PMID: 35779673 PMCID: PMC11186306 DOI: 10.1016/j.jad.2022.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD. METHODS Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion. We utilized MANCOVAs and ANCOVAs to compare tissue-specific fractional anisotropy (FAT) and free-water (FW) of the forceps and cingulum, and the ratio of pro-inflammatory interleukin(IL)-8/anti-inflammatory IL-10 between individuals with MDD and 15 healthy controls at baseline. Next, we compared all baseline measures between ketamine responders (6) and non-responders (4) and analyzed changes in imaging and blood data after ketamine infusion. RESULTS The MDD group exhibited an increased IL-8/IL-10 ratio compared to controls at baseline (p = .040), which positively correlated with average FW across regions of interest (p = .013). Ketamine responders demonstrated higher baseline FAT in the left cingulum than non-responders (p = .023). Ketamine infusion did not influence WM microstructure but decreased the IL-8/IL-10 ratio (p = .043). LIMITATIONS The small sample size and short follow-up period limit the conclusion regarding the longer-term effects of ketamine in MDD. CONCLUSIONS This pilot study provides evidence for the role of inflammation in MDD by illustrating an association between peripheral inflammation and WM microstructure. Additionally, we demonstrate that free-water diffusion-weighted imaging might be a valuable tool to determine which individuals with MDD benefit from the anti-inflammatory mediated effects of ketamine treatment.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Chunga
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Christoph Mulert
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Huschtscha Z, Young P, Parr A, Porter J, Costa R. Does intestinal epithelial integrity status in response to high-protein dairy milk beverage with or without progressive resistance training impact systemic inflammatory responses in an active aging population? PLoS One 2022; 17:e0274210. [PMID: 36054131 PMCID: PMC9439207 DOI: 10.1371/journal.pone.0274210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Increased resting systemic anti-inflammatory responses have previously been reported after a period of progressive resistance training (PRT) with daily consumption of a high-protein dairy beverage. The study aimed to investigate the independent and combined effects of consuming a high protein dairy milk beverage with or without a PRT on markers of intestinal epithelial integrity and selected systemic inflammatory responses in active older (≥50 yrs) adults. Thirty two (males n = 24, females n = 8) active older adults [mean (SD): Age 62 (7) years, weight 74.2 (14.0) kg, height 1.73 (10.0) cm, BMI 24.9 (4.0) kg/m2, and body fat mass: 25.8 (9.1)%)], that reported exercising ≥3/week (211 (91) min/week) were randomly allocated into one of four groups: dairy milk (DM), exercise and dairy milk (EX+DM), exercise alone (EX), and control (CON). Groups with EX underwent 12-weeks whole-body PRT program (x3 sessions/week), groups with DM consumed the beverage twice daily (30g protein/day), and CON was required to carry out their ad libitum dietary and exercise habits. Plasma concentrations of CRP, IL-1ß, IL-1ra, LBP, and sCD14 were determined by ELISA from samples collected at weeks 0, 6, and 12. Data were analyzed (SPSS v25.0) for group and time differences using a two-way repeated-measures ANOVA with post hoc analysis. No significant differences were observed for any of the measured plasma biomarkers. The previously observed increase in anti-inflammatory cytokine response is likely due to a muscular cellular response and not an indication of intestinal epithelial integrity disturbance and/or subsequent translocation of luminal originated pathogenic bacterial compounds.
Collapse
Affiliation(s)
- Zoya Huschtscha
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Pascale Young
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Alexandra Parr
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne Burwood Campus, Burwood, Victoria, Australia
| | - Ricardo Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
- * E-mail:
| |
Collapse
|
32
|
Rose GL, Farley MJ, Flemming NB, Skinner TL, Schaumberg MA. Between-day reliability of cytokines and adipokines for application in research and practice. Front Physiol 2022; 13:967169. [PMID: 36072844 PMCID: PMC9444151 DOI: 10.3389/fphys.2022.967169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: This study assessed the biological reliability of peripheral human cytokines and adipokines, and the influence of participant characteristics on total error. This has essential application to interventional cytokine measurement to ensure that reported results are interpreted with confidence. Methods: Participants (49% female, 18–85 years, n = 84) completed two consecutive-day testing sessions. Participants provided a venous blood sample at the same time of day across two consecutive days, under standardized participant presentation, including 24-h rested and 12-h fasted conditions. Multiplex immunoassay was used to assess inflammatory analytes from samples (predominantly plasma). Repeat measurements were conducted between-day for total precision quantification, and technical (technique) error was negated from the total to provide an estimate of biological (attributed to participant presentation) error. Results: Whilst there was no evidence of statistically significant biological error, a small amount of biological error was consistently present across most analytes (∼3.3%/0.07 pg/ml), which was largest for measurement of leptin (7.3%/210 pg/ml). There was also an influence of sex on reliability of leptin and adiponectin (total model explained 6–7% of error variation), where females demonstrated the greatest error. Conclusion: Biological error reported in this study should be applied to any future study or individual with a repeated measurement of cytokine concentrations over time that maintain best practice procedures (12-h fasted, 24-h rested). In most cases, raw error should be used, with exceptions for women for measurement of leptin and adiponectin. This approach will ensure that results are reported with certainty for improved reporting of intervention efficacy.
Collapse
Affiliation(s)
- Grace L. Rose
- School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
- The School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- *Correspondence: Grace L. Rose,
| | - Morgan J. Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole B. Flemming
- The School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Medicine and Dentistry, Griffith University, Birtinya, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Tina L. Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mia A. Schaumberg
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
- The School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
33
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
34
|
Yoshida Y, Shimizu I, Minamino T. Capillaries as a Therapeutic Target for Heart Failure. J Atheroscler Thromb 2022; 29:971-988. [PMID: 35370224 PMCID: PMC9252615 DOI: 10.5551/jat.rv17064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMEDCREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
35
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
36
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
37
|
Cordingley DM, Anderson JE, Cornish SM. Myokine Response to Blood-Flow Restricted Resistance Exercise in Younger and Older Males in an Untrained and Resistance-Trained State: A Pilot Study. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2022. [PMCID: PMC9099348 DOI: 10.1007/s42978-022-00164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose The purpose of this study was to examine the response of myokines to blood-flow restricted resistance-exercise (BFR-RE) in younger and older males before and after completing a 12-week resistance-training program. Methods There were 8 younger (24.8 ± 3.9 yrs) and 7 older (68.3 ± 5.0 yrs) untrained male participants completed this study. Anthropometric and maximal strength (1RM) measurements were collected before and after a 12-week, supervised, progressive full-body resistance-training program. As well, an acute bout of full-body BFR-RE was performed with venipuncture blood samples collected before and immediately following the BFR-RE, followed by sampling at 3, 6, 24 and 48 h. Results The 12-week training program stimulated a 32.2% increase in average strength and 30% increase in strength per kg of fat free mass. The response of particular myokines to the acute bout of BFR-RE was influenced training status (IL-4, untrained = 78.1 ± 133.2 pg/mL vs. trained = 59.8 ± 121.6 pg/mL, P = 0.019; IL-7, untrained = 3.46 ± 1.8 pg/mL vs. trained = 2.66 ± 1.3 pg/mL, P = 0.047) or both training and age (irisin, P = 0.04; leukemia inhibitory factor, P < 0.001). As well, changes in strength per kg of fat free mass were correlated with area under the curve for IL-4 (r = 0.537; P = 0.039), IL-6 (r = 0. 525; P = 0.044) and LIF (r = − 0.548; P = 0.035) in the untrained condition. Conclusion This study identified that both age and training status influence the myokine response to an acute bout of BFR-RE with the release of IL-4, IL-6 and LIF in the untrained state being associated with changes in strength per kg of fat free mass.
Collapse
Affiliation(s)
- Dean M. Cordingley
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Pan Am Clinic Foundation, 75 Poseidon Bay, Winnipeg, MB R3M 3E4 Canada
| | | | - Stephen M. Cornish
- Applied Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, 110 Frank Kennedy Centre, Winnipeg, MB R3T 2N2 Canada
- Centre for Aging, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
38
|
Smoking-, Alcohol-, and Age-Related Alterations of Blood Monocyte Subsets and Circulating CD4/CD8 T Cells in Head and Neck Cancer. BIOLOGY 2022; 11:biology11050658. [PMID: 35625386 PMCID: PMC9138171 DOI: 10.3390/biology11050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a heterogeneous malignant disease of the oral cavity, pharynx, and larynx. Although cigarette smoking, alcohol abuse, and aging are well-established associated factors for HNSCC, their respective influence on immunologic alterations of monocyte subsets or T-cell compositions in the peripheral blood has not yet been fully unveiled. Using flow cytometry, whole blood measurements of CD14/CD16 monocyte subsets and analyses of T-cell subsets in isolated PBMC fractions were carried out in 64 HNSCC patients in view of their tobacco and alcohol consumption, as well as their age, in comparison to healthy volunteers. Flow cytometric analysis revealed significantly increased expression of monocytic CD11b, as well as significantly decreased expression levels of CX3CR1 on classical and intermediate monocyte subsets in smoking-related and in alcohol-related HNSCC patients compared to healthy donors. Peripheral monocytes revealed an age-correlated significant decrease in PD-L1 within the entirety of the HNSCC cohort. Furthermore, we observed significantly decreased abundances of CD8+ effector memory T cells in active-smoking HNSCC patients and significantly increased percentages of CD8+ effector T cells in alcohol-abusing patients compared to the non-smoking/non-drinking patient cohort. Our data indicate an enhanced influence of smoking and alcohol abuse on the dynamics and characteristics of circulating monocyte subsets and CD4/CD8 T-cell subset proportions, as well as an age-related weakened immunosuppression in head and neck cancer patients.
Collapse
|
39
|
Dugué PA, Hodge AM, Ulvik A, Ueland PM, Midttun Ø, Rinaldi S, MacInnis RJ, Li SX, Meyer K, Navionis AS, Flicker L, Severi G, English DR, Vineis P, Tell GS, Southey MC, Milne RL, Giles GG. Association of Markers of Inflammation, the Kynurenine Pathway and B Vitamins with Age and Mortality, and a Signature of Inflammaging. J Gerontol A Biol Sci Med Sci 2022; 77:826-836. [PMID: 34117761 DOI: 10.1093/gerona/glab163] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is a key feature of aging. We aimed to (i) investigate the association of 34 blood markers potentially involved in inflammatory processes with age and mortality and (ii) develop a signature of "inflammaging." METHODS Thirty-four blood markers relating to inflammation, B vitamin status, and the kynurenine pathway were measured in 976 participants in the Melbourne Collaborative Cohort Study at baseline (median age = 59 years) and follow-up (median age = 70 years). Associations with age and mortality were assessed using linear and Cox regression, respectively. A parsimonious signature of inflammaging was developed and its association with mortality was compared with 2 marker scores calculated across all markers associated with age and mortality, respectively. RESULTS The majority of markers (30/34) were associated with age, with stronger associations observed for neopterin, cystatin C, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), several markers of the kynurenine pathway and derived indices KTR (kynurenine/tryptophan ratio), PAr index (ratio of 4-pyridoxic acid and the sum of pyridoxal 5'-phosphate and pyridoxal), and HK:XA (3-hydroxykynurenine/xanthurenic acid ratio). Many markers (17/34) showed an association with mortality, in particular IL-6, neopterin, C-reactive protein, quinolinic acid, PAr index, and KTR. The inflammaging signature included 10 markers and was strongly associated with mortality (hazard ratio [HR] per SD = 1.40, 95% CI: 1.24-1.57, p = 2 × 10-8), similar to scores based on all age-associated (HR = 1.38, 95% CI: 1.23-1.55, p = 4 × 10-8) and mortality-associated markers (HR = 1.43, 95% CI: 1.28-1.60, p = 1 × 10-10), respectively. Strong evidence of replication of the inflammaging signature association with mortality was found in the Hordaland Health Study. CONCLUSION Our study highlights the key role of the kynurenine pathway and vitamin B6 catabolism in aging, along with other well-established inflammation-related markers. A signature of inflammaging based on 10 markers was strongly associated with mortality.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Norway
| | | | - Sabina Rinaldi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sherly X Li
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
- Medical Research Council Epidemiology Unit, University of Cambridge, UK
| | | | - Anne-Sophie Navionis
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- WA Centre for Health and Ageing of the University of Western Australia, Perth, Australia
| | - Gianluca Severi
- Centre for Research into Epidemiology and Population Health (CESP), Faculté de Medicine, Université Paris-Saclay, Inserm, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Norway
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Alizadeh Pahlavani H. Exercise Therapy for People With Sarcopenic Obesity: Myokines and Adipokines as Effective Actors. Front Endocrinol (Lausanne) 2022; 13:811751. [PMID: 35250869 PMCID: PMC8892203 DOI: 10.3389/fendo.2022.811751] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenic obesity is defined as a multifactorial disease in aging with decreased body muscle, decreased muscle strength, decreased independence, increased fat mass, due to decreased physical activity, changes in adipokines and myokines, and decreased satellite cells. People with sarcopenic obesity cause harmful changes in myokines and adipokines. These changes are due to a decrease interleukin-10 (IL-10), interleukin-15 (IL-15), insulin-like growth factor hormone (IGF-1), irisin, leukemia inhibitory factor (LIF), fibroblast growth factor-21 (FGF-21), adiponectin, and apelin. While factors such as myostatin, leptin, interleukin-6 (IL-6), interleukin-8 (IL-8), and resistin increase. The consequences of these changes are an increase in inflammatory factors, increased degradation of muscle proteins, increased fat mass, and decreased muscle tissue, which exacerbates sarcopenia obesity. In contrast, exercise, especially strength training, reverses this process, which includes increasing muscle protein synthesis, increasing myogenesis, increasing mitochondrial biogenesis, increasing brown fat, reducing white fat, reducing inflammatory factors, and reducing muscle atrophy. Since some people with chronic diseases are not able to do high-intensity strength training, exercises with blood flow restriction (BFR) are newly recommended. Numerous studies have shown that low-intensity BFR training produces the same increase in hypertrophy and muscle strength such as high-intensity strength training. Therefore, it seems that exercise interventions with BFR can be an effective way to prevent the exacerbation of sarcopenia obesity. However, due to limited studies on adipokines and exercises with BFR in people with sarcopenic obesity, more research is needed.
Collapse
|
41
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
42
|
Liberale L, Bonetti NR, Puspitasari YM, Vukolic A, Akhmedov A, Diaz-Cañestro C, Keller S, Montecucco F, Merlini M, Semerano A, Giacalone G, Bacigaluppi M, Sessa M, Ruschitzka F, Lüscher TF, Libby P, Beer JH, Camici GG. TNF-α antagonism rescues the effect of ageing on stroke: Perspectives for targeting inflamm-ageing. Eur J Clin Invest 2021; 51:e13600. [PMID: 34076259 PMCID: PMC8596431 DOI: 10.1111/eci.13600] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
AIMS Epidemiologic evidence links ischemic stroke to age, yet the mechanisms that underlie the specific and independent effects of age on stroke remain elusive, impeding the development of targeted treatments. This study tested the hypothesis that age directly aggravates stroke outcomes and proposes inflamm-aging as a mediator and potential therapeutic target. METHODS 3 months- (young) and 18-20 months-old (old) mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 minutes followed by 48 hours of reperfusion. Old animals received weekly treatment with the TNF-α neutralizing antibody adalimumab over 4 weeks before tMCAO in a separate set of experiments. Plasma levels of TNF- α were assessed in patients with ischemic stroke and correlated with age and outcome. RESULTS Old mice displayed larger stroke size than young ones with increased neuromotor deficit. Immunohistochemical analysis revealed impairment of the blood-brain barrier in old mice, i.e. increased post-stroke degradation of endothelial tight junctions and expression of tight junctions-digesting and neurotoxic matrix metalloproteinases. At baseline, old animals showed a broad modulation of several circulating inflammatory mediators. TNF-α displayed the highest increase in old animals and its inhibition restored the volume of stroke, neuromotor performance, and survival rates of old mice to the levels observed in young ones. Patients with ischemic stroke showed increased TNF-α plasma levels which correlated with worsened short-term neurological outcome as well as with age. CONCLUSIONS This study identifies TNF-α as a causative contributor to the deleterious effect of aging on stroke and points to inflamm-aging as a mechanism of age-related worsening of stroke outcomes and potential therapeutic target in this context. Thus, this work provides a basis for tailoring novel stroke therapies for the particularly vulnerable elderly population.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Nicole R Bonetti
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | | | - Ana Vukolic
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Stephan Keller
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Mario Merlini
- Blood & Brain @ Caen-Normandie Institute, GIP Cyceron, Caen, France
| | - Aurora Semerano
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Giacalone
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Marco Bacigaluppi
- Department of Neurology, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Sessa
- Department of Neurology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Felismino ES, Santos JMB, Rossi M, Santos CAF, Durigon EL, Oliveira DBL, Thomazelli LM, Monteiro FR, Sperandio A, Apostólico JS, França CN, Amaral JB, Amirato GR, Vieira RP, Vaisberg M, Bachi ALL. Better Response to Influenza Virus Vaccination in Physically Trained Older Adults Is Associated With Reductions of Cytomegalovirus-Specific Immunoglobulins as Well as Improvements in the Inflammatory and CD8 + T-Cell Profiles. Front Immunol 2021; 12:713763. [PMID: 34712226 PMCID: PMC8546344 DOI: 10.3389/fimmu.2021.713763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic cytomegalovirus (CMV) infection is a trigger factor for the development of immunosenescence and negatively impacts the immune response to influenza virus vaccination (IVV) in older adults. However, the role of physical exercise training in this context is unknown. Thus, the aim of this study was to investigate whether the regular practice of combined exercise training can improve the specific antibody response to IVV in CMV-seropositive older adults. Eighty older adults were distributed into two groups—non-practitioners (NP, n = 31, age = 74.06 ± 6.4 years) and practitioners of combined exercise training (CET, n = 49, age = 71.7 ± 5.8 years)—for at least 12 months. Both volunteer groups were submitted to IVV and blood samples were collected before (pre) and 30 days after (post) the vaccination. Concerning the specific antibody response to IVV, higher serum levels of specific immunoglobulin A (IgA) were found in the CET group post- than pre-vaccination (p < 0.01), whereas higher levels of specific immunoglobulin M (IgM) were observed both in the NP (p < 0.05) and CET (p < 0.001) groups post-vaccination as compared to the pre-vaccination values. Serum levels of specific immunoglobulin G (IgG) for IVV and CMV, as well as interleukin 6 (IL-6) and IL-10, were similar between the time points evaluated. However, the IL-10/IL-6 ratio post-vaccination was higher (p < 0.05) in the CET group than that before vaccination. Negative correlations were observed between the specific IgG levels for IVV and CMV only in the CET group, both pre- and post-vaccination. In addition, negative correlations were found between IL-10 and specific IgG for CMV in all volunteer groups pre- and post-vaccination, whereas a positive correlation between IL-10 and specific-IgG for IVV pre- and post-vaccination was observed in the CET group. In addition, with the hemagglutination inhibition (HAI) assay, it was found that 32.2% of the NP group and 32.6% of the CET group were responders to IVV and displayed reductions in the CMV serostatus (p < 0.05 and p < 0.001, respectively) and increases in naive and effector CD8+ T cells post-vaccination (p < 0.01). However, only the responders from the CET group showed significant reductions in the ratio of effector to naive CD8+ T cells (p < 0.05) and increased IL-10 levels post-vaccination (p < 0.001). In summary, this study demonstrates that the improvement in the response to IVV in CMV-seropositive older adults was related to an anti-inflammatory status and enhancement of naive CD8+ T cells, particularly associated with regular practice of CET.
Collapse
Affiliation(s)
- Eduardo S Felismino
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Juliana M B Santos
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil
| | - Marcelo Rossi
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos A F Santos
- Department of Medicine, Geriatry, Paulista School of Medicine (EPM), São Paulo, Brazil
| | - Edison L Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil.,Scientific Platform Pasteur-University of São Paulo, São Paulo, Brazil
| | - Danielle B L Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luciano M Thomazelli
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Fernanda R Monteiro
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil.,Method Faculty of São Paulo, São Paulo, Brazil
| | | | - Juliana S Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carolina N França
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Jonatas B Amaral
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Gislene R Amirato
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo P Vieira
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil.,Post-Graduation Program in Bioengineering, Universidade Brasil, São Paulo, Brazil.,Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| | - Mauro Vaisberg
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - André L L Bachi
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil.,Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil.,Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| |
Collapse
|
44
|
D’Souza SS, Zhang Y, Bailey JT, Fung ITH, Kuentzel ML, Chittur SV, Yang Q. Type I Interferon signaling controls the accumulation and transcriptomes of monocytes in the aged lung. Aging Cell 2021; 20:e13470. [PMID: 34547174 PMCID: PMC8520712 DOI: 10.1111/acel.13470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Aging is paradoxically associated with a deteriorated immune defense (immunosenescence) and increased basal levels of tissue inflammation (inflammaging). The lung is particularly sensitive to the effects of aging. The immune cell mechanisms underlying physiological lung aging remain poorly understood. Here we reveal that aging leads to increased interferon signaling and elevated concentrations of chemokines in the lung, which is associated with infiltration of monocytes into the lung parenchyma. scRNA‐seq identified a novel Type‐1 interferon signaling dependent monocyte subset (MO‐ifn) that upregulated IFNAR1 expression and exhibited greater transcriptomal changes with aging than the other monocytes. Blockade of type‐1 interferon signaling by treatment with anti‐IFNAR1 neutralizing antibodies rapidly ablated MO‐ifn cells. Treatment with anti‐IFNAR1 antibodies also reduced airway chemokine concentrations and repressed the accumulation of the overall monocyte population in the parenchyma of the aged lung. Together, our work suggests that physiological aging is associated with increased basal level of airway monocyte infiltration and inflammation in part due to elevated type‐1 interferon signaling.
Collapse
Affiliation(s)
- Shanti S. D’Souza
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Yuanyue Zhang
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Jacob T. Bailey
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Ivan T. H. Fung
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Marcy L. Kuentzel
- Center for Functional Genomics University at Albany‐SUNY Rensselaer NY USA
| | - Sridar V. Chittur
- Center for Functional Genomics University at Albany‐SUNY Rensselaer NY USA
| | - Qi Yang
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| |
Collapse
|
45
|
Hayes LD, Herbert P, Sculthorpe NF, Grace FM. Short-Term and Lifelong Exercise Training Lowers Inflammatory Mediators in Older Men. Front Physiol 2021; 12:702248. [PMID: 34489725 PMCID: PMC8417555 DOI: 10.3389/fphys.2021.702248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Increased basal low-grade inflammation is observed with advancing age, which is augmented by physical inactivity. However, data regarding the influence of lifelong exercise training and particularly high-intensity interval training (HIIT) on inflammatory mediators in older men are scarce. Therefore, we examined effects of 6weeks of aerobic preconditioning followed by 6weeks of HIIT on inflammatory mediators [interleukin (IL)-6, homocysteine, and high-sensitivity C-reactive protein (hsCRP)] in previously sedentary older men (SED) and masters athletes (LEX). Further, we investigated whether SED exhibited greater basal inflammatory biomarkers compared to LEX. Twenty-two men (aged 62±2years) participated in the SED group, while 17 age-matched LEX men (aged 60±5years) also participated as a positive comparison group. In SED, preconditioning (P=0.030, d=0.34) and HIIT (P=0.030, d=0.48) caused a reduction in IL-6 compared to enrollment. SED homocysteine did not change throughout (P>0.57; d<0.26), while the decrease in hsCRP after preconditioning (P=0.486, d=0.25) and after HIIT (P=0.781, d=0.23) compared to enrollment was small. HIIT did not influence IL-6 or hsCRP in LEX (all P>0.42; d<0.3). Homocysteine increased from enrollment to post-HIIT in LEX (P=0.144, d=0.83), but all other perturbations were trivial. IL-6 and hsCRP were greater in SED than LEX throughout the investigation (all P<0.029; d>0.72), but homocysteine was not different (all P >0.131; d<0.41). Results of this study suggest moderate-intensity aerobic exercise and HIIT lowers IL-6 (and possible hsCRP) in previously sedentary older men. Moreover, lifelong exercise is associated with reduced concentrations of some inflammatory biomarkers in older males, and therefore, physical activity, rather than age per se, is implicated in chronic low-grade inflammation. Moreover, physical inactivity-induced inflammation may be partly salvaged by short-term exercise training.
Collapse
Affiliation(s)
- Lawrence D Hayes
- School of Health and Life Sciences, University of the West of Scotland, Glasgow, United Kingdom
| | - Peter Herbert
- School of Sport, Health and Outdoor Education, University of Wales Trinity Saint David, Carmarthen, United Kingdom
| | - Nicholas F Sculthorpe
- School of Health and Life Sciences, University of the West of Scotland, Glasgow, United Kingdom
| | - Fergal M Grace
- Faculty of Health, Federation University, Ballarat, VIC, Australia
| |
Collapse
|
46
|
Cho JM, Yoo D, Lee JY, Oh MS, Ha KC, Baek HI, Lee SM, Lee JH, Yoo HJ. Supplementation with a Natural Source of Amino Acids, Sil-Q1 (Silk Peptide), Enhances Natural Killer Cell Activity: A Redesigned Clinical Trial with a Reduced Supplementation Dose and Minimized Seasonal Effects in a Larger Population. Nutrients 2021; 13:2930. [PMID: 34578808 PMCID: PMC8466343 DOI: 10.3390/nu13092930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to re-validate the changes in natural killer (NK) cell cytotoxicity and cytokines related to T cells after Sil-Q1 (SQ; silk peptide) supplementation in a larger pool of Korean adults with minimized daily dose of SQ and controlling seasonal influence compared to the previous study. A total of 130 subjects were randomly assigned (1:1) to consume either 7.5 g of SQ or placebo for 8 weeks. NK cell cytotoxicity and cytokines were measured at T0 (baseline) and T8 (follow-up). Comparing the NK cell cytotoxicity values at T0 and T8 within each group, the cytotoxicity at all effector cell (E) to target cell (T) ratios of 10:1, 5:1, 2.5:1, and 1.25:1 was significantly increased in the SQ group at T8. Additionally, significant differences in the changed value (Δ, subtract baseline values from follow-up values) comparison between the groups at E:T = 10:1, 5:1, and 2.5:1 were found. As a secondary endpoint, the interleukin (IL)-12 level in the SQ group was significantly increased for 8 weeks, and Δ IL-12 in the SQ group was greater than in the placebo group. In conclusion, the present study showed considerable practical implications of SQ supplementation. Thus, SQ is an effective and safe functional food supplement for enhancing immune function.
Collapse
Affiliation(s)
- Jung Min Cho
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (J.M.C.); (D.Y.); (J.H.L.)
| | - Dokyeong Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (J.M.C.); (D.Y.); (J.H.L.)
| | - Jeong-Yong Lee
- WORLDWAY Co., Ltd., Sejong-si 30003, Korea; (J.-Y.L.); (M.-S.O.)
| | - Mi-Sun Oh
- WORLDWAY Co., Ltd., Sejong-si 30003, Korea; (J.-Y.L.); (M.-S.O.)
| | - Ki-Chan Ha
- Healthcare Claims & Management Inc., Jeonju 54810, Korea; (K.-C.H.); (H.-I.B.)
| | - Hyang-Im Baek
- Healthcare Claims & Management Inc., Jeonju 54810, Korea; (K.-C.H.); (H.-I.B.)
| | - Seung-Min Lee
- Brain Korea 21 PLUS Project, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea;
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul 03722, Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (J.M.C.); (D.Y.); (J.H.L.)
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul 03722, Korea
| | - Hye Jin Yoo
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Korea; (J.M.C.); (D.Y.); (J.H.L.)
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
47
|
Wen CJ, Chang CH, Chen CY, Peng JK, Huang HL, Chuang PN, Chen CY, Tsai JS. Age-dependent messenger RNA expression of toll-like receptor 4 and intercellular adhesion molecule-1 in peripheral blood mononuclear cells. Eur J Clin Invest 2021; 51:e13522. [PMID: 33590878 DOI: 10.1111/eci.13522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inflammation plays an important role in the ageing process in which monocytes/macrophages are important players. Intercellular adhesion molecule-1 (ICAM-1), tumour necrosis factor-α (TNF-α) and Toll-like receptor 4 (TLR4) are well-known inflammatory markers. This study aimed to investigate the relationship between age and the expression and correlation of ICAM-1, TNF-α and TLR4 mRNA in peripheral blood mononuclear cells (PBMCs). METHODS A total of 239 participants were recruited in a medical centre in Taiwan. The mRNA isolated from the PBMCs was used to determine the levels of ICAM-1, TNF-α and TLR4 mRNAs with real-time polymerase chain reaction (PCR). The propensity-matched analysis was also applied for subgroup analysis. RESULTS When compared 189 older adults (≧65 years) to 50 younger adults (<65 years), the ICAM-1, TNF-α and TLR4 mRNA levels in PBMCs were significantly higher in older adults (2.00 ± 0.72 vs 0.87 ± 0.34 for ICAM-1, 2.32 ± 0.69 vs 1.15 ± 0.44 for TNF-α and 1.56 ± 0.47 vs 1.05 ± 0.51 for TLR4, and all P < .0001). Also, both age and TLR4 were independent factors affecting mononuclear cell ICAM-1 in the multiple linear regression analysis (P < .0001). CONCLUSION The mRNA levels of ICAM-1 and TLR4 in PBMCs are higher in older adults than those in younger adults. TLR4 is an independent factor affecting ICAM-1 expression in PBMCs, especially in older adults. This may suggest that ICAM-1 and TLR4 in PBMCs are potential biomarkers and their relationship may shed some light on the ageing process.
Collapse
Affiliation(s)
- Chiung-Jung Wen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Ying Chen
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Kuei Peng
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Liang Huang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Ni Chuang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yu Chen
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Geriatric Research, Institute of Population Health Science, National Health Research Institutes, Zhunan, Taiwan
| | - Jaw-Shiun Tsai
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center for Complementary and Integrated Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
48
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
49
|
Hirata Y, Katsukura Y, Henmi Y, Ozawa R, Shimazaki S, Kurosawa A, Torii Y, Takahashi H, Iwata H, Kuwayama T, Shirasuna K. Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J Reprod Dev 2021; 67:257-264. [PMID: 34176822 PMCID: PMC8423608 DOI: 10.1262/jrd.2021-034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Advanced maternal age is a risk factor for female infertility, and placental dysfunction is considered one of the causes of pregnancy complications. We investigated the effects of advanced
maternal aging on pregnancy outcomes and placental senescence. Female pregnant mice were separated into three groups: young (3 months old), middle (8–9 months old), and aged (11–13 months
old). Although the body weights of young and middle dams gradually increased during pregnancy, the body weight of aged dams only increased slightly. The placental weight and resorption rate
were significantly higher, and live fetal weights were reduced in a maternal age-dependent manner. Although mRNA expression of senescence regulatory factors (p16 and p21) increased in the
spleen of aged dams, mRNA expression of p16 did not change and that of p21 was reduced in the placenta of aged dams. Using a cytokine array of proteins extracted from placental tissues, the
expression of various types of senescence-associated secretory phenotype (SASP) factors was decreased in aged dams compared with young and middle dams. The aged maternal placenta showed
reduced immune cell accumulation compared with the young placenta. Our present results suggest that models using pregnant mice older than 8 months are more suitable for verifying older human
pregnancies. These findings suggest that general cellular senescence programs may not be included in the placenta and that placental functions, including SASP production and immune cell
accumulation, gradually decrease in a maternal age-dependent manner, resulting in a higher rate of pregnancy complications.
Collapse
Affiliation(s)
- Yoshiki Hirata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yusuke Katsukura
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yuka Henmi
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Sayaka Shimazaki
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Akira Kurosawa
- Laboratory of Animal Nutrition, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, Kanagawa 234-0034, Japan
| |
Collapse
|
50
|
Moreno-Fernandez ME, Sharma V, Stankiewicz TE, Oates JR, Doll JR, Damen MSMA, Almanan MATA, Chougnet CA, Hildeman DA, Divanovic S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr Diabetes 2021; 11:15. [PMID: 34099626 PMCID: PMC8184786 DOI: 10.1038/s41387-021-00157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vishakha Sharma
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maha A T A Almanan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Center for Transplant Immunology, and Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|