1
|
Daisley BA, Allen-Vercoe E. Microbes as medicine. Ann N Y Acad Sci 2024. [PMID: 39392836 DOI: 10.1111/nyas.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Over the last two decades, advancements in sequencing technologies have significantly deepened our understanding of the human microbiome's complexity, leading to increased concerns about the detrimental effects of antibiotics on these intricate microbial ecosystems. Concurrently, the rise in antimicrobial resistance has intensified the focus on how beneficial microbes can be harnessed to treat diseases and improve health and offer potentially promising alternatives to traditional antibiotic treatments. Here, we provide a comprehensive overview of both established and emerging microbe-centric therapies, from probiotics to advanced microbial ecosystem therapeutics, examine the sophisticated ways in which microbes are used medicinally, and consider their impacts on microbiome homeostasis and health outcomes through a microbial ecology lens. In addition, we explore the concept of rewilding the human microbiome by reintroducing "missing microbes" from nonindustrialized societies and personalizing microbiome modulation to fit individual microbial profiles-highlighting several promising directions for future research. Ultimately, the advancements in sequencing technologies combined with innovative microbial therapies and personalized approaches herald a new era in medicine poised to address antibiotic resistance and improve health outcomes through targeted microbiome management.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Cao S, Pierson JT, Bond AH, Zhang S, Gold A, Zhang H, Zamary KM, Moats P, Teegarden MD, Peterson DG, Mo X, Zhu J, Bruno RS. Intestinal-level anti-inflammatory bioactivities of whole wheat: Rationale, design, and methods of a randomized, controlled, crossover dietary trial in adults with prediabetes. Nutr Res 2024; 131:83-95. [PMID: 39378659 DOI: 10.1016/j.nutres.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Randomized controlled trials (RCT) demonstrate that whole wheat consumption improves glycemia. However, substantial inter-individual variation is often observed, highlighting that dietary whole grain recommendations may not support the health of all persons. The objective of this report is to describe the rationale and design of a planned RCT aimed at establishing the gut microbiota and metabolome signatures that predict whole wheat-mediated improvements in glucose tolerance in adults with prediabetes. It is hypothesized that a controlled diet containing wheat bread (WHEAT; 160 g/day) compared with refined bread (WHITE) will improve glucose tolerance in a gut microbiota-mediated manner. Biospecimens will be collected before and after each 2-week study arm. Testing for oral glucose tolerance and gastrointestinal permeability will be performed post-intervention. Assessments will include oral glucose tolerance (primary outcome) and secondary outcomes including gut microbiota, targeted and untargeted metabolomics of fecal and plasma samples, intestinal and host inflammatory responses, and intestinal permeability. WHEAT is predicted to alleviate glucose intolerance by shifting microbiota composition to increase short-chain fatty acid-producing bacteria while reducing populations implicated in intestinal inflammation, barrier dysfunction, and systemic endotoxemia. Further, benefits from WHEAT are anticipated to correlate with gut-level and systemic metabolomic responses that can help to explain the expected inter-individual variability in glucose tolerance. Thus, knowledge gained from integrating multi-omic responses associating with glucose tolerance could help to establish a precision nutrition-based framework that can alleviate cardiometabolic risk. This framework could inform novel dietary whole grain recommendations by enhancing our understanding of inter-individual responsiveness to whole grain consumption.
Collapse
Affiliation(s)
- Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Jillian T Pierson
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Ariana H Bond
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Shiqi Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Andrew Gold
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Huan Zhang
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kaitlyn M Zamary
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Palmer Moats
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Matthew D Teegarden
- Foods for Health Research Initiative, The Ohio State University, Columbus, OH, USA
| | - Devin G Peterson
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Del Mercado PPV, Mojica L, González-Ávila M, Espinosa-Andrews H, Alcázar-Valle M, Morales-Hernández N. Pea protein - gum Arabic gel addition as ingredient to increase protein, fiber and decrease lipid content in muffins without impair the texture and intestinal microbiota. Food Chem 2024; 463:141305. [PMID: 39316906 DOI: 10.1016/j.foodchem.2024.141305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
This study evaluated the use of a protein-polysaccharide gel (PGEL) as a muffin ingredient, and its effect on the nutritional, textural, and gut microbiome profiles. PGEL was generated by complex coacervation with Pea protein and Gum Arabic. A mixture design was performed with different flour, lipids, and PGEL proportions, where Tx9 (26 % PGEL) showed improved physicochemical characteristics. Optimization was performed using 3 variables, hardness, protein content, and in vitro protein digestibility, to generate an optimal muffin with PGEL (PGEL-Muffin). PGEL-Muffin had a positive effect in its nutritional content and texture (protein: 12.03 %, fiber: 7.90 %, lipids: 9.23 %, and hardness: 4.41 N) compared to a muffin without protein addition (Control) and a muffin with added pea protein powder (Powder-Muffin). PGEL-Muffin did not modify gut microbiome using an ex-vivo system after 4-days of administration. PGEL ingredient could be an opportunity to develop nutritionally improved products without a negative impact on textural properties.
Collapse
Affiliation(s)
- Pavel Prieto-Vázquez Del Mercado
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Luis Mojica
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Marisela González-Ávila
- Medical and Pharmaceutical Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Normalistas 800, Colinas de la normal. C.P. 44270. Guadalajara, Jalisco. Mexico
| | - Hugo Espinosa-Andrews
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Montserrat Alcázar-Valle
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico
| | - Norma Morales-Hernández
- Food Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. A.C. Camino Arenero 1227, El Bajío del Arenal. C.P. 45019. Zapopan, Jalisco. Mexico.
| |
Collapse
|
4
|
Todorovic S, Akpinar A, Assunção R, Bär C, Bavaro SL, Berkel Kasikci M, Domínguez-Soberanes J, Capozzi V, Cotter PD, Doo EH, Gündüz Ergün B, Guzel M, Harsa HS, Hastaoglu E, Humblot C, Hyseni B, Hosoglu MI, Issa A, Karakaş-Budak B, Karakaya S, Kesenkas H, Keyvan E, Künili IE, Kütt ML, Laranjo M, Louis S, Mantzouridou FT, Matalas A, Mayo B, Mojsova S, Mukherjee A, Nikolaou A, Ortakci F, Paveljšek D, Perrone G, Pertziger E, Santa D, Sar T, Savary-Auzeloux I, Schwab C, Starowicz M, Stojanović M, Syrpas M, Tamang JP, Yerlikaya O, Yilmaz B, Malagon-Rojas J, Salminen S, Frias J, Chassard C, Vergères G. Health benefits and risks of fermented foods-the PIMENTO initiative. Front Nutr 2024; 11:1458536. [PMID: 39309142 PMCID: PMC11414650 DOI: 10.3389/fnut.2024.1458536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Worldwide, fermented foods (FF) are recognized as healthy and safe. Despite the rapid increase of research papers, there is a lack of systematic evaluation of the health benefits and risks of FF. The COST Action CA20128 "Promoting innovation of fermented foods" (PIMENTO) aims to provide a comprehensive assessment on the available evidence by compiling a set of 16 reviews. Seven reviews will cover clinical and biological endpoints associated with major health indicators across several organ systems, including the cardiovascular, gastrointestinal, neurological, immune, and skeletal systems. Nine reviews will address broader biological questions associated with FF including bioactive compounds and vitamin production, nutrient bioavailability and bioaccessibility, the role of FF in healthy diets and personalized nutrition, food safety, regulatory practices, and finally, the health properties of novel and ethnic FF. For each outcome assessed in the reviews, an innovative approach will be adopted based on EFSA's published guidance for health claim submissions. In particular, each review will be composed of three parts: (1) a systematic review of available human studies; (2) a non-systematic review of the mechanism of action related to the clinical endpoints measured by the human studies identified in part 1; and (3) a non-systematic review of the characterization of the FF investigated in the human studies identified in part 1. The evidence and research gaps derived from the reviews will be summarized and published in the form of a strategic road map that will pave the way for future research on FF.
Collapse
Affiliation(s)
- Smilja Todorovic
- Institute for Biological Research Sinisa Stankovic, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Asli Akpinar
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
| | - Ricardo Assunção
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Almada, Portugal
| | - Cornelia Bär
- Competence Division Method Development and Analytics, Agroscope, Berne, Switzerland
| | - Simona L. Bavaro
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Bari, Italy
| | - Muzeyyen Berkel Kasikci
- Department of Food Engineering, Manisa Celal Bayar University Faculty of Engineering and Natural Science, Manisa, Türkiye
- STLO, INRAE, Institut Agro-Rennes Angers, Rennes, France
| | | | | | - Paul D. Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Eun-Hee Doo
- School of Living and Environmental Engineering, Dongyang Mirae University, Seoul, Republic of Korea
| | - Burcu Gündüz Ergün
- Biotechnology Research Center, Field Crops Central Research Institute, Ankara, Türkiye
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Corum, Türkiye
| | - Hayriye S. Harsa
- Department of Food Engineering, Izmir Institute of Technology, Izmir, Türkiye
| | | | - Christèle Humblot
- French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Bahtir Hyseni
- Faculty of Food Technology, University “Isa Boletini”, Mitrovica, Republic of Kosovo
| | - Muge I. Hosoglu
- Biotechnology Institute, Gebze Technical University, Kocaeli, Türkiye
| | - Aline Issa
- Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon
| | - Barçın Karakaş-Budak
- Department of Food Engineering, Akdeniz University Faculty of Engineering, Antalya, Türkiye
| | - Sibel Karakaya
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Harun Kesenkas
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Erhan Keyvan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Ibrahim E. Künili
- Department of Fishing and Fish Processing Technology, Faculty of Marine Sciences and Technology, Canakkale Onsekiz Mart University, Canakkale, Türkiye
| | | | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development-CHANGE-Global Change and Sustainability Institute and Departamento de Medicina Veterinária-Escola de Ciências e Tecnologia (ECT), Universidade de Évora, Évora, Portugal
| | - Sandrine Louis
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Fani T. Mantzouridou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Matalas
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
| | - Sandra Mojsova
- Department of Food Safety and Veterinary Public Health, Food Institute, Faculty of Veterinary Medicine, Skopje, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | - Anastasios Nikolaou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Fatih Ortakci
- Food Engineering Department, Istanbul Technical University, Istanbul, Türkiye
| | - Diana Paveljšek
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Giancarlo Perrone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, Bari, Italy
| | - Eugenia Pertziger
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
- Department of Epidemiology and Health Systems, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Dushica Santa
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | | - Clarissa Schwab
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | - Michail Syrpas
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Jyoti P. Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Oktay Yerlikaya
- Department of Dairy Technology, Faculty of Agriculture, Ege University, Izmir, Türkiye
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad, India
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çukurova University, Adana, Türkiye
| | | | - Seppo Salminen
- Functional foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Juana Frias
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Christophe Chassard
- Human Nutrition Unit, INRAE, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Guy Vergères
- Research Division Microbial Food Systems, Agroscope, Berne, Switzerland
| |
Collapse
|
5
|
Helal P, Xia W, Sardar P, Conway‐Morris A, Conway‐Morris A, Pedicord VA, Serfontein J. Changes in the Firmicutes to Bacteriodetes ratio in the gut microbiome in individuals with anorexia nervosa following inpatient treatment: A systematic review and a case series. Brain Behav 2024; 14:e70014. [PMID: 39295072 PMCID: PMC11410858 DOI: 10.1002/brb3.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVE Anorexia nervosa has the highest mortality rate among psychiatric illnesses. Current treatments remain ineffective for a large fraction of patients. This may be due to unclear mechanisms behind its development and maintenance. Studies exploring the role of the gut microbiome have revealed inconsistent evidence of dysbiosis. This article aims to investigate changes in the gut microbiome, particularly, mean differences in the Firmicutes to Bacteroidetes ratio, in adolescent and adult individuals with anorexia nervosa following inpatient treatment. METHODS Longitudinal studies investigating gut microbiome composition in inpatient populations of anorexia nervosa before and after treatment were systematically reviewed. Additionally, gut microbiome compositions were characterized in three acute anorexia nervosa inpatients early after admission and after 4-12 weeks of treatment. RESULTS Review results indicated an increase in the Firmicutes to Bacteroidetes ratio in individuals with anorexia nervosa after treatment. These however did not match values of their healthy counterparts. In the case-series samples, the reverse occurred with samples taken 4 weeks after treatment. In the patient who provided an extra sample 12 weeks after treatment, similar results to the studies included in the review were observed. Furthermore, Firmicutes to Bacteroidetes ratio values in the case-series samples were notably higher in the two patients who had chronic anorexia nervosa. DISCUSSION Differences in methodologies, small sample sizes, and insufficient data limited the generalizability of the outcomes of the reviewed studies. Results suggest a potentially unique microbiome signature in individuals with chronic anorexia nervosa, which may explain different outcomes in this group of patients.
Collapse
Affiliation(s)
- Passent Helal
- Adult Eating Disorders Service, Ward S3 InpatientsAddenbrooke's HospitalCambridgeUK
| | - Wangmingyu Xia
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Puspendu Sardar
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Anna Conway‐Morris
- Adult Eating Disorder Service, Ward S3 OutpatientsAddenbrooke's HospitalCambridgeUK
- School of PsychiatryNHS EnglandFulbournCambridgeUK
| | - Andrew Conway‐Morris
- Division of Anaesthesia, Department of MedicineUniversity of CambridgeCambridgeUK
- Division of Immunology, Department of PathologyUniversity of CambridgeCambridgeUK
- John V Farman Intensive Care UnitAddenbrooke's HospitalCambridgeUK
| | - Virginia A. Pedicord
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Jaco Serfontein
- Adult Eating Disorders Service, Ward S3 InpatientsAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
6
|
Hasegawa Y, Noll AL, Lang DJ, Akfaly EM, Liu Z, Bolling BW. Low-fat yogurt consumption maintains biomarkers of immune function relative to nondairy control food in women with elevated BMI: A randomized controlled crossover trial. Nutr Res 2024; 129:1-13. [PMID: 39153426 DOI: 10.1016/j.nutres.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Yogurt consumption may help reduce chronic inflammation associated with obesity. However, the underlying mechanism(s) by which yogurt consumption modulates the immune system have not been validated in human intervention studies. We hypothesized that 4-week yogurt consumption (12 oz/day) attenuates systemic inflammation by modulating the proportion of circulating T helper (Th) 17 and regulatory T (Treg) cells in adult women with elevated body mass index (BMI). To test the hypothesis, we conducted a randomized crossover dietary intervention study consisted of a 4-week dietary intervention in which participants consumed 12 oz of either low-fat dairy yogurt or a soy pudding control snack per day, with a 4-week washout between treatments. Thirty-nine healthy adult women with a BMI between 25 and 40 kg/m2 were enrolled and 20 completed the study. Changes in the biometrics, circulating T cells, and markers of systemic and colonic inflammation were assessed between the 2 treatment groups, as well as 24-hour diet recalls were conducted at baseline and following each treatment. The primary study outcome, the change in the proportion of circulating Th17 cells, was unaffected by the treatments. Secondary outcome measures, circulating Treg, Th17, and markers of chronic inflammation, were maintained by yogurt treatment, whereas circulating Treg was increased and interleukin-10 was reduced by control snack treatment. However, circulating Treg changes were not associated with changes to other biomarkers of inflammation, implying other immune cells and/or tissues may mediate circulating biomarkers of chronic inflammation. This study was approved by the University of Wisconsin-Madison institutional review board and registered at ClinicalTrials.gov NCT04149418.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea L Noll
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Lang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Akfaly
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhenhua Liu
- School of Public Health & Health Science, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Pérez-Vega KA, Sanllorente A, Zomeño MD, Quindós A, Muñoz-Martínez J, Malcampo M, Aldea-Perona A, Hernáez Á, Lluansí A, Llirós M, Elias I, Elias-Masiques N, Aldeguer X, Muñoz D, Gaixas S, Blanchart G, Schröder H, Hernando-Redondo J, Carrón N, González-Torres P, Konstantinidou V, Fitó M, Castañer O. Sourdough Bread with Different Fermentation Times: A Randomized Clinical Trial in Subjects with Metabolic Syndrome. Nutrients 2024; 16:2380. [PMID: 39125261 PMCID: PMC11314010 DOI: 10.3390/nu16152380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The Mediterranean diet, featuring sourdough bread, shows promise in managing metabolic syndrome. This study explored the effects of two sourdough breads, with differing fermentation times but similar nutritional profiles, on inflammation, satiety, and gut microbiota composition in adults with metabolic syndrome. In a double-blind clinical trial, participants were randomized to consume either Elias Boulanger® long-fermentation (48 h) sourdough bread (EBLong) or Elias Boulanger® short-fermentation (2 h) sourdough bread (EBShort) over a two-month period. We assessed clinical parameters, inflammatory biomarkers, satiety-related hormones, and the richness and abundance of gut microbiota at baseline and follow-up. The participants included 31 individuals (mean age, 67, 51.6% female). EBShort was associated with reduced levels of soluble intercellular adhesion molecule (sICAM), and all participants, regardless of the intervention, exhibited a decrease in sICAM and diastolic pressure from baseline (p < 0.017). At follow-up, plasminogen activator inhibitor-1 (PAI-1) levels were lower in EBShort (-744 pg/mL; 95%CI: -282 to -1210 pg/mL) compared to EBLong. No differences in microbiota richness or abundance were observed. EBShort bread was effective in reducing some inflammation markers. The consumption of sourdough bread may offer potential benefits in reducing inflammation markers in individuals with metabolic syndrome; however, longer fermentation times did not show additional benefits.
Collapse
Affiliation(s)
- Karla Alejandra Pérez-Vega
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- PhD Program in Food Science and Nutrition, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Albert Sanllorente
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unitat de Suport a la Recerca Metropolitana Sud, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08907 Hospitalet de Llobregat, Spain
- Direcció d’Atenció Primària Metropolitana Sud, Institut Català de la Salut, 08907 Hospitalet de Llobregat, Spain
| | - María-Dolores Zomeño
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Ana Quindós
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Júlia Muñoz-Martínez
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Global Research on Wellbeing Research Group (GRoW), Facultat de Ciències de la Salut Blanquerna, Universitat Ramon Llull, 08025 Barcelona, Spain
- Research Group on Pedagogy, Society and Innovation with ICT Support (PSITIC), Facultat de Psicologia, Ciències de l’Educació i l’Esport Blanquerna, Universitat Ramon Llull, 08022 Barcelona, Spain
| | - Mireia Malcampo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Ana Aldea-Perona
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Álvaro Hernáez
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Blanquerna School of Health Sciences, Universitat Ramon Llull, 08025 Barcelona, Spain
| | - Aleix Lluansí
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- Institut de Recerca Sant Joan de Déu (IRSJD), Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marc Llirós
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- Bioinformatics and Bioimaging (BI-SQUARED) Research Group, Biosciences Department, Faculty of Sciences, Technology and Engineerings Universitat de Vic—Universitat Central de Catalunya, 08500 Vic, Spain
| | - Isidre Elias
- Elias–Boulanger S.L., 08340 Vilassar de Mar, Spain; (I.E.)
| | | | - Xavier Aldeguer
- Digestive Diseases and Microbiota Group, Institut d’Investigació Biomèdica de Girona, 17190 Salt, Spain; (A.L.); (M.L.); (X.A.)
- GoodGut S.L., 17003 Girona, Spain
- Digestive Service, Hospital Universitari de Girona Dr. Josep Trueta, 17007 Girona, Spain
| | - Daniel Muñoz
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sònia Gaixas
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Gemma Blanchart
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
| | - Helmut Schröder
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Hernando-Redondo
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nerea Carrón
- Microomics Systems S.L., 08041 Barcelona, Spain; (N.C.); (P.G.-T.)
| | | | - Valentini Konstantinidou
- Medoliali S.L. (DNANUTRICOACH®), 08006 Barcelona, Spain;
- Faculty of Health Sciences, Universitat Oberta de Catalunya (Open University of Catalonia, UOC), 08018 Barcelona, Spain
| | - Montserrat Fitó
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Castañer
- Hospital del Mar Research Institute, 08003 Barcelona, Spain; (K.A.P.-V.); (A.S.); (M.-D.Z.); (A.Q.); (J.M.-M.); (M.M.); (A.A.-P.); (Á.H.); (D.M.); (S.G.); (G.B.); (H.S.); (J.H.-R.); (O.C.)
- Consorcio Centro de Investigación Biomédica En Red (CIBER), M.P. Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Xiong X, Xue Y, Cai Y, He J, Su H. Prediction of personalised postprandial glycaemic response in type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1423303. [PMID: 39045276 PMCID: PMC11263474 DOI: 10.3389/fendo.2024.1423303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
Objectives Patients with type 1 diabetes (T1D) face unique challenges in glycaemic control due to the complexity and uniqueness of the dietary structure in China, especially in terms of postprandial glycaemic response (PPGR). This study aimed to establish a personalized model for predicting PPGR in patients with T1D. Materials and methods Data provided by the First People's Hospital of Yunnan Province, 13 patients with T1D, were recruited and provided with an intervention for at least two weeks. All patients were asked to wear a continuous glucose monitoring (CGM) device under free-living conditions during the study period. To tackle the challenge of incomplete data from wearable devices for CGM measurements, the GAIN method was used in this paper to achieve a more rational interpolation process. In this study, patients' PPGRs were calculated, and a LightGBM prediction model was constructed based on a Bayesian hyperparameter optimisation algorithm and a random search algorithm, which integrated glucose measurement, insulin dose, dietary nutrient content, blood measurement and anthropometry as inputs. Results The experimental outcomes revealed that the PPGR prediction model presented in this paper demonstrated superior accuracy (R=0.63) compared to both the carbohydrate content only model (R=0.14) and the baseline model emulating the standard of care for insulin administration (R=0.43). In addition, the interpretation of the model using the SHAP method showed that blood glucose levels at meals and blood glucose trends 30 minutes before meals were the most important features of the model. Conclusion The proposed model offers a heightened precision in predicting PPGR in patients with T1D, so it can better guide the diet plan and insulin intake dose of patients with T1D.
Collapse
Affiliation(s)
- Xin Xiong
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Yuxin Xue
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Yunying Cai
- Department of Endocrinology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jianfeng He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Heng Su
- Department of Endocrinology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Alkay Z, Falah F, Cankurt H, Dertli E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024; 13:1732. [PMID: 38890959 PMCID: PMC11172170 DOI: 10.3390/foods13111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Sourdough fermentation is one of the oldest traditional methods in food technology and occurs as a result of fermentation of flour prepared from grains. The nutritional role of sourdough is related to the final composition of fermented foods prepared through sourdough fermentation, and recently, sourdough has become an important application to improve nutrition characteristics of bread. Thanks to lactic acid bacteria (LAB) presented in sourdough microflora and metabolites partially produced by yeasts, technological and important nutritional features of the bread improve and an increase in shelf life is achieved. In addition, sourdough bread has a low glycemic index value, high protein digestibility, high mineral and antioxidant content, and improved dietary fiber composition, making it more attractive for human nutrition compared to regular bread. When the sourdough process is applied, the chemical and physical properties of fibers vary according to the degree of fermentation, revealing the physiological importance of dietary fiber and its importance to humans' large intestine microbiota. Therefore, taking these approach frameworks into consideration, this review highlights the benefits of sourdough fermentation in increasing nutrient availability and contributing positively to support human health.
Collapse
Affiliation(s)
- Zuhal Alkay
- Food Engineering Department, Faculty of Engineering, Necmettin Erbakan University, Konya 42010, Türkiye;
| | - Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Hasan Cankurt
- Food Technology Department, Safiye Cikrikcioglu Vocational School, Kayseri University, Kayseri 38000, Türkiye;
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campüs, Istanbul 34210, Türkiye
| |
Collapse
|
11
|
Sekeresova Kralova J, Donic C, Dassa B, Livyatan I, Jansen PM, Ben-Dor S, Fidel L, Trzebanski S, Narunsky-Haziza L, Asraf O, Brenner O, Dafni H, Jona G, Boura-Halfon S, Stettner N, Segal E, Brunke S, Pilpel Y, Straussman R, Zeevi D, Bacher P, Hube B, Shlezinger N, Jung S. Competitive fungal commensalism mitigates candidiasis pathology. J Exp Med 2024; 221:e20231686. [PMID: 38497819 PMCID: PMC10949073 DOI: 10.1084/jem.20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.
Collapse
Affiliation(s)
| | - Catalina Donic
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Livyatan
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Mathias Jansen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Lena Fidel
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sébastien Trzebanski
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Omer Asraf
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Dafni
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ghil Jona
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sigalit Boura-Halfon
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Yitzhak Pilpel
- Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ravid Straussman
- Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeevi
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neta Shlezinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem, Rehovot, Israel
| | - Steffen Jung
- Departments of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
13
|
Sindi AS, Stinson LF, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Rea A, Trevenen ML, Geddes DT, Payne MS. Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota. J Appl Microbiol 2024; 135:lxae024. [PMID: 38323424 DOI: 10.1093/jambio/lxae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, SA 5000, Australia
- Discipline of Paediatrics, The University of Adelaide, North Adelaide, SA 5006, Australia
- Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
- CSIRO, Adelaide, SA 5000, Australia
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
| |
Collapse
|
14
|
Muse ED, Topol EJ. Transforming the cardiometabolic disease landscape: Multimodal AI-powered approaches in prevention and management. Cell Metab 2024; 36:670-683. [PMID: 38428435 PMCID: PMC10990799 DOI: 10.1016/j.cmet.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
The rise of artificial intelligence (AI) has revolutionized various scientific fields, particularly in medicine, where it has enabled the modeling of complex relationships from massive datasets. Initially, AI algorithms focused on improved interpretation of diagnostic studies such as chest X-rays and electrocardiograms in addition to predicting patient outcomes and future disease onset. However, AI has evolved with the introduction of transformer models, allowing analysis of the diverse, multimodal data sources existing in medicine today. Multimodal AI holds great promise in more accurate disease risk assessment and stratification as well as optimizing the key driving factors in cardiometabolic disease: blood pressure, sleep, stress, glucose control, weight, nutrition, and physical activity. In this article we outline the current state of medical AI in cardiometabolic disease, highlighting the potential of multimodal AI to augment personalized prevention and treatment strategies in cardiometabolic disease.
Collapse
Affiliation(s)
- Evan D Muse
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA; Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA 92037, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA 92037, USA; Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Schoeler M, Chakaroun R, Brolin H, Larsson I, Perkins R, Marschall HU, Caesar R, Bäckhed F. Moderate variations in the human diet impact the gut microbiota in humanized mice. Acta Physiol (Oxf) 2024; 240:e14100. [PMID: 38258357 DOI: 10.1111/apha.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM Drastic diet interventions have been shown to promote rapid and significant compositional changes of the gut microbiota, but the impact of moderate diet variations is less clear. Here, we aimed to clarify the impact of moderate diet variations that remain within the spectrum of the habitual human diet on gut microbiota composition. METHODS We performed a pilot diet intervention where five healthy volunteers consumed a vegetarian ready-made meal for three days to standardize dietary intake before switching to a meat-based ready-made western-style meal and high sugar drink for two days. We performed 16S rRNA sequencing from daily fecal sampling to assess gut microbiota changes caused by the intervention diet. Furthermore, we used the volunteers' fecal samples to colonize germ-free mice that were fed the same sterilized diets to study the effect of a moderate diet intervention on the gut microbiota in a setting of reduced interindividual variation. RESULTS In the human intervention, we found that fecal microbiota composition varied between and within individuals regardless of diet. However, when we fed the same diets to mice colonized with the study participants' feces, we observed significant, often donor-specific, changes in the mouse microbiota following this moderate diet intervention. CONCLUSION Moderate variations in the habitual human diet have the potential to alter the gut microbiota. Feeding humanized mice human diets may facilitate our understanding of individual human gut microbiota responses to moderate dietary changes and help improve individualized interventions.
Collapse
Affiliation(s)
- Marc Schoeler
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rima Chakaroun
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Harald Brolin
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Larsson
- Department of Gastroenterology and Hepatology, Unit of Clinical Nutrition and the Regional Obesity Center, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosie Perkins
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Mehta NH, Huey SL, Kuriyan R, Peña-Rosas JP, Finkelstein JL, Kashyap S, Mehta S. Potential Mechanisms of Precision Nutrition-Based Interventions for Managing Obesity. Adv Nutr 2024; 15:100186. [PMID: 38316343 PMCID: PMC10914563 DOI: 10.1016/j.advnut.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024] Open
Abstract
Precision nutrition (PN) considers multiple individual-level and environmental characteristics or variables to better inform dietary strategies and interventions for optimizing health, including managing obesity and metabolic disorders. Here, we review the evidence on potential mechanisms-including ones to identify individuals most likely to respond-that can be leveraged in the development of PN interventions addressing obesity. We conducted a review of the literature and included laboratory, animal, and human studies evaluating biochemical and genetic data, completed and ongoing clinical trials, and public programs in this review. Our analysis describes the potential mechanisms related to 6 domains including genetic predisposition, circadian rhythms, physical activity and sedentary behavior, metabolomics, the gut microbiome, and behavioral and socioeconomic characteristics, i.e., the factors that can be leveraged to design PN-based interventions to prevent and treat obesity-related outcomes such as weight loss or metabolic health as laid out by the NIH 2030 Strategic Plan for Nutrition Research. For example, single nucleotide polymorphisms can modify responses to certain dietary interventions, and epigenetic modulation of obesity risk via physical activity patterns and macronutrient intake have also been demonstrated. Additionally, we identified limitations including questions of equitable implementation across a limited number of clinical trials. These include the limited ability of current PN interventions to address systemic influences such as supply chains and food distribution, healthcare systems, racial or cultural inequities, and economic disparities, particularly when designing and implementing PN interventions in low- and middle-income communities. PN has the potential to help manage obesity by addressing intra- and inter-individual variation as well as context, as opposed to "one-size fits all" approaches though there is limited clinical trial evidence to date.
Collapse
Affiliation(s)
- Neel H Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Juan Pablo Peña-Rosas
- Global Initiatives, The Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | - Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Nutrition, St. John's Research Institute, Bengaluru, Karnataka, India
| | - Sangeeta Kashyap
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine New York Presbyterian, New York, NY, United States
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Center for Precision Nutrition and Health, Cornell University, Ithaca, NY, United States; Division of Medical Informatics, St. John's Research Institute, Bengaluru, Karnataka, India.
| |
Collapse
|
17
|
Paukkonen I, Törrönen EN, Lok J, Schwab U, El-Nezami H. The impact of intermittent fasting on gut microbiota: a systematic review of human studies. Front Nutr 2024; 11:1342787. [PMID: 38410639 PMCID: PMC10894978 DOI: 10.3389/fnut.2024.1342787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Background Intermittent fasting (IF) has gained popularity in interventions targeting overweight, obesity and metabolic syndrome. IF may affect the gut microbiome composition and therefore have various effects on gut microbiome mediated functions in humans. Research on the effects of IF on human gut microbiome is limited. Therefore, the objective of this systematic review was to determine how different types of IF affect the human gut microbiome. Methods A literature search was conducted for studies investigating the association of different types of IF and gut microbiota richness, alpha and beta diversity, and composition in human subjects. Databases included Cochrane Library (RRID:SCR_013000), PubMed (RRID:SCR_004846), Scopus (RRID:SCR_022559) and Web of Science (RRID:SCR_022706). A total of 1,332 studies were retrieved, of which 940 remained after removing duplicates. Ultimately, a total of 8 studies were included in the review. The included studies were randomized controlled trials, quasi-experimental studies and pilot studies implementing an IF intervention (time-restricted eating, alternate day fasting or 5:2 diet) in healthy subjects or subjects with any disease. Results Most studies found an association between IF and gut microbiota richness, diversity and compositional changes. There was heterogeneity in the results, and bacteria which were found to be statistically significantly affected by IF varied widely depending on the study. Conclusion The findings in this systematic review suggest that IF influences gut microbiota. It seems possible that IF can improve richness and alpha diversity. Due to the substantial heterogeneity of the results, more research is required to validate these findings and clarify whether the compositional changes might be beneficial to human health. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021241619.
Collapse
Affiliation(s)
- Isa Paukkonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Elli-Noora Törrönen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Molecular and Cell Biology Research Area, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
18
|
Valentino V, Magliulo R, Farsi D, Cotter PD, O'Sullivan O, Ercolini D, De Filippis F. Fermented foods, their microbiome and its potential in boosting human health. Microb Biotechnol 2024; 17:e14428. [PMID: 38393607 PMCID: PMC10886436 DOI: 10.1111/1751-7915.14428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Fermented foods (FFs) are part of the cultural heritage of several populations, and their production dates back 8000 years. Over the last ~150 years, the microbial consortia of many of the most widespread FFs have been characterised, leading in some instances to the standardisation of their production. Nevertheless, limited knowledge exists about the microbial communities of local and traditional FFs and their possible effects on human health. Recent findings suggest they might be a valuable source of novel probiotic strains, enriched in nutrients and highly sustainable for the environment. Despite the increasing number of observational studies and randomised controlled trials, it still remains unclear whether and how regular FF consumption is linked with health outcomes and enrichment of the gut microbiome in health-associated species. This review aims to sum up the knowledge about traditional FFs and their associated microbiomes, outlining the role of fermentation with respect to boosting nutritional profiles and attempting to establish a link between FF consumption and health-beneficial outcomes.
Collapse
Affiliation(s)
- Vincenzo Valentino
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Raffaele Magliulo
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
| | - Dominic Farsi
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
| | - Paul D. Cotter
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Orla O'Sullivan
- Department of Food BiosciencesTeagasc Food Research CentreMooreparkFermoyIreland
- APC Microbiome IrelandNational University of IrelandCorkIreland
- VistaMilk, FermoyCorkIreland
| | - Danilo Ercolini
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| | - Francesca De Filippis
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
- NBFC‐National Biodiversity Future CenterPalermoItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
19
|
Daanje M, Siebelink E, Vrieling F, van den Belt M, van der Haar S, Gerdessen JC, Kersten S, Esser D, Afman LA. Are postprandial glucose responses sufficiently person-specific to use in personalized dietary advice? Design of the RepEAT study: a fully controlled dietary intervention to determine the variation in glucose responses. Front Nutr 2023; 10:1281978. [PMID: 38152465 PMCID: PMC10751339 DOI: 10.3389/fnut.2023.1281978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction An elevated postprandial glucose response is associated with an increased risk of cardiometabolic diseases. Existing research suggests large heterogeneity in the postprandial glucose responses to identical meals and food products between individuals, but the effect of other consumed meals during the day and the order of meals during the day on the heterogeneity in postprandial glucose responses still needs to be investigated. In addition, the robustness of the glucose responses to meals or foods is still unknown. Objectives The overall aim of the project is to assess whether the glucose response to a meal is sufficiently person-specific to use in personalized dietary advice. We aim to answer the question: "How replicable are glucose responses to meals within individuals and how consistent is the variation in glucose responses between individuals?" Methods The question will be assessed under standardized conditions of a 9-week fully controlled dietary intervention in which all meals are the same between individuals and consumed in a fixed order at a fixed time. 63 apparently healthy men and women with a BMI of 25-40 kg/m2 and aged 45-75 years were enrolled in the RepEAT study (NCT05456815), of whom 53 participants completed the study. The RepEAT study comprised a fully controlled dietary intervention of nine weeks, consisting of three repetitive periods of three weeks. Within each three-week period, a variety of meals and food products were offered during breakfast, lunch, dinner and in between meal snacks. Throughout the dietary intervention, glucose was continuously monitored using Freestyle Libre Pro IQ monitors. Physical activity was monitored using the ActiGraph and ActivPAL. To measure the association between glucose responses and an individual's phenotype, various measurements were performed before the start of the dietary intervention including an oral glucose tolerance test, a high-fat mixed meal challenge, assessment of body fat distribution including liver fat (MRI/MRS), and cardiometabolic markers. Discussion The repetitive and fully controlled nature of the dietary study allows detailed assessment of the replicability of the glucose responses to meals and food products within individuals. Furthermore, the consistency of the variation between individuals independent of insulin resistance will be determined.
Collapse
Affiliation(s)
- Monique Daanje
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Els Siebelink
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Frank Vrieling
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Maartje van den Belt
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Sandra van der Haar
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Johanna C. Gerdessen
- Department of Social Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Sander Kersten
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Diederik Esser
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Lydia A. Afman
- Division of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
20
|
Gou W, Miao Z, Deng K, Zheng JS. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health. Protein Cell 2023; 14:787-806. [PMID: 37099800 PMCID: PMC10636640 DOI: 10.1093/procel/pwad023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
Collapse
Affiliation(s)
- Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kui Deng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
21
|
Hosoda S, Nishimoto Y, Yamauchi Y, Yamada T, Hamada M. Probiotic responder identification in cross-over trials for constipation using a Bayesian statistical model considering lags between intake and effect periods. Comput Struct Biotechnol J 2023; 21:5350-5357. [PMID: 37954146 PMCID: PMC10637893 DOI: 10.1016/j.csbj.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Recent advances in microbiome research have led to the further development of microbial interventions, such as probiotics and prebiotics, which are potential treatments for constipation. However, the effects of probiotics vary from person to person; therefore, the effectiveness of probiotics needs to be verified for each individual. Individuals showing significant effects of the target probiotic are called responders. A statistical model for the evaluation of responders was proposed in a previous study. However, the previous model does not consider the lag between intake and effect periods of the probiotic. It is expected that the lag exists when probiotics are administered and when they are effective. In this study, we propose a Bayesian statistical model to estimate the probability that a subject is a responder, by considering the lag between intake and effect periods. In synthetic dataset experiments, the proposed model was found to outperform the base model, which did not factor in the lag. Further, we found that the proposed model could distinguish responders showing large uncertainty in terms of the lag between intake and effect periods.
Collapse
Affiliation(s)
- Shion Hosoda
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo, Japan
| | | | | | - Takuji Yamada
- Metagen Inc., Yamagata, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
22
|
Phillips NE, Collet TH, Naef F. Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling. CELL REPORTS METHODS 2023; 3:100545. [PMID: 37671030 PMCID: PMC10475794 DOI: 10.1016/j.crmeth.2023.100545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023]
Abstract
Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in 25 healthy participants over 14 days. We develop a Bayesian inference framework to learn personal parameters that quantify circadian rhythms and physiological responses to external stressors. Modeling the effects of ingestion events on glucose levels reveals that slower glucose decay kinetics elicit larger postprandial glucose spikes, and we uncover a circadian baseline rhythm for glucose with high amplitudes in some individuals. Physical activity and circadian rhythms explain as much as 40%-65% of the HR variance, whereas the variance explained for HRV is more heterogeneous across individuals. A more complex model incorporating activity, HR, and HRV explains up to 15% of additional glucose variability, highlighting the relevance of integrating multiple biosensors to better predict glucose dynamics.
Collapse
Affiliation(s)
- Nicholas E. Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Nutrition Unit, Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), 1211 Geneva, Switzerland
| | - Tinh-Hai Collet
- Nutrition Unit, Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals (HUG), 1211 Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Pathare NN, Fayet-Moore F, Fogarty JA, Jacka FN, Strandwitz P, Strangman GE, Donoviel DB. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front Neural Circuits 2023; 17:1170395. [PMID: 37663891 PMCID: PMC10469890 DOI: 10.3389/fncir.2023.1170395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth.
Collapse
Affiliation(s)
- Nihar N. Pathare
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Jennifer A. Fogarty
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
| | - Felice N. Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gary E. Strangman
- Neural Systems Group, Division of Health Sciences and Technology, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT, Charlestown, MA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Dorit B. Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
25
|
D’Amico V, Gänzle M, Call L, Zwirzitz B, Grausgruber H, D’Amico S, Brouns F. Does sourdough bread provide clinically relevant health benefits? Front Nutr 2023; 10:1230043. [PMID: 37545587 PMCID: PMC10399781 DOI: 10.3389/fnut.2023.1230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.
Collapse
Affiliation(s)
- Vera D’Amico
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lisa Call
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, BOKU–University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, BOKU–University of Natural Resources and Life Sciences, Tulln, Austria
| | - Stefano D’Amico
- Institute for Animal Nutrition and Feed, AGES–Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Fred Brouns
- Department of Human Biology, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Romero-Tapiador S, Lacruz-Pleguezuelos B, Tolosana R, Freixer G, Daza R, Fernández-Díaz CM, Aguilar-Aguilar E, Fernández-Cabezas J, Cruz-Gil S, Molina S, Crespo MC, Laguna T, Marcos-Zambrano LJ, Vera-Rodriguez R, Fierrez J, Ramírez de Molina A, Ortega-Garcia J, Espinosa-Salinas I, Morales A, Carrillo de Santa Pau E. AI4FoodDB: a database for personalized e-Health nutrition and lifestyle through wearable devices and artificial intelligence. Database (Oxford) 2023; 2023:baad049. [PMID: 37465917 PMCID: PMC10354505 DOI: 10.1093/database/baad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
The increasing prevalence of diet-related diseases calls for an improvement in nutritional advice. Personalized nutrition aims to solve this problem by adapting dietary and lifestyle guidelines to the unique circumstances of each individual. With the latest advances in technology and data science, researchers can now automatically collect and analyze large amounts of data from a variety of sources, including wearable and smart devices. By combining these diverse data, more comprehensive insights of the human body and its diseases can be achieved. However, there are still major challenges to overcome, including the need for more robust data and standardization of methodologies for better subject monitoring and assessment. Here, we present the AI4Food database (AI4FoodDB), which gathers data from a nutritional weight loss intervention monitoring 100 overweight and obese participants during 1 month. Data acquisition involved manual traditional approaches, novel digital methods and the collection of biological samples, obtaining: (i) biological samples at the beginning and the end of the intervention, (ii) anthropometric measurements every 2 weeks, (iii) lifestyle and nutritional questionnaires at two different time points and (iv) continuous digital measurements for 2 weeks. To the best of our knowledge, AI4FoodDB is the first public database that centralizes food images, wearable sensors, validated questionnaires and biological samples from the same intervention. AI4FoodDB thus has immense potential for fostering the advancement of automatic and novel artificial intelligence techniques in the field of personalized care. Moreover, the collected information will yield valuable insights into the relationships between different variables and health outcomes, allowing researchers to generate and test new hypotheses, identify novel biomarkers and digital endpoints, and explore how different lifestyle, biological and digital factors impact health. The aim of this article is to describe the datasets included in AI4FoodDB and to outline the potential that they hold for precision health research. Database URL https://github.com/AI4Food/AI4FoodDB.
Collapse
Affiliation(s)
- Sergio Romero-Tapiador
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Blanca Lacruz-Pleguezuelos
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Ruben Tolosana
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Gala Freixer
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Roberto Daza
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Cristina M Fernández-Díaz
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Elena Aguilar-Aguilar
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Calle Tajo s/n, Villaviciosa de Odon, Madrid 28670, Spain
| | - Jorge Fernández-Cabezas
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Silvia Cruz-Gil
- Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Susana Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Maria Carmen Crespo
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Teresa Laguna
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Ruben Vera-Rodriguez
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Julian Fierrez
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Ana Ramírez de Molina
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Javier Ortega-Garcia
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Isabel Espinosa-Salinas
- GENYAL Platform on Nutrition and Health, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| | - Aythami Morales
- Biometrics and Data Pattern Analytics Laboratory, Universidad Autonoma de Madrid, Calle Francisco Tomas y Valiente, 11, Campus de Cantoblanco, Madrid 28049, Spain
| | - Enrique Carrillo de Santa Pau
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, CEI UAM+CSIC, Carretera de Cantoblanco, 8, Madrid 28049, Spain
| |
Collapse
|
27
|
Singh P, Elhaj DAI, Ibrahim I, Abdullahi H, Al Khodor S. Maternal microbiota and gestational diabetes: impact on infant health. J Transl Med 2023; 21:364. [PMID: 37280680 PMCID: PMC10246335 DOI: 10.1186/s12967-023-04230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy that has been associated with an increased risk of obesity and diabetes in the offspring. Pregnancy is accompanied by tightly regulated changes in the endocrine, metabolic, immune, and microbial systems, and deviations from these changes can alter the mother's metabolism resulting in adverse pregnancy outcomes and a negative impact on the health of her infant. Maternal microbiomes are significant drivers of mother and child health outcomes, and many microbial metabolites are likely to influence the host health. This review discusses the current understanding of how the microbiota and microbial metabolites may contribute to the development of GDM and how GDM-associated changes in the maternal microbiome can affect infant's health. We also describe microbiota-based interventions that aim to improve metabolic health and outline future directions for precision medicine research in this emerging field.
Collapse
Affiliation(s)
- Parul Singh
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Ibrahim Ibrahim
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Hala Abdullahi
- Women's Department, Sidra Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Souhaila Al Khodor
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Research Department, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
28
|
Westerman KE, Walker ME, Gaynor SM, Wessel J, DiCorpo D, Ma J, Alonso A, Aslibekyan S, Baldridge AS, Bertoni AG, Biggs ML, Brody JA, Chen YDI, Dupuis J, Goodarzi MO, Guo X, Hasbani NR, Heath A, Hidalgo B, Irvin MR, Johnson WC, Kalyani RR, Lange L, Lemaitre RN, Liu CT, Liu S, Moon JY, Nassir R, Pankow JS, Pettinger M, Raffield LM, Rasmussen-Torvik LJ, Selvin E, Senn MK, Shadyab AH, Smith AV, Smith NL, Steffen L, Talegakwar S, Taylor KD, de Vries PS, Wilson JG, Wood AC, Yanek LR, Yao J, Zheng Y, Boerwinkle E, Morrison AC, Fornage M, Russell TP, Psaty BM, Levy D, Heard-Costa NL, Ramachandran VS, Mathias RA, Arnett DK, Kaplan R, North KE, Correa A, Carson A, Rotter JI, Rich SS, Manson JE, Reiner AP, Kooperberg C, Florez JC, Meigs JB, Merino J, Tobias DK, Chen H, Manning AK. Investigating Gene-Diet Interactions Impacting the Association Between Macronutrient Intake and Glycemic Traits. Diabetes 2023; 72:653-665. [PMID: 36791419 PMCID: PMC10130485 DOI: 10.2337/db22-0851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Few studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. ARTICLE HIGHLIGHTS We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.
Collapse
Affiliation(s)
- Kenneth E. Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA
| | - Maura E. Walker
- Department of Medicine, Section of Preventive Medicine, Boston University School of Medicine, Boston, MA
- Department of Health Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA
| | - Sheila M. Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jennifer Wessel
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Diabetes Translational Research Center, Indiana University, Indianapolis, IN
| | - Daniel DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Jiantao Ma
- Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | | | - Abigail S. Baldridge
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mary L. Biggs
- Department of Biostatistics, University of Washington, Seattle, WA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Joseé Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Natalie R. Hasbani
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Adam Heath
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Bertha Hidalgo
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Rita R. Kalyani
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leslie Lange
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Internal Medicine, University of Washington, Seattle, WA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
- National Heart, Lung, and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA
- Evans Department of Medicine, Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA
- Evans Department of Medicine, Whitaker Cardiovascular Institute and Cardiology Section, Boston University School of Medicine, Boston, MA
| | - Simin Liu
- Center for Global Cardiometabolic Health, Boston, MA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mackenzie K. Senn
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA
| | - Lyn Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Sameera Talegakwar
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Paul S. de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Alexis C. Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX
| | - Lisa R. Yanek
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Alanna C. Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Miriam Fornage
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Tracy P. Russell
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA
| | - Daniel Levy
- National Heart, Lung, and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Nancy L. Heard-Costa
- National Heart, Lung, and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Vasan S. Ramachandran
- National Heart, Lung, and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA
- Evans Department of Medicine, Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA
- Evans Department of Medicine, Whitaker Cardiovascular Institute and Cardiology Section, Boston University School of Medicine, Boston, MA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - Robert Kaplan
- Clinical Excellence Research Center, School of Medicine, Stanford University, Stanford, CA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Adolfo Correa
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS
| | - April Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | | | | | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - James B. Meigs
- Department of Medicine, Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Jordi Merino
- Department of Medicine, Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Deirdre K. Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Han Chen
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Center for Precision Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA
| |
Collapse
|
29
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
30
|
De Matteis C, Crudele L, Battaglia S, Loconte T, Rotondo A, Ferrulli R, Gadaleta RM, Piazzolla G, Suppressa P, Sabbà C, Cariello M, Moschetta A. Identification of a Novel Score for Adherence to the Mediterranean Diet That Is Inversely Associated with Visceral Adiposity and Cardiovascular Risk: The Chrono Med Diet Score (CMDS). Nutrients 2023; 15:nu15081910. [PMID: 37111129 PMCID: PMC10141687 DOI: 10.3390/nu15081910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Adherence to the Mediterranean diet (MedDiet) leads to reduction of mortality from all causes, especially in subjects with cardiovascular disease, obesity, and diabetes. Numerous scores have been proposed to evaluate the adherence to MedDiet, mainly focused on eating habits. In this study, we verified whether existing validated MedDiet scores, namely, MEDI-LITE and the Mediterranean Diet Score (MDS), could be associated with visceral adiposity. Failing to find a significant association with adiposity, we proposed the validation of a new, easy-to-use adherence questionnaire, the Chrono Med-Diet score (CMDS). CMDS contains eleven food categories, including chronobiology of dietary habits and physical activity. Compared to the MEDI-LITE score and MDS, low values of CMDS are linked to increased waist circumference (WC) and dysmetabolic conditions. CMDS was also inversely correlated with cardiovascular risk (CVR), as well as Fatty Liver Index (FLI). In conclusion, the CMDS is a novel questionnaire to study the adherence to the MedDiet that, focusing on type and timing of carbohydrates intake, has the peculiar capability of capturing subjects with abdominal obesity, thus being an easy-to-use instrument of personalized medicine.
Collapse
Grants
- EU-JPI HDL-INTIMIC -MIUR FATMAL Ministry of Education, Universities and Research
- MIUR-PON "R&I" 2014-2020 "BIOMIS" cod. ARS01_01220 Ministry of Education, Universities and Research
- POR Puglia FESR-FSE 2014- 2020, "INNOMA" cod. 4TCJLV4 Regione Puglia
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGeneration EU. Ministry of Education, Universities and Research
- Project code PE00000003, Concession Decree No. 1550 of 11 October 2022 adopted by the Italian Ministry of University and Research, CUP D93C22000890001, Project title "ON Foods - Research and innovation network on food and nutri-tion Sustainability, Safety Ministry of Education, Universities and Research
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3 - Call for tender No. 341 of 15 March 2022 of Italian Ministry of University and Research funded by the European Union - NextGeneration EU; Award Number: Project code PE000 Ministry of Education, Universities and Research
Collapse
Affiliation(s)
- Carlo De Matteis
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Stefano Battaglia
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Tiziana Loconte
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Arianna Rotondo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberta Ferrulli
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Giuseppina Piazzolla
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
31
|
Guizar-Heredia R, Noriega LG, Rivera AL, Resendis-Antonio O, Guevara-Cruz M, Torres N, Tovar AR. A New Approach to Personalized Nutrition: Postprandial Glycemic Response and its Relationship to Gut Microbiota. Arch Med Res 2023; 54:176-188. [PMID: 36990891 DOI: 10.1016/j.arcmed.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
A prolonged and elevated postprandial glucose response (PPGR) is now considered a main factor contributing for the development of metabolic syndrome and type 2 diabetes, which could be prevented by dietary interventions. However, dietary recommendations to prevent alterations in PPGR have not always been successful. New evidence has supported that PPGR is not only dependent of dietary factors like the content of carbohydrates, or the glycemic index of the foods, but is also dependent on genetics, body composition, gut microbiota, among others. In recent years, continuous glucose monitoring has made it possible to establish predictions on the effect of different dietary foods on PPGRs through machine learning methods, which use algorithms that integrate genetic, biochemical, physiological and gut microbiota variables for identifying associations between them and clinical variables with aim of personalize dietary recommendations. This has allowed to improve the concept of personalized nutrition, since it is now possible to recommend through these predictions specific dietary foods to prevent elevated PPGRs that are highly variable among individuals. Additional components that can enrich the predictive algorithms are findings of nutrigenomics, nutrigenetics and metabolomics. Thus, this review aims to summarize the evidence of the components that integrate personalized nutrition focused on the prevention of PPGRs, and to show the future of personalized nutrition by laying the groundwork for the development of individualized dietary management and its impact on the improvement of metabolic diseases.
Collapse
|
32
|
Chatonidi G, Poppe J, Verbeke K. Plant-based fermented foods and the satiety cascade: A systematic review of randomized controlled trials. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Ayoub-Charette S, McGlynn ND, Lee D, Khan TA, Blanco Mejia S, Chiavaroli L, Kavanagh ME, Seider M, Taibi A, Chen CT, Ahmed A, Asbury R, Erlich M, Chen YT, Malik VS, Bazinet RP, Ramdath DD, Logue C, Hanley AJ, Kendall CWC, Leiter LA, Comelli EM, Sievenpiper JL. Rationale, Design and Participants Baseline Characteristics of a Crossover Randomized Controlled Trial of the Effect of Replacing SSBs with NSBs versus Water on Glucose Tolerance, Gut Microbiome and Cardiometabolic Risk in Overweight or Obese Adult SSB Consumer: Strategies to Oppose SUGARS with Non-Nutritive Sweeteners or Water (STOP Sugars NOW) Trial and Ectopic Fat Sub-Study. Nutrients 2023; 15:1238. [PMID: 36904237 PMCID: PMC10005063 DOI: 10.3390/nu15051238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Health authorities are near universal in their recommendation to replace sugar-sweetened beverages (SSBs) with water. Non-nutritive sweetened beverages (NSBs) are not as widely recommended as a replacement strategy due to a lack of established benefits and concerns they may induce glucose intolerance through changes in the gut microbiome. The STOP Sugars NOW trial aims to assess the effect of the substitution of NSBs (the "intended substitution") versus water (the "standard of care substitution") for SSBs on glucose tolerance and microbiota diversity. DESIGN AND METHODS The STOP Sugars NOW trial (NCT03543644) is a pragmatic, "head-to-head", open-label, crossover, randomized controlled trial conducted in an outpatient setting. Participants were overweight or obese adults with a high waist circumference who regularly consumed ≥1 SSBs daily. Each participant completed three 4-week treatment phases (usual SSBs, matched NSBs, or water) in random order, which were separated by ≥4-week washout. Blocked randomization was performed centrally by computer with allocation concealment. Outcome assessment was blinded; however, blinding of participants and trial personnel was not possible. The two primary outcomes are oral glucose tolerance (incremental area under the curve) and gut microbiota beta-diversity (weighted UniFrac distance). Secondary outcomes include related markers of adiposity and glucose and insulin regulation. Adherence was assessed by objective biomarkers of added sugars and non-nutritive sweeteners and self-report intake. A subset of participants was included in an Ectopic Fat sub-study in which the primary outcome is intrahepatocellular lipid (IHCL) by 1H-MRS. Analyses will be according to the intention to treat principle. BASELINE RESULTS Recruitment began on 1 June 2018, and the last participant completed the trial on 15 October 2020. We screened 1086 participants, of whom 80 were enrolled and randomized in the main trial and 32 of these were enrolled and randomized in the Ectopic Fat sub-study. The participants were predominantly middle-aged (mean age 41.8 ± SD 13.0 y) and had obesity (BMI of 33.7 ± 6.8 kg/m2) with a near equal ratio of female: male (51%:49%). The average baseline SSB intake was 1.9 servings/day. SSBs were replaced with matched NSB brands, sweetened with either a blend of aspartame and acesulfame-potassium (95%) or sucralose (5%). CONCLUSIONS Baseline characteristics for both the main and Ectopic Fat sub-study meet our inclusion criteria and represent a group with overweight or obesity, with characteristics putting them at risk for type 2 diabetes. Findings will be published in peer-reviewed open-access medical journals and provide high-level evidence to inform clinical practice guidelines and public health policy for the use NSBs in sugars reduction strategies. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT03543644.
Collapse
Affiliation(s)
- Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Néma D. McGlynn
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Tauseef Ahmad Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Meaghan E. Kavanagh
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Maxine Seider
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
| | - Amel Taibi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
| | - Chuck T. Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Rachel Asbury
- Department of Chemical Engineering and Applied Chemistry, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E5, Canada;
- College of Dietitians of Ontario, Ontario, ON M2M 4J1, Canada
| | - Madeline Erlich
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- College of Dietitians of Ontario, Ontario, ON M2M 4J1, Canada
| | - Yue-Tong Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
| | - Vasanti S. Malik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
| | - D. Dan Ramdath
- Guelph Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Government of Canada, Guelph, ON N1G 5C9, Canada;
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Caomhan Logue
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Co., Londonderry BT52 1SA, BT52 1SA Coleraine, Ireland;
| | - Anthony J. Hanley
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Division of Endocrinology and Metabolism, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Cyril W. C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Lawrence A. Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Elena M. Comelli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (S.A.-C.); (N.D.M.); (D.L.); (T.A.K.); (S.B.M.); (L.C.); (M.E.K.); (A.T.); (C.T.C.); (A.A.); (M.E.); (Y.-T.C.); (V.S.M.); (R.P.B.); (A.J.H.); (C.W.C.K.); (L.A.L.); (E.M.C.)
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
34
|
Semmler G, Datz C, Trauner M. Eating, diet, and nutrition for the treatment of non-alcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S244-S260. [PMID: 36517001 PMCID: PMC10029946 DOI: 10.3350/cmh.2022.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Nutrition and dietary interventions are a central component in the pathophysiology, but also a cornerstone in the management of patients with non-alcoholic fatty liver disease (NAFLD). Summarizing our rapidly advancing understanding of how our diet influences our metabolism and focusing on specific effects on the liver, we provide a comprehensive overview of dietary concepts to counteract the increasing burden of NAFLD. Specifically, we emphasize the importance of dietary calorie restriction independently of the macronutrient composition together with adherence to a Mediterranean diet low in added fructose and processed meat that seems to exert favorable effects beyond calorie restriction. Also, we discuss intermittent fasting as a type of diet specifically tailored to decrease liver fat content and increase ketogenesis, awaiting future study results in NAFLD. Finally, personalized dietary recommendations could be powerful tools to increase the effectiveness of dietary interventions in patients with NAFLD considering the genetic background and the microbiome, among others.
Collapse
Affiliation(s)
- Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University Salzburg, Oberndorf, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Wang Y, Jian C, Salonen A, Dong M, Yang Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
36
|
Ribet L, Dessalles R, Lesens C, Brusselaers N, Durand-Dubief M. Nutritional benefits of sourdoughs: A systematic review. Adv Nutr 2023; 14:22-29. [PMID: 36811591 PMCID: PMC10103004 DOI: 10.1016/j.advnut.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022] Open
Abstract
Food fermentation using sourdough-i.e., consortia of lactic bacteria and yeasts-is increasingly considered among the public as a natural transformation yielding nutritional benefits; however, it is unclear whether its alleged properties are validated by science. The aim of this study was to systematically review the clinical evidence related to the effect of sourdough bread on health. Bibliographic searches were performed in 2 different databases (The Lens and PubMed) up to February 2022. Eligible studies were randomized controlled trials involving adults, healthy or not, given any type of sourdough bread compared with those given any type of yeast bread. A total of 573 articles were retrieved and investigated, of which 25 clinical trials met the inclusion criteria. The 25 clinical trials included a total of 542 individuals. The main outcomes investigated in the retrieved studies were glucose response (N = 15), appetite (N = 3), gastrointestinal markers (N = 5), and cardiovascular markers (N = 2). Overall, it is currently difficult to establish a clear consensus with regards to the beneficial effects of sourdough per se on health when compared with other types of bread because a variety of factors, such as the microbial composition of sourdough, fermentation parameters, cereals, and flour types potentially influence the nutritional properties of bread. Nonetheless, in studies using specific strains and fermentation conditions, significant improvements were observed in parameters related to glycemic response, satiety, or gastrointestinal comfort after bread ingestion. The reviewed data suggest that sourdough has great potential to produce a variety of functional foods; however, its complex and dynamic ecosystem requires further standardization to conclude its clinical health benefits.
Collapse
Affiliation(s)
- Léa Ribet
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | | | - Corinne Lesens
- Baking Science, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium; Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden; Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mickaël Durand-Dubief
- Discovery & Front End Innovation, Lesaffre Institute of Science & Technology, Lesaffre, Marcq-en-Barœul, France.
| |
Collapse
|
37
|
Wastyk HC, Perelman D, Topf M, Fragiadakis GK, Robinson JL, Sonnenburg JL, Gardner CD, Sonnenburg ED. Randomized controlled trial demonstrates response to a probiotic intervention for metabolic syndrome that may correspond to diet. Gut Microbes 2023; 15:2178794. [PMID: 36803658 PMCID: PMC9980610 DOI: 10.1080/19490976.2023.2178794] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
An individual's immune and metabolic status is coupled to their microbiome. Probiotics offer a promising, safe route to influence host health, possibly via the microbiome. Here, we report an 18-week, randomized prospective study that explores the effects of a probiotic vs. placebo supplement on 39 adults with elevated parameters of metabolic syndrome. We performed longitudinal sampling of stool and blood to profile the human microbiome and immune system. While we did not see changes in metabolic syndrome markers in response to the probiotic across the entire cohort, there were significant improvements in triglycerides and diastolic blood pressure in a subset of probiotic arm participants. Conversely, the non-responders had increased blood glucose and insulin levels over time. The responders had a distinct microbiome profile at the end of the intervention relative to the non-responders and placebo arm. Importantly, diet was a key differentiating factor between responders and non-responders. Our results show participant-specific effects of a probiotic supplement on improving parameters of metabolic syndrome and suggest that dietary factors may enhance stability and efficacy of the supplement.
Collapse
Affiliation(s)
- Hannah C. Wastyk
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, Stanford School of 4Medicine, Stanford, CA, USA
| | - Madeline Topf
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, Stanford School of 4Medicine, Stanford, CA, USA
| | - Justin L. Sonnenburg
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA,Center for Human Microbiome Studies, Stanford School of Medicine, Stanford University, Stanford, CA, USA,Chan Zuckerberg Biohub, San Francisco, CA, USA,CONTACT Justin L. Sonnenburg Microbiology & Immunology, Stanford School of Medicine, Stanford, CA94305, USA
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, Stanford School of 4Medicine, Stanford, CA, USA,Christopher D. Gardner Stanford Prevention Research Center, Department of Medicine, Stanford School of Medicine, Stanford, CA94305, USA
| | - Erica D. Sonnenburg
- Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, USA,Center for Human Microbiome Studies, Stanford School of Medicine, Stanford University, Stanford, CA, USA,Erica D. Sonnenburg Microbiology & Immunology, Stanford School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
38
|
Song EJ, Shin JH. Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities. J Microbiol Biotechnol 2022; 32:1497-1505. [PMID: 36398438 PMCID: PMC9843811 DOI: 10.4014/jmb.2209.09050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
Recently, the concept of personalized nutrition has been developed, which states that food components do not always lead to the same metabolic responses, but vary from person to person. Although this concept has been studied based on individual genetic backgrounds, researchers have recently explored its potential role in the gut microbiome. The gut microbiota physiologically communicates with humans by forming a bidirectional relationship with the micronutrients, macronutrients, and phytochemicals consumed by the host. Furthermore, the gut microbiota can vary from person to person and can be easily shifted by diet. Therefore, several recent studies have reported the application of personalized nutrition to intestinal microflora. This review provides an overview of the interaction of diet with the gut microbiome and the latest evidence in understanding the inter-individual differences in dietary responsiveness according to individual baseline gut microbiota and microbiome-associated dietary intervention in diseases. The diversity of the gut microbiota and the presence of specific microorganisms can be attributed to physiological differences following dietary intervention. The difference in individual responsiveness based on the gut microbiota has the potential to become an important research approach for personalized nutrition and health management, although further well-designed large-scale studies are warranted.
Collapse
Affiliation(s)
- Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea,Corresponding author Phone: +82-63-219-9446 Fax: +82-63-219-9876 E-mail:
| |
Collapse
|
39
|
Kirk D, Kok E, Tufano M, Tekinerdogan B, Feskens EJM, Camps G. Machine Learning in Nutrition Research. Adv Nutr 2022; 13:2573-2589. [PMID: 36166846 PMCID: PMC9776646 DOI: 10.1093/advances/nmac103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Data currently generated in the field of nutrition are becoming increasingly complex and high-dimensional, bringing with them new methods of data analysis. The characteristics of machine learning (ML) make it suitable for such analysis and thus lend itself as an alternative tool to deal with data of this nature. ML has already been applied in important problem areas in nutrition, such as obesity, metabolic health, and malnutrition. Despite this, experts in nutrition are often without an understanding of ML, which limits its application and therefore potential to solve currently open questions. The current article aims to bridge this knowledge gap by supplying nutrition researchers with a resource to facilitate the use of ML in their research. ML is first explained and distinguished from existing solutions, with key examples of applications in the nutrition literature provided. Two case studies of domains in which ML is particularly applicable, precision nutrition and metabolomics, are then presented. Finally, a framework is outlined to guide interested researchers in integrating ML into their work. By acting as a resource to which researchers can refer, we hope to support the integration of ML in the field of nutrition to facilitate modern research.
Collapse
Affiliation(s)
- Daniel Kirk
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Esther Kok
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Michele Tufano
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Bedir Tekinerdogan
- Information Technology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands.,OnePlanet Research Center, Wageningen, The Netherlands
| |
Collapse
|
40
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
41
|
Schröder T, Brudermann HCB, Kühn G, Sina C, Thaçi D, Nitschke M, König IR. Efficacy of the Digital Therapeutic sinCephalea in the prophylaxis of migraine in patients with episodic migraine: study protocol for a digital, randomized, open-label, standard treatment controlled trial. Trials 2022; 23:997. [PMID: 36510284 PMCID: PMC9743661 DOI: 10.1186/s13063-022-06933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The German government implemented the Digital Healthcare Act in order to bring Digital Therapeutics into standard medical care. This is one of the first regulatory pathways to reimbursement for Digital Therapeutics (DTx). The Digital Therapeutic sinCephalea is intended to act as a prophylactic treatment of migraine by reducing the migraine days. For this, sinCephalea determines personalized nutritional recommendations using continuous glucose monitoring (CGM) data and enables the patients to follow a personalized low-glycemic nutrition. Migraine is a headache disorder with the highest socioeconomic burden. Emerging evidence shows that CGM-based personalized nutritional recommendations are of prophylactic use in episodic migraine. However, prospective data are yet missing to demonstrate clinical effectiveness. This study is designed to fill this gap. METHODS Patients between 18 and 65 years of age with proven migraine and a minimal disease severity of 3 migraine days per month are included. After a 4-week baseline phase as a pre-study, patients are randomized to the DTx intervention or a waiting-list control. The objective of the study is to show differences between the intervention and control groups regarding the change of migraine symptoms and of effects of migraine on daily life. DISCUSSION To our knowledge, this is the first systematic clinical trial with a fully digital program to enable patients with migraine to follow a personalized low-glycemic nutrition in order to reduce their number of migraine days and the migraine-induced impact on daily life. Designing a clinical study using a digital intervention includes some obstacles, which are addressed in this study approach. TRIAL REGISTRATION German Registry of Clinical Studies (Deutsches Register Klinischer Studien) DRKS-ID DRKS00024657. Registered on March 8, 2021.
Collapse
Affiliation(s)
- Torsten Schröder
- grid.412468.d0000 0004 0646 2097Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany ,Perfood GmbH, Am Spargelhof 2, Lübeck, Germany
| | - Hanna C. B. Brudermann
- grid.4562.50000 0001 0057 2672Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Gianna Kühn
- Perfood GmbH, Am Spargelhof 2, Lübeck, Germany
| | - Christian Sina
- grid.412468.d0000 0004 0646 2097Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany ,grid.4562.50000 0001 0057 2672Medical Department 1, Section of Nutritional Medicine University Hospital of Schleswig-Holstein, Campus Lübeck & University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Diamant Thaçi
- grid.4562.50000 0001 0057 2672Institute and Comprehensive Center for Inflammation Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Matthias Nitschke
- grid.4562.50000 0001 0057 2672Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Inke R. König
- grid.4562.50000 0001 0057 2672Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
42
|
Peckmezian T, Garcia-Larsen V, Wilkins K, Mosli RH, BinDhim NF, John GK, Yasir M, Azhar EI, Mullin GE, Alqahtani SA. Microbiome-Targeted Therapies as an Adjunct to Traditional Weight Loss Interventions: A Systematic Review and Meta-Analysis. Diabetes Metab Syndr Obes 2022; 15:3777-3798. [PMID: 36530587 PMCID: PMC9753565 DOI: 10.2147/dmso.s378396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Objective This study evaluated the effect of microbiome-targeted therapies (pre-, pro-, and synbiotics) on weight loss and other anthropometric outcomes when delivered as an adjunct to traditional weight loss interventions in overweight and obese adults. Methods A systematic review of three databases (Medline [PubMed], Embase, and the Cochrane Central Register of Controlled Trials) was performed to identify randomized controlled trials published between January 1, 2010 and December 31, 2020, that evaluated anthropometric outcomes following microbiome-targeted supplements in combination with dietary or dietary and exercise interventions. The pooled mean difference (MD) between treatment and control groups was calculated using a random effects model. Results Twenty-one trials with 1233 adult participants (76.4% female) with overweight or obesity were included. Separate meta-analyses were conducted for probiotics (n=11 trials) and synbiotics (n=10 trials) on each anthropometric outcome; prebiotics were excluded as only a single study was found. Patient characteristics and methodologies varied widely between studies. All studies incorporated some degree of caloric restriction, while only six studies included recommendations for adjunct exercise. Compared with dietary or dietary and exercise interventions only, probiotics resulted in reductions in body weight (MD: -0.73 kg; 95% confidence interval [CI]: -1.02 to -0.44, p < 0.001), fat mass (MD: -0.61 kg; 95% CI: -0.77 to -0.45; p<0.001) and waist circumference (MD: -0.53 cm; 95% CI: -0.99 to -0.07, p=0.024) while synbiotics resulted in reductions in fat mass (MD: -1.53 kg; 95% CI: -2.95 to -0.12, p=0.034) and waist circumference (MD: -1.31 cm; 95% CI: -2.05 to -0.57, p<0.001). Conclusion This analysis indicates that microbiome-targeted supplements may enhance weight loss and other obesity outcomes in adults when delivered as an adjunct to dietary or dietary and exercise interventions. Personalized therapy to include microbiome-targeted supplements may help to optimize weight loss in overweight and obese individuals.
Collapse
Affiliation(s)
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kayla Wilkins
- Environmental GeoScience Research Group, Trent University, Peterborough, ON, Canada
| | - Rana H Mosli
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser F BinDhim
- Sharik Association for Health Research, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - George Kunnackal John
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Easton, MD, USA
| | - Muhammad Yasir
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gerard E Mullin
- Liver Transplant Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Saleh A Alqahtani
- Liver Transplant Center, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology & Hepatology, John Hopkins University, Baltimore, MD, USA
| |
Collapse
|
43
|
Sierra JA, Escobar JS, Corrales-Agudelo V, Lara-Guzmán OJ, Velásquez-Mejía EP, Henao-Rojas JC, Caro-Quintero A, Vaillant F, Muñoz-Durango K. Consumption of golden berries (Physalis peruviana L.) might reduce biomarkers of oxidative stress and alter gut permeability in men without changing inflammation status or the gut microbiota. Food Res Int 2022; 162:111949. [DOI: 10.1016/j.foodres.2022.111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
|
44
|
Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab 2022; 34:1700-1718. [PMID: 36208625 DOI: 10.1016/j.cmet.2022.09.017] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University, Innsbruck, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University, Vienna, Austria
| |
Collapse
|
45
|
Merino J. Precision nutrition in diabetes: when population-based dietary advice gets personal. Diabetologia 2022; 65:1839-1848. [PMID: 35593923 DOI: 10.1007/s00125-022-05721-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Diet plays a fundamental role in maintaining long-term health, with healthful diets being endorsed by current dietary guidelines for the prevention and management of type 2 diabetes. However, the response to dietary interventions varies widely, highlighting the need for refinement and personalisation beyond population-based 'one size fits all'. This article reviews the clinical evidence supporting precision nutrition as a fundamental approach for dietary advice in diabetes. Further, it proposes a framework for the eventual implementation of precision nutrition and discusses key challenges for the application of this approach in the prevention of diabetes. One implication of this approach is that precision nutrition would not exclude the parallel goal of population-based healthy dietary advice. Nevertheless, the shift in prioritising precision nutrition is needed to reflect the dynamic nature of responses to dietary interventions that vary among individuals and change over the life course.
Collapse
Affiliation(s)
- Jordi Merino
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Nakamura Y, Suzuki S, Murakami S, Nishimoto Y, Higashi K, Watarai N, Umetsu J, Ishii C, Ito Y, Mori Y, Kohno M, Yamada T, Fukuda S. Integrated gut microbiome and metabolome analyses identified fecal biomarkers for bowel movement regulation by Bifidobacterium longum BB536 supplementation: A RCT. Comput Struct Biotechnol J 2022; 20:5847-5858. [PMID: 36382178 PMCID: PMC9636538 DOI: 10.1016/j.csbj.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Background Bifidobacterium longum BB536 supplementation can be used to regulate bowel movements in various people, including healthy subjects and patients with irritable bowel syndrome (IBS); however, individuals vary in their responses to B. longum BB536 treatment. One putative factor is the gut microbiota; recent studies have reported that the gut microbiota mediates the effects of diet or drugs on the host. Here, we investigated intestinal features, such as the microbiome and metabolome, related to B. longum BB536 effectiveness in increasing bowel movement frequency. Results A randomized, double-blind controlled crossover trial was conducted with 24 adults who mainly tended to be constipated. The subjects received a two-week dietary intervention consisting of B. longum BB536 in acid-resistant seamless capsules or similarly encapsulated starch powder as the placebo control. Bowel movement frequency was recorded daily, and fecal samples were collected at several time points, and analyzed by metabologenomic approach that consists of an integrated analysis of metabolome data obtained using mass spectrometry and microbiome data obtained using high-throughput sequencing. There were differences among subjects in B. longum intake-induced bowel movement frequency. The responders were predicted by machine learning based on the microbiome and metabolome features of the fecal samples collected before B. longum intake. The abundances of eight bacterial genera were significantly different between responders and nonresponders. Conclusions Intestinal microbiome and metabolome profiles might be utilized as potential markers of improved bowel movement after B. longum BB536 supplementation. These findings have implications for the development of personalized probiotic treatments.
Collapse
Key Words
- 16S rRNA gene sequence
- AUROC, area under the receiver operating characteristic curve
- Bifidobacteria
- CE-TOFMS, capillary electrophoresis time-of-flight mass spectrometry
- CSA, D-camphor-10-sulfonic acid
- ESVs, exact sequence variants
- FDR, false discovery rate
- Gut microbiota
- IBD, inflammatory bowel disease
- IBS, irritable bowel syndrome
- ITT, intention-to-treat
- MCMC, Markov Chain Monte Carlo
- MDS, multidimensional scaling
- Machine learning
- Metabologenomics
- NRs, nonresponders
- PP, per-protocol population
- PSRF, potential scale reduction factor
- Probiotics
- SCFAs, short-chain fatty acids
- SRs, strong responders
- WAIC, Widely Applicable Information Criterion
- WRs, weak responders
Collapse
Affiliation(s)
- Yuya Nakamura
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinya Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Education Academy of Computational Life Science (ACLS), 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinnosuke Murakami
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | | | - Koichi Higashi
- National Institute of Genetics, Genome Evolution Laboratory, Yata 1111, Mishima 411-8540, Japan
| | - Naoki Watarai
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Junpei Umetsu
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yutaro Ito
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Yuka Mori
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Mamiko Kohno
- MORISHITA JINTAN CO., LTD, Health Care Product Department, Research & Development Division, 1-2-40 Tamatsukuri, Chuo-ku, Osaka 540-8566, Japan
| | - Takuji Yamada
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinji Fukuda
- Metagen Inc., 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Institute for Advanced Biosciences, Keio University, 246-2 Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Tokyo 113-8421, Japan
| |
Collapse
|
47
|
Sarfraz MH, Shahid A, Asghar S, Aslam B, Ashfaq UA, Raza H, Prieto MA, Simal-Gandara J, Barba FJ, Rajoka MSR, Khurshid M, Nashwan AJ. Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia. Front Mol Biosci 2022; 9:1038830. [PMID: 36330221 PMCID: PMC9623024 DOI: 10.3389/fmolb.2022.1038830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
During the previous few years, the relationship between the gut microbiota, metabolic disorders, and diet has come to light, especially due to the understanding of the mechanisms that particularly link the gut microbiota with obesity in animal models and clinical trials. Research has led to the understanding that the responses of individuals to dietary inputs vary remarkably therefore no single diet can be suggested to every individual. The variations are attributed to differences in the microbiome and host characteristics. In general, it is believed that the immanent nature of host-derived factors makes them difficult to modulate. However, diet can more easily shape the microbiome, potentially influencing human physiology through modulation of digestion, absorption, mucosal immune response, and the availability of bioactive compounds. Thus, diet could be useful to influence the physiology of the host, as well as to ameliorate various disorders. In the present study, we have described recent developments in understanding the disparities of gut microbiota populations between individuals and the primary role of diet-microbiota interactions in modulating human physiology. A deeper understanding of these relationships can be useful for proposing personalized nutrition strategies and nutrition-based therapeutic interventions to improve human health.
Collapse
Affiliation(s)
| | - Aqsa Shahid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Samra Asghar
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hammad Raza
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Francisco J. Barba
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Muhammad Shahid Riaz Rajoka
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Mohsin Khurshid, ; Abdulqadir J. Nashwan,
| | - Abdulqadir J. Nashwan
- Nursing Department, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar
- *Correspondence: Mohsin Khurshid, ; Abdulqadir J. Nashwan,
| |
Collapse
|
48
|
Yeşilyurt N, Yılmaz B, Ağagündüz D, Capasso R. Microbiome-based personalized nutrition as a result of the 4.0 technological revolution: A mini literature review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Abstract
We are host to an assembly of microorganisms that vary in structure and function along the length of the gut and from the lumen to the mucosa. This ecosystem is collectively known as the gut microbiota and significant efforts have been spent during the past 2 decades to catalog and functionally describe the normal gut microbiota and how it varies during a wide spectrum of disease states. The gut microbiota is altered in several cardiometabolic diseases and recent work has established microbial signatures that may advance disease. However, most research has focused on identifying associations between the gut microbiota and human diseases states and to investigate causality and potential mechanisms using cells and animals. Since the gut microbiota functions on the intersection between diet and host metabolism, and can contribute to inflammation, several microbially produced metabolites and molecules may modulate cardiometabolic diseases. Here we discuss how the gut bacterial composition is altered in, and can contribute to, cardiometabolic disease, as well as how the gut bacteria can be targeted to treat and prevent metabolic diseases.
Collapse
Affiliation(s)
- Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Denmark.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| |
Collapse
|
50
|
Kong H, Yu L, Li C, Ban X, Gu Z, Liu L, Li Z. Perspectives on evaluating health effects of starch: Beyond postprandial glycemic response. Carbohydr Polym 2022; 292:119621. [DOI: 10.1016/j.carbpol.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|