1
|
Duffy KA, Helwig NE. Resting-State Functional Connectivity Predicts Attention Problems in Children: Evidence from the ABCD Study. NEUROSCI 2024; 5:445-461. [PMID: 39484302 PMCID: PMC11503400 DOI: 10.3390/neurosci5040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, and numerous functional and structural differences have been identified in the brains of individuals with ADHD compared to controls. This study uses data from the baseline sample of the large, epidemiologically informed Adolescent Brain Cognitive Development Study of children aged 9-10 years old (N = 7979). Cross-validated Poisson elastic net regression models were used to predict a dimensional measure of ADHD symptomatology from within- and between-network resting-state correlations and several known risk factors, such as biological sex, socioeconomic status, and parental history of problematic alcohol and drug use. We found parental history of drug use and biological sex to be the most important predictors of attention problems. The connection between the default mode network and the dorsal attention network was the only brain network identified as important for predicting attention problems. Specifically, we found that reduced magnitudes of the anticorrelation between the default mode and dorsal attention networks relate to increased attention problems in children. Our findings complement and extend recent studies that have connected individual differences in structural and task-based fMRI to ADHD symptomatology and individual differences in resting-state fMRI to ADHD diagnoses.
Collapse
Affiliation(s)
- Kelly A. Duffy
- Department of Psychology, University of Minnesota, 75 E River Road, Minneapolis, MN 55455, USA
| | - Nathaniel E. Helwig
- Department of Psychology, University of Minnesota, 75 E River Road, Minneapolis, MN 55455, USA
- School of Statistics, University of Minnesota, 224 Church Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Chen Z, Adegboro AA, Gu L, Li X. Constructing and exploring neuroimaging projects: a survey from clinical practice to scientific research. Insights Imaging 2024; 15:272. [PMID: 39546176 PMCID: PMC11568082 DOI: 10.1186/s13244-024-01848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/13/2024] [Indexed: 11/17/2024] Open
Abstract
Over the past decades, numerous large-scale neuroimaging projects that involved the collection and release of multimodal data have been conducted globally. Distinguished initiatives such as the Human Connectome Project, UK Biobank, and Alzheimer's Disease Neuroimaging Initiative, among others, stand as remarkable international collaborations that have significantly advanced our understanding of the brain. With the advancement of big data technology, changes in healthcare models, and continuous development in biomedical research, various types of large-scale projects are being established and promoted worldwide. For project leaders, there is a need to refer to common principles in project construction and management. Users must also adhere strictly to rules and guidelines, ensuring data safety and privacy protection. Organizations must maintain data integrity, protect individual privacy, and foster stakeholders' trust. Regular updates to legislation and policies are necessary to keep pace with evolving technologies and emerging data-related challenges. CRITICAL RELEVANCE STATEMENT: By reviewing global large-scale neuroimaging projects, we have summarized the standards and norms for establishing and utilizing their data, and provided suggestions and opinions on some ethical issues, aiming to promote higher-quality neuroimaging data development. KEY POINTS: Global neuroimaging projects are increasingly advancing but still face challenges. Constructing and utilizing neuroimaging projects should follow set rules and guidelines. Effective data management and governance should be developed to support neuroimaging projects.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Lan Gu
- School of Foreign Languages, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
3
|
Hercules K, Liu Z, Wei J, Venegas G, Ciocca O, Dyer A, Lee G, Santini-Bishop S, Shappell H, Gee DG, Sukhodolsky DG, Ibrahim K. Transdiagnostic Symptom Domains are Associated with Head Motion During Multimodal Imaging in Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612668. [PMID: 39345620 PMCID: PMC11429611 DOI: 10.1101/2024.09.13.612668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Head motion is a challenge for neuroimaging research in developmental populations. However, it is unclear how transdiagnostic symptom domains including attention, disruptive behavior (e.g., externalizing behavior), and internalizing problems are linked to scanner motion in children, particularly across structural and functional MRI. The current study examined whether transdiagnostic domains of attention, disruptive behavior, and internalizing symptoms are associated with scanner motion in children during multimodal imaging. Methods In a sample of 9,045 children aged 9-10 years in the Adolescent Brain Cognitive Development (ABCD) Study, logistic regression and linear mixed-effects models were used to examine associations between motion and behavior. Motion was indexed using ABCD Study quality control metrics and mean framewise displacement for the following: T1-weighted structural, resting-state fMRI, diffusion MRI, Stop-Signal Task, Monetary Incentive Delay task, and Emotional n-Back task. The Child Behavior Checklist was used as a continuous measure of symptom severity. Results Greater attention and disruptive behavior problem severity was associated with a lower likelihood of passing motion quality control across several imaging modalities. In contrast, increased internalizing severity was associated with a higher likelihood of passing motion quality control. Increased attention and disruptive behavior problem severity was also associated with increased mean motion, whereas increased internalizing problem severity was associated with decreased mean motion. Conclusion Transdiagnostic domains emerged as predictors of motion in youths. These findings have implications for advancing development of generalizable and robust brain-based biomarkers, computational approaches for mitigating motion effects, and enhancing accessibility of imaging protocols for children with varying symptom severities.
Collapse
Affiliation(s)
- Kavari Hercules
- Yale University School of Medicine, Child Study Center
- Yale University School of Public Health, Department of Social and Behavioral Sciences
| | - Zhiyuan Liu
- Yale University School of Medicine, Child Study Center
- Yale University School of Public Health, Department of Social and Behavioral Sciences
| | - Jia Wei
- Yale University School of Medicine, Child Study Center
| | | | - Olivia Ciocca
- Yale University School of Medicine, Child Study Center
| | - Alice Dyer
- Yale University School of Medicine, Child Study Center
| | - Goeun Lee
- Yale University School of Medicine, Child Study Center
| | | | - Heather Shappell
- Wake Forest University School of Medicine, Department of Biostatistics and Data Science
| | - Dylan G. Gee
- Yale University, Department of Psychology
- Yale University, Wu Tsai Institute
| | | | - Karim Ibrahim
- Yale University School of Medicine, Child Study Center
- Yale University, Department of Psychology
- Yale University, Wu Tsai Institute
| |
Collapse
|
4
|
Michael C, Taxali A, Angstadt M, Kardan O, Weigard A, Molloy MF, McCurry KL, Hyde LW, Heitzeg MM, Sripada C. Socioeconomic resources in youth are linked to divergent patterns of network integration/segregation across the brain's transmodal axis. PNAS NEXUS 2024; 3:pgae412. [PMID: 39323982 PMCID: PMC11423146 DOI: 10.1093/pnasnexus/pgae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024]
Abstract
Socioeconomic resources (SER) calibrate the developing brain to the current context, which can confer or attenuate risk for psychopathology across the lifespan. Recent multivariate work indicates that SER levels powerfully relate to intrinsic functional connectivity patterns across the entire brain. Nevertheless, the neuroscientific meaning of these widespread neural differences remains poorly understood, despite its translational promise for early risk identification, targeted intervention, and policy reform. In the present study, we leverage graph theory to precisely characterize multivariate and univariate associations between SER across household and neighborhood contexts and the intrinsic functional architecture of brain regions in 5,821 youth (9-10 years) from the Adolescent Brain Cognitive Development Study. First, we establish that decomposing the brain into profiles of integration and segregation captures more than half of the multivariate association between SER and functional connectivity with greater parsimony (100-fold reduction in number of features) and interpretability. Second, we show that the topological effects of SER are not uniform across the brain; rather, higher SER levels are associated with greater integration of somatomotor and subcortical systems, but greater segregation of default mode, orbitofrontal, and cerebellar systems. Finally, we demonstrate that topological associations with SER are spatially patterned along the unimodal-transmodal gradient of brain organization. These findings provide critical interpretive context for the established and widespread associations between SER and brain organization. This study highlights both higher-order and somatomotor networks that are differentially implicated in environmental stress, disadvantage, and opportunity in youth.
Collapse
Affiliation(s)
- Cleanthis Michael
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aman Taxali
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omid Kardan
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander Weigard
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - M Fiona Molloy
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Survey Research Center at the Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Sadil P, Lindquist MA. From Maps to Models: A Survey on the Reliability of Small Studies of Task-Based fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606611. [PMID: 39149240 PMCID: PMC11326202 DOI: 10.1101/2024.08.05.606611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Task-based functional magnetic resonance imaging is a powerful tool for studying brain function, but neuroimaging research produces ongoing concerns regarding small-sample studies and how to interpret them. Although it is well understood that larger samples are preferable, many situations require researchers to make judgments from small studies, including reviewing the existing literature, analyzing pilot data, or assessing subsamples. Quantitative guidance on how to make these judgments remains scarce. To address this, we leverage the Human Connectome Project's Young Adult dataset to survey various analyses-from regional activation maps to predictive models. We find that, for some classic analyses such as detecting regional activation or cluster peak location, studies with as few as 40 subjects are adequate, although this depends crucially on effect sizes. For predictive modeling, similar sizes can be adequate for detecting whether features are predictable, but at least an order of magnitude more (at least hundreds) may be required for developing consistent predictions. These results offer valuable insights for designing and interpreting fMRI studies, emphasizing the importance of considering effect size, sample size, and analysis approach when assessing the reliability of findings. We hope that this survey serves as a reference for identifying which kinds of research questions can be reliably answered with small-scale studies.
Collapse
Affiliation(s)
- Patrick Sadil
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
6
|
Hu F, Lucas A, Chen AA, Coleman K, Horng H, Ng RWS, Tustison NJ, Davis KA, Shou H, Li M, Shinohara RT. DeepComBat: A statistically motivated, hyperparameter-robust, deep learning approach to harmonization of neuroimaging data. Hum Brain Mapp 2024; 45:e26708. [PMID: 39056477 PMCID: PMC11273293 DOI: 10.1002/hbm.26708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroimaging data acquired using multiple scanners or protocols are increasingly available. However, such data exhibit technical artifacts across batches which introduce confounding and decrease reproducibility. This is especially true when multi-batch data are analyzed using complex downstream models which are more likely to pick up on and implicitly incorporate batch-related information. Previously proposed image harmonization methods have sought to remove these batch effects; however, batch effects remain detectable in the data after applying these methods. We present DeepComBat, a deep learning harmonization method based on a conditional variational autoencoder and the ComBat method. DeepComBat combines the strengths of statistical and deep learning methods in order to account for the multivariate relationships between features while simultaneously relaxing strong assumptions made by previous deep learning harmonization methods. As a result, DeepComBat can perform multivariate harmonization while preserving data structure and avoiding the introduction of synthetic artifacts. We apply this method to cortical thickness measurements from a cognitive-aging cohort and show DeepComBat qualitatively and quantitatively outperforms existing methods in removing batch effects while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically motivated deep learning harmonization methods.
Collapse
Affiliation(s)
- Fengling Hu
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, Department of EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew A. Chen
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kyle Coleman
- Statistical Center for Single‐Cell and Spatial GenomicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hannah Horng
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Raymond W. S. Ng
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nicholas J. Tustison
- Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, Department of EngineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics (CBICA)Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Mingyao Li
- Statistical Center for Single‐Cell and Spatial GenomicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and InformaticsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics (CBICA)Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
7
|
Borchers LR, Gifuni AJ, Ho TC, Kirshenbaum JS, Gotlib IH. Threat- and reward-related brain circuitry, perceived stress, and anxiety in adolescents during the COVID-19 pandemic: a longitudinal investigation. Soc Cogn Affect Neurosci 2024; 19:nsae040. [PMID: 38874967 PMCID: PMC11219304 DOI: 10.1093/scan/nsae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
The Coronavirus disease (COVID-19) pandemic led to heightened anxiety in adolescents. The basolateral amygdala (BLA) and the nucleus accumbens (NAcc) are implicated in response to stress and may contribute to anxiety. The role of threat- and reward-related circuitry in adolescent anxiety during the COVID-19 pandemic, however, is not clear. Ninety-nine adolescents underwent resting-state fMRI ∼1 year before the pandemic. Following shelter-in-place orders, adolescents reported their perceived stress and, 1 month later, their anxiety. Generalized multivariate analyses identified BLA and NAcc seed-based whole-brain functional connectivity maps with perceived stress. In the resulting significant clusters, we examined the association between seed-based connectivityand subsequent anxiety. Perceived stress was associated with bilateral BLA and NAcc connectivity across distributed clusters that included prefrontal, limbic, temporal, and cerebellar regions. Several NAcc connectivity clusters located in ventromedial prefrontal, parahippocampal, and temporal cortices were positively associated with anxiety; NAcc connectivity with the inferior frontal gyrus was negatively associated. BLA connectivity was not associated with anxiety. These results underscore the integrative role of the NAcc in responding to acute stressors and its relation to anxiety in adolescents. Elucidating the involvement of subcortical-cortical circuitry in adolescents' capacity to respond adaptively to environmental challenges can inform treatment for anxiety-related disorders.
Collapse
Affiliation(s)
- Lauren R Borchers
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Anthony J Gifuni
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Psychiatry Department and Douglas Mental Health University Institute, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Tiffany C Ho
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Jaclyn S Kirshenbaum
- Department of Psychiatry, Columbia University, New York, NY 10027, United States
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
8
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behavior relationships found using canonical correlation analysis and partial least squares within the ABCD sample. Netw Neurosci 2024; 8:576-596. [PMID: 38952810 PMCID: PMC11168718 DOI: 10.1162/netn_a_00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 07/03/2024] Open
Abstract
Canonical correlation analysis (CCA) and partial least squares correlation (PLS) detect linear associations between two data matrices by computing latent variables (LVs) having maximal correlation (CCA) or covariance (PLS). This study compared the similarity and generalizability of CCA- and PLS-derived brain-behavior relationships. Data were accessed from the baseline Adolescent Brain Cognitive Development (ABCD) dataset (N > 9,000, 9-11 years). The brain matrix consisted of cortical thickness estimates from the Desikan-Killiany atlas. Two phenotypic scales were examined separately as the behavioral matrix; the Child Behavioral Checklist (CBCL) subscale scores and NIH Toolbox performance scores. Resampling methods were used to assess significance and generalizability of LVs. LV1 for the CBCL brain relationships was found to be significant, yet not consistently stable or reproducible, across CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 for the NIH brain relationships showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). The current study suggests that stability and reproducibility of brain-behavior relationships identified by CCA and PLS are influenced by the statistical characteristics of the phenotypic measure used when applied to a large population-based pediatric sample.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, TX, USA
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Harnett NG, Fani N, Rowland G, Kumar P, Rutherford S, Nickerson LD. Population-level normative models reveal race- and socioeconomic-related variability in cortical thickness of threat neurocircuitry. Commun Biol 2024; 7:745. [PMID: 38898062 PMCID: PMC11187116 DOI: 10.1038/s42003-024-06436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The inequitable distribution of economic resources and exposure to adversity between racial groups contributes to mental health disparities within the United States. Consideration of the potential neurodevelopmental consequences, however, has been limited particularly for neurocircuitry known to regulate the emotional response to threat. Characterizing the consequences of inequity on threat neurocircuitry is critical for robust and generalizable neurobiological models of psychiatric illness. Here we use data from the Adolescent Brain and Cognitive Development Study 4.0 release to investigate the contributions of individual and neighborhood-level economic resources and exposure to discrimination. We investigate the potential appearance of race-related differences using both standard methods and through population-level normative modeling. We show that, in a sample of white and Black adolescents, racial inequities in socioeconomic factors largely contribute to the appearance of race-related differences in cortical thickness of threat neurocircuitry. The race-related differences are preserved through the use of population-level models and such models also preserve associations between cortical thickness and specific socioeconomic factors. The present findings highlight that such socioeconomic inequities largely underlie race-related differences in brain morphology. The present findings provide important new insight for the generation of generalizable neurobiological models of psychiatric illness.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Negar Fani
- Department of Psychiatry and Behavioral Neuroscience, Emory University, Atlanta, GA, USA
| | - Grace Rowland
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
| | - Poornima Kumar
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Saige Rutherford
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Donders Institute, Radboud University Nijmegen, Nijmegen, Netherlands
- Department of Psychiatry, University of Michigan-Ann Arbor, Ann Arbor, MI, USA
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Applied Neuroimaging Statistics Research Laboratory, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
10
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
11
|
Molloy MF, Saygin ZM, Osher DE. Predicting high-level visual areas in the absence of task fMRI. Sci Rep 2024; 14:11376. [PMID: 38762549 PMCID: PMC11102456 DOI: 10.1038/s41598-024-62098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
The ventral visual stream is organized into units, or functional regions of interest (fROIs), specialized for processing high-level visual categories. Task-based fMRI scans ("localizers") are typically used to identify each individual's nuanced set of fROIs. The unique landscape of an individual's functional activation may rely in large part on their specialized connectivity patterns; recent studies corroborate this by showing that connectivity can predict individual differences in neural responses. We focus on the ventral visual stream and ask: how well can an individual's resting state functional connectivity localize their fROIs for face, body, scene, and object perception? And are the neural processors for any particular visual category better predicted by connectivity than others, suggesting a tighter mechanistic relationship between connectivity and function? We found, among 18 fROIs predicted from connectivity for each subject, all but one were selective for their preferred visual category. Defining an individual's fROIs based on their connectivity patterns yielded regions that were more selective than regions identified from previous studies or atlases in nearly all cases. Overall, we found that in the absence of a domain-specific localizer task, a 10-min resting state scan can be reliably used for defining these fROIs.
Collapse
Affiliation(s)
- M Fiona Molloy
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH, 43210, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Zeynep M Saygin
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH, 43210, USA
| | - David E Osher
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
Lee Y, Chahal R, Gotlib IH. The default mode network is associated with changes in internalizing and externalizing problems differently in adolescent boys and girls. Dev Psychopathol 2024; 36:834-843. [PMID: 36847268 DOI: 10.1017/s0954579423000111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Internalizing and externalizing problems that emerge during adolescence differentially increase boys' and girls' risk for developing psychiatric disorders. It is not clear, however, whether there are sex differences in the intrinsic functional architecture of the brain that underlie changes in the severity of internalizing and externalizing problems in adolescents. Using resting-state fMRI data and self-reports of behavioral problems obtained from 128 adolescents (73 females; 9-14 years old) at two timepoints, we conducted multivoxel pattern analysis to identify resting-state functional connectivity markers at baseline that predict changes in the severity of internalizing and externalizing problems in boys and girls 2 years later. We found sex-differentiated involvement of the default mode network in changes in internalizing and externalizing problems. Whereas changes in internalizing problems were associated with the dorsal medial subsystem in boys and with the medial temporal subsystem in girls, changes in externalizing problems were predicted by hyperconnectivity between core nodes of the DMN and frontoparietal network in boys and hypoconnectivity between the DMN and affective networks in girls. Our results suggest that different neural mechanisms predict changes in internalizing and externalizing problems in adolescent boys and girls and offer insights concerning mechanisms that underlie sex differences in the expression of psychopathology in adolescence.
Collapse
Affiliation(s)
- Yoonji Lee
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Hermosillo RJM, Moore LA, Feczko E, Miranda-Domínguez Ó, Pines A, Dworetsky A, Conan G, Mooney MA, Randolph A, Graham A, Adeyemo B, Earl E, Perrone A, Carrasco CM, Uriarte-Lopez J, Snider K, Doyle O, Cordova M, Koirala S, Grimsrud GJ, Byington N, Nelson SM, Gratton C, Petersen S, Feldstein Ewing SW, Nagel BJ, Dosenbach NUF, Satterthwaite TD, Fair DA. A precision functional atlas of personalized network topography and probabilities. Nat Neurosci 2024; 27:1000-1013. [PMID: 38532024 PMCID: PMC11089006 DOI: 10.1038/s41593-024-01596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/08/2024] [Indexed: 03/28/2024]
Abstract
Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.
Collapse
Affiliation(s)
- Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Óscar Miranda-Domínguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Adam Pines
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michael A Mooney
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health and Science University, Portland, OR, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Kathy Snider
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University, San Diego, CA, USA
- Joint Doctoral Program in Clinical Psychology, University of California San Diego, San Diego, CA, USA
| | - Sanju Koirala
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Gracie J Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Busch EL, Rapuano KM, Anderson KM, Rosenberg MD, Watts R, Casey BJ, Haxby JV, Feilong M. Dissociation of Reliability, Heritability, and Predictivity in Coarse- and Fine-Scale Functional Connectomes during Development. J Neurosci 2024; 44:e0735232023. [PMID: 38148152 PMCID: PMC10866091 DOI: 10.1523/jneurosci.0735-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
Collapse
Affiliation(s)
- Erica L Busch
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Richard Watts
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - James V Haxby
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Ma Feilong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
15
|
Flournoy JC, Bryce NV, Dennison MJ, Rodman AM, McNeilly EA, Lurie LA, Bitran D, Reid-Russell A, Vidal Bustamante CM, Madhyastha T, McLaughlin KA. A precision neuroscience approach to estimating reliability of neural responses during emotion processing: Implications for task-fMRI. Neuroimage 2024; 285:120503. [PMID: 38141745 PMCID: PMC10872443 DOI: 10.1016/j.neuroimage.2023.120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023] Open
Abstract
Recent work demonstrating low test-retest reliability of neural activation during fMRI tasks raises questions about the utility of task-based fMRI for the study of individual variation in brain function. Two possible sources of the instability in task-based BOLD signal over time are noise or measurement error in the instrument, and meaningful variation across time within-individuals in the construct itself-brain activation elicited during fMRI tasks. Examining the contribution of these two sources of test-retest unreliability in task-evoked brain activity has far-reaching implications for cognitive neuroscience. If test-retest reliability largely reflects measurement error, it suggests that task-based fMRI has little utility in the study of either inter- or intra-individual differences. On the other hand, if task-evoked BOLD signal varies meaningfully over time, it would suggest that this tool may yet be well suited to studying intraindividual variation. We parse these sources of variance in BOLD signal in response to emotional cues over time and within-individuals in a longitudinal sample with 10 monthly fMRI scans. Test-retest reliability was low, reflecting a lack of stability in between-person differences across scans. In contrast, within-person, within-session internal consistency of the BOLD signal was higher, and within-person fluctuations across sessions explained almost half the variance in voxel-level neural responses. Additionally, monthly fluctuations in neural response to emotional cues were associated with intraindividual variation in mood, sleep, and exposure to stressors. Rather than reflecting trait-like differences across people, neural responses to emotional cues may be more reflective of intraindividual variation over time. These patterns suggest that task-based fMRI may be able to contribute to the study of individual variation in brain function if more attention is given to within-individual variation approaches, psychometrics-beginning with improving reliability beyond the modest estimates observed here, and the validity of task fMRI beyond the suggestive associations reported here.
Collapse
Affiliation(s)
| | | | - Meg J Dennison
- Phoenix Australia-Centre for Posttraumatic Mental Health, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Lucy A Lurie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| | | | | | | | - Tara Madhyastha
- Rescale; Integrated Brain Imaging Center, University of Washington
| | | |
Collapse
|
16
|
Vogel AC, Black KJ. Brain Imaging in Routine Psychiatric Practice. MISSOURI MEDICINE 2024; 121:37-43. [PMID: 38404436 PMCID: PMC10887461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Technologies in the 21st century provide increasingly detailed and accurate maps of brain structure and function. So why don't psychiatrists order brain imaging on all our patients? Here we briefly review major neuroimaging methods and some of their findings in psychiatry. As clinicians and neuroimaging researchers, we are eager to bring brain imaging into daily clinical practice. However, to be clinically useful, any test in medicine must demonstrate adequate test statistics, and show proven benefits that outweigh its risks and costs. In 2024, beyond certain limited circumstances, we have no imaging tests that can meet those standards to provide diagnosis or guide treatment. This cold fact explains why for most psychiatric patients, neuroimaging is not currently recommended by professional organizations or the National Institute of Mental Health.
Collapse
Affiliation(s)
- Alecia C Vogel
- Assistant Professor of Psychiatry (Child), Washington University School of Medicine in St. Louis, Missouri
| | - Kevin J Black
- Professor of Psychiatry, Neurology, Radiology, and Neuroscience at Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
17
|
Thomas SA, Ryan SK, Gilman J. Resting state network connectivity is associated with cognitive flexibility performance in youth in the Adolescent Brain Cognitive Development Study. Neuropsychologia 2023; 191:108708. [PMID: 37898357 PMCID: PMC10842068 DOI: 10.1016/j.neuropsychologia.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cognitive flexibility is an executive functioning skill that develops in childhood, and when impaired, has transdiagnostic implications for psychiatric disorders. To identify how intrinsic neural architecture at rest is linked to cognitive flexibility performance, we used the data-driven method of independent component analysis (ICA) to investigate resting state networks (RSNs) and their whole-brain connectivity associated with levels of cognitive flexibility performance in children. We hypothesized differences by cognitive flexibility performance in RSN connectivity strength in cortico-striatal circuitry, which would manifest via the executive control network, right and left frontoparietal networks (FPN), salience network, default mode network (DMN), and basal ganglia network. We selected participants from the Adolescent Brain Cognitive Development (ABCD) Study who scored at the 25th, ("CF-Low"), 50th ("CF-Average"), or 75th percentiles ("CF-High") on a cognitive flexibility task, were early to middle puberty, and did not exhibit significant psychopathology (n = 967, 47.9% female; ages 9-10). We conducted whole-brain ICA, identifying 14 well-characterized RSNs. Groups differed in connectivity strength in the right FPN, anterior DMN, and posterior DMN. Planned comparisons indicated CF-High had stronger connectivity between right FPN and supplementary motor/anterior cingulate than CF-Low. CF-High had more anti-correlated connectivity between anterior DMN and precuneus than CF-Average. CF-Low had stronger connectivity between posterior DMN and supplementary motor/anterior cingulate than CF-Average. Post-hoc correlations with reaction time by trial type demonstrated significant associations with connectivity. In sum, our results suggest childhood cognitive flexibility performance is associated with DMN and FPN connectivity strength at rest, and that there may be optimal levels of connectivity associated with task performance that vary by network.
Collapse
Affiliation(s)
- Sarah A Thomas
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Carney Institute for Brain Science, Brown University, Box 1901, 164 Angell St., 4th Floor, Providence, RI, 02912, USA.
| | - Sarah K Ryan
- Bradley Hasbro Children's Research Center, 25 Hoppin St., Box #36, Providence, RI, 02903, USA.
| | - Jodi Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Seitzman BA, Anandarajah H, Dworetsky A, McMichael A, Coalson RS, Agamah AM, Jiang C, Gu H, Barbour DL, Schlaggar BL, Limbrick DD, Rubin JB, Shimony JS, Perkins SM. Cognitive deficits and altered functional brain network organization in pediatric brain tumor patients. Brain Imaging Behav 2023; 17:689-701. [PMID: 37695507 PMCID: PMC10942739 DOI: 10.1007/s11682-023-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hari Anandarajah
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Ally Dworetsky
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alana McMichael
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S Coalson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - A Miriam Agamah
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Jiang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjie Gu
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
D'Andrea CB, Laumann TO, Newbold DJ, Nelson SM, Nielsen AN, Chauvin R, Marek S, Greene DJ, Dosenbach NUF, Gordon EM. Substructure of the brain's Cingulo-Opercular network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561772. [PMID: 37873065 PMCID: PMC10592749 DOI: 10.1101/2023.10.10.561772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.
Collapse
Affiliation(s)
- Carolina Badke D'Andrea
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63310, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Ashley N Nielsen
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Roselyne Chauvin
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
20
|
Chang SE, Lenartowicz A, Hellemann GS, Uddin LQ, Bearden CE. Variability in Cognitive Task Performance in Early Adolescence Is Associated With Stronger Between-Network Anticorrelation and Future Attention Problems. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:948-957. [PMID: 37881561 PMCID: PMC10593900 DOI: 10.1016/j.bpsgos.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)-thought to underlie effective allocation of attention. However, whether these behavioral and neural markers of attention are 1) associated with each other and 2) can predict future attention-related deficits has not been examined in a developmental, population-based cohort. Methods We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later. Results At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks (B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV (B = -0.005 to -0.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77). Conclusions The results suggest that IIV in early adolescence is associated with worsening attention problems in a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and predicting future cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Sarah E. Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard S. Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Hu F, Chen AA, Horng H, Bashyam V, Davatzikos C, Alexander-Bloch A, Li M, Shou H, Satterthwaite TD, Yu M, Shinohara RT. Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. Neuroimage 2023; 274:120125. [PMID: 37084926 PMCID: PMC10257347 DOI: 10.1016/j.neuroimage.2023.120125] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.
Collapse
Affiliation(s)
- Fengling Hu
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States.
| | - Andrew A Chen
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
| | - Hannah Horng
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
| | - Vishnu Bashyam
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, United States
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States; Penn-CHOP Lifespan Brain Institute, United States; The Penn Lifespan Informatics and Neuroimaging Center, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, United States
| | - Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, United States
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine, United States
| |
Collapse
|
22
|
Lopez KL, Monachino AD, Vincent KM, Peck FC, Gabard-Durnam LJ. Stability, change, and reliable individual differences in electroencephalography measures: a lifespan perspective on progress and opportunities. Neuroimage 2023; 275:120116. [PMID: 37169118 DOI: 10.1016/j.neuroimage.2023.120116] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Electroencephalographic (EEG) methods have great potential to serve both basic and clinical science approaches to understand individual differences in human neural function. Importantly, the psychometric properties of EEG data, such as internal consistency and test-retest reliability, constrain their ability to differentiate individuals successfully. Rapid and recent technological and computational advancements in EEG research make it timely to revisit the topic of psychometric reliability in the context of individual difference analyses. Moreover, pediatric and clinical samples provide some of the most salient and urgent opportunities to apply individual difference approaches, but the changes these populations experience over time also provide unique challenges from a psychometric perspective. Here we take a developmental neuroscience perspective to consider progress and new opportunities for parsing the reliability and stability of individual differences in EEG measurements across the lifespan. We first conceptually map the different profiles of measurement reliability expected for different types of individual difference analyses over the lifespan. Next, we summarize and evaluate the state of the field's empirical knowledge and need for testing measurement reliability, both internal consistency and test-retest reliability, across EEG measures of power, event-related potentials, nonlinearity, and functional connectivity across ages. Finally, we highlight how standardized pre-processing software for EEG denoising and empirical metrics of individual data quality may be used to further improve EEG-based individual differences research moving forward. We also include recommendations and resources throughout that individual researchers can implement to improve the utility and reproducibility of individual differences analyses with EEG across the lifespan.
Collapse
Affiliation(s)
- K L Lopez
- Northeastern University, 360 Huntington Ave, Boston, MA, United States
| | - A D Monachino
- Northeastern University, 360 Huntington Ave, Boston, MA, United States
| | - K M Vincent
- Northeastern University, 360 Huntington Ave, Boston, MA, United States
| | - F C Peck
- University of California, Los Angeles, Los Angeles, CA, United States
| | - L J Gabard-Durnam
- Northeastern University, 360 Huntington Ave, Boston, MA, United States.
| |
Collapse
|
23
|
Xie C, Xiang S, Shen C, Peng X, Kang J, Li Y, Cheng W, He S, Bobou M, Broulidakis MJ, van Noort BM, Zhang Z, Robinson L, Vaidya N, Winterer J, Zhang Y, King S, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Lemaître H, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Fröhner JH, Schmidt U, Sinclair J, Smolka MN, Stringaris A, Walter H, Whelan R, Desrivières S, Sahakian BJ, Robbins TW, Schumann G, Jia T, Feng J. A shared neural basis underlying psychiatric comorbidity. Nat Med 2023; 29:1232-1242. [PMID: 37095248 PMCID: PMC10202801 DOI: 10.1038/s41591-023-02317-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Recent studies proposed a general psychopathology factor underlying common comorbidities among psychiatric disorders. However, its neurobiological mechanisms and generalizability remain elusive. In this study, we used a large longitudinal neuroimaging cohort from adolescence to young adulthood (IMAGEN) to define a neuropsychopathological (NP) factor across externalizing and internalizing symptoms using multitask connectomes. We demonstrate that this NP factor might represent a unified, genetically determined, delayed development of the prefrontal cortex that further leads to poor executive function. We also show this NP factor to be reproducible in multiple developmental periods, from preadolescence to early adulthood, and generalizable to the resting-state connectome and clinical samples (the ADHD-200 Sample and the Stratify Project). In conclusion, we identify a reproducible and general neural basis underlying symptoms of multiple mental health disorders, bridging multidimensional evidence from behavioral, neuroimaging and genetic substrates. These findings may help to develop new therapeutic interventions for psychiatric comorbidities.
Collapse
Affiliation(s)
- Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Xuerui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shiqi He
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Marina Bobou
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M John Broulidakis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Zuo Zhang
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lauren Robinson
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jeanne Winterer
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Yuning Zhang
- Psychology Department, University of Southampton, Southampton, UK
| | - Sinead King
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- School of Medicine, Center for Neuroimaging, Cognition and Genomics, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, C.E.A., Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Hervé Lemaître
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales en psychiatrie', Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales en psychiatrie', Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schmidt
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Julia Sinclair
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Argyris Stringaris
- Division of Psychiatry and Department of Clinical, Educational & Health Psychology, University College London, London, UK
| | - Henrik Walter
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Sports and Health Sciences, University of Potsdam, Potsdam, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
24
|
Hu F, Lucas A, Chen AA, Coleman K, Horng H, Ng RW, Tustison NJ, Davis KA, Shou H, Li M, Shinohara RT. DeepComBat: A Statistically Motivated, Hyperparameter-Robust, Deep Learning Approach to Harmonization of Neuroimaging Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537396. [PMID: 37163042 PMCID: PMC10168207 DOI: 10.1101/2023.04.24.537396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neuroimaging data from multiple batches (i.e. acquisition sites, scanner manufacturer, datasets, etc.) are increasingly necessary to gain new insights into the human brain. However, multi-batch data, as well as extracted radiomic features, exhibit pronounced technical artifacts across batches. These batch effects introduce confounding into the data and can obscure biological effects of interest, decreasing the generalizability and reproducibility of findings. This is especially true when multi-batch data is used alongside complex downstream analysis models, such as machine learning methods. Image harmonization methods seeking to remove these batch effects are important for mitigating these issues; however, significant multivariate batch effects remain in the data following harmonization by current state-of-the-art statistical and deep learning methods. We present DeepCombat, a deep learning harmonization method based on a conditional variational autoencoder architecture and the ComBat harmonization model. DeepCombat learns and removes subject-level batch effects by accounting for the multivariate relationships between features. Additionally, DeepComBat relaxes a number of strong assumptions commonly made by previous deep learning harmonization methods and is empirically robust across a wide range of hyperparameter choices. We apply this method to neuroimaging data from a large cognitive-aging cohort and find that DeepCombat outperforms existing methods, as assessed by a battery of machine learning methods, in removing scanner effects from cortical thickness measurements while preserving biological heterogeneity. Additionally, DeepComBat provides a new perspective for statistically-motivated deep learning harmonization methods.
Collapse
Affiliation(s)
- Fengling Hu
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, Department of Engineering, University of Pennsylvania
| | - Andrew A. Chen
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania
| | - Kyle Coleman
- Statistical Center for Single-Cell and Spatial Genomics, Perelman School of Medicine, University of Pennsylvania
| | - Hannah Horng
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania
| | | | | | - Kathryn A. Davis
- Center for Neuroengineering and Therapeutics, Department of Engineering, University of Pennsylvania
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine
| | - Mingyao Li
- Statistical Center for Single-Cell and Spatial Genomics, Perelman School of Medicine, University of Pennsylvania
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania
- Center for Biomedical Image Computing and Analytics (CBICA), Perelman School of Medicine
| | | |
Collapse
|
25
|
Zhu H, Fitzhugh MC, Keator LM, Johnson L, Rorden C, Bonilha L, Fridriksson J, Rogalsky C. How can graph theory inform the dual-stream model of speech processing? a resting-state fMRI study of post-stroke aphasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537216. [PMID: 37131756 PMCID: PMC10153155 DOI: 10.1101/2023.04.17.537216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The dual-stream model of speech processing has been proposed to represent the cortical networks involved in speech comprehension and production. Although it is arguably the prominent neuroanatomical model of speech processing, it is not yet known if the dual-stream model represents actual intrinsic functional brain networks. Furthermore, it is unclear how disruptions after a stroke to the functional connectivity of the dual-stream model's regions are related to specific types of speech production and comprehension impairments seen in aphasia. To address these questions, in the present study, we examined two independent resting-state fMRI datasets: (1) 28 neurotypical matched controls and (2) 28 chronic left-hemisphere stroke survivors with aphasia collected at another site. Structural MRI, as well as language and cognitive behavioral assessments, were collected. Using standard functional connectivity measures, we successfully identified an intrinsic resting-state network amongst the dual-stream model's regions in the control group. We then used both standard functional connectivity analyses and graph theory approaches to determine how the functional connectivity of the dual-stream network differs in individuals with post-stroke aphasia, and how this connectivity may predict performance on clinical aphasia assessments. Our findings provide strong evidence that the dual-stream model is an intrinsic network as measured via resting-state MRI, and that weaker functional connectivity of the hub nodes of the dual-stream network defined by graph theory methods, but not overall average network connectivity, is weaker in the stroke group than in the control participants. Also, the functional connectivity of the hub nodes predicted specific types of impairments on clinical assessments. In particular, the relative strength of connectivity of the right hemisphere's homologues of the left dorsal stream hubs to the left dorsal hubs versus right ventral stream hubs is a particularly strong predictor of post-stroke aphasia severity and symptomology.
Collapse
|
26
|
Phạm DĐ, McDonald DJ, Ding L, Nebel MB, Mejia AF. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing. Neuroimage 2023; 270:119972. [PMID: 36842522 PMCID: PMC10773988 DOI: 10.1016/j.neuroimage.2023.119972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023] Open
Abstract
Functional MRI (fMRI) data may be contaminated by artifacts arising from a myriad of sources, including subject head motion, respiration, heartbeat, scanner drift, and thermal noise. These artifacts cause deviations from common distributional assumptions, introduce spatial and temporal outliers, and reduce the signal-to-noise ratio of the data-all of which can have negative consequences for the accuracy and power of downstream statistical analysis. Scrubbing is a technique for excluding fMRI volumes thought to be contaminated by artifacts and generally comes in two flavors. Motion scrubbing based on subject head motion-derived measures is popular but suffers from a number of drawbacks, among them the need to choose a threshold, a lack of generalizability to multiband acquisitions, and high rates of censoring of individual volumes and entire subjects. Alternatively, data-driven scrubbing methods like DVARS are based on observed noise in the processed fMRI timeseries and may avoid some of these issues. Here we propose "projection scrubbing", a novel data-driven scrubbing method based on a statistical outlier detection framework and strategic dimension reduction, including independent component analysis (ICA), to isolate artifactual variation. We undertake a comprehensive comparison of motion scrubbing with data-driven projection scrubbing and DVARS. We argue that an appropriate metric for the success of scrubbing is maximal data retention subject to reasonable performance on typical benchmarks such as the validity, reliability, and identifiability of functional connectivity. We find that stringent motion scrubbing yields worsened validity, worsened reliability, and produced small improvements to fingerprinting. Meanwhile, data-driven scrubbing methods tend to yield greater improvements to fingerprinting while not generally worsening validity or reliability. Importantly, however, data-driven scrubbing excludes a fraction of the number of volumes or entire sessions compared to motion scrubbing. The ability of data-driven fMRI scrubbing to improve data retention without negatively impacting the quality of downstream analysis has major implications for sample sizes in population neuroscience research.
Collapse
Affiliation(s)
- Damon Đ Phạm
- Department of Statistics, Indiana University, Bloomington, IN, USA.
| | - Daniel J McDonald
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
| | - Lei Ding
- Department of Statistics, Indiana University, Bloomington, IN, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Amanda F Mejia
- Department of Statistics, Indiana University, Bloomington, IN, USA
| |
Collapse
|
27
|
Byington N, Grimsrud G, Mooney MA, Cordova M, Doyle O, Hermosillo RJM, Earl E, Houghton A, Conan G, Hendrickson TJ, Ragothaman A, Carrasco CM, Rueter A, Perrone A, Moore LA, Graham A, Nigg JT, Thompson WK, Nelson SM, Feczko E, Fair DA, Miranda-Dominguez O. Polyneuro risk scores capture widely distributed connectivity patterns of cognition. Dev Cogn Neurosci 2023; 60:101231. [PMID: 36934605 PMCID: PMC10031023 DOI: 10.1016/j.dcn.2023.101231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States.
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Michael A Mooney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, United States; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Michaela Cordova
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA 92120, United States
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, United States
| | - Robert J M Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Eric Earl
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD 20892, United States
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | | | - Cristian Morales Carrasco
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Amanda Rueter
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Lucille A Moore
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States
| | - Alice Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, United States
| | - Joel T Nigg
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74136, United States
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55414, United States
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55414, United States
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55414, United States; Institute of Child Development, University of Minnesota, Minneapolis, MN 55414, United States
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55414, United States
| |
Collapse
|
28
|
Montez DF, Van AN, Miller RL, Seider NA, Marek S, Zheng A, Newbold DJ, Scheidter K, Feczko E, Perrone AJ, Miranda-Dominguez O, Earl EA, Kay BP, Jha AK, Sotiras A, Laumann TO, Greene DJ, Gordon EM, Tisdall MD, van der Kouwe A, Fair DA, Dosenbach NUF. Using synthetic MR images for distortion correction. Dev Cogn Neurosci 2023; 60:101234. [PMID: 37023632 PMCID: PMC10106483 DOI: 10.1016/j.dcn.2023.101234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.
Collapse
Affiliation(s)
- David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Ryland L Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Neurology, New York University Langone Medical Center, New York, NY 10016, United States of America
| | - Kristen Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Eric A Earl
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, United States of America
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, La Jolla CA 92093, United States of America
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - M Dylan Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Andre van der Kouwe
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, United States of America; Department of Radiology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America; Institute of Child Development, University of Minnesota Medical School, Minneapolis, MN 55455, United States of America
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
29
|
Nielsen AN, Kaplan S, Meyer D, Alexopoulos D, Kenley JK, Smyser TA, Wakschlag LS, Norton ES, Raghuraman N, Warner BB, Shimony JS, Luby JL, Neil JJ, Petersen SE, Barch DM, Rogers CE, Sylvester CM, Smyser CD. Maturation of large-scale brain systems over the first month of life. Cereb Cortex 2023; 33:2788-2803. [PMID: 35750056 PMCID: PMC10016041 DOI: 10.1093/cercor/bhac242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child's earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window (i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns (n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e. association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role in brain development. This study represents a step towards a normative brain "growth curve" that could be used to identify atypical brain maturation in infancy.
Collapse
Affiliation(s)
- Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Lauren S Wakschlag
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Elizabeth S Norton
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeffery J Neil
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
30
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behaviour relationships found using Canonical Correlation Analysis and Partial Least Squares within the ABCD Sample. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531763. [PMID: 36945610 PMCID: PMC10028915 DOI: 10.1101/2023.03.08.531763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation (PLS) detect associations between two data matrices based on computing a linear combination between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) and covariance (PLS). These different maximization criteria may render one approach more stable and reproducible than the other when working with brain and behavioural data at the population-level. This study compared the LVs which emerged from CCA and PLS analyses of brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) dataset and examined their stability and reproducibility. Methods Structural T1-weighted imaging and behavioural data were accessed from the baseline Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain matrix consisted of cortical thickness estimates in different cortical regions. The behavioural matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist (CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation test was used to assess whether identified LVs were statistically significant. A series of resampling statistical methods were used to assess stability and reproducibility of the LVs. Results When examining the relationship between cortical thickness and CBCL scores, the first LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first LV showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). Conclusion CCA and PLS identify different brain-behaviour relationships with limited stability and reproducibility when examining the relationship between cortical thickness and parent-reported behavioural measures. However, both methods identified relatively similar brain-behaviour relationships that were stable and reproducible when examining the relationship between cortical thickness and cognitive performance. The results of the current study suggest that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are influenced by characteristics of the analyzed sample and the included behavioural measurements when applied to a large pediatric dataset.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, United States
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Weigard A, Matzke D, Tanis C, Heathcote A. A cognitive process modeling framework for the ABCD study stop-signal task. Dev Cogn Neurosci 2023; 59:101191. [PMID: 36603413 PMCID: PMC9826813 DOI: 10.1016/j.dcn.2022.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The Adolescent Brain Cognitive Development (ABCD) Study is a longitudinal neuroimaging study of unprecedented scale that is in the process of following over 11,000 youth from middle childhood though age 20. However, a design feature of the study's stop-signal task violates "context independence", an assumption critical to current non-parametric methods for estimating stop-signal reaction time (SSRT), a key measure of inhibitory ability in the study. This has led some experts to call for the task to be changed and for previously collected data to be used with caution. We present a cognitive process modeling framework, the RDEX-ABCD model, that provides a parsimonious explanation for the impact of this design feature on "go" stimulus processing and successfully accounts for key behavioral trends in the ABCD data. Simulation studies using this model suggest that failing to account for the context independence violations in the ABCD design can lead to erroneous inferences in several realistic scenarios. However, we demonstrate that RDEX-ABCD effectively addresses these violations and can be used to accurately measure SSRT along with an array of additional mechanistic parameters of interest (e.g., attention to the stop signal, cognitive efficiency), advancing investigators' ability to draw valid and nuanced inferences from ABCD data. AVAILABILITY OF DATA AND MATERIALS: Data from the ABCD Study are available through the NIH Data Archive (NDA): nda.nih.gov/abcd. Code for all analyses featured in this study is openly available on the Open Science Framework (OSF): osf.io/2h8a7/.
Collapse
Affiliation(s)
| | - Dora Matzke
- Department of Psychology, University of Amsterdam, the Netherlands
| | - Charlotte Tanis
- Department of Psychology, University of Amsterdam, the Netherlands
| | - Andrew Heathcote
- Department of Psychology, University of Amsterdam, the Netherlands; School of Psychology, the University of Newcastle, Australia
| |
Collapse
|
32
|
Hong J, Hwang J, Lee JH. General psychopathology factor (p-factor) prediction using resting-state functional connectivity and a scanner-generalization neural network. J Psychiatr Res 2023; 158:114-125. [PMID: 36580867 DOI: 10.1016/j.jpsychires.2022.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The general psychopathology factor (p-factor) represents shared variance across mental disorders based on psychopathologic symptoms. The Adolescent Brain Cognitive Development (ABCD) Study offers an unprecedented opportunity to investigate functional networks (FNs) from functional magnetic resonance imaging (fMRI) associated with the psychopathology of an adolescent cohort (n > 10,000). However, the heterogeneities associated with the use of multiple sites and multiple scanners in the ABCD Study need to be overcome to improve the prediction of the p-factor using fMRI. We proposed a scanner-generalization neural network (SGNN) to predict the individual p-factor by systematically reducing the scanner effect for resting-state functional connectivity (RSFC). We included 6905 adolescents from 18 sites whose fMRI data were collected using either Siemens or GE scanners. The p-factor was estimated based on the Child Behavior Checklist (CBCL) scores available in the ABCD study using exploratory factor analysis. We evaluated the Pearson's correlation coefficients (CCs) for p-factor prediction via leave-one/two-site-out cross-validation (LOSOCV/LTSOCV) and identified important FNs from the weight features (WFs) of the SGNN. The CCs were higher for the SGNN than for alternative models when using both LOSOCV (0.1631 ± 0.0673 for the SGNN vs. 0.1497 ± 0.0710 for kernel ridge regression [KRR]; p < 0.05 from a two-tailed paired t-test) and LTSOCV (0.1469 ± 0.0381 for the SGNN vs. 0.1394 ± 0.0359 for KRR; p = 0.01). It was found that (a) the default-mode and dorsal attention FNs were important for p-factor prediction, and (b) the intra-visual FN was important for scanner generalization. We demonstrated the efficacy of our novel SGNN model for p-factor prediction while simultaneously eliminating scanner-related confounding effects for RSFC.
Collapse
Affiliation(s)
- Jinwoo Hong
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Jundong Hwang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Dinsdale NK, Bluemke E, Sundaresan V, Jenkinson M, Smith SM, Namburete AIL. Challenges for machine learning in clinical translation of big data imaging studies. Neuron 2022; 110:3866-3881. [PMID: 36220099 DOI: 10.1016/j.neuron.2022.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Combining deep learning image analysis methods and large-scale imaging datasets offers many opportunities to neuroscience imaging and epidemiology. However, despite these opportunities and the success of deep learning when applied to a range of neuroimaging tasks and domains, significant barriers continue to limit the impact of large-scale datasets and analysis tools. Here, we examine the main challenges and the approaches that have been explored to overcome them. We focus on issues relating to data availability, interpretability, evaluation, and logistical challenges and discuss the problems that still need to be tackled to enable the success of "big data" deep learning approaches beyond research.
Collapse
Affiliation(s)
- Nicola K Dinsdale
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Machine Learning in NeuroImaging Lab, OMNI, Department of Computer Science, University of Oxford, Oxford, UK.
| | - Emma Bluemke
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Vaanathi Sundaresan
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Australian Institute for Machine Learning (AIML), School of Computer Science, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, SA, Australia
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ana I L Namburete
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Machine Learning in NeuroImaging Lab, OMNI, Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Tooley UA, Park AT, Leonard JA, Boroshok AL, McDermott CL, Tisdall MD, Bassett DS, Mackey AP. The Age of Reason: Functional Brain Network Development during Childhood. J Neurosci 2022; 42:8237-8251. [PMID: 36192151 PMCID: PMC9653278 DOI: 10.1523/jneurosci.0511-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/25/2022] [Accepted: 09/03/2022] [Indexed: 01/27/2023] Open
Abstract
Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic cortical network changes that occur during childhood because of methodological challenges in scanning young children. Here, we overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children between the ages of 4 and 10 years ([Formula: see text]; 50 female, 42 male). At multiple spatial scales, age is positively associated with brain network segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and association areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to reason about the world and their place in it.SIGNIFICANCE STATEMENT Anthropologists have called the transition from early to middle childhood the "age of reason", when children across cultures become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associations between age and functional brain architecture in childhood. Age was positively associated with segregation between cortical systems that process the external world and those that process abstract phenomena like the past, future, and minds of others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the theory that sensory areas develop first and association areas develop last. Our results open new directions for research into how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.
Collapse
Affiliation(s)
- Ursula A Tooley
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Anne T Park
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Julia A Leonard
- Department of Psychology, Yale University, New Haven, Connecticut 06520
| | - Austin L Boroshok
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Cassidy L McDermott
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Matthew D Tisdall
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Physics and Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Santa Fe Institute, Santa Fe, New Mexico 87501
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Chen R. Bayesian multisource data integration for explainable brain-behavior analysis. Front Neurosci 2022; 16:1044680. [PMID: 36389240 PMCID: PMC9650064 DOI: 10.3389/fnins.2022.1044680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Different data sources can provide complementary information. Moving from a simple approach based on using one data source at a time to a systems approach that integrates multiple data sources provides an opportunity to understand complex brain disorders or cognitive processes. We propose a data fusion method, called Bayesian Multisource Data Integration, to model the interactions among data sources and behavioral variables. The proposed method generates representations from data sources and uses Bayesian network modeling to associate representations with behavioral variables. The generated Bayesian network is transparent and easy to understand. Bayesian inference is used to understand how the perturbation of representation is related to behavioral changes. The proposed method was assessed on the simulated data and data from the Adolescent Brain Cognitive Development study. For the Adolescent Brain Cognitive Development study, we found diffusion tensor imaging and resting-state functional magnetic resonance imaging were synergistic in understanding the fluid intelligence composite and the total score composite in healthy youth (9-11 years of age).
Collapse
Affiliation(s)
- Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
36
|
Vazquez-Trejo V, Nardos B, Schlaggar BL, Fair DA, Miranda-Dominguez O. Use of connectotyping on task functional MRI data reveals dynamic network level cross talking during task performance. Front Neurosci 2022; 16:951907. [DOI: 10.3389/fnins.2022.951907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Task-based functional MRI (fMRI) has greatly improved understanding of brain functioning, enabling the identification of brain areas associated with specific cognitive operations. Traditional analyses are limited to associating activation patterns in particular regions with specific cognitive operation, largely ignoring regional cross-talk or dynamic connectivity, which we propose is crucial for characterization of brain function in the context of task fMRI. We use connectotyping, which efficiently models functional brain connectivity to reveal the progression of temporal brain connectivity patterns in task fMRI. Connectotyping was employed on data from twenty-four participants (12 male, mean age 24.8 years, 2.57 std. dev) who performed a widely spaced event-related fMRI word vs. pseudoword decision task, where stimuli were presented every 20 s. After filtering for movement, we ended up with 15 participants that completed each trial and had enough usable data for our analyses. Connectivity matrices were calculated per participant across time for each stimuli type. A Repeated Measures ANOVA applied on the connectotypes was used to characterize differences across time for words and pseudowords. Our group level analyses found significantly different dynamic connectivity patterns during word vs. pseudoword processing between the Fronto-Parietal and Cingulo-Parietal Systems, areas involved in cognitive task control, memory retrieval, and semantic processing. Our findings support the presence of dynamic changes in functional connectivity during task execution and that such changes can be characterized using connectotyping but not with traditional Pearson’s correlations.
Collapse
|
37
|
Michon KJ, Khammash D, Simmonite M, Hamlin AM, Polk TA. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022; 263:119589. [PMID: 36030062 DOI: 10.1016/j.neuroimage.2022.119589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.
Collapse
Affiliation(s)
| | - Dalia Khammash
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Abbey M Hamlin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Nebel MB, Lidstone DE, Wang L, Benkeser D, Mostofsky SH, Risk BB. Accounting for motion in resting-state fMRI: What part of the spectrum are we characterizing in autism spectrum disorder? Neuroimage 2022; 257:119296. [PMID: 35561944 PMCID: PMC9233079 DOI: 10.1016/j.neuroimage.2022.119296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
The exclusion of high-motion participants can reduce the impact of motion in functional Magnetic Resonance Imaging (fMRI) data. However, the exclusion of high-motion participants may change the distribution of clinically relevant variables in the study sample, and the resulting sample may not be representative of the population. Our goals are two-fold: 1) to document the biases introduced by common motion exclusion practices in functional connectivity research and 2) to introduce a framework to address these biases by treating excluded scans as a missing data problem. We use a study of autism spectrum disorder in children without an intellectual disability to illustrate the problem and the potential solution. We aggregated data from 545 children (8-13 years old) who participated in resting-state fMRI studies at Kennedy Krieger Institute (173 autistic and 372 typically developing) between 2007 and 2020. We found that autistic children were more likely to be excluded than typically developing children, with 28.5% and 16.1% of autistic and typically developing children excluded, respectively, using a lenient criterion and 81.0% and 60.1% with a stricter criterion. The resulting sample of autistic children with usable data tended to be older, have milder social deficits, better motor control, and higher intellectual ability than the original sample. These measures were also related to functional connectivity strength among children with usable data. This suggests that the generalizability of previous studies reporting naïve analyses (i.e., based only on participants with usable data) may be limited by the selection of older children with less severe clinical profiles because these children are better able to remain still during an rs-fMRI scan. We adapt doubly robust targeted minimum loss based estimation with an ensemble of machine learning algorithms to address these data losses and the resulting biases. The proposed approach selects more edges that differ in functional connectivity between autistic and typically developing children than the naïve approach, supporting this as a promising solution to improve the study of heterogeneous populations in which motion is common.
Collapse
Affiliation(s)
- Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liwei Wang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin B Risk
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
39
|
Tejavibulya L, Rolison M, Gao S, Liang Q, Peterson H, Dadashkarimi J, Farruggia MC, Hahn CA, Noble S, Lichenstein SD, Pollatou A, Dufford AJ, Scheinost D. Predicting the future of neuroimaging predictive models in mental health. Mol Psychiatry 2022; 27:3129-3137. [PMID: 35697759 PMCID: PMC9708554 DOI: 10.1038/s41380-022-01635-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022]
Abstract
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine learning, and the best practices for using these approaches. As our knowledge of mental health and machine learning continue to evolve, we instead aim to look forward and "predict" topics that we believe will be important in current and future studies. Some of the most discussed topics in machine learning, such as bias and fairness, the handling of dirty data, and interpretable models, may be less familiar to the broader community using neuroimaging-based predictive modeling in psychiatry. In a similar vein, transdiagnostic research and targeting brain-based features for psychiatric intervention are modern topics in psychiatry that predictive models are well-suited to tackle. In this work, we target an audience who is a researcher familiar with the fundamental procedures of machine learning and who wishes to increase their knowledge of ongoing topics in the field. We aim to accelerate the utility and applications of neuroimaging-based predictive models for psychiatric research by highlighting and considering these topics. Furthermore, though not a focus, these ideas generalize to neuroimaging-based predictive modeling in other clinical neurosciences and predictive modeling with different data types (e.g., digital health data).
Collapse
Affiliation(s)
- Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
| | - Max Rolison
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Hannah Peterson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Javid Dadashkarimi
- Department of Computer Science, Yale School of Engineering and Applied Science, New Haven, CT, USA
| | - Michael C Farruggia
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - C Alice Hahn
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
40
|
Park BY, Paquola C, Bethlehem RAI, Benkarim O, Mišić B, Smallwood J, Bullmore ET, Bernhardt BC. Adolescent development of multiscale structural wiring and functional interactions in the human connectome. Proc Natl Acad Sci U S A 2022; 119:e2116673119. [PMID: 35776541 PMCID: PMC9271154 DOI: 10.1073/pnas.2116673119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/30/2022] [Indexed: 01/03/2023] Open
Abstract
Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.
Collapse
Affiliation(s)
- Bo-yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon, 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
41
|
Wainberg M, Jacobs GR, Voineskos AN, Tripathy SJ. Neurobiological, familial and genetic risk factors for dimensional psychopathology in the Adolescent Brain Cognitive Development study. Mol Psychiatry 2022; 27:2731-2741. [PMID: 35361904 DOI: 10.1038/s41380-022-01522-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/27/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Adolescence is a key period for brain development and the emergence of psychopathology. The Adolescent Brain Cognitive Development (ABCD) study was created to study the biopsychosocial factors underlying healthy and pathological brain development during this period, and comprises the world's largest youth cohort with neuroimaging, family history and genetic data. METHODS We examined 9856 unrelated 9-to-10-year-old participants in the ABCD study drawn from 21 sites across the United States, of which 7662 had multimodal magnetic resonance imaging scans passing quality control, and 4447 were non-Hispanic white and used for polygenic risk score analyses. Using data available at baseline, we associated eight 'syndrome scale scores' from the Child Behavior Checklist-summarizing anxious/depressed symptoms, withdrawn/depressed symptoms, somatic complaints, social problems, thought problems, attention problems, rule-breaking behavior, and aggressive behavior-with resting-state functional and structural brain magnetic resonance imaging measures; eight indicators of family history of psychopathology; and polygenic risk scores for major depression, bipolar disorder, schizophrenia, attention deficit hyperactivity disorder (ADHD) and anorexia nervosa. As a sensitivity analysis, we excluded participants with clinically significant (>97th percentile) or borderline (93rd-97th percentile) scores for each dimension. RESULTS Most Child Behavior Checklist dimensions were associated with reduced functional connectivity within one or more of four large-scale brain networks-default mode, cingulo-parietal, dorsal attention, and retrosplenial-temporal. Several dimensions were also associated with increased functional connectivity between the default mode, dorsal attention, ventral attention and cingulo-opercular networks. Conversely, almost no global or regional brain structural measures were associated with any of the dimensions. Every family history indicator was associated with every dimension. Major depression polygenic risk was associated with six of the eight dimensions, whereas ADHD polygenic risk was exclusively associated with attention problems and externalizing behavior (rule-breaking and aggressive behavior). Bipolar disorder, schizophrenia and anorexia nervosa polygenic risk were not associated with any of the dimensions. Many associations remained statistically significant even after excluding participants with clinically significant or borderline psychopathology, suggesting that the same risk factors that contribute to clinically significant psychopathology also contribute to continuous variation within the clinically normal range. CONCLUSIONS This study codifies neurobiological, familial and genetic risk factors for dimensional psychopathology across a population-scale cohort of community-dwelling preadolescents. Future efforts are needed to understand how these multiple modalities of risk intersect to influence trajectories of psychopathology into late adolescence and adulthood.
Collapse
Affiliation(s)
- Michael Wainberg
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Grace R Jacobs
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shreejoy J Tripathy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Chen J, Tam A, Kebets V, Orban C, Ooi LQR, Asplund CL, Marek S, Dosenbach NUF, Eickhoff SB, Bzdok D, Holmes AJ, Yeo BTT. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat Commun 2022; 13:2217. [PMID: 35468875 PMCID: PMC9038754 DOI: 10.1038/s41467-022-29766-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/18/2022] [Indexed: 12/30/2022] Open
Abstract
How individual differences in brain network organization track behavioral variability is a fundamental question in systems neuroscience. Recent work suggests that resting-state and task-state functional connectivity can predict specific traits at the individual level. However, most studies focus on single behavioral traits, thus not capturing broader relationships across behaviors. In a large sample of 1858 typically developing children from the Adolescent Brain Cognitive Development (ABCD) study, we show that predictive network features are distinct across the domains of cognitive performance, personality scores and mental health assessments. On the other hand, traits within each behavioral domain are predicted by similar network features. Predictive network features and models generalize to other behavioral measures within the same behavioral domain. Although tasks are known to modulate the functional connectome, predictive network features are similar between resting and task states. Overall, our findings reveal shared brain network features that account for individual variation within broad domains of behavior in childhood.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Angela Tam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valeria Kebets
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Csaba Orban
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Leon Qi Rong Ooi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Christopher L Asplund
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore.,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.,Division of Social Sciences, Yale-NUS College, Singapore, Singapore.,Department of Psychology, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviours (INM-7), Research Center Jülich, Jülich, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, USA
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore. .,Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore. .,Centre for Translational MR Research, National University of Singapore, Singapore, Singapore. .,N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore. .,Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore. .,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
43
|
Kaplan CM, Schrepf A, Mawla I, Ichesco E, Boehnke KF, Beltz A, Foxen-Craft E, Puglia MP, Tsodikov A, Williams DA, Hassett AL, Clauw DJ, Harte SE, Harris RE. Neurobiological antecedents of multisite pain in children. Pain 2022; 163:e596-e603. [PMID: 34382607 PMCID: PMC8720318 DOI: 10.1097/j.pain.0000000000002431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Altered brain structure and function is evident in adults with multisite chronic pain. Although many such adults trace their pain back to childhood, it has been difficult to disentangle whether central nervous system alterations precede or are consequences of chronic pain. If the former is true, aberrant brain activity may identify children vulnerable to developing chronic pain later in life. We examined structural and functional brain magnetic resonance imaging metrics in a subset of children from the first 2 assessments of the Adolescent Brain and Cognitive Development Study. Children (aged 9-10) who were pain free at baseline and then developed multisite pain 1 year later (n = 115) were matched to control children who were pain free at both timepoints (n = 230). We analyzed brain structure (cortical thickness and gray matter volume) and function (spontaneous neural activity and functional connectivity). Results were deemed significant at the cluster level P < 0.05 false discovery rate corrected for multiple comparisons. At baseline, children who subsequently developed multisite pain had increased neural activity in superior parietal /primary somatosensory and motor cortices and decreased activity in the medial prefrontal cortex. They also exhibited stronger functional connectivity between the salience network, somatosensory, and default mode network regions. No significant differences in the brain structure were observed. Increased neural activity and functional connectivity between brain regions, consistent to that seen in adults with chronic pain, exist in children before developing multisite pain. These findings may represent a neural vulnerability to developing future chronic pain.
Collapse
Affiliation(s)
- Chelsea M Kaplan
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrew Schrepf
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ishtiaq Mawla
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Eric Ichesco
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kevin F Boehnke
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adriene Beltz
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Emily Foxen-Craft
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael P Puglia
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandre Tsodikov
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - David A Williams
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Afton L Hassett
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Daniel J Clauw
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Richard E Harris
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Chen AA, Luo C, Chen Y, Shinohara RT, Shou H. Privacy-preserving harmonization via distributed ComBat. Neuroimage 2022; 248:118822. [PMID: 34958950 PMCID: PMC9802006 DOI: 10.1016/j.neuroimage.2021.118822] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023] Open
Abstract
Challenges in clinical data sharing and the need to protect data privacy have led to the development and popularization of methods that do not require directly transferring patient data. In neuroimaging, integration of data across multiple institutions also introduces unwanted biases driven by scanner differences. These scanner effects have been shown by several research groups to severely affect downstream analyses. To facilitate the need of removing scanner effects in a distributed data setting, we introduce distributed ComBat, an adaptation of a popular harmonization method for multivariate data that borrows information across features. We present our fast and simple distributed algorithm and show that it yields equivalent results using data from the Alzheimer's Disease Neuroimaging Initiative. Our method enables harmonization while ensuring maximal privacy protection, thus facilitating a broad range of downstream analyses in functional and structural imaging studies.
Collapse
Affiliation(s)
- Andrew A. Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, United States,Corresponding author at: Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States, (A.A. Chen)
| | - Chongliang Luo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | |
Collapse
|
45
|
Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL, Hendrickson TJ, Malone SM, Kandala S, Feczko E, Miranda-Dominguez O, Graham AM, Earl EA, Perrone AJ, Cordova M, Doyle O, Moore LA, Conan GM, Uriarte J, Snider K, Lynch BJ, Wilgenbusch JC, Pengo T, Tam A, Chen J, Newbold DJ, Zheng A, Seider NA, Van AN, Metoki A, Chauvin RJ, Laumann TO, Greene DJ, Petersen SE, Garavan H, Thompson WK, Nichols TE, Yeo BTT, Barch DM, Luna B, Fair DA, Dosenbach NUF. Reproducible brain-wide association studies require thousands of individuals. Nature 2022; 603:654-660. [PMID: 35296861 PMCID: PMC8991999 DOI: 10.1038/s41586-022-04492-9] [Citation(s) in RCA: 931] [Impact Index Per Article: 310.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/31/2022] [Indexed: 02/01/2023]
Abstract
Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.
Collapse
Affiliation(s)
- Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Meghan Rose Donohue
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryland L Miller
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy J Hendrickson
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Eric A Earl
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Anders J Perrone
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Michaela Cordova
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Olivia Doyle
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Lucille A Moore
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Johnny Uriarte
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Kathy Snider
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin J Lynch
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - James C Wilgenbusch
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Angela Tam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Wesley K Thompson
- Division of Biostatistics, University of California San Diego, La Jolla, CA, USA
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition, National University of Singapore, Singapore, Singapore
- Centre for Translational MR Research, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, MO, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Institute of Child Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St Louis, MO, USA.
- Program in Occupational Therapy, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
46
|
Tooley UA, Bassett DS, Mackey AP. Functional brain network community structure in childhood: Unfinished territories and fuzzy boundaries. Neuroimage 2022; 247:118843. [PMID: 34952233 PMCID: PMC8920293 DOI: 10.1016/j.neuroimage.2021.118843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 12/23/2022] Open
Abstract
Adult cortex is organized into distributed functional communities. Yet, little is known about community architecture of children's brains. Here, we uncovered the community structure of cortex in childhood using fMRI data from 670 children aged 9-11 years (48% female, replication sample n=544, 56% female) from the Adolescent Brain and Cognitive Development study. We first applied a data-driven community detection approach to cluster cortical regions into communities, then employed a generative model-based approach called the weighted stochastic block model to further probe community interactions. Children showed similar community structure to adults, as defined by Yeo and colleagues in 2011, in early-developing sensory and motor communities, but differences emerged in transmodal areas. Children have more cortical territory in the limbic community, which is involved in emotion processing, than adults. Regions in association cortex interact more flexibly across communities, creating uncertainty for the model-based assignment algorithm, and perhaps reflecting cortical boundaries that are not yet solidified. Uncertainty was highest for cingulo-opercular areas involved in flexible deployment of cognitive control. Activation and deactivation patterns during a working memory task showed that both the data-driven approach and a set of adult communities statistically capture functional organization in middle childhood. Collectively, our findings suggest that community boundaries are not solidified by middle childhood.
Collapse
Affiliation(s)
- Ursula A Tooley
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Electrical & Systems Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US; Department of Physics & Astronomy, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania,USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, USA; Santa Fe Institute, Santa Fe, 87501, New Mexico, USA
| | - Allyson P Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, 19104, Pennsylvania, US.
| |
Collapse
|
47
|
Goyal N, Moraczewski D, Bandettini PA, Finn ES, Thomas AG. The positive-negative mode link between brain connectivity, demographics and behaviour: a pre-registered replication of Smith et al. (2015). ROYAL SOCIETY OPEN SCIENCE 2022; 9:201090. [PMID: 35186306 PMCID: PMC8847886 DOI: 10.1098/rsos.201090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
In mental health research, it has proven difficult to find measures of brain function that provide reliable indicators of mental health and well-being, including susceptibility to mental health disorders. Recently, a family of data-driven analyses have provided such reliable measures when applied to large, population-level datasets. In the current pre-registered replication study, we show that the canonical correlation analysis (CCA) methods previously developed using resting-state magnetic resonance imaging functional connectivity and subject measures (SMs) of cognition and behaviour from healthy adults are also effective in measuring well-being (a 'positive-negative axis') in an independent developmental dataset. Our replication was successful in two out of three of our pre-registered criteria, such that a primary CCA mode's weights displayed a significant positive relationship and explained a significant amount of variance in both functional connectivity and SMs. The only criterion that was not successful was that compared to other modes the magnitude of variance explained by the primary CCA mode was smaller than predicted, a result that could indicate a developmental trajectory of a primary mode. This replication establishes a signature neurotypical relationship between connectivity and phenotype, opening new avenues of research in neuroscience with clear clinical applications.
Collapse
Affiliation(s)
- Nikhil Goyal
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Emily S. Finn
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Adam G. Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
48
|
DeJoseph ML, Herzberg MP, Sifre RD, Berry D, Thomas KM. Measurement matters: An individual differences examination of family socioeconomic factors, latent dimensions of children's experiences, and resting state functional brain connectivity in the ABCD sample. Dev Cogn Neurosci 2022; 53:101043. [PMID: 34915436 PMCID: PMC8683693 DOI: 10.1016/j.dcn.2021.101043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
The variation in experiences between high and low-socioeconomic status contexts are posited to play a crucial role in shaping the developing brain and may explain differences in child outcomes. Yet, examinations of SES and brain development have largely been limited to distal proxies of these experiences (e.g., income comparisons). The current study sought to disentangle the effects of multiple socioeconomic indices and dimensions of more proximal experiences on resting-state functional connectivity (rsFC) in a sample of 7834 youth (aged 9-10 years) from the Adolescent Brain Cognitive Development (ABCD) study. We applied moderated nonlinear factor analysis (MNLFA) to establish measurement invariance among three latent environmental dimensions of experience (material/economic deprivation, caregiver social support, and psychosocial threat). Results revealed measurement biases as a function of child age, sex, racial group, family income, and parental education, which were statistically adjusted in the final MNLFA scores. Mixed-effects models demonstrated that socioeconomic indices and psychosocial threat differentially predicted variation in frontolimbic networks, and threat statistically moderated the association between income and connectivity between the dorsal and ventral attention networks. Findings illuminate the importance of reducing measurement biases to gain a more socioculturally-valid understanding of the complex and nuanced links between socioeconomic context, children's experiences, and neurodevelopment.
Collapse
Affiliation(s)
| | - Max P Herzberg
- Institute of Child Development, University of Minnesota, USA; Department of Psychiatry, Washington University School of Medicine, USA.
| | - Robin D Sifre
- Institute of Child Development, University of Minnesota, USA.
| | - Daniel Berry
- Institute of Child Development, University of Minnesota, USA.
| | | |
Collapse
|
49
|
Scan Once, Analyse Many: Using Large Open-Access Neuroimaging Datasets to Understand the Brain. Neuroinformatics 2022; 20:109-137. [PMID: 33974213 PMCID: PMC8111663 DOI: 10.1007/s12021-021-09519-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 02/06/2023]
Abstract
We are now in a time of readily available brain imaging data. Not only are researchers now sharing data more than ever before, but additionally large-scale data collecting initiatives are underway with the vision that many future researchers will use the data for secondary analyses. Here I provide an overview of available datasets and some example use cases. Example use cases include examining individual differences, more robust findings, reproducibility-both in public input data and availability as a replication sample, and methods development. I further discuss a variety of considerations associated with using existing data and the opportunities associated with large datasets. Suggestions for further readings on general neuroimaging and topic-specific discussions are also provided.
Collapse
|
50
|
Chen AA, Beer JC, Tustison NJ, Cook PA, Shinohara RT, Shou H. Mitigating site effects in covariance for machine learning in neuroimaging data. Hum Brain Mapp 2021; 43:1179-1195. [PMID: 34904312 PMCID: PMC8837590 DOI: 10.1002/hbm.25688] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
To acquire larger samples for answering complex questions in neuroscience, researchers have increasingly turned to multi‐site neuroimaging studies. However, these studies are hindered by differences in images acquired across multiple sites. These effects have been shown to bias comparison between sites, mask biologically meaningful associations, and even introduce spurious associations. To address this, the field has focused on harmonizing data by removing site‐related effects in the mean and variance of measurements. Contemporaneously with the increase in popularity of multi‐center imaging, the use of machine learning (ML) in neuroimaging has also become commonplace. These approaches have been shown to provide improved sensitivity, specificity, and power due to their modeling the joint relationship across measurements in the brain. In this work, we demonstrate that methods for removing site effects in mean and variance may not be sufficient for ML. This stems from the fact that such methods fail to address how correlations between measurements can vary across sites. Data from the Alzheimer's Disease Neuroimaging Initiative is used to show that considerable differences in covariance exist across sites and that popular harmonization techniques do not address this issue. We then propose a novel harmonization method called Correcting Covariance Batch Effects (CovBat) that removes site effects in mean, variance, and covariance. We apply CovBat and show that within‐site correlation matrices are successfully harmonized. Furthermore, we find that ML methods are unable to distinguish scanner manufacturer after our proposed harmonization is applied, and that the CovBat‐harmonized data retain accurate prediction of disease group.
Collapse
Affiliation(s)
- Andrew A Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joanne C Beer
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|