1
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
2
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Gomes J, Begum M, Kumarathasan P. Polybrominated diphenyl ether (PBDE) exposure and adverse maternal and infant health outcomes: Systematic review. CHEMOSPHERE 2024; 347:140367. [PMID: 37890790 DOI: 10.1016/j.chemosphere.2023.140367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardants found in ambient environment and are measured in humans. There are reports on general PBDE toxicity, including endocrine disrupting properties. Studies on adverse maternal and infant outcomes and underlying toxicity mechanisms needs to be understood. The objective of this study was to conduct a systematic review to examine the state of science on the relationship between PBDE and adverse maternal/infant health outcomes and related maternal biomarker changes. This literature review was conducted using PubMed, Scopus, Embase and Web of Science for published articles from January 2005-February 2022. Article quality was assessed using Newcastle-Ottawa Scale. Of the 1518 articles, only 54 human observational studies were screened in for this review. A second reviewer examined the validity of these articles. Reports on associations between PBDE and maternal health outcomes included gestational hypertension/preeclampsia (N = 2) and gestational diabetes mellitus/glycemic index (N = 6). Meanwhile, reports on PBDE and infant outcomes (N=32) included effects on infant birth weight, birth length and cephalic perimeter, preterm birth, fetal growth restriction and APGAR scores. Although findings on PBDE exposure and adverse infant outcomes showed inconsistencies across studies, in general, negative correlations between maternal PBDEs and infant birth weight, birth length and cephalic perimeter were seen, in few cases, after stratification by sex. Association between maternal PBDE and maternal biomarkers (N=18) suggested negative impact of PBDE exposure on markers relevant to neuro-endocrine system and inflammatory processes. The review findings identified potential associations between maternal PBDE and adverse maternal/infant health outcomes. Furthermore, PBDE-related biomarker changes suggest disturbances in maternal mechanisms relevant to endocrine disrupting properties of PBDEs. The observed study heterogeneity can be attributed to factors namely, sample size, study design and statistical analysis. Overall review findings imply the necessity for further research to validate PBDE exposure-related adverse maternal/infant health effects and to validate underlying toxicity mechanisms.
Collapse
Affiliation(s)
- J Gomes
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - M Begum
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - P Kumarathasan
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada; Environmental Health Science and Research Bureau, HECS, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
5
|
Puche-Juarez M, Toledano JM, Moreno-Fernandez J, Gálvez-Ontiveros Y, Rivas A, Diaz-Castro J, Ochoa JJ. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023; 15:4657. [PMID: 37960310 PMCID: PMC10648368 DOI: 10.3390/nu15214657] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances widely disseminated both in the environment and in daily-life products which can interfere with the regulation and function of the endocrine system. These substances have gradually entered the food chain, being frequently found in human blood and urine samples. This becomes a particularly serious issue when they reach vulnerable populations such as pregnant women, whose hormones are more unstable and vulnerable to EDCs. The proper formation and activity of the placenta, and therefore embryonic development, may get seriously affected by the presence of these chemicals, augmenting the risk of several pregnancy complications, including intrauterine growth restriction, preterm birth, preeclampsia, and gestational diabetes mellitus, among others. Additionally, some of them also exert a detrimental impact on fertility, thus hindering the reproductive process from the beginning. In several cases, EDCs even induce cross-generational effects, inherited by future generations through epigenetic mechanisms. These are the reasons why a proper understanding of the reproductive and gestational alterations derived from these substances is needed, along with efforts to establish regulations and preventive measures in order to avoid exposition (especially during this particular stage of life).
Collapse
Affiliation(s)
- Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Yolanda Gálvez-Ontiveros
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (M.P.-J.); (J.J.O.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
6
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Perrone S, Caporilli C, Grassi F, Ferrocino M, Biagi E, Dell’Orto V, Beretta V, Petrolini C, Gambini L, Street ME, Dall’Asta A, Ghi T, Esposito S. Prenatal and Neonatal Bone Health: Updated Review on Early Identification of Newborns at High Risk for Osteopenia. Nutrients 2023; 15:3515. [PMID: 37630705 PMCID: PMC10459154 DOI: 10.3390/nu15163515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone health starts with maternal health and nutrition, which influences bone mass and density already in utero. The mechanisms underlying the effect of the intrauterine environment on bone health are partly unknown but certainly include the 'foetal programming' of oxidative stress and endocrine systems, which influence later skeletal growth and development. With this narrative review, we describe the current evidence for identifying patients with risk factors for developing osteopenia, today's management of these populations, and screening and prevention programs based on gestational age, weight, and morbidity. Challenges for bone health prevention include the need for new technologies that are specific and applicable to pregnant women, the foetus, and, later, the newborn. Radiofrequency ultrasound spectrometry (REMS) has proven to be a useful tool in the assessment of bone mineral density (BMD) in pregnant women. Few studies have reported that transmission ultrasound can also be used to assess BMD in newborns. The advantages of this technology in the foetus and newborn are the absence of ionising radiation, ease of use, and, above all, the possibility of performing longitudinal studies from intrauterine to extrauterine life. The use of these technologies already in the intrauterine period could help prevent associated diseases, such as osteoporosis and osteopenia, which are characterised by a reduction in bone mass and degeneration of bone structure and lead to an increased risk of fractures in adulthood with considerable social repercussions for the related direct and indirect costs.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Mandy Ferrocino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Eleonora Biagi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Valentina Dell’Orto
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Virginia Beretta
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Lucia Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (V.D.); (V.B.); (C.P.); (L.G.)
| | - Maria Elisabeth Street
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| | - Andrea Dall’Asta
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Tullio Ghi
- Obstetric and Gynecology Unit, University Hospital of Parma, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (A.D.); (T.G.)
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (C.C.); (F.G.); (M.F.); (E.B.); (M.E.S.); (S.E.)
| |
Collapse
|
8
|
Rahman SM, Malin Igra A, Essig JY, Ekström EC, Dreij K, Trask M, Lindh C, Arifeen SE, Rahman A, Krais AM, Kippler M. Polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy and child anthropometry from birth to 10 years of age: Sex-specific evidence from a cohort study in rural Bangladesh. ENVIRONMENTAL RESEARCH 2023; 227:115787. [PMID: 36997043 DOI: 10.1016/j.envres.2023.115787] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have endocrine disrupting properties and they cross the placental barrier, but studies on gestational exposure and child anthropometry are inconclusive. We aimed to elucidate the impact of early gestational PAH exposure on anthropometry from birth to 10 years of age in 1295 mother-child pairs from a nested sub-cohort of the MINIMat trial in Bangladesh. Several PAH metabolites [1-hydroxyphenanthrene (1-OH-Phe), Σ2-,3-hydroxyphenanthrene (Σ2-,3-OH-Phe), 4-hydroxyphenanthrene (4-OH-Phe), 1-hydroxypyrene (1-OH-Pyr), Σ2-,3-hydroxyfluorene (Σ2-,3-OH-Flu)] were quantified in spot urine collected around gestational week 8 using LC-MS/MS. Child weight and height were measured at 19 occasions from birth to 10 years. Multivariable-adjusted regression models were used to assess associations of maternal PAH metabolites (log2-transformed) with child anthropometry. The median concentration of 1-OH-Phe, Σ2-,3-OH-Phe, 4-OH-Phe, 1-OH-Pyr and Σ2-,3-OH-Flu was 1.5, 1.9, 0.14, 2.5, and 2.0 ng/mL, respectively. All maternal urinary PAH metabolites were positively associated with newborn weight and length and all associations were more pronounced in boys than in girls (p interaction for all <0.14). In boys, the strongest associations were observed with Σ2-,3-OH-Phe and Σ2-,3-OH-Flu for which each doubling increased mean birth weight by 41 g (95% CI: 13; 69 and 12; 70) and length by 0.23 cm (0.075; 0.39) and 0.21 cm (0.045; 0.37), respectively. Maternal urinary PAH metabolites were not associated with child anthropometry at 10 years. In longitudinal analysis, however, maternal urinary PAH metabolites were positively associated with boys' weight-for-age (WAZ) and height-for-age Z-scores (HAZ) from birth to 10 years, but only the association of 4-OH-Phe with HAZ was significant (B: 0.080 Z-scores; 95% CI 0.013, 0.15). No associations were observed with girls' WAZ or HAZ. In conclusion, gestational PAH exposure was positively associated with fetal and early childhood growth, especially in boys. Further studies are needed to confirm causality and to explore long-term health effects.
Collapse
Affiliation(s)
- Syed Moshfiqur Rahman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Julie Y Essig
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mercedes Trask
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Christian Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Anisur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Annette M Krais
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. SEPARATIONS 2023. [DOI: 10.3390/separations10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Seabirds are widely regarded as an invaluable bioindicator of environmental health. Matrices including eggs and feathers have been used as non-lethal means to assess contaminant burdens. We have developed a new approach for extraction of polycyclic aromatic compounds (PACs) from seabird plasma and serum based on automated microbead-beating homogenization and extraction. Commercially available bovine serum and plasma were purposely fortified with a suite of PACs separately at three dosing levels, placed inside a custom-made stainless-steel tube containing ceramic microbeads, and subjected to an extraction process using a Precellys tissue homogenizer. Tubes were shaken forcefully in three-dimensions, facilitating high mass-transfer of PACs from the matrix into the hexane extraction solvent. The accuracy of the method ranged from 55 to 120% and limits of detection and quantitation ranged from 0.1 to 8 and 0.2 to 27 pg/μL, respectively. The method exhibited good repeatability with both inter- and intra-day repeatability < 30%. The developed method represents an effective and efficient approach to extraction of PACs from important biological matrices.
Collapse
|
10
|
Mechanisms of Male Reproductive Toxicity of Polybrominated Diphenyl Ethers. Int J Mol Sci 2022; 23:ijms232214229. [PMID: 36430706 PMCID: PMC9693139 DOI: 10.3390/ijms232214229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDE) are a group of flame retardants used in a variety of artificial materials. Despite being phased out in most industrial countries, they remain in the environment and human tissues due to their persistence, lipophilicity, and bioaccumulation. Populational and experimental studies demonstrate the male reproductive toxicity of PBDEs including increased incidence of genital malformations (hypospadias and cryptorchidism), altered weight of testes and other reproductive tissues, altered testes histology and transcriptome, decreased sperm production and sperm quality, altered epigenetic regulation of developmental genes in spermatozoa, and altered secretion of reproductive hormones. A broad range of mechanistic hypotheses of PBDE reproductive toxicity has been suggested. Among these hypotheses, oxidative stress, the disruption of estrogenic signaling, and mitochondria disruption are affected by PBDE concentrations much higher than concentrations found in human tissues, making them unlikely links between exposures and adverse reproductive outcomes in the general population. Robust evidence suggests that at environmentally relevant doses, PBDEs and their metabolites may affect male reproductive health via mechanisms including AR antagonism and the disruption of a complex network of metabolic signaling.
Collapse
|
11
|
Chen Y, Wang Z, Fang G, Miao M, Liang H, Chen Y, Luan M, Liu X, Wen S, Chen A, Yuan W. Association of prenatal exposure to polybrominated diphenyl ethers at low levels with adiposity measures in children up to 6 years. CHEMOSPHERE 2022; 303:134867. [PMID: 35595104 DOI: 10.1016/j.chemosphere.2022.134867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The effects of prenatal PBDEs exposure, especially at low levels, on childhood obesity are scarce. No previous studies have investigated the effect modification by breastfeeding on the associations of PBDEs exposure with childhood obesity. We aimed to investigate the associations of prenatal PBDEs exposure with adiposity measures in children up to 6 years, and the effect modification by breastfeeding. Participants were mother-child pairs from the Shanghai-Minhang Birth Cohort study. Nine PBDE congeners were assessed in cord blood plasma. We obtained information about child weight (0-6 years), height (0.5-6 years), arm circumference (0-6 years), and waist circumference (0-6 years) at each follow-up visit. Breastfeeding duration was collected when children were aged 1 year and was categorized as short (≤6 months) and adequate (>6 months). Multiple linear regression models were used to examine the associations of PBDE concentrations with adiposity measures of the children at each age. Generalized estimating equation (GEE) models were used to estimate the overall associations of PBDEs exposure with adiposity measures. We examined the effect modification by breastfeeding using stratified analyses and by including interaction terms into GEE models. For boys, there was a general profile of positive associations of several PBDE congeners exposure with adiposity measures. Especially, boys with higher BDE-153 concentration had higher adiposity measures at each time point. For girls, we also found positive associations of BDE-100 and -153 exposure with adiposity measures. The GEE models showed consistent patterns for BDE-153 in boys and for BDE-100 and -153 in girls. In breastfeeding-stratified analyses, stronger associations of PBDEs exposure with adiposity measures were generally found in children who were shortly breastfed. Our findings suggest that prenatal exposure to PBDEs at low levels may influence childhood adiposity measures, and the potential effects of PBDEs were attenuated by adequate breastfeeding.
Collapse
Affiliation(s)
- Yafei Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Guanghong Fang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Yao Chen
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Min Luan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Xiaofang Liu
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China.
| |
Collapse
|
12
|
Singh V, Cortes-Ramirez J, Toms LM, Sooriyagoda T, Karatela S. Effects of Polybrominated Diphenyl Ethers on Hormonal and Reproductive Health in E-Waste-Exposed Population: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137820. [PMID: 35805479 PMCID: PMC9265575 DOI: 10.3390/ijerph19137820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023]
Abstract
Electronic waste management is a global rising concern that is primarily being handled by informal recycling practices. These release a mix of potentially hazardous chemicals, which is an important public health concern. These chemicals include polybrominated diphenyl ethers (PBDEs), used as flame retardants in electronic parts, which are persistent in nature and show bioaccumulative characteristics. Although PBDEs are suspected endocrine disruptors, particularly targeting thyroid and reproductive hormone functions, the relationship of PBDEs with these health effects are not well established. We used the Navigation Guide methodology to conduct a systematic review of studies in populations exposed to e-waste to better understand the relationships of these persistent flame retardants with hormonal and reproductive health. We assessed nineteen studies that fit our pre-determined inclusion criteria for risk of bias, indirectness, inconsistency, imprecision, and other criteria that helped rate the overall evidence for its quality and strength of evidence. The studies suggest PBDEs may have an adverse effect on thyroid hormones, reproductive hormones, semen quality, and neonatal health. However, more research is required to establish a relationship of these effects in the e-waste-exposed population. We identified the limitations of the data available and made recommendations for future scientific work.
Collapse
Affiliation(s)
- Vishal Singh
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
- Correspondence:
| | - Javier Cortes-Ramirez
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Children’s Health and Environment Program, The University of Queensland, Brisbane, QLD 4101, Australia
- Faculty of Medical and Health Sciences, Universidad de Santander, Cúcuta 540003, Colombia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Thilakshika Sooriyagoda
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Shamshad Karatela
- School of Pharmacy, University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Mackay, QLD 4740, Australia
| |
Collapse
|
13
|
Liu YJ, Xie Y, Tian YK, Liu H, He CD, An SL, Chen W, Zhou YZ, Zhong XN. Associations Between Polybrominated Diphenyl Ethers Concentrations in Human Placenta and Small for Gestational Age in Southwest China. Front Public Health 2022; 10:812268. [PMID: 35211445 PMCID: PMC8863045 DOI: 10.3389/fpubh.2022.812268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prenatal exposures to polybrominated diphenyl ethers (PBDEs) may affect fetal growth. Small for gestational age (SGA) is a measure based on birth weight and gestational age at birth and represents a good indicator of fetal growth but it has been used only in a small number of studies. The present study aimed to examine the associations between PBDEs exposure and the risk of SGA among participants from a birth cohort in Southwest China. METHODS The concentrations of eight common PBDE congeners (BDE-28, BDE47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209) in 996 human placental samples collected between May to October 2020 were determined. A questionnaire survey was administered regarding maternal characteristics. The outcome data of the newborns were obtained from the medical record. The Mann-Whitney U test and binomial logistic regression analysis were used to assess associations between PBDEs concentrations (as a continuous or categorical variable) and SGA. RESULTS All PBDE congeners were detected in more than 73% of samples. The median concentrations of ΣPBDEs were 10.08 ng/g lipid weight (lw). BDE-209 was the most abundant PBDE congener, contributed 28% to ΣPBDEs. There were 114 (11.4%) SGA infants. The levels of BDE-99, BDE-100, BDE-209, and the total levels of ΣPBDEs in the SGA group were significantly higher than those in the controls. When classifying the PBDEs concentrations as two categories: low and high, high level of ΣPBDEs was associated with increased risk of SGA [odds ratio (OR): 2.203, 95% confidence interval (CI): 1.453-3.340] after adjusting for potential covariates. The association remained significant when stratifying the data by gender of the newborn (OR: 2.572, 95% CI: 1.337-4.947 for boys; OR: 2.385, 95% CI: 1.315-4.325 for girls). CONCLUSION The present study adds to the literature by using placenta to measure PBDEs exposure during pregnancy, and provides evidence that prenatal exposure to PBDEs may be associated with the risk of SGA, at least at the levels of exposure in our population.
Collapse
Affiliation(s)
- Yi-Jun Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China.,School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Ying-Kuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hui Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Cai-Die He
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Song-Lin An
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xiao-Ni Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Liao J, Liu Y, Yi J, Li Y, Li Q, Li Y, Shang P, Guo J, Hu L, Pan J, Li Y, Chang YF, Tang Z, Zhang H. Gut microbiota disturbance exaggerates battery wastewater-induced hepatotoxicity through a gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152188. [PMID: 34875328 DOI: 10.1016/j.scitotenv.2021.152188] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 05/23/2023]
Abstract
As the primary source of electricity for various devices, batteries are important contributors to the overall electronic waste generated; and are widely considered a source of highly ecotoxic pollutants. Material leakage in battery manufacturing has not been completely solved, and the elucidation of the toxic mechanisms of battery wastewater exposure is needed. We demonstrated that battery waste exposure disrupted the intestinal flora and aggravated hepatotoxicity via the gut-liver axis. Under battery waste exposure, colon epithelium suffered physiological damage, and gene and protein expression levels related to gut barrier function (ZO-1, claudin-1, and Occludin) were significantly downregulated. Meanwhile, battery waste reduced the richness and diversity of the flora, causing metabolites produced by intestinal microbes to enter the gut-liver axis. Gut microbial dysbiosis impaired mitochondrial respiratory function in liver tissue cells, and mitophagy, apoptosis, and the disorder of glycolipids and amino acid metabolism were induced in hosts exposed to battery toxins. Altogether, these results provided novel insights into the underlying mechanisms of battery wastewater-related hepatotoxicity induced by gut microbiota via the gut-liver axis, which has public health implications where humans and animals are exposed to industrial toxins generated by uncontained battery disposal.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, Tibet, PR China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Science, Cornell University, Ithaca, NY, USA.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
15
|
Ma S, Lin M, Tang J, Liu R, Yang Y, Yu Y, Li G, An T. Occurrence and fate of polycyclic aromatic hydrocarbons from electronic waste dismantling activities: A critical review from environmental pollution to human health. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127683. [PMID: 34799168 DOI: 10.1016/j.jhazmat.2021.127683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Electronic waste (e-waste) is one of the fastest-growing solid wastes and has become an urgent issue due to the potential adverse consequences of exposure to emitted toxic pollutants, especially for these occupational exposed workers and local residents. In this review, the environmental occurrences, emission characteristics, sources, and possible adverse effects of polycyclic aromatic hydrocarbons (PAHs) emitted from primitive e-waste dismantling activities are summarized. In general, the atmospheric levels of PAHs at typical e-waste sites, e.g., in Guiyu, China, have substantially decreased by more than an order of magnitude compared with levels a decade ago. The PAH concentrations in soil from old e-waste sites in China are also generally lower than those at newly emerged e-waste sites in India, Pakistan and Ghana. However, elevated concentrations of PAHs have been reported in human milk, hair and urine from the populations near these e-waste sites. Source apportionment both from bench-scale studies to field observations has demonstrated that the pyrolysis and combustion processing of electronic circuit board are mainly responsible for the emissions of various PAHs. In addition, some specific PAHs and their derivatives, such as triphenylbenzene, halogenated and oxygenated PAHs, have frequently been identified and could be considered as indicators in routine analysis in addition to the 16 U.S. EPA priority PAHs currently used.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ranran Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Parvez SM, Jahan F, Brune MN, Gorman JF, Rahman MJ, Carpenter D, Islam Z, Rahman M, Aich N, Knibbs LD, Sly PD. Health consequences of exposure to e-waste: an updated systematic review. Lancet Planet Health 2021; 5:e905-e920. [PMID: 34895498 PMCID: PMC8674120 DOI: 10.1016/s2542-5196(21)00263-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Electronic waste (e-waste) contains numerous chemicals harmful to human and ecological health. To update a 2013 review assessing adverse human health consequences of exposure to e-waste, we systematically reviewed studies reporting effects on humans related to e-waste exposure. We searched EMBASE, PsycNET, Web of Science, CINAHL, and PubMed for articles published between Dec 18, 2012, and Jan 28, 2020, restricting our search to publications in English. Of the 5645 records identified, we included 70 studies that met the preset criteria. People living in e-waste exposed regions had significantly elevated levels of heavy metals and persistent organic pollutants. Children and pregnant women were especially susceptible during the critical periods of exposure that detrimentally affect diverse biological systems and organs. Elevated toxic chemicals negatively impact on neonatal growth indices and hormone level alterations in e-waste exposed populations. We recorded possible connections between chronic exposure to e-waste and DNA lesions, telomere attrition, inhibited vaccine responsiveness, elevated oxidative stress, and altered immune function. The existence of various toxic chemicals in e-waste recycling areas impose plausible adverse health outcomes. Novel cost-effective methods for safe recycling operations need to be employed in e-waste sites to ensure the health and safety of vulnerable populations.
Collapse
Affiliation(s)
- Sarker M Parvez
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia; Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Farjana Jahan
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Marie-Noel Brune
- Department of Environment, Climate Change and Health, WHO, Geneva, Switzerland
| | - Julia F Gorman
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Musarrat J Rahman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Carpenter
- School of Public Health, Environmental Health Sciences, University at Albany, Albany, NY, USA
| | - Zahir Islam
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia
| | - Mahbubur Rahman
- Environmental Intervention Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, School of Engineering and Applied Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Luke D Knibbs
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Chen G, Huo X, Luo X, Cheng Z, Zhang Y, Xu X. E-waste polycyclic aromatic hydrocarbon (PAH) exposure leads to child gut-mucosal inflammation and adaptive immune response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53267-53281. [PMID: 34031825 DOI: 10.1007/s11356-021-14492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure alters immunological responses. Research concerning PAH exposure on intestinal immunity of children in electronic waste (e-waste) areas is scarce. The aim of this study was to evaluate the effects of polycyclic aromatic hydrocarbon (PAH) pollutants on intestinal mucosal immunity of children in e-waste areas. Results showed higher hydroxylated PAH (OH-PAH) concentrations in e-waste-exposed children, accompanied with higher sialyl Lewis A (SLA) level, absolute lymphocyte and monocyte counts, decreased of percentage of CD4+ T cells, and had a higher risk of diarrhea. OH-PAH concentrations were negative with child growth. 1-OHNap mediated through WBCs, along with 1-OHPyr, was correlated with an increase SLA concentration. 2-OHFlu, 1-OHPhe, 2-OHPhe, 1-OHPyr, and 6-OHChr were positively correlated with secretory immunoglobulin A (sIgA) concentration. Our results indicated that PAH pollutants caused inflammation, affected the intestinal epithelium, and led to transformation of microfold cell (M cell). M cells initiating mucosal immune responses and the subsequent increasing sIgA production might be an adaptive immune respond of children in the e-waste areas. To our knowledge, this is the first study of PAH exposure on children intestinal immunity in e-waste area, showing that PAH exposure plays a negative role in child growth and impairs the intestinal immune function.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
18
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
19
|
Jebara A, Lo Turco V, Faggio C, Licata P, Nava V, Potortì AG, Crupi R, Mansour HB, Di Bella G. Monitoring of Environmental Hg Occurrence in Tunisian Coastal Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5202. [PMID: 34068387 PMCID: PMC8153593 DOI: 10.3390/ijerph18105202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Total mercury (Hg) was determined in 450 environmental samples (seawater, sediment plant and fish) from five Mahdia coastal areas (Tunisia). Tolerable Weekly Intake% (TWI) values, according to the European Food Safety Authority (EFSA), were calculated based on the average metal concentration in fish and the average weekly fish consumption rate. Hg was accumulated mainly in fish and in Posidonia oceanica leaves. Hg in sediment ranged from 1.88 μg/kg dry weight (d.w.) to 7.48 μg/kg d.w., while it was between 0.32 μg/kg and 0.19 μg/kg in seawaters. Our study showed high concentration in Posidonia oceanica in S3 (plant = 16.76 ± 4.48 μg/kg d.w.) as compared to those in S4 sites (plant = 5.33 ± 0.05 μg/kg d.w.). Concentrations for S. aurata and S. salpa in the Rejiche area exceeded the EC 1881/2006 legislation with values of 1.9 mg/kg and 2.5 mg/kg, respectively, and consumers may be exposed to high concentrations of Hg that exceeds the EFSA. The results showed that the fish species should be constantly monitored due to their TWI% of 154.5% for S. aurata and 209.8% S. salpa respectively.
Collapse
Affiliation(s)
- Amel Jebara
- Research Unit of Analysis and Process Applied to Environmental, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (A.J.); (H.B.M.)
| | - Vincenzo Lo Turco
- BioMorf Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy; (V.L.T.); (V.N.); (A.G.P.); (G.D.B.)
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | - Patrizia Licata
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Vincenzo Nava
- BioMorf Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy; (V.L.T.); (V.N.); (A.G.P.); (G.D.B.)
| | - Angela Giorgia Potortì
- BioMorf Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy; (V.L.T.); (V.N.); (A.G.P.); (G.D.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo SS Annunziata, 98168 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to Environmental, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir 5000, Tunisia; (A.J.); (H.B.M.)
| | - Giuseppa Di Bella
- BioMorf Department, University of Messina, Polo SS Annunziata, 98168 Messina, Italy; (V.L.T.); (V.N.); (A.G.P.); (G.D.B.)
| |
Collapse
|
20
|
Talia C, Connolly L, Fowler PA. The insulin-like growth factor system: A target for endocrine disruptors? ENVIRONMENT INTERNATIONAL 2021; 147:106311. [PMID: 33348104 DOI: 10.1016/j.envint.2020.106311] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 05/15/2023]
Abstract
The insulin-like growth factor (IGF) system is a critical regulator of growth, especially during fetal development, while also playing a central role in metabolic homeostasis. Endocrine disruptors (EDs) are ubiquitous compounds able to interfere with hormone action and impact human health. For example, exposure to EDs is associated with decreased birthweight and increased incidence of metabolic disorders. Therefore, the IGF system is a potential target for endocrine disruption. This review summarises the state of the science regarding effects of exposure to major classes of endocrine disruptors (dioxins and dioxin-like compounds, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, phthalates, perfluoroalkyl substances and bisphenol A) on the IGF system. Evidence from both experimental models (in vitro and in vivo) and epidemiological studies is presented. In addition, possible molecular mechanisms of action and effects on methylation are discussed. There is a large body of evidence supporting the link between dioxins and dioxin-like compounds and IGF disruption, but mixed findings have been reported in human studies. On the other hand, although only a few animal studies have investigated the effects of phthalates on the IGF system, their negative association with IGF levels and methylation status has been more consistently reported in humans. For polybrominated diphenyl ethers, perfluoroalkyl substances and bisphenol A the evidence is still limited. Despite a lack of studies for some ED classes linking ED exposure to changes in IGF levels, and the need for further research to improve reproducibility and determine the degree of risk posed by EDs to the IGF system, this is clearly an area of concern.
Collapse
Affiliation(s)
- Chiara Talia
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland BT9 5DL, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
21
|
Wang Q, Xu X, Zeng Z, Hylkema MN, Cai Z, Huo X. PAH exposure is associated with enhanced risk for pediatric dyslipidemia through serum SOD reduction. ENVIRONMENT INTERNATIONAL 2020; 145:106132. [PMID: 32979814 DOI: 10.1016/j.envint.2020.106132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is linked to abnormal lipid metabolism, but evidence regarding PAHs as risk factors for dyslipidemia is lacking. OBJECTIVE To investigate the respective role and interaction of PAH exposure and antioxidant consumption in the risk for pediatric dyslipidemia. METHODS We measured the concentrations of serum lipids, superoxide dismutase (SOD) and urinary hydroxylated PAHs (OH-PAHs) in 403 children, of which 203 were from an e-waste-exposed area (Guiyu) and 200 were from a reference area (Haojiang). Biological interactions were calculated by additive models. RESULTS Guiyu children had higher serum triglyceride concentration and dyslipidemia incidence, and lower serum concentration of high-density lipoprotein (HDL) than Haojiang children. Elevated OH-PAH concentration, and concomitant SOD reduction, were both associated with lower HDL concentration and higher hypo-HDL risk (∑3OH-Phes: B for lgHDL = -0.048, P < 0.01; OR for hypo-HDL = 3.708, 95% CI: 1.200, 11.453; SOD: BT3 for lgHDL = 0.061, P < 0.01; ORT3 for hypo-HDL = 0.168, 95% CI: 0.030, 0.941; all were adjusted for confounders). Biological interaction between phenanthrol exposure and SOD reduction was linked to dyslipidemia risk (RERI = 2.783, AP = 0.498, S = 2.537). Children with both risk factors (higher ∑3OH-Phes and lower SOD) had 5.594-times (95% CI: 1.119, 27.958) the dyslipidemia risk than children with neither risk factors (lower ∑3OH-Phes and higher SOD). CONCLUSION High PAH exposure combined with SOD reduction is recommended for predicting elevated risk for pediatric dyslipidemia. Risk assessment of PAH-related dyslipidemia should take antioxidant concentration into consideration.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
22
|
Wang Q, Xu X, Zeng Z, Zheng X, Ye K, Huo X. Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:138944. [PMID: 32434106 DOI: 10.1016/j.scitotenv.2020.138944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with changes in blood pressure. However, the association is controversial in different studies, and antioxidants' roles involved in it remain unclear. To investigate the associations among PAH exposure, blood pressure, and antioxidant concentrations, we recruited 403 children (2-7 years old), of which 203 were from Guiyu, an e-waste-recycling area (exposed group), and 200 were from Haojiang, a nearby non-e-waste area (reference group). Levels of blood pressure, plasma vitamin E, serum superoxide dismutase (SOD), serum glutathione peroxidase (GPx), and eight urinary hydroxylated PAHs (OH-PAHs) were measured. Compared with Haojiang children, Guiyu children had higher urinary OH-PAH concentrations but lower systolic pressure, pulse pressure, serum SOD concentration, and serum GPx concentration (all P < 0.05). PAH exposure was associated with lower systolic pressure, pulse pressure, SOD (adjusted β = -0.091, -0.104 and -0.154, respectively, all P < 0.05, in all children), GPx (adjusted β∑7LMW-OH-PAHs-T3 = -0.332, only in Haojiang children) and vitamin E (adjusted OR∑7LMW-OH-PAHs = 0.838, 95% CI: 0.706, 0.995, only in Guiyu children). Serum SOD and GPx were associated with higher blood pressure (βSOD-T2 for diastolic pressure = 0.215 in all children, βSOD-T3 for systolic pressure = 0.193 in all children, βSOD-T3 for pulse pressure = 0.281 in high-∑8OH-PAHs children, βGPx-T2 = 0.283 and βGPx-T3 = 0.289 for diastolic pressure in Haojiang children, all P < 0.05). Interactions between PAHs and vitamin E were associated with lower systolic pressure and pulse pressure; simple effects of vitamin E to raise systolic pressure and pulse pressure were only significant in low-∑8OH-PAHs children. Our results indicate that PAH exposure, especially at high levels, and further antioxidant-decrease are potential risk factors for blood-pressure decrease in children; vascular function of PAH-exposed children may be impaired, manifesting as disordered blood pressure.
Collapse
Affiliation(s)
- Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
23
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
25
|
Lin M, Tang J, Ma S, Yu Y, Li G, Fan R, Mai B, An T. Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area. ENVIRONMENT INTERNATIONAL 2020; 136:105432. [PMID: 31884415 DOI: 10.1016/j.envint.2019.105432] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed . The results show that concentrations of Σ15PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ12OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ15PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ12OH-PAHs of hair-In were 9-37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinogenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments.
Collapse
Affiliation(s)
- Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, 510631, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
26
|
Endocrine-Disrupting Chemicals in Human Fetal Growth. Int J Mol Sci 2020; 21:ijms21041430. [PMID: 32093249 PMCID: PMC7073082 DOI: 10.3390/ijms21041430] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal growth is regulated by a complex interaction of maternal, placental, and fetal factors. The effects and outcomes that chemicals, widely distributed in the environment, may have on the health status of both the mother and the fetus are not yet well defined. Mainly mixtures of chemical substances are found in the mothers and placenta. Exposure to endocrine-disrupting chemicals (EDCs) can be associated with fetal growth retardation, thyroid dysfunction, and neurological disorders. EDCs mostly interfere with insulin, glucocorticoid, estrogenic, and thyroid pathways, with subsequent effects on normal endocrine and metabolic functions, which cause changes in the epigenome and state of inflammation with life-long effects and consequences. International scientific societies recommend the implementation of research and of all possible preventive measures. This review briefly summarizes all these aspects.
Collapse
|
27
|
Jiang Y, Yuan L, Lin Q, Ma S, Yu Y. Polybrominated diphenyl ethers in the environment and human external and internal exposure in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133902. [PMID: 31470322 DOI: 10.1016/j.scitotenv.2019.133902] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 05/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants. Because of their toxicity and persistence, some PBDEs were restricted under the Stockholm Convention in 2009. Since then, many studies have been carried out on PBDEs in China and in many other countries. In the present review, the occurrences and contamination of PBDEs in air, water, sediment, soil, biota and daily food, human blood, hair, and other human tissues in China are comprehensively reviewed and described. The human exposure pathways and associated health risks of PBDEs are summarized. The data showed no obvious differences between North and South China, but concentrations from West China were generally lower than in East China, which can be mainly attributed to the production and widespread use of PBDEs in eastern regions. High levels of PBDEs were generally observed in the PBDE production facilities (e.g., Jiangsu Province and Shandong Province, East China) and e-waste recycling sites (Taizhou City, Zhejiang Province, East China, and Guiyu City and Qingyuan City, both located in Guangdong Province, South China) and large cities, whereas low levels were detected in rural and less-developed areas, especially in remote regions such as the Tibetan Plateau. Deca-BDE is generally the major congener. Existing problems for PBDE investigations in China are revealed, and further studies are also discussed and anticipated. In particular, non-invasive matrices such as hair should be more thoroughly studied; more accurate estimations of human exposure and health risks should be performed, such as adding bioaccessibility or bioavailability to human exposure assessments; and the degradation products and metabolites of PBDEs in human bodies should receive more attention. More investigations should be carried out to evaluate the quantitative relationships between internal and external exposure so as to provide a scientific basis for ensuring human health.
Collapse
Affiliation(s)
- Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Longmiao Yuan
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| | - Qinhao Lin
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shentao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
28
|
Liang S, Liang S, Yin N, Hu B, Faiola F. Toxicogenomic analyses of the effects of BDE-47/209, TBBPA/S and TCBPA on early neural development with a human embryonic stem cell in vitro differentiation system. Toxicol Appl Pharmacol 2019; 379:114685. [DOI: 10.1016/j.taap.2019.114685] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
|
29
|
Santos PM, del Nogal Sánchez M, Pavón JLP, Cordero BM. Determination of polycyclic aromatic hydrocarbons in human biological samples: A critical review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Zheng X, Huo X, Zhang Y, Wang Q, Zhang Y, Xu X. Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:587-596. [PMID: 30597391 DOI: 10.1016/j.envpol.2018.12.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023]
Abstract
Lead (Pb) and polycyclic aromatic hydrocarbon (PAH) exposure is positively associated with cardiovascular disease (CVD), and the possible potential mechanism may be caused by damage to the endothelium by modulation of inflammatory processes. No comprehensive research shows co-exposure of Pb and PAH on cardiovascular endothelial inflammation in electronic waste (e-waste) exposed populations. Given this, the aim of this study is to provide evidence for a relationship between Pb and PAH co-exposure and cardiovascular endothelial inflammation, in an e-waste-exposed population, to delineate the link between a potential mechanism for CVD and environmental exposure. We recruited 203 preschool children (3-7 years) were enrolled from Guiyu (e-waste-exposed group, n = 105) and Haojiang (reference group, n = 98). Blood Pb levels and urinary PAH metabolites were measured. Percentages of T cells, CD4+ T cells and CD8+ T cells, complete blood counts, endothelial inflammation biomarker (serum S100A8/A9), and other inflammatory biomarkers [serum interleukin (IL)-6, IL-12p70, gamma interferon-inducible protein 10 (IP-10)] levels were evaluated. Blood Pb, total urinary hydroxylated PAH (ΣOHPAH), total hydroxynaphthalene (ΣOHNap) and total hydroxyfluorene (ΣOHFlu) levels, S100A8/A9, IL-6, IL-12p70 and IP-10 concentrations, absolute counts of monocytes, neutrophils, and leukocytes, as well as CD4+ T cell percentages were significantly higher in exposed children. Elevated blood Pb, urinary 2-hydroxynaphthalene (2-OHNap) and ΣOHFlu levels were associated with higher levels of IL-6, IL-12p70, IP-10, CD4+ T cell percentages, neutrophil and monocyte counts. Mediator models indicated that neutrophils exert the significant mediation effect on the relationship between blood Pb levels and S100A8/A9. IL-6 exerts a significant mediation effect on the relationship between blood Pb levels and IP-10, as well as the relationship between urinary ΣOHFlu levels and IP-10. Our results indicate that children with elevated exposure levels of Pb and PAHs have exacerbated vascular endothelial inflammation, which may indicate future CVD risk in e-waste recycling areas.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9713, GZ, the Netherlands
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
31
|
Huo X, Wu Y, Xu L, Zeng X, Qin Q, Xu X. Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:453-461. [PMID: 30458375 DOI: 10.1016/j.envpol.2018.10.098] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogenic and endocrine disrupting chemicals that have been concerned over the past few decades. We aimed to determine the hydroxylated PAH (OHPAH) metabolite concentrations in maternal urine collected from the e-waste-contaminated area of Guiyu and the reference area of Haojiang, China, and to evaluate their health effects on birth outcomes. The median ƩOHPAH concentration was 6.87 μg/g creatinine from Guiyu, and 3.90 μg/g creatinine from Haojiang. 2-OHNap and 1-OHPyr were the predominant metabolites. Residence in Guiyu and recycling in houses were associated with elevated 2-OHNap and 1-OHPyr. Standardized mean difference revealed that compared to low PAH metabolite levels in the first quartile, high PAH metabolite levels in the fourth quartile especially for 1-OHPyr, ƩOHPAHs and sometimes hydroxylphenanthrene compounds, presented a reduced size in birth outcomes (overall SMD: -0.09; 95% CI: -0.15, -0.03), including head circumference, BMI and Apgar 1 score, and increased size in height. After adjusting for confounders in regression models, an interquartile increase in ΣOHPAHs was associated with a decrease of 234.56 g in weight (95% CI: -452.00, -17.13), 1.72 cm in head circumference (95% CI: -2.96, -0.48), 1.06 kg/m2 in BMI (95% CI: -1.82, -0.31) and 0.42 in Apgar 1 score (95% CI: -0.66, -0.18), respectively. These findings suggest high exposure to PAHs during pregnancy in e-waste areas, posing a potential threat to neonatal development, which likely can be attributed to direct e-waste recycling activities. Ongoing studies should be continued to monitor human exposure and health, in particular for vulnerable individuals in e-waste-polluted areas.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yousheng Wu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xiang Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
32
|
Qin Q, Xu X, Dai Q, Ye K, Wang C, Huo X. Air pollution and body burden of persistent organic pollutants at an electronic waste recycling area of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:93-123. [PMID: 30171476 DOI: 10.1007/s10653-018-0176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/15/2018] [Indexed: 02/05/2023]
Abstract
This paper reviews the concentrations of persistent organic pollutants (POPs) in atmosphere of an electronic waste (e-waste) recycling town, Guiyu, in Southeast China, focusing on polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). We assess the evidence for the association between air pollution and human body burden, to provide an indication of the severity of respiratory exposure. Compared with standards and available existing data for other areas, it clearly shows that four typical POPs, derived from recycling processes, lead to serious atmospheric pollution and heavy body burden. From published data, the estimated respiratory exposure doses of Guiyu adults and children, varied between 2.48-10.37 and 3.25-13.6 ng kg-1 body weight (bw) day-1 for PBDEs, 2.31-7.6 and 4.09-13.58 pg World Health Organization-Toxic Equivalent Quantity (WHO-TEQ) kg-1 bw day-1 for PCDD/Fs, 5.57 and 20.52 ng kg-1 bw day-1 for PCBs, and 8.59-50.01 and 31.64-184.14 ng kg-1 bw day-1 for PAHs, respectively. These results show that air pollution is more harmful to children. Furthermore, except for PBDEs, the hazard quotient (HQ) of the other three pollutants was rated more than 1 by respiratory exposure only, and all of them are at risk of carcinogenesis. So we speculate these pollutants enter the body mainly through air inhalation, making respiratory exposure may be more important than dietary exposure in the Guiyu e-waste recycling area. Effective management policies and remediation techniques are urgently needed to prevent the deterioration of ambient air quality in the e-waste recycling area.
Collapse
Affiliation(s)
- Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Chenyang Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China.
| |
Collapse
|
33
|
Chen L, Wang C, Zhang Y, Zhou Y, Shi R, Cui C, Gao Y, Tian Y. Polybrominated diphenyl ethers in cord blood and perinatal outcomes from Laizhou Wan Birth Cohort, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20802-20808. [PMID: 29756186 DOI: 10.1007/s11356-018-2158-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
We explored whether polybrominated diphenyl ethers (PBDEs) exposed in cord blood could have any potential relationship with perinatal outcomes. Participants were pregnant females (n = 222) who were recruited from a prospective birth cohort (Laizhou Wan Birth Cohort, LWBC) between September 2010 and February 2012. We measured eight PBDE congeners (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) in cord serum and examined their relationship with perinatal outcomes. The median levels of BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183 were 2.92, 3.93, 2.29, 7.03, 3.03, 3.14, 1.46, and 2.55 ng/g lipids, respectively. For each log unit increase in BDE-47, BDE-100, and ∑4PBDEs, gestational age increased by 0.70 weeks (95% confidence interval [CI] 0.25, 1.15), 0.48 weeks (95% CI 0.03, 0.94), and 0.73 weeks (95% CI 0.12, 1.34), respectively. We also found that BDE-47 was positively associated with head circumference (β = 0.42, 95% CI 0.00, 0.84). Given that our study area is one of the major brominated flame retardant production areas in China, and the cord PBDEs levels were relatively higher than those reported in most other Asian areas, more studies on the effects of in utero PBDE exposure on fetal growth and child development are warranted.
Collapse
Affiliation(s)
- Limei Chen
- Wuxi Medical School, Jiangnan University, Wuxi, China
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Caifeng Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yijun Zhou
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chang Cui
- Research Base of Key Laboratory of Surveillance and Early Warning on Infection Disease in China CDC, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
35
|
Du L, Sun W, Li XM, Li XY, Liu W, Chen D. DNA methylation and copy number variation analyses of human embryonic stem cell-derived neuroprogenitors after low-dose decabromodiphenyl ether and/or bisphenol A exposure. Hum Exp Toxicol 2018; 37:475-485. [PMID: 28597690 DOI: 10.1177/0960327117710535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polybrominated diphenyl ether flame retardants decabromodiphenyl ether (BDE-209) and bisphenol A (BPA) are environmental contaminants that can cross the placenta and exert toxicity in the developing fetal nervous system. Copy number variants (CNVs) play a role in a number of genetic disorders and may be implicated in BDE-209/BPA teratogenicity. In this study, we found that BDE-209 and/or BPA exposure decreased neural differentiation efficiency of human embryonic stem cells (hESCs), although there was a >90% induction of neuronal progenitor cells (NPCs) from exposed hESCs. However, the mean of CNV numbers in the NPCs with BDE-209 + BPA treatment was significantly higher compared to the other groups, whereas DNA methylation was lower and DNA methyltransferase(DNMT1 and DNMT3A) expression were significantly decreased in all of the BDE-209 and/or BPA treatment groups compared with the control groups. The number of CNVs in chromosomes 3, 4, 11, 22, and X in NPCs with BDE-209 and/or BPA exposure was higher compared to the control group. In addition, CNVs in chromosomes 7, 8, 14, and 16 were stable in hESCs and hESCs-derived NPCs irrespective of BDE-209/BPA exposure, and CNVs in chromosomes 20 q11.21 and 16 p13.11 might be induced by neural differentiation. Thus, BDE-209/BPA exposure emerges as a potential source of CNVs distinct from neural differentiation by itself. BDE-209 and/or BPA exposure may cause genomic instability in cultured stem cells via reduced activity of DNA methyltransferase, suggesting a new mechanism of human embryonic neurodevelopmental toxicity caused by this class of environmental toxins.
Collapse
Affiliation(s)
- L Du
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - W Sun
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X M Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X Y Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - W Liu
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - D Chen
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Liu L, Zhang B, Lin K, Zhang Y, Xu X, Huo X. Thyroid disruption and reduced mental development in children from an informal e-waste recycling area: A mediation analysis. CHEMOSPHERE 2018; 193:498-505. [PMID: 29156335 DOI: 10.1016/j.chemosphere.2017.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023]
Abstract
This paper aims to evaluate the effects of thyroid disruption on the mental development of children. A total of 258 three-year-old children in Guiyu (e-waste-exposed group) and Nanao (reference group), China were examined. FT3, FT4, TSH, lead (BPb) and cadmium (BCd) in blood were determined, and cognitive and language scores of children were assessed based on the Bayley Scales of Infant Development III. Stepwise multiple regression was used to estimate the relationship between heavy metals and cognitive and language scores; mediation analysis was performed to determine whether thyroid disruption was mechanistically involved. Medians of BPb and BCd in Guiyu were higher than that of Nanao (11.30 ± 5.38 vs. 5.77 ± 2.51 μg/dL BPb; 1.22 ± 0.55 vs. 0.72 ± 0.37 μg/L BCd, both p < 0.001). Means of FT4 and TSH in Guiyu were also higher than those in Nanao (16.65 ± 1.83 vs.16.06 ± 1.66 pmol/L FT4, p = 0.007; 2.79 ± 1.30 vs. 2.21 ± 1.43 mIU/L TSH, p = 0.001). Guiyu children had lower cognitive scores (100.00 ± 25.00 vs. 120.00 ± 20.00, p < 0.001) and lower language scores (99.87 ± 7.52 vs. 111.39 ± 7.02, p < 0.001). Mediation analysis showed that Pb negatively correlated with both cognitive and language scores (both p < 0.001). However, FT3, FT4 and TSH did not significantly mediate the relationship between Pb and mental development of children (all p > 0.05). In contrast, Cd correlated with neither cognitive nor language scores (both p > 0.05). Results suggest exposure to heavy metal (Pb) reduces cognitive and language skills, and affects thyroid function, but fail to confirm that thyroid disruption is involved in the neurotoxicity induced by PbCd co-exposure.
Collapse
Affiliation(s)
- Lian Liu
- Department of Neurology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bo Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Kun Lin
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Xia Huo
- Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
37
|
Li M, Huo X, Pan Y, Cai H, Dai Y, Xu X. Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2018; 111:362-371. [PMID: 29169793 DOI: 10.1016/j.envint.2017.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023]
Abstract
Parental exposure to polybrominated diphenyl ethers (PBDEs) is associated with adverse birth outcomes. This study aims to examine differentially-expressed protein profiles in umbilical cord tissue, derived from mothers exposed to PBDEs, and investigate candidate biomarkers to reveal the underlying molecular mechanisms. Umbilical cord samples were obtained from women residing in an electronic waste (e-waste) recycling area (Guiyu) and reference area (Haojiang) in China. The concentration of PBDEs in umbilical cord tissue was determined by gas chromatography and mass spectrometry (GC/MS). Isobaric tagging for relative and absolute quantification (iTRAQ)-based proteomic technology was conducted to analyze differentially-expressed protein profiles. The total PBDE concentration was approximately five-fold higher in umbilical cords from Guiyu than from Haojiang (median 71.92ng/g vs. 15.52ng/g lipid, P<0.01). Neonatal head circumference, body-mass index (BMI) and Apgar1 score were lower in Guiyu and negatively correlated with PBDE concentration (P<0.01). Proteomic analysis showed 697 proteins were differentially expressed in the e-waste-exposed group compared with the reference group. The differentially-expressed proteins were principally involved in antioxidant defense, apoptosis, cell structure and metabolism. Among them, catalase and glutathione S-transferase omega-1, were down-regulated, and cytochrome c was found to be up-regulated, changes which were further verified by enzyme-linked immunosorbent assays. These results suggest that an antioxidant imbalance and cell apoptosis in the umbilical cord following PBDE exposure is associated with neonatal birth outcomes.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yukui Pan
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Haoxing Cai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
38
|
Rock KD, Horman B, Phillips AL, McRitchie SL, Watson S, Deese-Spruill J, Jima D, Sumner S, Stapleton HM, Patisaul HB. EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 2018; 7:305-324. [PMID: 29351906 PMCID: PMC5817967 DOI: 10.1530/ec-17-0373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Allison L Phillips
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Watson
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jocelin Deese-Spruill
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dereje Jima
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research CenterNorth Carolina State University, Raleigh, North Carolina, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| | - Heather M Stapleton
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Heather B Patisaul
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
39
|
Treviño LS, Katz TA. Endocrine Disruptors and Developmental Origins of Nonalcoholic Fatty Liver Disease. Endocrinology 2018; 159:20-31. [PMID: 29126168 PMCID: PMC5761605 DOI: 10.1210/en.2017-00887] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing epidemic worldwide, particularly in countries that consume a Western diet, and can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma. With increasing prevalence of NAFLD in both children and adults, an understanding of the factors that promote NAFLD development and progression is crucial. Environmental agents, including endocrine-disrupting chemicals (EDCs), which have been linked to other diseases, may play a role in NAFLD development. Increasing evidence supports a developmental origin of liver disease, and early-life exposure to EDCs could represent one risk factor for the development of NAFLD later in life. Rodent studies provide the strongest evidence for this link, but further studies are needed to define whether there is a causal link between early-life EDC exposure and NAFLD development in humans. Elucidating the molecular mechanisms underlying development of NAFLD in the context of developmental EDC exposures may identify biomarkers for people at risk, as well as potential intervention and/or therapeutic opportunities for the disease.
Collapse
Affiliation(s)
- Lindsey S. Treviño
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tiffany A. Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
40
|
Zhang B, Huo X, Xu L, Cheng Z, Cong X, Lu X, Xu X. Elevated lead levels from e-waste exposure are linked to decreased olfactory memory in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1112-1121. [PMID: 28802781 DOI: 10.1016/j.envpol.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Lead (Pb) is a developmental neurotoxicant and can cause abnormal development of the nervous system in children. Hence, the aim of this study was to investigate the effect of Pb exposure on child olfactory memory by correlating the blood Pb levels of children in Guiyu with olfactory memory tests. We recruited 61 preschool children, 4- to 7-years of age, from Guiyu and 57 children from Haojiang. The mean blood Pb level of Guiyu children was 9.40 μg/dL, significantly higher than the 5.04 μg/dL mean blood Pb level of Haojiang children. In addition, approximately 23% of Guiyu children had blood Pb levels exceeding 10.00 μg/dL. The correlation analysis showed that blood Pb levels in children highly correlated with e-waste contact (rs = 0.393). Moreover, the mean concentration of serum BDNF in Guiyu children (35.91 ng/ml) was higher than for Haojiang (28.10 ng/ml) and was positively correlated with blood Pb levels. Both item and source olfactory memory tests at 15 min, 5 h and 24 h after odor exposure showed that scores were lower in Guiyu children indicative of reduced olfactory memory in Guiyu children. Olfactory memory tests scores negatively correlated with blood Pb and serum BDNF levels, but were positively associated with parental education levels. At the same time, scores of both tests on children in the high blood Pb level group (blood Pb levels > 5.00 μg/dL) were lower than those in the low blood Pb level group (blood Pb levels ≤ 5.00 μg/dL), implying that Pb exposure decreases olfactory memory in children. Our findings suggest that Pb exposure in e-waste recycling and dismantling areas could result in an increase in serum BDNF level and a decrease in child olfactory memory, in addition, BDNF might be involved in olfactory memory impairment.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
41
|
Han Z, Li Y, Zhang S, Song N, Xu H, Dang Y, Liu C, Giesy JP, Yu H. Prenatal transfer of decabromodiphenyl ether (BDE-209) results in disruption of the thyroid system and developmental toxicity in zebrafish offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:46-52. [PMID: 28686898 DOI: 10.1016/j.aquatox.2017.06.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 05/03/2023]
Abstract
Decabromodiphenyl ether (BDE-209) was one of most widely-used polybrominated diphenyl ether (PBDE) flame retardants and is frequently detected in both abiotic and biotic samples from environment. However, knowledge of its transgenerational risks is limited. Here, 4-month-old zebrafish were exposed to various concentrations of BDE-209 (0, 3, 30 or 300μg/L) for 28days and spawned in clean water without BDE-209. Concentrations of triiodothyronine (T3) and thyroxine (T4) as well as expressions of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis were measured in offspring after exposure of adult zebrafish to BDE-209. BDE-209 was accumulated in adult fish and F1 eggs, which suggests transfer of this compound from adult fish to their offspring. Exposure of BDE-209 to parents resulted in developmental abnormalities in offspring and a significant decrease in T4 concentrations in F1 larvae 120h post-fertilization (hpf). Furthermore, expressions of several genes involved in the HPT axis were also altered. Expressions of thyroid hormone receptor α (tr-α), thyrotropin releasing hormone (trh), thyroid stimulating hormone β (tsh-β) and deiodinase 1 (dio 1) were significantly down-regulated in F1 individuals, while expressions of thyroid stimulating hormone receptor (tshr) and transthyretin (ttr) were significantly up-regulated. These results suggest that exposure of parent zebrafish to BDE-209 can cause developmental toxicity in offspring and disruption of the thyroid endocrine system of offspring.
Collapse
Affiliation(s)
- Zhihua Han
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China; Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Yufei Li
- China Rural Technology Development Center, Ministry of Science and Technology of P.R. China, Beijing 100045, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Ninghui Song
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Huaizhou Xu
- Nanjing Institute of Environmental Sciences, MEP, Nanjing, Jiangsu 210042, China
| | - Yao Dang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Zoology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
42
|
Tang J, Zhai JX. Distribution of polybrominated diphenyl ethers in breast milk, cord blood and placentas: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21548-21573. [PMID: 28831660 DOI: 10.1007/s11356-017-9821-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been extensively used as flame retardants in consumer products. PBDEs rapidly bioaccumulate in the environment, food, wild animals and humans. In this review, we investigated the harmful effects of PBDEs on humans, especially in early life, and summarised the levels of PBDEs in human biological samples (breast milk, cord blood and placentas). In addition, we described the spatiotemporal distribution of PBDEs in this review. PBDE levels in breast milk, cord blood and placentas were generally higher in North America than in other regions, such as Asia, Europe, Oceania and Africa. However, high levels of PBDEs in human biological samples were detected at e-waste recycling sites in South China, East China and South Korea. This finding suggests that newborns living in e-waste regions are exposed to high levels of PBDEs during prenatal and postnatal periods. The time trends of PBDE concentration differed according to the region. Few studies have investigated PBDE levels in humans from 1967 to 2000, but they increased rapidly after 2000. PBDE concentration peaked at approximately 2006 globally. Compared with other PBDE congeners, BDE-47, BDE-153 and BDE-209 were the major components, but the detection rate of BDE-209 was lower than those of others. Future studies should focus on determining the BDE-209 concentration, which requires the implementation of different analytical approaches. Additionally, the levels of PBDEs in human samples and the environment should be monitored, especially in e-waste recycling regions. Graphical abstract The figures described the spatial distribution of the lowest (Fig. a1) and highest concentration of ∑PBDE (Fig. a2) in different countries by 2006 and described the spatial distribution of the lowest (Fig. b1) and highest concentration of ∑PBDE (Fig. b2) in different countries from 2007 to 2015. All the figures indicated that the levels of PBDEs in North America were substantially higher than those in many regions of Europe, Asia, Oceania, or Africa. Comparing Fig. a1-b1 or Fig. a2-b2, increasing trends were observed in some countries, especially in some regions in China, Korea and Canada.
Collapse
Affiliation(s)
- Jing Tang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jin Xia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
43
|
Khalil A, Parker M, Mpanga R, Cevik SE, Thorburn C, Suvorov A. Developmental Exposure to 2,2',4,4'-Tetrabromodiphenyl Ether Induces Long-Lasting Changes in Liver Metabolism in Male Mice. J Endocr Soc 2017; 1:323-344. [PMID: 29264491 PMCID: PMC5686773 DOI: 10.1210/js.2016-1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) were used as flame-retardant additives in a wide range of polymers. The generations born when environmental concentrations of PBDEs reached their maximum account in the United States for one-fifth of the total population. We hypothesized that exposure to PBDEs during sensitive developmental windows might result in long-lasting changes in liver metabolism. The present study was based on experiments with CD-1 mice and human hepatocellular carcinoma cells (human hepatoma cell line, HepG2). Pregnant mice were exposed to 0.2 mg/kg 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) from gestation day 8 until postnatal day 21. The metabolic health-related outcomes were analyzed on postnatal day 21 and postnatal week 20 in male offspring. Several groups of metabolic genes, including ribosomal and mitochondrial genes, were significantly upregulated in the liver at both points. Genes regulated via mechanistic target of rapamycin (mTOR) pathway, the gatekeeper of metabolic homeostasis, were whether up- or downregulated at both measurement points. On postnatal day 21, but not week 20, both mTOR complexes in the liver were activated, as measured by phosphorylation of their targets. mTOR complexes were also activated by BDE-47 in HepG2 cells in vitro. The following changes were observed at week 20: a decreased number of polyploid hepatocytes, suppressed cytoplasmic S6K1, twofold greater blood insulin-like growth factor-1 and triglycerides, and 2.5-fold lower expression of fatty acid uptake membrane receptor CD36 in liver tissue. Thus, perinatal exposure to environmentally relevant doses of BDE-47 in laboratory mice results in long-lasting changes in liver physiology. Our evidence suggests involvement of the mTOR pathway in the observed metabolic programming of the liver.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Mikhail Parker
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Richard Mpanga
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Sebnem E. Cevik
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Cassandra Thorburn
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
44
|
Das DN, Panda PK, Naik PP, Mukhopadhyay S, Sinha N, Bhutia SK. Phytotherapeutic approach: a new hope for polycyclic aromatic hydrocarbons induced cellular disorders, autophagic and apoptotic cell death. Toxicol Mech Methods 2017; 27:1-17. [PMID: 27919191 DOI: 10.1080/15376516.2016.1268228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Prajna Paramita Naik
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | | | - Niharika Sinha
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| | - Sujit K Bhutia
- a Department of Life Sciences , National Institute of Technology , Rourkela , India
| |
Collapse
|
45
|
Lin Y, Xu X, Dai Y, Zhang Y, Li W, Huo X. Considerable decrease of antibody titers against measles, mumps, and rubella in preschool children from an e-waste recycling area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:760-766. [PMID: 27591526 DOI: 10.1016/j.scitotenv.2016.08.182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/13/2016] [Accepted: 08/26/2016] [Indexed: 02/05/2023]
Abstract
Data on vaccination effects in children chronically exposed to heavy metals are extremely scarce. This study aims to investigate the immune responsiveness to measles, mumps, and rubella (MMR) vaccination in children from an e-waste recycling area. 378 healthy children from Guiyu (exposed group) and Haojiang (reference group) were surveyed. Blood lead (Pb) levels were measured by graphite furnace atomic absorption. Titers of antibodies against MMR were quantified by ELISA. Blood Pb levels of children from the exposed group were significantly higher than those from the reference group (5.61μg/dL vs. 3.57μg/dL, p<0.001). In contrast, the antibody titers against MMR of the children from the exposed group were significantly lower than those from the reference group. The median titer of the anti-measles antibody of the exposed group was 669.64mIU/mL, with an interquartile range of 372.88-1068.42mIU/mL; this was decreased by nearly 40% compared to that of the reference group (median 1046.79mIU/mL, interquartile range 603.29-1733.10mIU/mL). For antibody titers against mumps, there was an about 45% decrease in the exposed group (median 272.24U/mL, interquartile range 95.19-590.16U/mL), compared to the reference group (median 491.78U/mL, interquartile range 183.38-945.96U/mL). In the case of rubella, the median titer of the antibody was also significantly lower in the exposed group (median 37.08IU/mL, interquartile range 17.67-66.66IU/mL) compared to the reference group (median 66.50IU/mL, interquartile range 25.32-105.59IU/mL); the decrease in this case was nearly 44%. The proportion of children whose antibody titers against MMR were below protective level in the exposed group was higher than it was in the reference group. The present study demonstrates that the immune responsiveness to routine vaccination was suppressed in children chronically exposed to lead. Thus, the vaccination strategies for these children living in an e-waste recycling area should be modified.
Collapse
Affiliation(s)
- Yucong Lin
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China; Tabor Academy, Marion, MA, USA
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqiu Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril 2016; 106:905-29. [PMID: 27513554 PMCID: PMC5158104 DOI: 10.1016/j.fertnstert.2016.07.1076] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/09/2022]
Abstract
Chemical exposures during pregnancy can have a profound and life-long impact on human health. Because of the omnipresence of chemicals in our daily life, there is continuous contact with chemicals in food, water, air, and consumer products. Consequently, human biomonitoring studies show that pregnant women around the globe are exposed to a variety of chemicals. In this review we provide a summary of current data on maternal and fetal exposure, as well as health consequences from these exposures. We review several chemical classes, including polychlorinated biphenyls, perfluoroalkyl substances, polybrominated diphenyl ethers, phenols, phthalates, pesticides, and metals. Additionally, we discuss environmental disparities and vulnerable populations, and future research directions. We conclude by providing some recommendations for prevention of chemical exposure and its adverse reproductive health consequences.
Collapse
Affiliation(s)
- Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California; Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California
| | - Amy Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Marina Sirota
- Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
47
|
Liu R, Xu X, Zhang Y, Zheng X, Kim SS, Dietrich KN, Ho SM, Reponen T, Chen A, Huo X. Thyroid Hormone Status in Umbilical Cord Serum Is Positively Associated with Male Anogenital Distance. J Clin Endocrinol Metab 2016; 101:3378-85. [PMID: 27383112 PMCID: PMC5010576 DOI: 10.1210/jc.2015-3872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 06/28/2016] [Indexed: 02/05/2023]
Abstract
CONTEXT In human adults and adolescents, thyroid function affects sex hormones and male reproductive functions. Little is known about the thyroid function effects on the gonadal development in human infants. OBJECTIVE The aim was to examine the association between thyroid hormones (THs) and sexually dimorphic genital development or fetal growth. DESIGN This is a birth cohort study. PARTICIPANTS A total of 616 mothers and newborns were analyzed from two local hospitals. MAIN OUTCOME MEASURES TSH, free T3 (FT3), and free T4 (FT4) levels in cord blood serum, anogenital distance (AGD), birth weight, birth length, birth body mass index, and head circumference in neonates. RESULTS Longer AGD in male newborns was observed with higher cord serum FT3 (β, 1.36 mm [95% confidence interval (CI), 0.58-2.13] for 1 pmol/L FT3), FT4 (β, 0.12 mm [95% CI, 0.00-0.25] for 1 pmol/L FT4), and TSH (β, 3.14 mm [95% CI, 0.65-5.63] for a 10-fold TSH increase), and with a lower FT4/FT3 ratio (β, -0.11 mm [95% CI, -0.20 to -0.02] for doubling FT4/FT3 ratio). The relationships between TSH, birth weight, and birth length were different by secondhand smoke exposure. Secondhand smoke exposure had an effect modification, with interaction P value .039 and .010, respectively. Secondhand smoke exposure also had an effect modification on the relation between FT4 and head circumference with interaction P value .020. CONCLUSIONS In the absence of overt thyroid dysfunction, THs are positively associated with AGD in male newborns. TH effects on body size and head circumference may be modified by maternal secondhand smoke exposure.
Collapse
Affiliation(s)
- Rongju Liu
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Stephani S Kim
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Kim N Dietrich
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuk-Mei Ho
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiina Reponen
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Aimin Chen
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology (R.L., X.X., Y.Z., X.Z., X.H.), and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Obstetrics and Gynecology (R.L.), The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics (X.X.), Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Environmental Health (S.S.K., K.N.D., S.-M.H., T.R., A.C.), College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267; and School of Environment (X.H.), Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
Yekeen TA, Xu X, Zhang Y, Wu Y, Kim S, Reponen T, Dietrich KN, Ho SM, Chen A, Huo X. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:17511-24. [PMID: 27230155 PMCID: PMC5316230 DOI: 10.1007/s11356-016-6896-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/12/2016] [Indexed: 02/05/2023]
Abstract
Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.
Collapse
Affiliation(s)
- Taofeek Akangbe Yekeen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yousheng Wu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Stephani Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kim N Dietrich
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Jinan, Guangzhou, 510632, China.
| |
Collapse
|
49
|
Zhang Y, Dong S, Wang H, Tao S, Kiyama R. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:809-824. [PMID: 27038213 DOI: 10.1016/j.envpol.2016.03.050] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/03/2016] [Accepted: 03/20/2016] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and receptors and the suppression of their activities through other pathways, the mechanisms underlying the activities of PAHs remain unclear. Thus, standardized assay protocols for pathway-based assessments are considered to be important to overcome these issues.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sijun Dong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hongou Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
50
|
Zhang C, Chen D, Liu X, Du L. Role of brominated diphenyl ether-209 in the proliferation and apoptosis of rat cultured neural stem cells in vitro. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0007-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|