1
|
Valipour A, Heidari B, Esmaeili Gouvarchin Ghaleh H, Ghorbani M, Shahriari A, Iman M, Salimi-Sabour E. Enhancment of zebrafish (Danio rerio) immune and antioxidant systems using medicinal plant extracts encapsulated in alginate-chitosan nanocapsules with slow sustained release. Biol Futur 2024; 75:437-451. [PMID: 39278890 DOI: 10.1007/s42977-024-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
This study aimed to screen 10 medicinal plant extracts on zebrafish (Danio rerio), evaluating their impact on the complement system, immunoglobulin M (IgM) levels, lysozyme, and peroxidase activity, while also enhancing their efficacy through the gradual release using alginate-chitosan nanocapsules. The prepared methanolic extracts were combined with fish feed. The fish were divided into 12 groups, including 10 treatment groups, a positive and a negative control group. Results showed varying impacts of the extracts on the immune and antioxidant systems, with Cinnamon (Cinnamon cassia) and Hypericum (Hypericum perforatum) extracts demonstrating the most significant effects. Subsequently, Cinnamon and Hypericum extract were encapsulated in alginate-chitosan nanocapsules to assess their impact on zebrafish immune parameters, separately and synergistically. Gradual release of the extracts from the nanocapsules was observed, with slower release at pH 2 compared to pH 7. Overall, Cinnamon and Hypericum extracts exhibited substantial immune system enhancement, and their encapsulation in nanocapsules improved their effects on zebrafish immune parameters. These findings suggest using these encapsulated extracts to enhance immune responses in aquatic organisms.
Collapse
Affiliation(s)
- Abdolmajid Valipour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Iman
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ebrahim Salimi-Sabour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Komal W, Fatima S, Minahal Q, Liaqat R. Enhancing growth, antioxidant capacity, and immune response in tilapia (Oreochromis niloticus) through curcumin supplementation across varied stocking density paradigms. PLoS One 2024; 19:e0311146. [PMID: 39565741 PMCID: PMC11578533 DOI: 10.1371/journal.pone.0311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024] Open
Abstract
The present study evaluated the effects of curcumin on growth, immune and antioxidant response in tilapia (Oreochromis niloticus). An optimum dose of curcumin was investigated by feeding four different levels of this compound in combination with three different regimes of stocking density (12 treatments). Fish were reared at three densities; low density (LD = 1.50 kg/m3), medium density (MD = 3.00 kg/m3), and high density (HD = 4.50 kg/m3). Each treatment was fed with four different levels of dietary supplementation of curcumin (C0 = 0 mg/kg, C1 = 50 mg/kg, C2 = 100 mg/kg, and C3 = 150 mg/kg) for 60 days. Each treatment has three replicates (n = 50/replicate in LD, 100/replicate in MD, 150/ replicate in HD). Although better growth was observed in MD, however treatments at all densities fed with C1 diet showed improved growth as compared to other diets. Chemical composition of fish and activity of amylase, lipase and protease in all treatments were noted to be similar. Levels of antioxidant enzymes (catalase, superoxide dismutase and glutathione peroxidase) and cortisol in MD and HD treatments were similar to those in LD treatment. However, fish fed with C1 diet in each density treatment showed the lowest values of antioxidant enzymes. Similarly, the levels of malondialdehyde were noted to be similar in MD and HD treatments as compared to that in LD. Its levels were lower in fish fed with C1 and C3 diets in all density treatments. Expression of pro-opiomelanocortin-α (POMC-α), Somatostatins-1 (SST-1) and Interleukin 1-β (IL-1β) did not increase in MD and HD treatments in response to high stocking density when compared with LD treatment. The lowest levels of these genes were noted in fish fed with C2 and C3 diets in all treatments. In conclusion, supplementation of curcumin in diet of tilapia improved growth and antioxidant response in tilapia. optimum dose of curcumin for tilapia culture is 50 mg/kg at the density of 3.00 kg/m3which might be further investigated for intensive culture.
Collapse
Affiliation(s)
- Wajeeha Komal
- Faculty of Natural Sciences, Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Shafaq Fatima
- Department of Biological Sciences, Purdue University Fort Wayne, Wayne, Indiana, United States of America
| | - Qandeel Minahal
- Faculty of Natural Sciences, Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Razia Liaqat
- Faculty of Natural Sciences, Department of Zoology, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Komal W, Fatima S, Minahal Q, Liaqat R, Hussain AS. Assessing the effects of N-acetyl cysteine on growth, antioxidant and immune response in tilapia (Oreochromis niloticus) under different regimes of stocking densities. PLoS One 2024; 19:e0307212. [PMID: 39348347 PMCID: PMC11441679 DOI: 10.1371/journal.pone.0307212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 10/02/2024] Open
Abstract
The study investigated the impact of N-acetyl cysteine on growth, immune response, and antioxidant activity in tilapia (Oreochromis niloticus). Fish were reared at three densities (1.50, 3.00, and 4.50 kg/m3) with four levels of N-acetyl cysteine supplementation (0, 2, 4, and 6 mg/kg) over 60 days. Better growth was observed at low density, but at all densities, fish fed the highest N-acetyl cysteine level (6 mg/kg) showed improved growth. Chemical composition of fish and activity of amylase, lipase and protease in all treatments were noted to be insignificant. The levels of antioxidant enzymes (catalase, superoxide dismutase and glutathione peroxidase) and cortisol in HD treatments were high as compared to LD and MD treatment. However, fish fed with N3 diet in each density treatment showed the lowest level of antioxidant enzymes as well as cortisol. Similarly, the levels of malondialdehyde were noted to be high at HD treatments as compared to that in LD and MD. Its levels were lower in fish fed with N3 diets in all density treatments. Expression of somatostatins-1 did not increase in MD and HD treatments in response to high stocking density when compared with LD treatment. However, pro-opiomelanocortin-α level was reduced after N3 diet in HD treatment and interleukin 1-β expression increased after N3 supplement in HD treatment. In conclusion, N-acetyl cysteine supplementation improved growth and antioxidant response in tilapia. The most optimum dose of N-acetyl cysteine was noted to be 6 mg/kg at high stocking, suggesting the potential role of this nutraceutical in tilapia intensive culture.
Collapse
Affiliation(s)
- Wajeeha Komal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Shafaq Fatima
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Qandeel Minahal
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Razia Liaqat
- Department of Zoology, Faculty of Natural Sciences, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Aya S Hussain
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
4
|
Fatima A, Makhdoom Hussain S, Ali S, Rizwan M, Al-Ghanim KA, Yong JWH. Ameliorating effects of natural herbal supplements against water-borne induced toxicity of heavy metals on Nile tilapia, (Oreochromis niloticus). Sci Rep 2024; 14:22571. [PMID: 39343783 PMCID: PMC11439952 DOI: 10.1038/s41598-024-72268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
The efficacy of herbal supplements in mitigating heavy metals (HMs) toxicity was investigated using a widely grown fish, the Nile tilapia (Oreochromis niloticus). The experiment was conducted over two phases: during the stress phase, the experimental fishes were exposed to sub-lethal concentrations of HMs, including lead, cadmium, zinc, and copper for 15 days; following which during the feeding phase, herbal supplements were given for 70 days to ameliorate their effects. Seven groups were established: the control negative group (CON-ve), control positive group (CON+ve, without any treatment), and five groups with supplementation of 1% turmeric (TUR), cinnamon (CIN), ginger (GIN), garlic (GAR), and their mixture (MIX), respectively. A total of 315 fishes were distributed evenly in experimental tanks (15 fishes per tank, in triplicates). The results revealed that exposure to HMs led to significant (p < 0.05) alterations in all the tested parameters, i.e., liver damage and growth reduction. The herbal supplements, especially the MIX groups, ameliorated the harmful effects of HMs and restored fish growth, digestibility, carcass composition, and liver health. In conclusion, the study demonstrated that the herbal supplements were effective in reducing the HMs-linked toxicity in Nile tilapia. Future studies pertaining to the mechanisms facilitated by the various herbal bioactive substances-linked tolerance to HMs in fishes are warranted.
Collapse
Affiliation(s)
- Arzoo Fatima
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456, Alnarp, Sweden.
| |
Collapse
|
5
|
Luo L, Meng X, Wang S, Zhang R, Guo K, Zhao Z. Effects of dietary ginger (Zingiber officinale) polysaccharide on the growth, antioxidant, immunity response, intestinal microbiota, and disease resistance to Aeromonas hydrophila in crucian carp (Carassius auratus). Int J Biol Macromol 2024; 275:133711. [PMID: 38977043 DOI: 10.1016/j.ijbiomac.2024.133711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Ginger polysaccharides (GP) promote growth and development in fish. However, the effects of GP on crucian carp remain unclear. The present study investigated the effects of GP on the growth performance, immunity, intestinal microbiota, and disease resistance in crucian carp. Four treatment groups were established with different concentrations of GP (0.1 %, 0.2 %, 0.4 %, and 0.8 %). GP was not added as the control group, and the feeding period lasted for 56 d, followed by a 96-h anti-infection treatment using Aeromonas hydrophila. The results showed that dietary GP significantly improved growth performance, especially in the 0.4 % GP group. Furthermore, GP administration notably increased serum lysozyme (LMZ) activity, digestive enzyme performance, and antioxidant capacity of crucian carp. Moreover, dietary inclusion of GP up-regulated the expression of tumour necrosis factor-α (TNF-α), interleukin-8 (IL-8), interferon-γ (IFN-γ), and nuclear factor kappa-B (NF-κB) genes while down-regulating IL-10 and transforming growth factor-β (TGF-β) gene expressions, thus promoting liver health in crucian carp. Additionally, incorporating GP into the diet regulated both the diversity and composition of the intestinal microbiota in crucian carp, explicitly enhancing the relative abundance of beneficial bacteria, such as Fusobacteriota and Firmicutes. Therefore, GP reduces the mortality of crucian carp infected with A. hydrophila. In conclusion, this study provides novel insights into the application of dietary GP in cultured fish and evaluates the value of traditional Chinese medicinal polysaccharides against pathogenic bacteria.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Xianwei Meng
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China; Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Shihui Wang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Rui Zhang
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Kun Guo
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China
| | - Zhigang Zhao
- Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, PR China.
| |
Collapse
|
6
|
Campos-Sánchez JC, Esteban MÁ. Effects of dietary astaxanthin on immune status and lipid metabolism in gilthead seabream (Sparus aurata). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109731. [PMID: 38944253 DOI: 10.1016/j.fsi.2024.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Astaxanthin (AX) is a carotenoid known to have one of the highest documented antioxidant capacities and has attracted considerable scientific and commercial interest. The incorporation of AX into aquaculture practices has been associated with improved pigmentation, modulation of the immune and endocrine systems, stress reduction, reproductive efficiency and general fish health. This study describes the effects of dietary AX (0, control, 20, 100 and 500 mg kg-1 AX per kg of diet) for 15 and 30 days on growth performance, immune and antioxidant status, histology and gene expression in gilthead seabream (Sparus aurata). Fish fed diets enriched with 500 mg kg-1 of AX for 15 days decreased in skin mucus peroxidase activity while at 30 days of trial, fish fed a diet supplemented with 20 mg kg-1 AX increased the peroxidase activity in serum. In addition, bactericidal activity against Vibrio harveyi increased in the skin mucus of fish fed any of the AX supplemented diets. Regarding antioxidant activities in the liver, catalase and glutathione reductase were decreased and increased, respectively, in fish fed a diet supplemented with 500 mg kg-1 of AX. Finally, although the expression of up to 21 inflammatory and lipid metabolism-related genes was analysed in visceral adipose tissue, only the expression of the interleukin 6 (il6) gene was up-regulated in fish fed a diet supplemented with 20 mg kg-1 of AX. The present results provide a detailed insight into the potent antioxidant properties of AX and its possible modulatory effects on the immune status and lipid metabolism of seabream, which may be of interest to the aquaculture sector.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
7
|
Ping K, Xia Y, Jin X, Xiang Y, Yang H, Pan E, Ji G, Dong J. Silybin attenuates avermectin-induced oxidative damage in carp respiration by modulating the cGAS-STING pathway and endoplasmic reticulum stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1759-1775. [PMID: 38907741 DOI: 10.1007/s10695-024-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Avermectin is a commonly used insect repellent for aquaculture and crops, but it is easy to remain in the aquatic environment, causing organism disorders, inflammation, and even death. This resulted in significant economic losses to the carp aquaculture industry. Silybin has antioxidant, anti-inflammatory, and anti-apoptotic properties. However, it is unclear whether Silybin counteracts gill damage caused by avermectin exposure. Therefore, we modeled avermectin exposure and Silybin intervention by adding 2.404 μg/L avermectin to water and 400 mg/kg of Silybin to feed. Gill tissue was collected and analyzed in depth during a 30-day experimental period. The results showed that avermectin exposure induced structural disorganization of gill filaments and led to increased reactive oxygen species, inhibition of antioxidant functions, induction of inflammatory responses, and endoplasmic reticulum stress in addition to the endogenous apoptotic pathway. In contrast, Silybin effectively alleviated pathological changes and reduced reactive oxygen species levels, thereby attenuating oxidative stress and endogenous apoptosis and inhibiting endoplasmic reticulum stress pathways. In addition, Silybin reduced avermectin-induced gill tissue inflammation in carp, and it is considered that it might modulate the cGAS-STING pathway. In summary, Silybin alleviates avermectin-induced oxidative damage within the carp's respiratory system by modulating the cGAS-STING pathway and endoplasmic reticulum stress. The main goal is to understand how Silybin reduces oxidative damage caused by avermectin in carp gills, offering management strategies. Concurrently, the current study proposes that Silybin can serve as a dietary supplement to reduce the risks brought on by repellent buildup in freshwater aquaculture.
Collapse
Affiliation(s)
- Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiaohui Jin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haitao Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guangquan Ji
- Department of Technology, the First People's Hospital of Lianyungang, Lianyungang, 222002, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Investigating the toxic mechanism of iron oxide nanoparticles-induced oxidative stress in tadpole (Duttaphrynus melanostictus): A combined biochemical and molecular study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104432. [PMID: 38554986 DOI: 10.1016/j.etap.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Metal oxide nanomaterials have toxicity towards aquatic organisms, especially microbes and invertebrates, but little is known about their impact on amphibians. We conducted a study on Duttaphrynus melanostictus (D. melanostictus) tadpoles to explore the chronic toxicity effects of iron oxide nanoparticles (IONPs) and the underlying mechanisms of IONPs-induced oxidative stress. IONPs exposure led to increased iron accumulation in the blood, liver, and kidneys of tadpoles, significantly affecting blood parameters and morphology. Higher IONPs concentrations (10 and 50 mg L-1) triggered reactive oxygen species generation, resulting in lipid peroxidation, oxidative stress, and pronounced toxicity in tadpoles. The activity levels of antioxidant enzymes/proteins (SOD, CAT, albumin, and lysozyme) decreased after IONPs exposure, and immunological measures in the blood serum were significantly reduced compared to the control group. Molecular docking analysis revealed that IONPs primarily attached to the surface of SOD/CAT/albumin/lysozyme through hydrogen bonding and hydrophobic forces. Overall, this study emphasizes the ability of IONPs to induce oxidative damage by decreasing immunological profiles such as ACH50 (34.58 ± 2.74 U mL-1), lysozyme (6.94 ± 0.82 U mL-1), total Ig (5.00 ± 0.35 g dL-1), total protein (1.20 ± 0.17 g dL-1), albumin (0.52 ± 0.01 g dL-1) and globulin (0.96 ± 0.01 g dL-1) and sheds light on their potential toxic effects on tadpoles.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India; Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Chandra Sekhar Mohanty
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
9
|
Fang D, Zhang C, Mei J, Qiu W, Xie J. Effects of Ocimum basilicum essential oil and ginger extract on serum biochemistry, oxidative stress and gill tissue damage of pearl gentian grouper during simulated live transport. Vet Res Commun 2024; 48:139-152. [PMID: 37572186 DOI: 10.1007/s11259-023-10197-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
This study explored the effects of the essential oil of Ocimum basilicum (EOOB) and ginger extract (GE) during the transportation of pearl gentian grouper from water quality, serum biochemistry, oxidative stress, meat flavor, and gill tissue morphology. Fish (450 ± 50 g) were allocated to the following 5 treatments: control group (fish transported in water only), 5 mg/LEOOB, 10 mg/LEOOB, 3 mg/LGE, and 6 mg/LGE and transported in insulation boxes (66 × 51 × 37.8 cm) for 72 h. Samples were taken at 0, 12, 36, 60, and 72 h immediately after transport. It was found that 10 mg/LEOOB and 6 mg/LGE could reduce the levels of total ammonia nitrogen (TAN), dissolved oxygen (DO), water pH, serum glucose (GLU), cortisol (COR), liver superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPX), increase the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as significantly increase the total free amino acid (TFAA) content in muscle compared to the control group (P < 0.05). In addition, by observing the microstructure of gill tissue, it was found that compared with untreated grouper, the morphological damage of gill tissue in EOOB and GE treatment was alleviated. These results indicated that adding appropriate amounts of EOOB and GE to transport water could improve the water quality, relieve stress, and lower energy metabolism of grouper during transport. The results of this research will help to improve the survival rate of grouper after transportation and decrease economic losses to fishery.
Collapse
Affiliation(s)
- Dan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, 201306, China.
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, 201306, China.
| |
Collapse
|
10
|
Dadras F, Velisek J, Zuskova E. An update about beneficial effects of medicinal plants in aquaculture: A review. VET MED-CZECH 2023; 68:449-463. [PMID: 38303995 PMCID: PMC10828785 DOI: 10.17221/96/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024] Open
Abstract
Aquaculture is an essential and growing component of agricultural and global ecosystems worldwide. Aquaculture provides more than 25% of the total aquatic food consumption by humans. The development of the aquaculture industry should be followed in successive industrial years, and therefore it is necessary to pay attention to the management and type of farming system that is compatible with the environment. The use of antibiotics for disease control has been criticised for their negative effects, including the emergence of antibiotic-resistant bacteria, the suppression of the immune system and the environment, and the accumulation of residue in aquatic tissues. The use of these products reduces the need for treatments, enhances the effect of vaccines, and, in turn, improves production indicators. Medicinal plants have increasingly been used in recent years as a disease control strategy in aquaculture, boosting the immune system of aquatic animals and helping to develop strong resistance to a wide range of pathogens. Therefore, this review aims to provide an overview of the recent evidence on the beneficial use of medicinal plants to promote growth and strengthen the immune system in farmed aquatic animals.
Collapse
Affiliation(s)
- Faranak Dadras
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Josef Velisek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eliska Zuskova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Ruiz A, Sanahuja I, Andree KB, Furones D, Holhorea PG, Calduch-Giner JA, Pastor JJ, Viñas M, Pérez-Sánchez J, Morais S, Gisbert E. The potential of a combination of pungent spices as a novel supplement in gilthead seabream ( Sparus aurata) diets to aid in the strategic use of fish oil in aquafeeds: a holistic perspective. Front Immunol 2023; 14:1222173. [PMID: 37818366 PMCID: PMC10561386 DOI: 10.3389/fimmu.2023.1222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
This work studied the potential of a combination of pungent spices (capsicum, black pepper, ginger, and cinnamaldehyde) to be used as a supplement in diets of gilthead seabream (Sparus aurata; 44.1 ± 4.2 g). During 90 days, fish were fed three experimental diets with low inclusion of fish oil and containing poultry fat as the main source of lipids, supplemented with graded levels of the tested supplement: 0 (control), 0.1 (SPICY0.1%), and 0.15% (SPICY0.15%). As a result, the pungent spices enhanced the growth performance, the activity of the bile-salt-activated lipase in the intestine, and decreased fat deposit levels within enterocytes. The SPICY0.1% diet reduced the feed conversion ratio and the perivisceral fat index and lipid deposits in the liver. Moreover, the ratio of docosahexaenoic acid/eicosapentaenoic acid in fillet increased in fish fed the SPICY0.1% diet, while the hepatic levels of docosahexaenoic acid and total n-3 polyunsaturated fatty acids increased in fish fed the SPICY0.15% diet. Furthermore, there was an effect on the expression of some biomarkers related to lipid metabolism in 2-h postprandial fish (fasn, elovl6, scd1b, cyp7a1, lpl, and pparβ), and in 48 h fasted-fish fed with the SPICY0.1% diet, a regulation of the intestinal immune response was indicated. However, no significant differences were found in lipid apparent digestibility and proximate macronutrient composition. The spices did not affect biomarkers of hepatic or oxidative stress. No differences in microbial diversity were found, except for an increase in Simpson's Index in the posterior intestine of fish fed the SPICY0.1% diet, reflected in the increased relative abundance of the phylum Chloroflexi and lower relative abundances of the genera Campylobacter, Corynebacterium, and Peptoniphilus. In conclusion, the supplementation of gilthead seabream diets with pungent spices at an inclusion of 0.1% was beneficial to enhance growth performance and feed utilization; reduce fat accumulation in the visceral cavity, liver, and intestine; and improve the fish health status and condition. Results suggest that the tested supplement can be used as part of a nutritional strategy to promote a more judicious use of fish oil in fish diets due to its decreasing availability and rising costs.
Collapse
Affiliation(s)
- Alberto Ruiz
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
- Ph.D. Program in Aquaculture, Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Sanahuja
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Karl B. Andree
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| | - Paul G. Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Josep A. Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Jose J. Pastor
- Innovation Division, Animal Science Unit, Lucta S.A. Bellaterra, Spain
| | - Marc Viñas
- Sustainability in Biosystems, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - Sofia Morais
- Innovation Division, Animal Science Unit, Lucta S.A. Bellaterra, Spain
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de La Ràpita, La Ràpita, Spain
| |
Collapse
|
12
|
Li M, Li D, Li F, Liu W, Wang S, Wu G, Wu G, Tan G, Zheng Z, Li L, Pan Z, Liu Y. Hemolysin from Aeromonas hydrophila enhances the host's serum enzyme activity and regulates transcriptional responses in the spleen of Cyprinus rubrofuscus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115375. [PMID: 37591129 DOI: 10.1016/j.ecoenv.2023.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Aeromonas hydrophila is a conditional pathogen impacting public hygiene and safety. Hemolysin is a virulence factor of Aeromonas hydrophila that causes erythrocyte hemolysis, yet its transcriptional response to Cyprinus rubrofuscus remains unknown. Our investigation confirmed the hemolysis of hemolysin from A. hydrophila. Serum enzyme activity was evaluated weekly after C. rubrofuscus were immunized with hemolysin Ahh1. The results showed that the hemolysin enhances the serum superoxide dismutase (SOD), lysozyme (LZM), and catalase (CAT) activity, which reached a maximum on day 14. To elucidate the molecular interaction between hemolysin from A. hydrophila and the host, we performed transcriptome sequencing on the spleen of C. rubrofuscus 14 days post hemolysin infection. The total number of clean reads was 41.37 Gb, resulting in 79,832 unigenes with an N50 length of 1863 bp. There were 1982 significantly differentially expressed genes (DEGs), including 1083 upregulated genes and 899 downregulated genes. Transcript levels of the genes, such as LA6BL, CD2, and NLRC5, were significantly downregulated, while those of IL11, IL1R2, and IL8 were dramatically upregulated. The DEGs were mainly enriched in the immune disease, viral protein interaction with cytokine and cytokine receptor, and toll-like receptor pathways, suggesting that hemolysin stimulation can activate the transcriptional responses. RT-qPCR experiments results of seven genes, IL-8, STAT2, CTSK, PRF1, CXCL9, TLR5, and SACS, showed that their expression was highly concordant with RNA-seq data. We clarified for the first time the key genes and signaling pathways response to hemolysin from A. hydrophila, which offers strategies for treating and preventing diseases.
Collapse
Affiliation(s)
- Mei Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Dan Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fenglan Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Wenli Liu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guofeng Wu
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Guiliang Tan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziyi Zheng
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Lin Li
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Ziqiang Pan
- School of Material Science and Food Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan, China.
| |
Collapse
|
13
|
Bairami Igdery A, Farhangi M, Adineh H, Jafaryan H, Kordjazi Z, Hoseinifar SH. The Study of Caspian Roach ( Rutilus caspicus) Fry Health Fed with Phytobiotic-Supplemented and Salinity Stress Resistance with Emphasis on Gill Tissue Pathology. AQUACULTURE NUTRITION 2023; 2023:4581144. [PMID: 37601623 PMCID: PMC10438975 DOI: 10.1155/2023/4581144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Herbal treatment augments immune and antioxidant responses and suppresses stress in fish. Ginger (Zingiber officinale) is a popular plant with medicinal uses because of its immunostimulant, antimicrobial, and antioxidant characteristics. This study aimed to investigate the effects of ginger (Z. officinale) on growth, digestive enzymes activity, antioxidant and immune response, and salinity stress resistance of Caspian roach (Rutilus caspicus). Fish (0.98 ± 0.09 g) were divided into four treatment-fed diets containing 0 (control, Z0), 10 (Z10), 20 (Z20), and 30 (Z30) g/kg ginger powder for 56 days and then subjected to 2 g/L salinity stress for 48 hr. The highest final weight of specific growth rate (SGR), superoxide dismutase (SOD), and catalase activity and the lowest final weight of feed conversion ratio (FCR) and malondialdehyde (MDA) were observed in fish-fed diets containing 10 and 20 g/kg ginger inclusion. Intestinal protease activity significantly increased in Z10 treatment, and the highest amylase and lipase activities were related to control, including 10 g/kg ginger in the diet compared to the control group had a significant effect on immune indices such as immunoglobulin M (IgM) and ACH50 (p < 0.05). The highest lysozyme was obtained in Z20 treatment, which had a significant difference in the control (p < 0.05). Cortisol and glucose levels were significantly lower in ginger treatments than the control before and/or after salinity stress. Histopathologic results showed that hyperplasia, edema, expansion of secondary lamella, epithelial cells, and necrosis of gills were most common lesions. However, the results of this study demonstrate that using ginger powder in addition to improving of growth, it can be also effective in survival rate of Caspian roach fingerling as an endangered species exposed to salinity stress.
Collapse
Affiliation(s)
- Allieh Bairami Igdery
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Mohammad Farhangi
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Hossein Adineh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Hojatollah Jafaryan
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Zia Kordjazi
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Golestan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Shah SAUR, Rauf M, Ali S, Ullah S, Ullah K, Anjum SI, Azizullah A, Dawar FU. Variations in the Behaviour, Survival, Haematology, and Biochemistry of Ctenopharyngodon idella (Grass Carp) After Exposure to Commercial Grade Atrazine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:14. [PMID: 37450051 DOI: 10.1007/s00128-023-03769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The current study assessed the harmful effects of Atrazine (ATZ) herbicide on haematology and biochemistry of the freshwater fish Ctenopharyngodon idella, a commercially significant fish in Pakistan. C. idella (13 ± 8.4 cm; 132 ± 5.6 g) was exposed to graded levels of ATZ, and its 96-hour LC50 value at 25°C was calculated to be 150.5 µl/L. After exposure to ATZ, fish displayed rapid movements, a loss of balance in position and equilibrium, anxious swimming patterns, colour changes, and increased mucous production. The MCHC, MCH, RBCs, and Hb in C. idella decreased significantly (P < 0.05), whereas the MCV, Ht, and WBCs were significantly increased (P < 0.05). At different time intervals (24, 48, 72, and 96 h) following ATZ administration (50, 100, 150, and 200 µl/L), biochemical analysis significantly decreased (P < 0.05) triglyceride, total protein, cholesterol, and albumin levels, whereas glucose levels significantly increased (P < 0.05). We concluded that ATZ is toxic to C. idella, altering their haematology and blood biochemistry even after only a brief exposure.
Collapse
Affiliation(s)
- Syed Ata Ur Rahman Shah
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Rauf
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shandana Ali
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sana Ullah
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Azizullah Azizullah
- Department of Biological Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ullah Dawar
- Department of Zoology, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
15
|
Ghosh AK, Ahmmed SS, Islam HMR, Hasan MA, Banu GR, Panda SK, Schoofs L, Luyten W. Oral administration of Zingiber officinale and Aegle marmelos extracts enhances growth and immune functions of the shrimp Penaeus monodon against the white spot syndrome virus (WSSV). AQUACULTURE INTERNATIONAL 2023. [DOI: 10.1007/s10499-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
|
16
|
Hassan M, Melad AAN, Zakariah MI, Yusoff NAH. Histopathological Alterations in Gills, Liver and Kidney of African Catfish ( Clarias gariepinus, Burchell 1822) Exposed to Melaleuca cajuputi Extract. Trop Life Sci Res 2023; 34:177-196. [PMID: 38144386 PMCID: PMC10735260 DOI: 10.21315/tlsr2023.34.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 12/26/2023] Open
Abstract
This study evaluated the histopathological changes in the gill, liver and kidney of African catfish (Clarias gariepinus) intoxicated with a sub-lethal dose of Melaleuca cajuputi leaves extract (MCLE) for 96 h. The acute toxicity test has been determined previously with a value of 96-h LC50 = 127 mg/L, hence the selection of sub-lethal ranges from 60 mg/L to 160 mg/L of MCLE. Degenerative alterations were prominent in all tested organs, particularly after exposure to a high concentration of MCLE. Gill exhibited haemorrhage, epithelial lifting, lamellar disorganisation, and necrosis after exposure to a high MCLE concentration. Alterations in the liver include congestion, hydropic degeneration, and vacuolation, whereas lesions in the kidney were pyknosis, vacuolation, hydropic degeneration, and tubular necrosis. The obtained data showed that the organs experienced severe changes proportional to the increase in MCLE concentration. In addition, fish exposed to higher concentrations than the LC50 value experienced irreversible lesions. The present study suggests that the use of MCLE below the LC50 is recommended to avoid severe alterations to organs, particularly in African catfish. This study demonstrated that the use of MCLE above the LC50 promotes severe damage to the gills, liver and kidney of African catfish. However, further investigations are needed to define the causing-mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Anuar Abdalah Nagi Melad
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
- Department of Biological Science, Faculty of Science, Azzaytuna University, Tarhunah, Libya
| | - Mohd Ihwan Zakariah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Nor Asma Husna Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
17
|
Abdelmagid AD, Said AM, Abd El-Gawad EA, Shalaby SA, Dawood MAO. Glyphosate-induced liver and kidney dysfunction, oxidative stress, immunosuppression in Nile tilapia, but ginger showed a protection role. Vet Res Commun 2023; 47:445-455. [PMID: 35773603 PMCID: PMC10209248 DOI: 10.1007/s11259-022-09961-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
The water-borne herbicides are involved in the toxicity of aquatic animals resulting in impaired health status and low productivity. Dietary medicinal herbs present a practical solution to relieve the impacts of herbicides toxicity on the performances of aquatic animals. Herein, we investigated the toxicity of commercial glyphosate-induced oxidative stress, immunosuppression, liver and kidney dysfunction, and the protective role of ginger or ginger nanoparticles in Nile tilapia. Fish were allocated into four groups: the first group presented the control without glyphosate toxicity and ginger feeding, the second group intoxicated with glyphosate at 0.6 mg/L and fed ginger free diet, the third group intoxicated with glyphosate and fed ginger at 2.5 g/kg, and the fourth group intoxicated with glyphosate and fed ginger nanoparticles at 2.5 g/kg. Fish were kept under the experimental conditions for four weeks, and the samples of blood and tissues were collected after 2 and 4 weeks. Markedly, fish exposed to glyphosate showed the highest ALT and AST activities, glucose and cortisol levels, and malondialdehyde levels (MDA) in gills and tissues. While fish in the control and fish intoxicated with glyphosate and fed ginger nanoparticles had the lowest ALT and AST activities, glucose and cortisol levels, and MDA levels after 2 and 4 weeks (P < 0.05). Fish fed dietary ginger had lower ALT and AST activities, glucose and cortisol levels, and MDA levels than the glyphosate intoxicated group after 2 and 4 weeks (P < 0.05). Interestingly, fish-fed ginger nanoparticles showed lower urea and creatinine levels and higher total protein, albumin, and globulin than the glyphosate intoxicated group (P < 0.05) and similar to the control (P > 0.05). Further, fish intoxicated with glyphosate and fed ginger nanoparticles had the highest GSH, lysozyme activity, and immunoglobulin levels after 2 and 4 weeks (P < 0.05). In conclusion, ginger nanoparticles are superior to the standard ginger form in enhancing the antioxidative and immune responses of Nile tilapia exposed to glyphosate.
Collapse
Affiliation(s)
- Afaf D Abdelmagid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alshaimaa M Said
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Eman A Abd El-Gawad
- Aquatic Animal Diseases and Management Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Sara A Shalaby
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh, Egypt.
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
18
|
Ahmed SAA, El-Murr A, Abd Elhakim Y, Metwally MM, Gharib AAEA, Amer SA, Younis EM, Abdel-Warith AWA, Davies SJ, Khalil ENM. Comparative Study on Ginger Powder and Ginger Extract Nanoparticles: Effects on Growth, Immune–Antioxidant Status, Tissue Histoarchitecture, and Resistance to Aeromonas hydrophila and Pseudomonas putida Infection in Oreochromis niloticus. FISHES 2023; 8:259. [DOI: 10.3390/fishes8050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A 10 week feeding trial was conducted to evaluate the potential effects of ginger powder (GP) and ginger extract nanoparticles (GNPs) on the growth parameters, digestive enzymes (lipase and amylase) activities, blood hematology, blood biochemical indices, immune indices (interleukin 10, immunoglobulin M, nitric oxide, and lysozymes), antioxidant activity, histological characteristics of kidney, spleen, liver, and intestine, and resistance to Aeromonas hydrophila or Pseudomonas putida infection in Nile tilapia, Oreochromis niloticus. Fish (n = 225, 27.01 ± 0.15 g) were stocked in 15 glass tanks (50 × 40 × 60 cm) and randomly allocated to five experimental treatments (TRTs) in triplicate (15 fish/replicate, 45 fish/TRT), consisting of five isocaloric–isonitrogenous diets. The treatments comprised the basal diet (1) without any additives (control group, CON), (2) with 0.5% GP (GP0.5), (3) with 1% GP (GP1), (4) with 0.5% GNPs (GNPs0.5), and (5) with 1% GNPs (GNPs1). Fish were manually fed to satiety three times a day (at 9 a.m., 12 p.m., and 2 p.m.). Fish were weighed at the start of the experiment, then the body weight, weight gain, feed intake, and feed conversion ratio were determined at the end of the experiment. At the end of the feeding period, 15 fish/TRT were intraperitoneally inoculated with two pathogenic bacterial strains (A. hydrophila or P. putida) in two separate challenge tests. Blood samples were collected from each TRT at two aliquots for hematological and biochemical analysis at the end of the feeding period. A significant improvement in fish growth was observed in GP and GNPs TRTs compared to the control group. There were no significant changes in the total amount of feed intake/fish in response to the experimental diets. Diets enriched with GNPs, particularly the GNPs1 TRT, resulted in a significant increase (p < 0.05) in digestive enzyme activity (lipase and amylase), serum growth hormone level, proteinogram, and immune indices (lysozyme, immunoglobulin M, interleukin 10, and nitric oxide). In addition, a significant increase in hepatic antioxidant enzymes (superoxide dismutase, reduced glutathione, and catalase) was observed in fish fed with GNPs-enriched diets. Survival percentages following bacterial challenge were higher in GNPs1, followed by GP1 and GNPs0.5 TRTs. Normal histomorphology was found in liver, kidney, and spleen tissues in all experimental TRTs. We conclude that GP and GNPs could be included in Nile tilapia diets for promoting fish growth, immunity, antioxidant status, and disease resistance without harming organ functions. In particular, the most effective treatment was GNPs1.
Collapse
Affiliation(s)
- Shaimaa A. A. Ahmed
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Yasser Abd Elhakim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M. Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amany Abd El Aziz Gharib
- Department of Hatchery and Fish Physiology, Central Laboratory for Aquaculture Research (CLAR), Agriculture Research Center, Sharkia 44662, Egypt
| | - Shimaa A. Amer
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Simon J. Davies
- School of Science and Engineering, National University of Ireland Galway Republic of Ireland, H91 TK33 Galway, Ireland
| | - Enas N. M. Khalil
- Department of Hatchery and Fish Physiology, Central Laboratory for Aquaculture Research (CLAR), Agriculture Research Center, Sharkia 44662, Egypt
| |
Collapse
|
19
|
Delgado DLC, Caceres LLC, Gómez SAC, Odio AD. Effect of dietary garlic ( Allium sativum) on the zootechnical performance and health indicators of aquatic animals: A mini-review. Vet World 2023; 16:965-976. [PMID: 37576751 PMCID: PMC10420702 DOI: 10.14202/vetworld.2023.965-976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Considerable efforts have been made by modern aquaculture to mitigate the environmental damages caused by its practices while also attempting to improve the quality of the aquatic organisms by promoting alternatives, such as the use of natural products, like garlic (Allium sativum), and instead of chemical agents. Garlic has multiple properties, including antifungal, antibacterial, antiviral, antitoxic, and anticancer effects. In fish, the antiparasitic activity of garlic is one of the most reported effects in the literature, mainly using immersion baths for aquatic organisms. Using garlic also has an antimicrobial effect on the culture of aquatic organisms. Therefore, this review focuses on the impact of garlic on the health and production of aquatic organisms.
Collapse
|
20
|
Trivedi SP, Dwivedi S, Singh S, Khan AA, Kumar M, Shukla A, Dwivedi S, Kumar V, Yadav KK, Tiwari V. Evaluation of immunostimulatory attributes of Asparagus racemosus and Withania somnifera supplemented diets in fish, Channa punctatus (Bloch, 1793). Vet Immunol Immunopathol 2023; 258:110561. [PMID: 36801726 DOI: 10.1016/j.vetimm.2023.110561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
With the progression of aquaculture industry, there has been a spurt in dietary supplementation with economically viable medicinal herbs having enough immunostimulatory potential. This also aids in avoidance of environmentally undesirable therapeutics that are almost inevitable to safeguard fish against an array of diseases in aquaculture practices. The study aims to determine the optimal dose of herbs that can stimulate substantial immune response in fish for reclamation of aquaculture. Immunostimulatory potential of the two medicinal herbs- Asparagus racemosus (Shatavari), Withania somnifera (Ashwagandha), individually, and in combination, with a basal diet was screened up to 60 days in Channa punctatus. 300 laboratory acclimatized healthy fish (14 ± 1 g; 11 ± 1 cm) were divided into ten groups- C, S1, S2, S3, A1, A2, A3, AS1, AS2, and AS3, based on the composition of dietary supplementation, in triplicates, with 10 specimens per group. The hematological index, total protein and lysozyme enzyme activity were performed after 30 and 60 days, while qRT-PCR analysis of lysozyme expression was done after 60 days of the feeding trial. The significant (P < 0.05) increments in hematological indices- (TEC, TLC, DLC, Hb, Hct, MCV, MCH and MCHC), total protein content and serum lysozyme activity, after 30 and 60 days; whereas upregulation of lysozyme transcript levels, both in liver and muscle tissues after 60 days of the feeding trial were recorded in groups- AS1, AS2, and AS3. The maximal increment in lysozyme expression was recorded in AS3, both in liver and muscle tissues, with 3.75 ± 0.13 and 3.21 ± 0.18-folds, respectively. However, increments were non-significant (P > 0.05) for MCV in AS2 and AS3 after 30 days; and for MCHC in AS1 for both the durations; whereas in AS2 and AS3, after 60 days of the feeding trial. A positive correlation (P < 0.05) among lysozyme expression, MCH, lymphocytes, neutrophils, total protein content, and serum lysozyme activity in AS3, after 60 days, conclusively, evinces that a 3% dietary supplementation with both A. racemosus and W. somnifera enhances immunity and health profile of the fish, C. punctatus. The study, thus finds ample scope in augmentation of aquaculture production and also paves the way for more researches for biological screenings of potential immunostimulatory medicinal herbs that can be appropriately incorporated in the fish diet.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Centre of Excellence in Fish Nutrigenomics, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shikha Dwivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Adeel Ahmad Khan
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Anubha Shukla
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shraddha Dwivedi
- Department of Zoology, Government Degree College, Haripur Nihastha, Raebareli 229208, India.
| | - Vivek Kumar
- Department of Zoology, Isabella Thoburn PG College, Lucknow 226007, India.
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao 209801, India.
| | - Vidyanand Tiwari
- Institute of Food Processing and Technology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
21
|
Zhang Y, Zhou H, Liu Y, Zhu L, Fan J, Huang H, Jiang W, Deng J, Tan B. Dietary Histamine Impairs the Digestive Physiology Function and Muscle Quality of Hybrid Grouper ( Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Antioxidants (Basel) 2023; 12:antiox12020502. [PMID: 36830060 PMCID: PMC9952090 DOI: 10.3390/antiox12020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
An 8-week feeding experiment was conducted to investigate the effect of dietary histamine on growth performance, digestive physiology function and muscle quality in a hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Seven isoproteic (50%) and isolipidic (11%) diets were prepared with various histamine inclusion levels of 0, 30, 60, 120, 240, 480 and 960 mg/kg in diets (actual contents were 72.33, 99.56, 138.60, 225.35, 404.12, 662.12 and 1245.38 mg/kg), respectively. Each diet was randomly assigned to triplicates of 30 juveniles (average body weight 14.78 g) per tank in a flow-through mariculture system. The increase in the dietary histamine level up to 1245.38 mg/kg made no significant difference on the growth rate and feed utilization of the grouper. However, the increased histamine content linearly decreased the activities of digestive enzymes, while no differences were observed in groups with low levels of histamine (≤404.12 mg/kg). Similarly, high levels of histamine (≥404.12 mg/kg) significantly damaged the gastric and intestinal mucosa, disrupted the intestinal tight junction structure, and raised the serum diamine oxidase activity and endotoxin level. Meanwhile, high doses of histamine (≥662.12 mg/kg) significantly reduced the activities of antioxidant enzymes, upregulated the relative expression of Kelch-like ECH-associated protein 1, and hardened and yellowed the dorsal muscle of grouper. These results showed that dietary histamine was detrimental to the digestive physiology function and muscle quality of the grouper, although it did compromise its growth performance.
Collapse
Affiliation(s)
- Yumeng Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Wen Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Correspondence: (J.D.); (B.T.)
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
- Correspondence: (J.D.); (B.T.)
| |
Collapse
|
22
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Ecotoxicity risk assessment of copper oxide nanoparticles in Duttaphrynus melanostictus tadpoles. CHEMOSPHERE 2023; 314:137754. [PMID: 36608887 DOI: 10.1016/j.chemosphere.2023.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
23
|
Mahjoubian M, Naeemi AS, Moradi-Shoeili Z, Tyler CR, Mansouri B. Toxicity of Silver Nanoparticles in the Presence of Zinc Oxide Nanoparticles Differs for Acute and Chronic Exposures in Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:1-17. [PMID: 36333621 DOI: 10.1007/s00244-022-00965-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We assessed the acute toxicity effects (96 h) of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) and chronic (28 d) exposure to Ag NPs, including in combination with ZnO NPs. In the chronic studies, we further assessed the toxicokinetics and bioaccumulation of Ag and the resulting histopathological effects in the gill, intestine, and liver of zebrafish. Co-exposures with ZnO NPs reduced the toxicity of Ag NPs for acute (lethality) but enhanced the toxicity effects (tissue histopathology) for chronic exposures. The histological lesions for both NPs exposures in the gill included necrosis and fusion of lamellae, for the intestine necrosis and degeneration, and in the liver, mainly necrosis. The severity of the histological lesions induced by the Ag NPs was related to the amount of accumulated Ag in the zebrafish organs. The Ag accumulation in different organs was higher in the presence of ZnO NPs in the order of the gill > intestine > liver. Depuration kinetics illustrated the lowest half-life for Ag occurred in the gill and for the combined exposure of Ag with ZnO NPs. Our findings illustrate that in addition to tissue, time, and exposure concentration dependencies, the Ag NPs toxicity can also be influenced by the co-exposure to other NPs (here ZnO NPs), emphasizing the need for more combination exposure effects studies for NPs to more fully understand their potential environmental health risks.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Nasirin C, Najm MAA, Chen TC, Dhamija A, Lionardo A, Bokov DO, Shahbazi Naserabad S. The protective effects of quercetin on the physiological responses in malathion-exposed common carp, Cyprinus carpio. Trop Anim Health Prod 2022; 55:22. [PMID: 36547736 DOI: 10.1007/s11250-022-03429-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the protective effects of quercetin on the biochemical parameters, immunity, and growth performance in malathion-exposed common carp, Cyprinus carpio. The methods six experimental groups, including the control group, fish exposed to concentrations of 1.04 and 2.08 mg/l malathion, fish supplemented with quercetin (200 mg/kg diet), and fish treated with quercetin + malathion for 21 days, were considered for the experiment. After the feeding period, in results the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were significantly decreased in the hepatocyte, while malondialdehyde (MDA) content increased in response to malathion. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and glucose, cortisol, and urea levels significantly increased after exposure to malathion. Exposure of fish to malathion-induced decreases in protease, lysozyme, and alternative complement (ACH50) activities and total immunoglobulin (total Ig) in the mucosa. Changes in other parameters were different depending on malathion concentrations. The supplementation of fish with quercetin had no ameliorating effect on the malathion-related alternations of mucosal lysozyme and protease activities. However, quercetin ameliorated the depressing effects of malathion on biochemical and immunological parameters. Changes in the growth performance and hematological parameters indicated the toxic effect of malathion. In conclusion, quercetin could efficiently reduce the toxic effects of malathion on the biochemical, immune, and hematological parameters of the common carp.
Collapse
Affiliation(s)
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Tzu-Chia Chen
- CAIC, Dhurakij Pundit University, Bangkok, Thailand.
| | | | | | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240, Russian Federation
| | | |
Collapse
|
25
|
Potential protective effects of Thyme ( Thymus vulgaris) essential oil on growth, hematology, immune responses, and antioxidant status of Oncorhynchus mykiss exposed to Malathion. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
As an abundant source of antioxidants and diet flavor enhancers, the plant essential oils can have positive effects on fish growth, and resistance against environmental stressors. In this study, garden thyme (Thymus vulgaris) essential oil (TEO) was used in the diet of rainbow trout, Oncorhynchus mykiss, to evaluate its protective effect against Malathion pesticide exposure. Tested fish (19.99 ± 0.01 g) were divided into six groups (three replicates), namely: T1: control diet; T2: control diet + 0.025 mg L−1 malathion; T3: control diet + 0.075 mg L−1 malathion; T4: control diet + 1% TEO; T5: control diet + 0.025 mg L−1 malathion + 1% TEO and T6: control diet + 0.075 mg L−1 malathion + 1% TEO. After 21 days, T4 fish had the highest final body weight (FW), weight gain (WG), specific growth rate (SGR), and the lowest feed conversion ratio (FCR) among experimental treatments (P<0.05). The blood parameters including the red blood cells (RBC), white blood cell count (WBC), hematocrit (Hct), and hemoglobin (Hb) values were the highest in T4 treatment, displaying a significant difference with T1 treatment (P<0.05). Fish in the T4 groups had the highest total protein (TP) and albumin (ALB), while fish of T3 showed the lowest levels of these parameters (P<0.05) and also had the highest level of triglycerides (TRG), cholesterol (CHOL), lactate dehydrogenase (LDH), and urea (Ur). Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) enzymes recorded the lowest levels in T4 treatment, which showed a significant difference with T1 group. The catalase (CAT) and superoxide dismutase (SOD) showed the highest activities in T4 treatment, while the lowest SOD and the highest malondialdehyde (MDA) levels occurred in T3 group (P<0.05). Total immunoglobulin (total Ig) level, alternative complement (ACH50) and lysozyme in the serum and skin mucus of T4 treatment of rainbow trout showed the highest activities with a significant difference from groups (P<0.05). From the results of the present study, it can be concluded that 1% of T. vulgaris as a supplement to the diet of rainbow trout can stimulate and improve the immune system of the fish. TEO can have a protective effect against unfavorable effects of malathion and improves the growth of the fish.
Collapse
|
26
|
Jalil AT, Abdelbasset WK, Shichiyakh RA, Widjaja G, Altimari US, Aravindhan S, Thijail HA, Mustafa YF, Naserabad SS. Protective effects of summer savory (Satureja hortensis) oil on growth, biochemical, and immune system performance of common carp exposed to pretilachlor herbicide. Vet Res Commun 2022; 46:1063-1074. [PMID: 35976482 DOI: 10.1007/s11259-022-09970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
There are many reports on the deleterious effects of herbicides on aquatic organisms which lead to tremendous biological, environmental and economical damage. In this regard, in the present study, the protective effect of summer savory (Satureja hortensis) essential oil (SEO) against pretilachlor, one of the most used herbicides was investigated in common carp (Cyprinus carpio). The fish assigned to six treatment groups (T1: control treatment; T2: 25% LC50 pretilachlor herbicide; T3: 50% LC50 pretilachlor herbicide; T4: 1% SEO; T5: 25% LC50 pretilachlor herbicide + 1% SEO; and T6: 25% LC50 pretilachlor herbicide + 1% SEO) for 21 days. The results showed that the SEO-containing treatments significantly increased the survival rate (SR) (P < 0.05). The highest final weight (FW), specific growth rate (SGR), and feed conversion ratio (FCR) were observed in the T4 treatment (P < 0.05). There was a significant increase in glucose (GLU) level in pretilachlor treatments and a significant decrease in SEO-containing treatments compared to the control (P < 0.05). The significantly highest total protein (TP) content was observed in T4 treatment containing SEO. Cholesterol (CHOL) and triglyceride (TRIG) levels decreased in SEO-containing treatments with the lowest level in T4 treatment (P < 0.05). Alternative complement pathway activity (ACH50), activity levels of superoxide dismutase (SOD), and glutathione peroxidase (GPX) showed an increasing trend in SEO-containing treatments with the highest level in T4 treatment (P < 0.05). The activity of liver enzymes showed a significantly lowest level in T4 treatment. To conclude, our findings revealed that the use of SEO in fish exposed to pretilachlor herbicide could improve growth, strengthen the immune system and exert a protective effect on common carp.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, 51001, Babylon, Hilla, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Gunawan Widjaja
- Postgraduate Study, Universitas Krisnadwipayana, Bekasi, Indonesia.
- Faculty of Public Health, Universitas Indonesia, Depok, Indonesia.
| | | | | | - Hayfaa Attia Thijail
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, 41001, Mosul, Iraq
| | | |
Collapse
|
27
|
Rawat P, Kaur VI, Tyagi A, Norouzitallab P, Baruah K. Determining the efficacy of ginger Zingiber officinale as a potential nutraceutical agent for boosting growth performance and health status of Labeo rohita reared in a semi-intensive culture system. Front Physiol 2022; 13:960897. [PMID: 36045753 PMCID: PMC9423674 DOI: 10.3389/fphys.2022.960897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
A 120-day feeding trial was conducted in a pilot field setting to study the nutraceutical properties of ginger powder (GP), focusing on the growth performance and health status of Indian major carp L. rohita reared under a semi-intensive culture system. L. rohita fingerlings (average weight: 20.5 g) were divided into five groups and fed a diet with no GP supplementation (control), or a diet supplemented with GP at 5 g (GP5), 10 g (GP10), 15 g (GP15), and 20 g (GP20) per kg of feed. The study was carried out in outdoor tanks (20 m2) following a complete randomized design with three replicates for each experimental group. Dietary supplementation of GP at 15 g·kg−1 (GP15) of feed caused a significant increase in the growth performances of the fish. Results also showed that feeding of GP15 diet led to a significant improvement in the health status of fish as indicated by a marked change in the tested haematological indices (i.e., higher RBC, WBC, Hb, and Ht values), oxidative status (increased SOD and decreased LPO levels), biochemical parameters (increased HDL, decreased cholesterol, and triglycerides levels), and activities of the liver enzymes (decreased AST and ALT). Overall results suggested that dietary supplementation of GP could positively influence the growth and health status of L. rohita fingerlings, and hence could be an important natural nutraceutical for sustainable farming of carp.
Collapse
Affiliation(s)
- Priya Rawat
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, PB, India
| | - Vaneet Inder Kaur
- Department of Aquaculture, College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, PB, India
- *Correspondence: Kartik Baruah, ; Vaneet Inder Kaur,
| | - Anuj Tyagi
- Department of Aquatic Environment, College of Fisheries, GADVASU, Ludhiana, PB, India
| | - Parisa Norouzitallab
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Kartik Baruah, ; Vaneet Inder Kaur,
| |
Collapse
|
28
|
Awad LZ, El-Mahallawy HS, Abdelnaeim NS, Mahmoud MMA, Dessouki AA, ElBanna NI. Role of dietary Spirulina platensis and betaine supplementation on growth, hematological, serum biochemical parameters, antioxidant status, immune responses, and disease resistance in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2022; 126:122-130. [PMID: 35613669 DOI: 10.1016/j.fsi.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Spirulina platensis is, a freshwater microalga, broadly used worldwide. It not only stimulates the immune systems of aquatic organisms but also provides a protein-rich diet and commonly used in the manufacture of aquafeeds. This study was planned to evaluate the growth performance, hepato-renal, and immune response biomarkers of Spirulina and Betaine on Nile tilapia (Oreochromis niloticus) and their protective effect against infection with Aeromonas hydrophila. O. niloticus juveniles (20.22 ± 0.86 g) were divided into four groups (n = 10 per replicate). For 8 weeks, the first and second groups (TS&TB) were fed with 0.5% and 0.3% concentrations of Spirulina and Betaine supplemented diets, respectively; the third group (TSB) was fed with a Spirulina and Betaine mixed diet; the fourth group was fed with a basal diet (without supplementation, T0), which served as control. Dietary inclusion of Spirulina and Betaine significantly improved (P ˂ 0.05) the weight gain, final weight, and food conversion ratio, especially in the TS group. The activities of hepatic malonaldehyde were unchanged in TS & TSB groups and the muscular significantly decreased (P ˂ 0.05) in the same groups, while both increased in the TB group; meanwhile, levels of glutathione reductase were significantly upregulated in all treated groups. Serum interleukins, TNF- alpha, and IL-10 levels were also significantly reduced in all treatment groups. A significant protective power against pathogenic Aeromonas infection was evidenced in all treated groups. Findings in this study highlight the reputation of Spirulina and Betaine as immunostimulants and protective agents against A. hydrophila infection in O. niloticus.
Collapse
Affiliation(s)
- Laila Z Awad
- Aquaculture Diseases Control Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba S El-Mahallawy
- Department of Animal Hygiene, Zoonoses and Animal Behaviour and Management - Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Manal M A Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Amina A Dessouki
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha I ElBanna
- Aquaculture Diseases Control Department, Fish Farming and Technology Institute, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
29
|
Kari ZA, Wee W, Hamid NKA, Mat K, Rusli ND, Khalid HNM, Sukri SAM, Harun HC, Dawood MAO, Hakim AH, Khoo MI, Abd El-Razek IM, Goh KW, Wei LS. Recent Advances of Phytobiotic Utilization in Carp Farming: A Review. AQUACULTURE NUTRITION 2022; 2022:1-10. [DOI: 10.1155/2022/7626675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Carp farming is a popular aquaculture activity that provides affordable protein sources and job opportunities to many people worldwide. As carp farming intensifies, farmers face major issues such as rising feed costs and excessive antibiotic usage. Thus, there is an urgent need to explore alternative resources to ensure the sustainability of the carp farming industry. One of the most promising resources is phytobiotics that possess various properties beneficial for carp production. Furthermore, most phytobiotics are derived from agricultural waste that is abundant and cheap, but some phytobiotics are produced commercially and available in the market. The main topics of this review are highlighted sources, characteristics of phytobiotics, and the usefulness of phytobiotics in improving growth performance, feed utilization efficiency, antioxidant activity, and health of carps against diseases. Furthermore, in this review, recent methods of administration of phytobiotics such as through feeding, bathing, and intraperitoneal injection in carp farming are also discussed and summarised.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Khairiyah Mat
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Nor Dini Rusli
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Hazreen Nita Mohd Khalid
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Hasnita Che Harun
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Mahmoud A. O. Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, 11835 Cairo, Egypt
| | - Ali Hanafiah Hakim
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ibrahim M. Abd El-Razek
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| |
Collapse
|
30
|
Bio-active components in medicinal plants: A mechanistic review of their effects on fish growth and physiological parameters. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
World population is increasing at a tremendous rate so is the demand for animal-based protein. Aquaculture is a promising industry that has the potential to supply high quality protein for mankind with minimum environmental impact. In the past decade, aquaculture practices have been shifting from extensive to intensive culture. To achieve maximum production per unit area, high stocking densities are maintained in intensive aquaculture. If not managed properly, this may lead to stress in fish. Fish under stress condition show decreased growth, suppressed appetite, weakened immunity and increased susceptibility to infections. Chemicals, vaccines and antibiotics are used for the treatment of diseased fish. Use of synthetic chemicals, vaccines and antibiotics is not sustainable because pathogens develop resistance against them and they have high residues. Moreover, certain chemicals used for the treatment of fish diseases are not safe for humans therefore, are banned in some countries. Plant parts and their extracts are used in traditional medicines to cure many diseases and to improve health of mankind. In aquaculture industry, use of plants and their derivatives in fish feed to improve health status of fish is increasing. Several plants improve growth and overall health status of fish, some provide protection against pathogens by improving the immune system while others increase appetite by direct action on neuro-endocrine axis of fish. This review provides an in depth and up to date information about use of medicinal plants and their derivatives to improve growth and physiological status of fish and their possible mechanism of action.
Collapse
|
31
|
Dietary Sargassum angustifolium (Macro-Algae, Sargassaceae) extract improved antioxidant defense system in diazionon-exposed common carp, Cyprinus carpio. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effects of different dietary levels of algae (Sargassum angustifolium) extract were investigated on the antioxidant system of common carp, Cyprinus carpio. Fish (30.2 ± 2.1 g) were fed 0 (control), 5, 10 and 15 g/kg basal diet of Sargassum angustifolium extract (SAE) for 60 days and then exposed to an environmentally relevant concentration of diazinon (2 mg/l) for 24 h. The biochemical assays was conducted in two times including at the end of feeding period and after 24 h exposure to diazinon. According to the results, malondialdehyde (MDA) levels in the liver remained unchanged (P>0.01) during feeding period, while significantly increased in response to diazinon in control and fish fed 5 and 10 g/kg diet SAE (P<0.01). The hepatic metabolic enzymes (AST: Aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate dehydrogenase, CK: creatine kinase) showed no significant changes in all groups during feeding period, while these enzymes increased in Non-SAE supplemented fish and those fed 5 and 10 g/kg SAE after exposure to diazinon (P<0.01). Although little elevations were observed in the activity of hepatic antioxidant enzymes (CAT: catalase, SOD: superoxide dismutase, GPx: Glutathione peroxidase) in fish fed SAE, these elevations were not significant (P>0.01). After exposure to diazinon, antioxidant enzymes significantly decreased in control and fish fed 5 g/kg diet SAE, while the fish of 10 and 15 g/kg diet SAE treatments showed significant elevations (P<0.01). The antioxidant-related genes (sod, cat, gpx) significantly expressed more in response to dietary SAE compared to control (P<0.01). After exposure to diazinon, all groups showed significant elevations in antioxidant-related genes (P<0.01). In conclusion, the results of the present study revealed the antioxidant enhancing effects of SAE at dietary levels of 10 and 15 g/kg diet, which this effect may be attributed to some antioxidant components in the chemical composition of the macro-algae or to the direct effect of SAE on antioxidant defence system of the fish.
Collapse
|
32
|
The pharmaco-therapy potential of astaxanthin: human and animal targeting roles. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The recent pandemic stress and the impacts of climatic changes on humans’ and animals’ health status and well-being resulted in severe drawbacks. Initially, stress-induced oxidation resulting from the generation of free radicals leading to the impairment of cellular function and a high possibility of attack with infection. Astaxanthin is a bioactive material derived from fish, crustaceans, and algae with high antioxidative potential. Astaxanthin is a lipid-soluble carotenoid that can easily cross through the cellular membrane layers to catch the reactive oxygen metabolites. Astaxanthin also has pigmentation properties making it suitable for pharmaceutical, cosmetic, nutraceutical, agriculture, and aquaculture sectors. Recently, astaxanthin is suggested as a natural scavenger for free radicals induced by COVID-19. Besides, using astaxanthin as antioxidative and immunostimulant agents is well-reported in several clinical studies. The output of these investigations should be simplified and presented to the scientific community to utilize the available information and fill the gap of knowledge. Also, it is necessary to update the researchers with the recent recommendations of applying astaxanthin in vivo and in vitro to help in proposing new horizons for engaging natural antioxidative agents to protect human and animal health. Herein, this review article tackled the nature, sources, potential roles, applicable sides, and availability of astaxanthin to fortify the scientific community with the required knowledge for further research efforts.
Collapse
|
33
|
Attah EI, Ugwuagbo SC, Chinnam S, Eze FI, Nnadi CO, Agbo MO, Obonga W, Rudrapal M, Walode SG, Nizam A, Sahoo RK, Bendale AR, Khairnar SJ, Jagtap MR. Anti-inflammatory activity of Sabicea brevipes Wernharm (Rubiaceae). PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e82311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the years, medicinal plants have been employed in the treatment of inflammation and related ailments. This study evaluated the anti-inflammatory potential of the aerial parts of S. brevipes. The extracts and fractions were further evaluated for anti-inflammatory activity in carrageenan-induced rat model at varying doses (200 and 400 mg/kg doses, orally) for 5 h of treatment. The result of the phytochemical screening showed the presence of alkaloids, terpenoids, glycosides, flavonoids and tannins in the aerial parts of the plant. The in vivo anti-inflammatory study exhibited inhibition of 42% and 44%, 47% and 36%, 33% and 31%, and 43% and 42% for methanol extract n-hexane fraction, ethyl acetate fraction, and methanol fraction, at 200 and 400 mg/kg doses, respectively. The positive control (diclofenac sodium) showed an inhibition value of 51% at 5 mg/kg dose. Finally, it is concluded that S. brevipes possesses anti-inflammatory potential which validates the enthnomedicinal claim of the plant.
Collapse
|
34
|
Murthy MK, Mohanty CS, Swain P, Pattanayak R. Assessment of toxicity in the freshwater tadpole Polypedates maculatus exposed to silver and zinc oxide nanoparticles: A multi-biomarker approach. CHEMOSPHERE 2022; 293:133511. [PMID: 34995626 DOI: 10.1016/j.chemosphere.2021.133511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs), especially silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), are widely used in various industrial applications and are released into the surrounding environment through industrial and household wastewater. They have enormous toxic effects on aquatic animals and amphibians. In the current study, a multi-biomarker approach was used to assess toxicity on Polypedates maculatus (P. maculatus) tadpoles collected from a freshwater pond and exposed to sub-lethal concentrations of Ag-NPs (1, 5 and 10 mg L-1) and ZnO-NPs (1, 10 and 50 mg L-1). A significant bioaccumulation of silver (Ag) and Zinc (Zn) was observed in the blood, liver, kidney and bones in comparison to control tadpoles. Blood parameters (Red blood cells (RBC), Hematocrit (Htc), White blood cells (WBC), monocytes, lymphocytes and neutrophils), immunological markers (ACH50, lysozyme, total Ig, total protein, albumin, and globulin), biochemical markers (glucose, cortisol, cholesterol, triglycerides, alanine transaminase (ALT), asparatate transaminase (AST), alkaline phosphatase (ALP), urea and creatinine) and the oxidative stress marker (LPO) of serum were increased significantly (p < 0.05) in Ag/ZnO-NPs exposed groups when compared to the control groups. The levels of mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV) and haemoglobin (Hb) in the ZnO NP-exposed groups were significantly different from those in the control group. Antioxidant (SOD and CAT) levels were significantly declined in the treatment groups. Based on the results, Ag/ZnO-NPs are toxic to aquatic organisms and amphibians at sub-lethal concentrations. The species P. maculatus can be used as a bioindicator for the nanomaterial (NM) contamination of freshwater systems.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Priyabrata Swain
- Fish Health Management Division, Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, 751002, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
35
|
Ghetas HA, Abdel-Razek N, Shakweer MS, Abotaleb MM, Ahamad Paray B, Ali S, Eldessouki EA, Dawood MA, Khalil RH. Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi J Biol Sci 2022; 29:1298-1305. [PMID: 35280558 PMCID: PMC8913374 DOI: 10.1016/j.sjbs.2021.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV-vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.
Collapse
Affiliation(s)
- Hanan A. Ghetas
- Aquatic Animal Medicine and Management Department, Faculty of Veterinary Medicine, Sadat City University, Egypt
| | - Nashwa Abdel-Razek
- Fish Health and Management Department, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Agriculture Research Center, Egypt
| | - Medhat S. Shakweer
- Internal Medicine, Infectious and Fish Diseases Department, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | | | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Elsayed A. Eldessouki
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Egypt
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Riad H. Khalil
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Egypt
| |
Collapse
|
36
|
Oh HY, Lee TH, Lee DY, Lee CH, Joo MS, Kim HS, Kim KD. Dietary Supplementation with Ginger (Zingiber officinale) Residue from Juice Extraction Improves Juvenile Black Rockfish (Sebastes schlegelii) Growth Performance, Antioxidant Enzyme Activity and Resistance to Streptococcus iniae Infection. Animals (Basel) 2022; 12:ani12050546. [PMID: 35268115 PMCID: PMC8908815 DOI: 10.3390/ani12050546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Plant-derived feed additives provide cost effective and environmentally friendly alternatives to antibiotics for improving fish performance in aquaculture. An 8-week feeding trial was conducted to evaluate the effects of dietary ginger residue from juice extraction (GRJE) on juvenile black rockfish (Sebastes schlegelii) growth performance, antioxidant enzyme activities, and resistance to Streptococcus iniae infection. Juvenile rockfish (n = 450; initial weight = 2.2 ± 0.01 g) were randomly distributed into 30 L rectangular tanks (30 fish per tank). Five experimental diets with GRJE concentrations of 0% (control), 0.25%, 0.5%, 0.75%, and 1% were prepared in triplicate. Three groups of fish were randomly assigned to each diet and fed to apparent satiation twice daily. After the feeding trial, fish were challenged with S. iniae, and cumulative survival was observed for six days. Growth parameters, feed efficiency, and the protein efficiency ratio showed a quadratic correlation with the GRJE concentration in the fish diet. Proximate composition and plasma chemistry were not significantly affected. Plasma lysozyme, superoxide dismutase, glutathione, and catalase activities linearly increased with increasing GRJE supplementation levels. Moreover, survival in the S. iniae challenge test was significantly higher in fish fed diets supplemented with 0.75–1% GRJE. Our findings demonstrated that 0.75% GRJE dietary supplementation enhanced the growth performance, antioxidant activity, and disease resistance of juvenile black rockfish with no adverse effects.
Collapse
Affiliation(s)
- Hwa Yong Oh
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
| | - Tae Hoon Lee
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
| | - Da-Yeon Lee
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
| | - Chang-Hwan Lee
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
| | - Min-Soo Joo
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
| | - Hee Sung Kim
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Korea; (H.Y.O.); (T.H.L.); (D.-Y.L.); (C.-H.L.); (M.-S.J.)
- Correspondence: ; Tel.: +82-55-772-9154; Fax: +82-055-772-9159
| | - Kyoung-Duck Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53017, Korea;
| |
Collapse
|
37
|
Ghafarifarsani H, Hoseinifar SH, Javahery S, Yazici M, Van Doan H. Growth performance, biochemical parameters, and digestive enzymes in common carp (Cyprinus carpio) fed experimental diets supplemented with vitamin C, thyme essential oil, and quercetin. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.1965923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Susan Javahery
- Department of Fisheries Science, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Metin Yazici
- Faculty of Marine Sciences and Technology, Iskenderun Technical University, Iskenderun, Turkey
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
38
|
Mohammadi G, Karimi AA, Hafezieh M, Dawood MAO, Abo-Al-Ela HG. Pistachio hull polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress, possibly via TLR2 and Nrf2 signaling pathways. FISH & SHELLFISH IMMUNOLOGY 2022; 121:276-284. [PMID: 34968712 DOI: 10.1016/j.fsi.2021.12.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 05/26/2023]
Abstract
Polysaccharides are polymeric carbohydrates found in living organisms, which have several physiological functions. In the present study, Nile tilapia (Oreochromis niloticus) were fed diets containing three levels (0%, 0.2%, and 0.6%) of Pistacia vera hull polysaccharide (PHP) for 45 days and then injected with PBS or bacterial lipopolysaccharide (LPS). Before the LPS challenge, Nile tilapia fed 0.2% and 0.6% PHP showed significantly increased mean final weight and weight gain compared to those received 0% PHP. The specific growth rate and feed conversion ratio were significantly improved in the treatment fed 0.6% PHP compared to the remaining groups. After LPS challenge, the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase exhibited the highest values in the 0.6% PHP group. Malondialdehyde (MDA) levels were significantly augmented in the model (fed 0% PHP diet and injected with LPS) and 0.2% PHP groups compared to the control. However, MDA showed decreased levels in the 0.6% PHP group. LPS induced higher mRNA and/or protein levels of Toll-like receptor 2 (TLR2), nuclear factor kappa B (NF-κB), myeloid differentiation primary response protein 88 (Myd88), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in Nile tilapia liver. However, PHP administration significantly upregulated the expression of interleukin 10 (IL-10), nuclear erythroid 2-related factor 2 (Nrf2), SOD, and CAT, but markedly suppressed TLR2, NF-κB, Myd88, and pro-inflammatory cytokine expression and/or production in the liver. The findings of the current study indicated that PHP has positive effects on growth performance, immune gene-related expression, and antioxidative activities. We can conclude that PHP can attenuate LPS-induced oxidative stress and inflammatory responses in vivo, possibly via induction of Nrf2 and blockade of TLR2/Myd88/NF-κB pathways in Nile tilapia.
Collapse
Affiliation(s)
- Ghasem Mohammadi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bandar Abbas, Iran; Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Akbar Karimi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| |
Collapse
|
39
|
Moradi S, Javanmardi S, Gholamzadeh P, Tavabe KR. The ameliorative role of ascorbic acid against blood disorder, immunosuppression, and oxidative damage of oxytetracycline in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:201-213. [PMID: 35059978 DOI: 10.1007/s10695-022-01045-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
This experiment was aimed to determine the possible beneficial effects of dietary ascorbic acid (AA) on hematological indices, immune responses, and antioxidative capacity of Oncorhynchus mykiss treated with antibiotic oxytetracycline (OTC). A total of 150 fish were divided evenly among five experimental groups (30 fish of each, in 3 replicates) receiving diets containing OTC (0 and 100 mg per kg fish weight) and AA (100, 200, 400, and 800 mg per kg fish diet) for 28 days. Treatments include group A or control (100 mg AA without OTC), group B (100 mg AA with OTC), group C (200 mg AA with OTC), group D (400 mg AA with OTC), and group E (800 mg AA with OTC). The results obtained showed that the hematological indices (red blood cells, white blood cells, hematocrit, hemoglobin, and neutrophils), immunological parameters (plasma lysozyme, plasma complement, and skin mucus alkaline phosphatase activities), and antioxidant enzymes activities (superoxide dismutase and catalase) were significantly decreased by OTC in O. mykiss fed control diet (P < 0.05). The results also revealed that OTC significantly increased the activity of biochemical enzymes (aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase) in the plasma of O. mykiss fed control diet (P < 0.05). However, in comparison to the control diet, feeding fish with higher amounts of AA (400 and 800 mg/kg diet) significantly restored the hematological, immunological, and antioxidative responses in OTC-treated groups (p < 0.05). These findings show that the dietary supplementation of AA at 400 or 800 mg/kg diet is beneficial in relieving O. mykiss from OTC-induced oxidative stress and immunosuppression.
Collapse
Affiliation(s)
- Saeed Moradi
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| | - Sina Javanmardi
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran.
| | - Pooria Gholamzadeh
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| | - Kamran Rezaei Tavabe
- Fisheries Department, Natural Resources Faculty, University of Tehran, 131 Chamran Avenue, Karaj, Iran
| |
Collapse
|
40
|
Raissy M, Ahmadi Kabootarkhani M, Sanisales K, Mohammadi M, Rashidian G. The Synergistic Effects of Combined Use of Mentha longifolia, Thymus carmanicus, and Trachyspermum copticum on Growth Performance, Feed Utilization, and Expression of Key Immune Genes in Rainbow Trout (Oncorhynchus mykiss). Front Vet Sci 2022; 8:810261. [PMID: 35097054 PMCID: PMC8795831 DOI: 10.3389/fvets.2021.810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal plants exhibit remarkable positive effects on different aspects of fish physiology. This study aimed to evaluate the possible impact of a combination of plants (Mentha longifolia, Thymus carmanicus, and Trachyspermum copticum) on growth performance, immune responses and key immune gene expression of rainbow trout. For this purpose, four diets were designed, including zero, 0.25, 0.5, and 1% of a mixture of plants per kg of diet, representing dietary treatments of control, T1, T2, and T3, respectively. Two hundred forty fish (weighing 23.11 ± 0.57 g) were fed 3% of body weight twice a day for 45 days. The results showed that growth parameters of weight gain (except for T1) and FCR were significantly improved in fish receiving all levels of plants, with T3 showing the best growth results. Digestive enzymes activities were notably increased in T1 and T2 compared to the control. Stress biomarkers (glucose and cortisol) were significantly decreased in T1 and T2, while T3 was not significantly different from the control. Immunological responses were significantly improved in T2, while T1 andT3 did not show a statistical difference in terms of lysozyme activity. Catalase activity was noticeably decreased in T1, although superoxide dismutase and malondialdehyde were highest in T2. Immune-related genes were significantly up-regulated in T3 compared to other treatments. Also, antioxidant enzyme coding genes were strongly up-regulated in T2 and T3. Overall, the present results suggest that 1% inclusion of the mixture of M. longifolia, T. carmanicus, and T. copticum (T2) can be used to improve the growth and immunity of rainbow trout.
Collapse
Affiliation(s)
- Mehdi Raissy
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- *Correspondence: Mehdi Raissy
| | | | - Kimia Sanisales
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mohammadi
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
41
|
Cheng C, Park SC, Giri SS. Effect of Pandanus tectorius extract as food additive on oxidative stress, immune status, and disease resistance in Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2022; 120:287-294. [PMID: 34883255 DOI: 10.1016/j.fsi.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
The present study investigated the effect of Pandanus tectorius (PT) extract on Cyprinus carpio growth, antioxidant capacity, immunological and oxidative stress, immune-related gene expression, and resistance against pathogen challenge. Fish (average weight: 12.18 ± 0.32 g) were fed with diets containing various concentration (g kg-1) of PT extract: 0 g (basal diet), 5 g [PT5], 10 g [PT10], 20 g [PT20], and 30 g [PT30] for 8 weeks. Our results revealed an increase (p < 0.05) in the final weight gain only in the PT20 (63.12 ± 1.4 g) group. Activity of liver antioxidant parameters such as catalase (CAT) (27.67 ± 1.12 U mg protein-1), superoxide dismutase (SOD) (13.17 ± 0.428 U mg protein-1), and glutathione peroxidase (GPx) (47.14 ± 1.47 U mg protein-1) was highest in the PT20 group. Among the serum immunological parameters examined, lysozyme (37.45 ± 0.67 U mL-1), alternative complement pathway (133.22 ± 1.92 U mL-1), and phagocytic activities (25.68 ± 0.93%) were high (p < 0.05) in PT20, whereas there was no significant effect on serum immunoglobulin or total protein levels, compared to the control. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels were found to be lower (p < 0.05) in the PT20 and PT30 groups than those in the control. However, myeloperoxidase (MPO) levels were significantly higher (p < 0.05) in the PT20 and PT30 groups. Gene expression analysis revealed that mRNA expressions of antioxidant genes (SOD, CAT, nuclear factor erythroid 2-related factor 2) and anti-inflammatory cytokine (IL-10) genes were significantly upregulated in the PT10 - PT30 groups, except for the SOD gene in PT10. Conversely, the signalling molecule NF-κBp65 was downregulated in PT20 and PT30. Expression of Toll-like receptor 22 (TLR22) and hepcidin was significantly upregulated in PT20 and PT30, respectively. Fish in the PT20 group exhibited highest relative post-challenge survival (70.37%) against Aeromonas hydrophila challenge. The results of the present study suggest that dietary supplementation of P. tectorius extract at 20 g kg-1 can significantly improve weight gain, serum antioxidant parameters, strengthen immunity, and increase the disease resistance of C. carpio. Therefore, P. tectorius extract could be exploited for its use as a food additive in aquaculture.
Collapse
Affiliation(s)
- Chi Cheng
- Laboratory of Aquatic Nutrition and Ecology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
42
|
Hosseini H, Pooyanmehr M, Foroughi A, Esmaeili N, Ghiasi F, Lorestany R. Remarkable positive effects of figwort (Scrophularia striata) on improving growth performance, and immunohematological parameters of fish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:111-121. [PMID: 34801674 DOI: 10.1016/j.fsi.2021.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate the effect of figwort on the growth and immunohematological parameters of common carp (14.20 ± 0.53 g). Four experimental diets were developed to feed fish for eight weeks: control, Figw10 (10 g/kg figwort), Figw20 (20 g/kg figwort), and Figw30 (30 g/kg figwort). The results showed that fish fed dietary Figw10 gained more weight (38.25 g) than control (P < 0.05). Regarding immunohematological parameters, fish fed dietary Figw30 had a higher level of white blood cells (31.2 103/mm3), hematocrit (35.82%), blood performance (14.63), total protein (1.96 g/dL), albumin (0.79 g/dL), globulin (1.17 g/dL), lymphocyte (70.53%), monocyte (3.03%), alternative hemolytic complement activity (ACH50) (147.76 u/mL), lysozyme (62.19 u/mL), and bactericidal activities (135.24) than the control group (P < 0.05). After 14 days of the challenge with Aeromonas hydrophila, the Figw30 treatment had the highest survival ratio (61.76%) compared to the control with 26.46%. Further, after the challenge, fish fed dietary Figw30 had a higher value of immunoglobulin M (42.00 μg/mL), antibody titer (19.23), complement component 3 (296.39 μg/mL), and complement component 4 (97.91 μg/mL) when compared with those fed control diet (P < 0.05). In conclusion, the optimum dosage for providing the best immune response was 30 g/kg in diet.
Collapse
Affiliation(s)
- Hossein Hosseini
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Mehrdad Pooyanmehr
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Azadeh Foroughi
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | - Noah Esmaeili
- The Institute for Marine and Antarctic Studies (IMAS), University of Tasmania. Hobart, Tasmania, Australia.
| | - Farzad Ghiasi
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Iran.
| | - Reza Lorestany
- Department of Microbiology, Pathobiology & Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| |
Collapse
|
43
|
Bhatnagar A, Saluja S. Role of Zingiber officinale and autochthonous probiotic Bacillus coagulans in feeds of Catla catla (Hamilton, 1822) for growth promotion, immunostimulation, histoprotection, and control of DNA damage. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2081-2100. [PMID: 34799793 DOI: 10.1007/s10695-021-01030-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Experiment was conducted to assess the impact of ginger (Zingiber officinale) as a dietary supplement with probiotic bacterium Bacillus coagulans on growth performance, hematological parameters, and non-specific immune parameters in Catla catla. An attempt was also made to investigate their effects on histology and extent of DNA damage against pathogenic bacterium Aeromonas hydrophila in C. catla. Ten dietary treatments were designed in triplicate in which five groups of fingerlings fed on diets containing different incorporation level of dried ginger at 0 g kg-1 (C1; basal diet 1 with duckweed as major protein source), 1 g kg-1 (G1), 5 g kg-1 (G2), 10 g kg-1 (G3), and 15 g kg-1 (G4) and other five groups of fingerlings fed on diets (G5-G9) containing different incorporation level of dried ginger at 0, 1, 5, 10, and 15 g kg-1 along with probiotic bacterium B. coagulans @ 3000 CFU ml-1 for 90 days. Results clearly revealed significantly (P < 0.05) high values of weight gain, growth % gain in body weight, specific growth rate (SGR), RBC and WBC count, phagocytic activity, respiratory burst activity, serum protein, and serum bactericidal activity in group of fingerlings fed on ginger supplemented diets which further improved with the inclusion of probiotic with best results in treatment G8. Histopathological study and COMET assay reflected that Z. officinale and probiotics protect extent of DNA damage and the digestive organs from the detrimental effects of pathogenic bacteria affirming their positive role and harmonious effects of probiotic bacterium with Z. officinale-supplemented diets.
Collapse
Affiliation(s)
- Anita Bhatnagar
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
| | - Sonal Saluja
- Department of Zoology, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| |
Collapse
|
44
|
Esmaeili M. Blood Performance: A New Formula for Fish Growth and Health. BIOLOGY 2021; 10:biology10121236. [PMID: 34943151 PMCID: PMC8698978 DOI: 10.3390/biology10121236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary The use of haematological and blood biochemistry parameters has proven to be effective and repeatable ways to monitor fish health. Testing these parameters is becoming more common in aquaculture studies. Further, it is widely accepted that fish with better health status are more likely to grow faster as less energy should be consumed for non-growth purposes. Here, a new formula (Blood Performance) is introduced, which contains five common haematological and blood biochemistry parameters: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. The idea behind this formula is that any single component of this formula cannot be reliable enough as a biomarker of fish health and growth. However, interestingly, Blood Performance can be much more reliable and accurate for monitoring fish health and growth. Abstract Monitoring fish health in a repeatable and accurate manner can contribute to the profitability and sustainability of aquaculture. Haematological and blood biochemistry parameters have been powerful tools and becoming increasingly common in aquaculture studies. Fish growth is closely related to its health status. A fish with a higher growth rate is more likely to be a healthy one. Any change in the physiological status of the fish, from pollution to nutritional stress, can cause changes in the blood parameters. Various aquaculture studies have measured the following components: red blood cells, white blood cells, haemoglobin, haematocrit, and total protein. However, because these parameters do not always follow the same trend across experimental fish, it is difficult to draw a firm conclusion about which parameter should be considered. Therefore, Blood Performance (BP) as a new formula is introduced, which is a more reliable indicator. This formula is simple and sums up the natural logarithm of the five above-mentioned parameters. More than 90 published peer-reviewed articles that measured these five parameters in the last six years confirmed the reliability and validity of this formula. Regardless of which supplements were added to the diets, the fish with a higher growth rate had higher BP as well. In addition, in 44 studies out of 53 articles, there was a significant positive correlation between specific growth rate and BP. Under different stressful situations, from pollution to thermal stress, the fish under stress had a lower BP than the control. Fish meal and fish oil replacement studies were further evidence for this formula and showed that adding excessive alternative proteins decreased growth along with BP. In conclusion, BP can be a reliable indicator of fish health and growth when it is compared between groups in the same experiment or farm. Although there was a positive correlation between specific growth rate and BP, comparing BP between experiments is not recommended. Standardising the haematological assays can improve the reliability and accuracy of BP across experiments.
Collapse
Affiliation(s)
- Moha Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart Private Bag 49, 15-21 Nubeena Cres, Taroona, TAS 7053, Australia
| |
Collapse
|
45
|
Hosseini Shekarabi SP, Mostafavi ZS, Mehrgan MS, Islami HR. Dietary supplementation with dandelion (Taraxacum officinale) flower extract provides immunostimulation and resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchusmykiss). FISH & SHELLFISH IMMUNOLOGY 2021; 118:180-187. [PMID: 34506883 DOI: 10.1016/j.fsi.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Dandelion flower is a well-known phytomedicine due to its therapeutic effects on dyspepsia, bile duct disorders, spleen and liver complaints, and inflammatory diseases. This study aimed to assess the effect of dietary dandelion flower extract (DFE) on skin mucosal and humoral immunity, immune-related gene expression, and disease resistance in rainbow trout. The fingerlings (N = 300, 20.1 ± 0.9 g) were randomly assigned to 15 tanks and fed with different levels of DEF including 0 (control), 1, 2, 3, and 4 g/kg for 56 days. At the end of the trial, the total leukocyte and lymphocyte counts were significantly enhanced in DFE-added groups compared to the control group. Complement components, immunoglobulin M, total protein, and lysozyme showed significantly higher values in the fish treated with dietary DFE at 3 g/kg than others (P < 0.05). The enzymatic activities of the skin mucus samples in the fish fed dietary levels of DFE were significantly higher than the control fish. Skin mucus protein was also improved significantly in 2 and 3 g/kg DFE compared to others. The transcription levels of interleukin-1β and interleukin-6 genes were up-regulated in the fish fed with 3 and 4 g/kg DFE. Interleukin-8 and lysozyme gene expression levels were elevated in 3 g/kg DFE group compared to the control group. Fish mortality after challenging with Streptococcus iniae was significantly reduced from 43.33% in the control group to 73.33% in 3 g/kg DFE group. This study confirmed the beneficial effects of DFE as an immunostimulant in rainbow trout diet and the recommended dose of DFE is 2.49-2.74 g/kg based on the polynomial regression models.
Collapse
Affiliation(s)
| | - Zeinab Sadat Mostafavi
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Shamsaie Mehrgan
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
46
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
47
|
Rashidian G, Boldaji JT, Rainis S, Prokić MD, Faggio C. Oregano ( Origanum vulgare) Extract Enhances Zebrafish ( Danio rerio) Growth Performance, Serum and Mucus Innate Immune Responses and Resistance against Aeromonas hydrophila Challenge. Animals (Basel) 2021; 11:299. [PMID: 33503883 PMCID: PMC7912135 DOI: 10.3390/ani11020299] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the dietary effects of an ultrasound-assisted extract of Origanum vulgare on the growth, antioxidant and immune responses (serum and mucosal) and resistance of zebrafish (Danio rerio) against Aeromonas hydrophila. Four hundred and forty adult zebrafish were distributed into 12 tanks and fed 4 experimental diets including 0% (control), 0.5% (M1), 1% (M2) and 2% (M3) of the extract per kg-1 diet for eight weeks. Fish were then challenged with A. hydrophila and mortality was recorded for 10 days. Results revealed that the extract exerted potent effects on growth parameters of weight gain and specific growth rate. The feed conversion ratio was significantly lower in fish fed extract-incorporated diets. O. vulgare extract improved antioxidant and immune responses, resulting in less sensitivity to oxidative stress and a higher survival rate when challenged with A. hydrophila. Overall, the greatest effects were observed in individuals with 1% dietary inclusion of the extract. These results suggest that the extract from the plant Origanum vulgare possesses a great potential to be used in the aquaculture industry and that zebrafish is an appropriate model for nutrition studies.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Marine Sciences, Tarbiat Modares University, Noor 4641776489, Iran;
| | - Javad Tahmasebi Boldaji
- Dipartimento di Scienze Biomolecolare (DISB), Facoltà di Farmacia, Università degli Studi di Urbino “Carlo Bo”, Via Aurelio Saffi 2, 61029 Urbino, PU, Italy;
| | | | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, ME, Italy
| |
Collapse
|
48
|
Adel M, Omidi AH, Dawood MAO, Karimi B, Shekarabi SPH. Dietary Gracilaria persica mediated the growth performance, fillet colouration, and immune response of Persian sturgeon ( Acipenser persicus). AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 530:735950. [PMID: 32981978 PMCID: PMC7502242 DOI: 10.1016/j.aquaculture.2020.735950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 05/14/2023]
Abstract
Algal seaweeds have abundant amounts of active substances and can be used as pharmaceuticals and biomedicals in aquafeeds. In this context, the powder of red macroalgae Gracilaria persica was included in the diets of Persian sturgeon at the rate of 0, 2.5, 5, and 10 g/kg to investigate its role on the growth rate, fillet colouration, haemato-biochemical indices, serum, and skin mucus immunity. The weight gain, SGR, and FCR displayed no significant changes in fish fed varying levels of G. persica (P > 0.05). The level of total carotenoids was significantly higher in the blood and fillet of fish fed 5 and 10 g G. persica/kg diet (P < 0.05). Dietary G. persica significantly altered RBCs, WBCs, and HCT at 5, and 10 g/kg, whereas the Hb was increased in fish fed 5 g/kg (P < 0.05). The blood total protein and albumin were significantly increased in fish fed 5 and 10 g/kg (P < 0.05). No significant alterations were observed on ALT, AST, ALP, and glucose levels of fish fed varying levels of G. persica (P > 0.05). Serum Ig, lysozyme, superoxide dismutase, catalase, and respiratory burst activities were increased in fish fed 5, and 10 g/kg than fish fed 0 and 2.5 g/kg diet (P < 0.05). The level of total protein and lysozyme activity in the skin mucus were significantly higher in the blood and fillet of fish fed 5, and 10 g G. persica/kg diet than fish fed 0 and 2.5 g/kg (P < 0.05). Based on the obtained results, G. persica can be used as a feasible feed additive in the diets of Persian sturgeon at 5-10 g/kg diet.
Collapse
Affiliation(s)
- Milad Adel
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Amir Hossein Omidi
- Department of Fisheries Science, Bandarabas Branch, Islamic Azad University, Bandarabas, Iran
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Behnaz Karimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | | |
Collapse
|
49
|
Yousefi M, Ghafarifarsani H, Hoseinifar SH, Rashidian G, Van Doan H. Effects of dietary marjoram, Origanum majorana extract on growth performance, hematological, antioxidant, humoral and mucosal immune responses, and resistance of common carp, Cyprinus carpio against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 108:127-133. [PMID: 33253908 DOI: 10.1016/j.fsi.2020.11.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The present study aimed to investigate the potential effects of dietary marjoram extract on growth performance, health, and disease resistance in common carp, Cyprinus carpio. To this purpose, the fish were assigned into four treatments and fed by diets supplemented with 0 (control), 100, 200, and 400 mg marjoram extract kg-1 over eight weeks and then challenged with Aeromonas hydrophila. According to the results, 200 mg kg-1 dietary marjoram extract inclusion showed the highest final weight, weight gain, and specific growth rate, and lowest feed conversion ratio (FCR). White blood cell number, Red blood cells, hematocrit, hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin were markedly increased particularly at 200 mg kg-1 treatment. Marjoram extract significantly increased plasma superoxide dismutase activity and decreased malondialdehyde level compared to the control treatment. Plasma complement and lysozyme activities and total immunoglobulin levels, mucosal complement, lysozyme and alkaline phosphatase activities and immunoglobulin levels were significantly increased compared to the control group. The lowest post-challenge survival rate was observed in the control treatment, whereas the highest value was related to the 200 mg kg-1 marjoram treatment. In conclusion, the present study demonstrated that, marjoram extract is a suitable feed supplements for common carp, as it stimulates the fish growth, antioxidant, and immune systems, which suppress the fish mortality during Aeromonas septicemia. According to the results, 200 mg marjoram extract kg-1 is recommended for carp feed formulation.
Collapse
Affiliation(s)
- Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ghasem Rashidian
- Aquaculture Department, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
50
|
Influence of Dietary Garlic ( Allium sativum) and/or Ascorbic Acid on Performance, Feed Utilization, Body Composition and Hemato-Biochemical Parameters of Juvenile Asian Sea Bass ( Lates calcarifer). Animals (Basel) 2020; 10:ani10122396. [PMID: 33333762 PMCID: PMC7765223 DOI: 10.3390/ani10122396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Ascorbic acid and garlic have been used in several studies as enhancers or promoters of growth performance and health conditions in mammalian species. However, few studies have been performed in fish. In this regard, this study aimed to evaluate the effects of garlic and/or ascorbic acid on growth performance, feed utilization, chemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. The results demonstrated that dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet). Abstract The current study investigated effects of garlic (Allium sativum) and/or ascorbic acid on growth performance, feed utilization, biochemical body composition, and hemato-biochemical parameters of juvenile Asian sea bass. A total of 600 fish (43.14 ± 0.23 g body weight) were divided into four groups. Fish in the first group were fed basal diet and served as a control group. Fish in groups 2, 3 and 4 were fed a basal diet mixed with garlic (40 g/kg diet), ascorbic acid (1.5 g/kg diet), or garlic (20 g/kg diet)/ascorbic acid (0.75 g/kg diet) mixture, respectively, for 12 weeks. A significant (p < 0.05) increase was observed in growth performance, feed utilization, and chemical body composition in fish fed garlic alone in comparison with the control and other treated groups. All hematological indices, biochemical parameters, and survival rate were not changed significantly (p > 0.05) in all groups throughout the experimental period when compared with the control. Total cholesterol and feed conversion ratio were significantly (p < 0.05) decreased in fish fed garlic alone in comparison to the control and other treated groups. Conclusively, dietary supplementation of garlic alone (40 g/kg diet) was highly effective in improving most of the studied parameters in comparison with that of ascorbic acid alone or a mixture of garlic (20 g/kg diet) and ascorbic acid (0.75 g/kg diet).
Collapse
|