1
|
Fan W, Pan M, Zheng C, Shen H, Pi D, Song Q, Liang Z, Zhen J, Pan J, Liu L, Yang Q, Zhang Y. Leonurine Inhibits Hepatic Lipid Synthesis to Ameliorate NAFLD via the ADRA1a/AMPK/SCD1 Axis. Int J Mol Sci 2024; 25:10855. [PMID: 39409181 PMCID: PMC11476755 DOI: 10.3390/ijms251910855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Leonurine is a natural product unique to the Lamiaceae plant Leonurus japonicus Houtt., and it has attracted attention due to its anti-oxidative stress, anti-apoptosis, anti-fibrosis, and metabolic regulation properties. Also, it plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms, but its mechanism of action remains to be elucidated. Therefore, this study aims to preliminarily explore the mechanisms of action of leonurine in NAFLD. Mice were randomly divided into four groups: the normal control (NC) group, the Model (M) group, the leonurine treatment (LH) group, and the fenofibrate treatment (FB) group. The NAFLD model was induced by a high-fat high-sugar diet (HFHSD) for 12 weeks, and liver pathological changes and biochemical indices were observed after 12 weeks. Transcriptomic analysis results indicated that leonurine intervention reversed the high-fat high-sugar diet-induced changes in lipid metabolism-related genes such as stearoyl-CoA desaturase 1 (Scd1), Spermine Synthase (Sms), AP-1 Transcription Factor Subunit (Fos), Oxysterol Binding Protein Like 5 (Osbpl5), and FK506 binding protein 5 (Fkbp5) in liver tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results suggest that leonurine may exert its lipid-lowering effects through the AMP-activated protein kinase (AMPK) signaling pathway. Liver lipidomic analysis showed that leonurine could alter the abundance of lipid molecules related to fatty acyl (FAs) and glycerophospholipids (GPs) such as TxB3, carnitine C12-OH, carnitine C18:1-OH, and LPC (20:3/0:0). Molecular biology experiments and molecular docking techniques verified that leonurine might improve hepatic lipid metabolism through the alpha-1A adrenergic receptor (ADRA1a)/AMPK/SCD1 axis. In summary, the present study explored the mechanism by which leonurine ameliorated NAFLD by inhibiting hepatic lipid synthesis via the ADRA1a/AMPK/SCD1 axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| |
Collapse
|
2
|
Wang L, Wojcieszak J, Kumar R, Zhao Z, Sun X, Xie S, Winblad B, Pavlov PF. FKBP51-Hsp90 Interaction-Deficient Mice Exhibit Altered Endocrine Stress Response and Sex Differences Under High-Fat Diet. Mol Neurobiol 2024; 61:1479-1494. [PMID: 37726498 PMCID: PMC10896785 DOI: 10.1007/s12035-023-03627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
FK506-binding protein 51 kDa (FKBP51), encoded by Fkbp5 gene, gained considerable attention as an important regulator of several aspects of human biology including stress response, metabolic dysfunction, inflammation, and age-dependent neurodegeneration. Its catalytic peptidyl-prolyl isomerase (PPIase) activity is mediated by the N-terminal FK506-binding (FK1) domain, whereas the C-terminal tetratricopeptide motif (TPR) domain is responsible for FKBP51 interaction with molecular chaperone heat shock protein 90 (Hsp90). To understand FKBP51-related biology, several mouse models have been created. These include Fkbp5 complete and conditional knockouts, overexpression, and humanized models. To dissect the role of FKBP51-Hsp90 interaction in FKBP51 biology, we have created an interaction-deficient mouse (Fkbp5TPRmut) by introducing two-point mutations in the TPR domain of FKBP51. FKBP51-Hsp90 interaction-deficient mice are viable, fertile and show Mendelian inheritance. Intracellular association of FKBP51 with Hsp90 is significantly reduced in homozygous mutants compared to wild-type animals. No behavioral differences between genotypes were seen at 2 months of age, however, sex-dependent differences were detected in Y-maze and fear conditioning tests at the age of 12 months. Moreover, we have found a significant reduction in plasma levels of corticosterone and adrenocorticotropic hormone in Fkbp5TPRmut mice after acute stress. In contrast to Fkbp5 knockout mice, females of Fkbp5TPRmut showed increased body weight gain under high-fat diet treatment. Our data confirm the importance of FKBP51-Hsp90 interactions for stress-related endocrine signaling. Also, Fkbp5TPRmut mice can serve as a useful in vivo tool to discriminate between Hsp90-dependent and independent functions of FKBP51.
Collapse
Affiliation(s)
- Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Jakub Wojcieszak
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
- Department of Pharmacodynamics, Medical University of Lodz, 90151, Lodz, Poland
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Zhe Zhao
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
- Department of Toxicology, School of Public Health, Peking University, 100191, Beijing, China
| | - Xuelian Sun
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
- National Clinical Research Center for Geriatrics and Department of Gerontology and Geriatrics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Shaoxun Xie
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 14186, Huddinge, Sweden
| | - Pavel F Pavlov
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden.
| |
Collapse
|
3
|
Geiger TM, Walz M, Meyners C, Kuehn A, Dreizler JK, Sugiarto WO, Maciel EVS, Zheng M, Lermyte F, Hausch F. Discovery of a Potent Proteolysis Targeting Chimera Enables Targeting the Scaffolding Functions of FK506-Binding Protein 51 (FKBP51). Angew Chem Int Ed Engl 2024; 63:e202309706. [PMID: 37942685 DOI: 10.1002/anie.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
The FK506-binding protein 51 (FKBP51) is a promising target in a variety of disorders including depression, chronic pain, and obesity. Previous FKBP51-targeting strategies were restricted to occupation of the FK506-binding site, which does not affect core functions of FKBP51. Here, we report the discovery of the first FKBP51 proteolysis targeting chimera (PROTAC) that enables degradation of FKBP51 abolishing its scaffolding function. Initial synthesis of 220 FKBP-focused PROTACs yielded a plethora of active PROTACs for FKBP12, six for FKBP51, and none for FKBP52. Structural analysis of a binary FKBP12:PROTAC complex revealed the molecular basis for negative cooperativity. Linker-based optimization of first generation FKBP51 PROTACs led to the PROTAC SelDeg51 with improved cellular activity, selectivity, and high cooperativity. The structure of the ternary FKBP51:SelDeg51:VCB complex revealed how SelDeg51 establishes cooperativity by dimerizing FKBP51 and the von Hippel-Lindau protein (VHL) in a glue-like fashion. SelDeg51 efficiently depletes FKBP51 and reactivates glucocorticoid receptor (GR)-signalling, highlighting the enhanced efficacy of full protein degradation compared to classical FKBP51 binding.
Collapse
Affiliation(s)
- Thomas M Geiger
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Michael Walz
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Christian Meyners
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Angela Kuehn
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Johannes K Dreizler
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Wisely O Sugiarto
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Edvaldo V S Maciel
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Min Zheng
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Peter-Grünberg-Straße 4, 64287, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64283, Darmstadt, Germany
| |
Collapse
|
4
|
Yi X, Wan X, Khan MA, Sun X, Wang Z, Chen K, Peng L. Expression Analysis of circRNAs in Human Adipogenesis. Diabetes Metab Syndr Obes 2024; 17:45-54. [PMID: 38192493 PMCID: PMC10771721 DOI: 10.2147/dmso.s381603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Purpose Adipogenesis is one of the major pathways for generating obesity or overweight that can cause a range of metabolic disorders. Circular RNAs (circRNAs), a specific type of RNAs, have a significant influence on metabolic disorders. This study aims to find differentially expressed circRNAs (DECs) during human subcutaneous adipose tissue (SATs) adipogenesis. Patients and Methods The human adipose tissue-derived stromal cells (hADSCs) were isolated from human SATs (n = 3), and then induced into adipocytes. Total RNAs were extracted from hADSCs and adipocytes, and he DECs were detected using circRNA microarray. The GO and KEGG pathways of DECs were analyzed by bioinformatic methods, and partial DECs were further validated by quantitative polymerase chain reaction (qPCR). Results Our study detected a total of 1987 DECs, among which, 1134 were found upregulated and 853 were downregulated. GO analysis showed that the upregulated DECs have catalytic activity in intracellular organelle and cytoplasms, whereas downregulated DECs are enriched in organelle lumen, and are involved in positive regulation of developmental process. In addition, pathway results demonstrated that upregulated DECs are involved in platinum drug resistance and cellular senescence, and downregulated DECs are enriched in proteoglycans in cancer and focal adhesion pathway. Two circRNAs, namely has_circ_0001600 and has_circ_0001947 were validated to be significantly upregulated in adipocytes compared to hADSCs. Conclusion Our study explored DECs between hADSCs derived from SATs and adipocytes, and report that two circRNAs named has_circ_0001600 and has_circ_0001947 might be important factors involved in human adipogenesis, however, the molecular mechanism should be further explored.
Collapse
Affiliation(s)
- Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Md Asaduzzaman Khan
- Research Division, Nature Study Society of Bangladesh, Dhaka, 1000, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, People’s Republic of China
| |
Collapse
|
5
|
Qiu B, Zhong Z, Dou L, Xu Y, Zou Y, Weldon K, Wang J, Zhang L, Liu M, Williams KE, Spence JP, Bell RL, Lai Z, Yong W, Liang T. Knocking out Fkbp51 decreases CCl 4-induced liver injury through enhancement of mitochondrial function and Parkin activity. Cell Biosci 2024; 14:1. [PMID: 38167156 PMCID: PMC10763032 DOI: 10.1186/s13578-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND AIMS Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CI, 06520, USA
| | - Zhaohui Zhong
- General Surgery Department, Peking University People's Hospital, Beijing, 100032, China
| | - Longyu Dou
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lingling Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ming Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - John Paul Spence
- Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University, School of Medicine, Indianapolis, 46202, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health, San Antonio, TX, 78229, USA
| | - Weidong Yong
- Department of Surgery, Indiana University, School of Medicine, Indianapolis, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Tiebing Liang
- Department of Medicine, Indiana University, School of Medicine, Indianapolis, 46202, USA.
| |
Collapse
|
6
|
Ma J, Yang Z, Gao H, Huda N, Jiang Y, Liangpunsakul S. FK-binding protein 5: Possible relevance to the pathogenesis of metabolic dysfunction and alcohol-associated liver disease. J Investig Med 2024; 72:128-138. [PMID: 37807186 DOI: 10.1177/10815589231207793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The FK506-binding protein (FKBP5) plays significant roles in mediating stress responses by interacting with glucocorticoids, participating in adipogenesis, and influencing various cellular pathways throughout the body. In this review, we described the potential role of FKBP5 in the pathogenesis of two common chronic liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol-associated liver disease (ALD). We provided an overview of the FK-binding protein family and elucidated their roles in cellular stress responses, metabolic diseases, and adipogenesis. We explored how FKBP5 may mechanistically influence the pathogenesis of MASLD and ALD and provided insights for further investigation into the role of FKBP5 in these two diseases.
Collapse
Affiliation(s)
- Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
7
|
Ahmed F, Vranic M, Hetty S, Mathioudaki A, Patsoukaki V, Fanni G, Pereira MJ, Eriksson JW. Increased OCT3 Expression in Adipose Tissue With Aging: Implications for Catecholamine and Lipid Turnover and Insulin Resistance in Women. Endocrinology 2023; 165:bqad172. [PMID: 37972266 PMCID: PMC10690730 DOI: 10.1210/endocr/bqad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Catecholamine-stimulated lipolysis is reduced with aging, which may promote adiposity and insulin resistance. Organic cation transporter 3 (OCT3), which is inhibited by estradiol (E2), mediates catecholamine transport into adipocytes for degradation, thus decreasing lipolysis. In this study, we investigated the association of OCT3 mRNA levels in subcutaneous adipose tissue (SAT) with aging and markers of insulin resistance in women. METHODS SAT biopsies were obtained from 66 women with (19) or without (47) type 2 diabetes (age 22-76 years, 20.0-40.1 kg/m2). OCT3 mRNA and protein levels were measured for group comparisons and correlation analysis. SAT was incubated with E2 and OCT3 mRNA levels were measured. Associations between OCT3 single nucleotide polymorphisms (SNPs) and diabetes-associated traits were assessed. RESULTS OCT3 mRNA and protein levels in SAT increased with aging. SAT from postmenopausal women had higher levels of OCT3 than premenopausal women, and there was a dose-dependent reduction in OCT3 mRNA levels in SAT treated with E2. OCT3 mRNA levels were negatively associated with markers of insulin resistance, and ex vivo lipolysis. OCT3 SNPs were associated with BMI, waist to hip ratio, and circulating lipids (eg, triglycerides). CONCLUSION OCT3 mRNA and protein levels in SAT increased with aging, and mRNA levels were negatively associated with markers of insulin resistance. E2 incubation downregulated OCT3 mRNA levels, which may explain lower OCT3 mRNA in premenopausal vs postmenopausal women. High OCT3 protein levels in adipose tissue may result in increased catecholamine degradation, and this can contribute to the reduction in lipolysis observed in women with aging.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Vagia Patsoukaki
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
8
|
Scorrano G, La Bella S, Matricardi S, Chiarelli F, Giannini C. Neuroendocrine Effects on the Risk of Metabolic Syndrome in Children. Metabolites 2023; 13:810. [PMID: 37512517 PMCID: PMC10383317 DOI: 10.3390/metabo13070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The endocrine and nervous systems reciprocally interact to manage physiological individual functions and homeostasis. The nervous system modulates hormone release through the hypothalamus, the main cerebrally specialized structure of the neuroendocrine system. The hypothalamus is involved in various metabolic processes, administering hormone and neuropeptide release at different levels. This complex activity is affected by the neurons of various cerebral areas, environmental factors, peripheral organs, and mediators through feedback mechanisms. Therefore, neuroendocrine pathways play a key role in metabolic homeostasis control, and their abnormalities are associated with the development of metabolic syndrome (MetS) in children. The impaired functioning of the genes, hormones, and neuropeptides of various neuroendocrine pathways involved in several metabolic processes is related to an increased risk of dyslipidaemia, visceral obesity, insulin resistance, type 2 diabetes mellitus, and hypertension. This review examines the neuroendocrine effects on the risk of MetS in children, identifying and underlying several conditions associated with neuroendocrine pathway disruption. Neuroendocrine systems should be considered in the complex pathophysiology of MetS, and, when genetic or epigenetic mutations in "hot" pathways occur, they could be studied for new potential target therapies in severe and drug-resistant paediatric forms of MetS.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
9
|
Buffa V, Knaup FH, Heymann T, Springer M, Schmidt MV, Hausch F. Analysis of the Selective Antagonist SAFit2 as a Chemical Probe for the FK506-Binding Protein 51. ACS Pharmacol Transl Sci 2023; 6:361-371. [PMID: 36926456 PMCID: PMC10012253 DOI: 10.1021/acsptsci.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 02/16/2023]
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as an important regulator of the mammalian stress response and is involved in persistent pain states and metabolic pathways. The FK506 analog SAFit2 (short for selective antagonist of FKBP51 by induced fit) was the first potent and selective FKBP51 ligand with an acceptable pharmacokinetic profile. At present, SAFit2 represents the gold standard for FKBP51 pharmacology and has been extensively used in numerous biological studies. Here we review the current knowledge on SAFit2 as well as guidelines for its use.
Collapse
Affiliation(s)
- Vanessa Buffa
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Fabian H. Knaup
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| | - Margherita Springer
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V. Schmidt
- Research
Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Felix Hausch
- Department
of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2023:10.1002/jcb.30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
11
|
Galigniana NM, Ruiz MC, Piwien-Pilipuk G. FK506 binding protein 51: Its role in the adipose organ and beyond. J Cell Biochem 2022. [PMID: 36502528 DOI: 10.1002/jcb.30351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2024]
Abstract
There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described. Since then, many new facets have been discovered of this stress-responsive FKBP51 as a central node for precise coordination of many cell functions, as shown for nuclear steroid receptors, autophagy, signaling pathways as Akt, p38 MAPK, and GSK3, as well as for insulin signaling and the control of glucose homeostasis. Thus, the aim of this review is to integrate and discuss the recent advances in the understanding of the many roles of FKBP51 in the adipose organ.
Collapse
Affiliation(s)
- Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marina C Ruiz
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
13
|
Brix LM, Toksöz I, Aman L, Kovarova V, Springer M, Bordes J, van Doeselaar L, Engelhardt C, Häusl AS, Narayan S, Sterlemann V, Yang H, Deussing JM, Schmidt MV. Contribution of the co-chaperone FKBP51 in the ventromedial hypothalamus to metabolic homeostasis in male and female mice. Mol Metab 2022; 65:101579. [PMID: 36007872 PMCID: PMC9460553 DOI: 10.1016/j.molmet.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Objective Steroidogenic factor 1 (SF1) expressing neurons in the ventromedial hypothalamus (VMH) have been directly implicated in whole-body metabolism and in the onset of obesity. The co-chaperone FKBP51 is abundantly expressed in the VMH and was recently linked to type 2 diabetes, insulin resistance, adipogenesis, browning of white adipose tissue (WAT) and bodyweight regulation. Methods We investigated the role of FKBP51 in the VMH by conditional deletion and virus-mediated overexpression of FKBP51 in SF1-positive neurons. Baseline and high fat diet (HFD)-induced metabolic- and stress-related phenotypes in male and female mice were obtained. Results In contrast to previously reported robust phenotypes of FKBP51 manipulation in the entire mediobasal hypothalamus (MBH), selective deletion or overexpression of FKBP51 in the VMH resulted in only a moderate alteration of HFD-induced bodyweight gain and body composition, independent of sex. Conclusions Overall, this study shows that animals lacking and overexpressing Fkbp5 in Sf1-expressing cells within the VMH display only a mild metabolic phenotype compared to an MBH-wide manipulation of this gene, suggesting that FKBP51 in SF1 neurons within this hypothalamic nucleus plays a subsidiary role in controlling whole-body metabolism. Loss of FKBP51 in SF1 neurons of the VMH induces a mild metabolic phenotype. Male and female mice develop similar metabolic responses to the loss of FKBP51. VMH-specific overexpression of FKBP51 induces phenotypes comparable to knockout. FKBP51 in the VMH mediates whole-body metabolism in a U-shaped manner.
Collapse
Affiliation(s)
- Lea M Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany.
| | - Irmak Toksöz
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - London Aman
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lotte van Doeselaar
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Vera Sterlemann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
14
|
Ahmed F, Hetty S, Vranic M, Fanni G, Kullberg J, Pereira MJ, Eriksson JW. ESR2 expression in subcutaneous adipose tissue is related to body fat distribution in women, and knockdown impairs preadipocyte differentiation. Adipocyte 2022; 11:434-447. [PMID: 35856485 PMCID: PMC9387337 DOI: 10.1080/21623945.2022.2102116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES Estrogen signaling occurs mainly through estrogen receptor alpha (ESR1) and beta (ESR2). ESR2 expression is higher in subcutaneous adipose tissue (SAT) from postmenopausal compared to premenopausal women. The functional significance of altered ESR2 expression is not fully known. This study investigates the role of ESR2 in adipose tissue lipid and glucose metabolism. METHODS SAT were obtained by needle biopsies from 10 female subjects with T2D and 10 control subjects. Correlation analysis between ESR2 gene expression in SAT and markers of obesity and glucose metabolism. ESR2 knockdown was performed in preadipocytes isolated from SAT of females using CRISPR/Cas9 gene editing. In vitro differentiated knockdown adipocytes were characterized for differentiation rate, lipid storage, and glucose uptake. RESULTS ESR2 expression in SAT from females was negatively correlated with weight, waist-to-hip ratio, visceral adipose tissue volume, and markers of fatty acid oxidation, and positively correlated with markers related to lipid storage, and glucose transport. In SAT, ESR2 levels were found predominantly in mature adipocytes. In preadipocytes from females, ESR2 knockdown reduced preadipocyte differentiation compared to wild type cultures. This corresponded to reduced expression of markers of differentiation, lipogenesis, and lipolysis. Glucose uptake was reduced in adipocytes in knockdown cultures. CONCLUSION Our results indicate that ESR2 deficiency is associated with visceral adiposity and reduced subcutaneous adipocyte differentiation and lipid storage in women. High ESR2 expression, as seen after menopause, could be a contributing factor to SAT expansion. This provides insight into a possible target to promote a healthy obesity phenotype.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University
| | - Maria João Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
A pilot investigation of genetic and epigenetic variation of FKBP5 and response to exercise intervention in African women with obesity. Sci Rep 2022; 12:11771. [PMID: 35817784 PMCID: PMC9273786 DOI: 10.1038/s41598-022-15678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
We investigated gluteal (GSAT) and abdominal subcutaneous adipose tissue (ASAT) DNA methylation of FKBP5 in response to a 12-week intervention in African women with obesity, as well as the effect of the rs1360780 single nucleotide polymorphism (SNP) on FKBP5 methylation, gene expression and post-exercise training adaptations in obesity and metabolic related parameters. Exercise (n = 19) participants underwent 12-weeks of supervised aerobic and resistance training while controls (n = 12) continued their usual behaviours. FKBP5 methylation was measured in GSAT and ASAT using pyrosequencing. SNP and gene expression analyses were conducted using quantitative real-time PCR. Exercise training induced FKBP5 hypermethylation at two CpG dinucleotides within intron 7. When stratified based on the rs1360780 SNP, participants with the CT genotype displayed FKBP5 hypermethylation in GSAT (p < 0.05), and ASAT displayed in both CC and CT carriers. CC allele carriers displayed improved cardiorespiratory fitness, insulin sensitivity, gynoid fat mass, and waist circumference (p < 0.05) in response to exercise training, and these parameters were attenuated in women with the CT genotype. These findings provide a basis for future studies in larger cohorts, which should assess whether FKBP5 methylation and/or genetic variants such as the rs1360780 SNP could have a significant impact on responsiveness to exercise interventions.
Collapse
|
16
|
Sun H, Liu X, Wang L, Cui B, Mu W, Xia Y, Liu S, Liu X, Jiao Y, Zhao Y. Dexamethasone Sensitizes Acute Monocytic Leukemia Cells to Ara-C by Upregulating FKBP51. Front Oncol 2022; 12:888695. [PMID: 35860568 PMCID: PMC9290766 DOI: 10.3389/fonc.2022.888695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we demonstrated that the expression of FK506 binding protein 51 (FKBP51) is upregulated in acute monocytic leukemia (AML-M5) cells by dexamethasone and aimed to investigate the possible effects of FKBP51 on the growth and cytarabine sensitivity of AML-M5 cells. THP-1 and U937cells were used to establish AML-M5 cell models with FKBP51 overexpression and knockdown, respectively. Cell proliferation, apoptosis and response to cytarabine were investigated by cell cycle, CCK-8 and Flow cytometry analyses. The mice experiment was conducted to detect the role of FKBP51 on AML-M5 cells proliferation and antileukemia effect of Ara-C/Dexamethasone co-therapy in vivo. Western blots were employed to determine protein expression levels. FKBP51 upregulation significantly attenuated THP-1 cell proliferation and sensitized the cells to cytarabine treatment which was further enhanced by dexamethasone. These effects were indicated by decreases in cell viability, S-G2/M phase cell cycle distribution, cytarabine 50% inhibitory concentration (IC50) values and increases in apoptosis and were supported by decreased phosphorylation levels of AKT, GSK3β and FOXO1A and decreased levels of BCL-2 and increased levels of P21 and P27. In contrast, FKBP51 knockdown led to excessive U937 cell proliferation and cytarabine resistance, as indicated by increased cell viability and S-G2/M phase cell cycle distribution, decreased apoptosis, increased phosphorylation levels of AKT, GSK3β and FOXO1A, and increased BCL-2 and decreased P21 and P27 expression. In addition, an AKT inhibitor blocked cell cycle progression and reduced cell viability in all groups of cells. Furthermore, SAFit2, a specific FKBP51 inhibitor, increased U937 cell viability and cytarabine resistance as well as AKT phosphorylation. In conclusion, FKBP51 decelerates proliferation and improves the cytarabine sensitivity of AML-M5 cells by inhibiting AKT pathways, and dexamethasone in combination with Ara-C improves the chemosensitivity of AML-M5.
Collapse
Affiliation(s)
- Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, China
- Center for Reproductive Medicine, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- *Correspondence: Yulian Jiao, ; Yueran Zhao,
| |
Collapse
|
17
|
Strączkowski M, Stefanowicz M, Matulewicz N, Nikołajuk A, Karczewska-Kupczewska M. Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids. Endocrine 2022; 76:536-542. [PMID: 35212883 DOI: 10.1007/s12020-022-03018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Recent studies suggest that FK506 binding protein 51 (FKBP51), a negative regulator of glucocorticoid response, encoded by FKBP5, may influence insulin action. The aim of the present study was to assess the relationship between subcutaneous adipose tissue (AT) and skeletal muscle FKBP5 expression in relation to insulin sensitivity in healthy individuals and to study its regulation by insulin and circulating free fatty acid (FFA) elevation. METHODS The study group comprised 96 male subjects, 49 normal-weight and 47 overweight/obese. Hyperinsulinemic clamp, subcutaneous AT and skeletal muscle biopsies were performed. In a subgroup of 20 subjects, two 6 h clamps were performed, with and without Intralipid/heparin infusion, and tissue biopsies were obtained before and after each clamp. RESULTS AT FKBP5 expression was lower in overweight/obese individuals in comparison with normal-weight individuals (p = 0.004). Muscle FKBP5 expression did not differ between the groups, however, it was inversely related to insulin sensitivity (r = -0.32, p = 0.002). FKBP5 expression decreased in AT (p = 0.003) and increased in muscle (p < 0.0001) after insulin infusion. Intralipid/heparin diminished insulin-induced increase in muscle FKBP5. CONCLUSION Our data show that lower AT FKBP5 expression is related to obesity, whereas muscle FKBP5 expression is associated with insulin resistance. AT and muscle FKBP5 expression is differentially regulated by insulin.
Collapse
Affiliation(s)
- Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
18
|
Häusl AS, Bajaj T, Brix LM, Pöhlmann ML, Hafner K, De Angelis M, Nagler J, Dethloff F, Balsevich G, Schramm KW, Giavalisco P, Chen A, Schmidt MV, Gassen NC. Mediobasal hypothalamic FKBP51 acts as a molecular switch linking autophagy to whole-body metabolism. SCIENCE ADVANCES 2022; 8:eabi4797. [PMID: 35263141 PMCID: PMC8906734 DOI: 10.1126/sciadv.abi4797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mediobasal hypothalamus (MBH) is the central region in the physiological response to metabolic stress. The FK506-binding protein 51 (FKBP51) is a major modulator of the stress response and has recently emerged as a scaffolder regulating metabolic and autophagy pathways. However, the detailed protein-protein interactions linking FKBP51 to autophagy upon metabolic challenges remain elusive. We performed mass spectrometry-based metabolomics of FKBP51 knockout (KO) cells revealing an increased amino acid and polyamine metabolism. We identified FKBP51 as a central nexus for the recruitment of the LKB1/AMPK complex to WIPI4 and TSC2 to WIPI3, thereby regulating the balance between autophagy and mTOR signaling in response to metabolic challenges. Furthermore, we demonstrated that MBH FKBP51 deletion strongly induces obesity, while its overexpression protects against high-fat diet (HFD)-induced obesity. Our study provides an important novel regulatory function of MBH FKBP51 within the stress-adapted autophagy response to metabolic challenges.
Collapse
Affiliation(s)
- Alexander S. Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Thomas Bajaj
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127 Bonn, Germany
| | - Lea M. Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Max L. Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Meri De Angelis
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | - Joachim Nagler
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | | | - Georgia Balsevich
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich Germany Research Center for Environmental Health, Molecular EXposomics, Neuherberg, Germany
| | | | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias V. Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Corresponding author. (M.V.S.); (N.C.G.)
| | - Nils C. Gassen
- Neurohomeostasis Research Group, Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127 Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Corresponding author. (M.V.S.); (N.C.G.)
| |
Collapse
|
19
|
Sarsenbayeva A, Pereira MJ, Nandi Jui B, Ahmed F, Dipta P, Fanni G, Almby K, Kristófi R, Hetty S, Eriksson JW. Excess glucocorticoid exposure contributes to adipose tissue fibrosis which involves macrophage interaction with adipose precursor cells. Biochem Pharmacol 2022; 198:114976. [PMID: 35202577 DOI: 10.1016/j.bcp.2022.114976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Chronic exposure to elevated glucocorticoid levels, as seen in patients with Cushing's syndrome, can induce adipose tissue fibrosis. Macrophages play a pivotal role in adipose tissue remodelling. We used the synthetic glucocorticoid analogue dexamethasone to address glucocorticoid effects on adipose tissue fibrosis, in particular involving macrophage to preadipocyte communication. We analysed the direct effects of dexamethasone at a supra-physiological level, 0.3 µM, on gene expression of pro-fibrotic markers in human subcutaneous adipose tissue. The effects of dexamethasone on the differentiation of human SGBS preadipocytes were assessed in the presence or absence of THP1-macrophages or macrophage-conditioned medium. We measured the expression of different pro-fibrotic factors, including α-smooth muscle actin gene (ACTA2) and protein (α-SMA). Dexamethasone increased the expression of pro-fibrotic genes, e.g. CTGF, COL6A3, FN1, in adipose tissue. Macrophages abolished preadipocyte differentiation and increased the expression of the ACTA2 gene and α-SMA protein in preadipocytes after differentiation. Exposure to dexamethasone during differentiation reduced adipogenesis in preadipocytes, and elevated the expression of pro-fibrotic genes. Moreover, dexamethasone added together with macrophages further increased ACTA2 and α-SMA expression in preadipocytes, making them more myofibroblast-like. Cells differentiated in the presence of conditioned media from macrophages pretreated with or without dexamethasone had a higher expression of profibrotic genes compared to control cells. Our data suggest that macrophages promote adipose tissue fibrosis by directly interfering with preadipocyte differentiation and stimulating gene expression of pro-fibrotic factors. Excess glucocorticoid exposure also has pro-fibrotic effect on adipose tissue, but this requires the presence of macrophages.
Collapse
Affiliation(s)
- Assel Sarsenbayeva
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Bipasha Nandi Jui
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Fozia Ahmed
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Priya Dipta
- Department of Pharmacology, Faculty of Medicine, Hadassah Medical Centre, Jerusalem, Israel
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kristina Almby
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Robin Kristófi
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells. Stem Cells Int 2021; 2021:3168428. [PMID: 34956370 PMCID: PMC8702357 DOI: 10.1155/2021/3168428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obesity is characterized as a disease that directly affects the whole-body metabolism and is associated with excess fat mass and several related comorbidities. Dynamics of adipocyte hypertrophy and hyperplasia play an important role in health and disease, especially in obesity. Human adipose-derived stem cells (hASC) represent an important source for understanding the entire adipogenic differentiation process. However, little is known about the triggering step of adipogenesis in hASC. Here, we performed a proteogenomic approach for understanding the protein abundance alterations during the initiation of the adipogenic differentiation process. Methods hASC were isolated from adipose tissue of three donors and were then characterized and expanded. Cells were cultured for 24 hours in adipogenic differentiation medium followed by protein extraction. We used shotgun proteomics to compare the proteomic profile of 24 h-adipogenic, differentiated, and undifferentiated hASC. We also used our previous next-generation sequencing data (RNA-seq) of the total and polysomal mRNA fractions of hASC to study posttranscriptional regulation during the initial steps of adipogenesis. Results We identified 3420 proteins out of 48,336 peptides, of which 92 proteins were exclusively identified in undifferentiated hASC and 53 proteins were exclusively found in 24 h-differentiated cells. Using a stringent criterion, we identified 33 differentially abundant proteins when comparing 24 h-differentiated and undifferentiated hASC (14 upregulated and 19 downregulated, respectively). Among the upregulated proteins, we shortlisted several adipogenesis-related proteins. A combined analysis of the proteome and the transcriptome allowed the identification of positive correlation coefficients between proteins and mRNAs. Conclusions These results demonstrate a specific proteome profile related to adipogenesis at the beginning (24 hours) of the differentiation process in hASC, which advances the understanding of human adipogenesis and obesity. Adipogenic differentiation is finely regulated at the transcriptional, posttranscriptional, and posttranslational levels.
Collapse
|
21
|
Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol 2021; 42:e0034421. [PMID: 34780285 DOI: 10.1128/mcb.00344-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although large number of recent studies indicate strong association of FKBP5 (aka FKBP51) functions with various stress-related psychiatric disorder, the overall mechanisms are poorly understood. Beyond a few studies indicating its functions in regulating glucocorticoid receptor-, and AKT-signalling pathways, other functional roles (if any) are unclear. In this study, we report an anti-proliferative role of human FKBP5 through negative regulation of expression of proliferation-related genes. Mechanistically, we show that, owing to same region of interaction on CDK9, human FKBP5 directly competes with CyclinT1 for functional P-TEFb complex formation. In vitro biochemical coupled with cell-based assays, showed strong negative effect of FKBP5 on P-TEFb-mediated phosphorylation of diverse substrates. Consistently, FKBP5 knockdown showed enhanced P-TEFb complex formation leading to increased global RNA polymerase II CTD phosphorylation and expression of proliferation-related genes and subsequent proliferation. Thus, our results show an important role of FKBP5 in negative regulation of P-TEFb functions within mammalian cells.
Collapse
|
22
|
Smedlund KB, Sanchez ER, Hinds TD. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021; 32:862-874. [PMID: 34481731 PMCID: PMC8516732 DOI: 10.1016/j.tem.2021.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
The molecular chaperone FK506-binding protein 51 (FKBP51) is gaining attention as a meaningful biomarker of metabolic dysfunction. This review examines the emerging contributions of FKBP51 in adipogenesis and lipid metabolism, myogenesis and protein catabolism, and glucocorticoid-induced skin hypoplasia and dermal adipocytes. The FKBP51 signaling mechanisms that may explain these metabolic consequences are discussed. These mechanisms are diverse, with FKBP51 independently and directly regulating phosphorylation cascades and nuclear receptors. We provide a discussion of the newly developed compounds that antagonize FKBP51, which may offer therapeutic advantages for adiposity. These observations suggest we are only beginning to uncover the complex nature of FKBP51 and its molecular chaperoning of metabolism.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Edwin R Sanchez
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Terry D Hinds
- Barnstable Brown Diabetes Center, Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA.
| |
Collapse
|
23
|
Beach SRH, Ong ML, Lei MK, Carter SE, Simons RL, Gibbons FX, Philibert RA. Methylation of FKBP5 is associated with accelerated DNA methylation ageing and cardiometabolic risk: replication in young-adult and middle-aged Black Americans. Epigenetics 2021; 17:982-1002. [PMID: 34533092 PMCID: PMC9487733 DOI: 10.1080/15592294.2021.1980688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of FKBP5 is involved in the regulation of the stress response and is influenced by early stress exposure. Two CpG sites, cg20813374 and cg00130530, have been identified as potential reporters of early stress. We examined whether FKBP5 methylation was associated with accelerated DNA methylation ageing and indirectly predicted poorer cardiovascular health among both young adult and middle-aged Black Americans. Four hundred and forty-nine young adults, with a mean age of 28.67 and N = 469 middle-age parents and their current partners with a mean age of 57.21, provided self-reports, biometric assessments, and blood draws. Methylation values were obtained using the Illumina Epic Array. Cardiometabolic risk was calculated by summing the standardized log-transformed scores for the body mass index, mean arterial blood pressure, and HbA1c. We also used a more standard index of risk, the Framingham 10-year cardiometabolic risk index, as an alternative measure of cardiometabolic risk. To measure accelerated ageing, four widely used indices of accelerated, DNA methylation-based ageing were used controlling sex, age, other variation in FKBP5, and cell-type. Exposure to community danger was associated with demethylation of FKBP5. FKBP5 methylation was significantly associated with accelerated ageing for both young-adult and middle-aged samples, with significant indirect effects from FKBP5 methylation to cardiometabolic risk through accelerated ageing for both. Early exposure to danger may influence FKBP5 methylation. In turn, FKBP5 methylation may help explain intrinsic accelerated ageing and elevated cardiometabolic risk in adulthood for Black Americans.
Collapse
Affiliation(s)
- Steven R H Beach
- Department of Psychology and the Center for Family Research, University of Georgia, Athens, GA, USA.,Center for Family Research, University of Georgia, Athens, GA, USA
| | - Mei Ling Ong
- Center for Family Research, University of Georgia, Athens, GA, USA
| | - Man-Kit Lei
- Department of Sociology, University of Georgia, Athens, GA, USA
| | - Sierra E Carter
- Department of Psychology, Georgia State University, AtlantaAG, GA, USA
| | - Ronald L Simons
- Department of Sociology, University of Georgia, Athens, GA, USA
| | - Frederick X Gibbons
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Robert A Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.,Behavioral Diagnostics, Coralville, IA, USA
| |
Collapse
|
24
|
Gans IM, Grendler J, Babich R, Jayasundara N, Coffman JA. Glucocorticoid-Responsive Transcription Factor Krüppel-Like Factor 9 Regulates fkbp5 and Metabolism. Front Cell Dev Biol 2021; 9:727037. [PMID: 34692682 PMCID: PMC8526736 DOI: 10.3389/fcell.2021.727037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 9 (Klf9) is a feedforward regulator of glucocorticoid receptor (GR) signaling. Here we show that in zebrafish klf9 is expressed with GR-dependent oscillatory dynamics in synchrony with fkbp5, a GR target that encodes a negative feedback regulator of GR signaling. We found that fkbp5 transcript levels are elevated in klf9 -/- mutants and that Klf9 associates with chromatin at the fkbp5 promoter, which becomes hyperacetylated in klf9 -/ - mutants, suggesting that the GR regulates fkbp5 via an incoherent feedforward loop with klf9. As both the GR and Fkbp5 are known to regulate metabolism, we asked how loss of Klf9 affects metabolic rate and gene expression. We found that klf9 -/- mutants have a decreased oxygen consumption rate (OCR) and upregulate glycolytic genes, the promoter regions of which are enriched for potential Klf9 binding motifs. Our results suggest that Klf9 functions downstream of the GR to regulate cellular glucocorticoid responsivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Ian M. Gans
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | | | - Remy Babich
- The School of Marine Sciences, University of Maine, Orono, ME, United States
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - James A. Coffman
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
25
|
Lemoine KA, Fassas JM, Ohannesian SH, Purcell NH. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart. Cell Signal 2021; 86:110097. [PMID: 34320369 PMCID: PMC8403656 DOI: 10.1016/j.cellsig.2021.110097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
PH domain leucine-rich repeat protein phosphatase (PHLPP) is a family of enzymes made up of two isoforms (PHLPP1 and PHLPP2), whose actions modulate intracellular activity via the dephosphorylation of specific serine/threonine (Ser/Thr) residues on proteins such as Akt. Recent data generated in our lab, supported by findings from others, implicates the divergent roles of PHLPP1 and PHLPP2 in maintaining cellular homeostasis since dysregulation of these enzymes has been linked to various pathological states including cardiovascular disease, diabetes, ischemia/reperfusion injury, musculoskeletal disease, and cancer. Therefore, development of therapies to modulate specific isoforms of PHLPP could prove to be therapeutically beneficial in several diseases especially those targeting the cardiovascular system. This review is intended to provide a comprehensive summary of current literature detailing the role of the PHLPP isoforms in the development and progression of heart disease.
Collapse
Affiliation(s)
- Kellie A Lemoine
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Julianna M Fassas
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Shirag H Ohannesian
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA
| | - Nicole H Purcell
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92039, USA; Cardiovascular Molecular Signaling, Huntington Medical Research Institutes, Pasadena, CA 91105, USA.
| |
Collapse
|
26
|
Poletti F, González-Fernández R, García MDP, Rotoli D, Ávila J, Mobasheri A, Martín-Vasallo P. Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells 2021; 10:2196. [PMID: 34571845 PMCID: PMC8468871 DOI: 10.3390/cells10092196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/25/2022] Open
Abstract
Knee osteoarthritis (OA) is one of the most prevalent chronic conditions affecting the adult population. OA is no longer thought to come from a purely biomechanical origin but rather one that has been increasingly recognized to include a persistent low-grade inflammatory component. Intra-articular corticosteroid injections (IACSI) have become a widely used method for treating pain in patients with OA as an effective symptomatic treatment. However, as the disease progresses, IACSI become ineffective. FKBP51 is a regulatory protein of the glucocorticoid receptor function and have been shown to be dysregulated in several pathological scenario's including chronic inflammation. Despite of these facts, to our knowledge, there are no previous studies of the expression and possible role of FKBP51 in OA. We investigated by double and triple immunofluorescence confocal microscopy the cellular and subcellular expression of FKBP51 and its relations with inflammation factors in osteoarthritic knee joint tissues: specifically, in the tibial plateau knee cartilage, Hoffa's fat pad and suprapatellar synovial tissue of the knee. Our results show co-expression of FKBP51 with TNF-α, IL-6, CD31 and CD34 in OA chondrocytes, synovial membrane cells and adipocytes in Hoffa's fat pad. FKBP51 is also abundant in nerve fibers within the fat pad. Co-expression of FKBP51 protein with these markers may be indicative of its contribution to inflammatory processes and associated chronic pain in OA.
Collapse
Affiliation(s)
- Fabián Poletti
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Orthopaedic Surgery and Trauma Unit, Royal Berkshire Hospital NHS Foundation Trust, Reading RG1 5AN, UK
- Unidad de Cirugía Ortopédica y Traumatología, Hospital San Juan de Dios-Tenerife, Ctra. Santa Cruz Laguna 53, 38009 Santa Cruz de Tenerife, Spain
| | - Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - María-del-Pino García
- Department of Pathology, Eurofins® Megalab-Hospiten Hospitals, 38001 Santa Cruz de Tenerife, Spain;
| | - Deborah Rotoli
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR-National Research Council, 80131 Naples, Italy
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, B-4000 Liège, Belgium
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Av. Astrofísico Sánchez s/n, 38206 La Laguna Tenerife, Spain; (F.P.); (R.G.-F.); (D.R.); (J.Á.)
| |
Collapse
|
27
|
Hu Z, Ge L, Zhang H, Liu X. Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight. Anim Biosci 2021; 35:1-12. [PMID: 34237933 PMCID: PMC8738923 DOI: 10.5713/ab.20.0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/25/2021] [Indexed: 11/27/2022] Open
Abstract
Objective FKBP prolyl isomerase 5 (FKBP5) has been shown to play an important role in metabolically active tissues such as skeletal muscle. However, the expression of FKBP5 in Muscovy duck tissues and its association with body weight are still unclear. Methods In this study, real-time quantitative polymerase chain reaction was used to detect the expression of FKBP5 in different tissues of Muscovy duck at different growth stages. Further, single nucleotide polymorphisms (SNPs) were detected in the exon region of FKBP5 and were combined analyzed with the body weight of 334 Muscovy ducks. Results FKBP5 was highly expressed in various tissues of Muscovy duck at days 17, 19, 21, 24, and 27 of embryonic development. In addition, the expression of FKBP5 in the tissues of female adult Muscovy ducks was higher than that of male Muscovy ducks. Besides, an association analysis indicated that 3 SNPs were related to body weight trait. At the g.4819252 A>G, the body weight of AG genotype was significantly higher than that of the AA and the GG genotype. At the g.4821390 G>A, the genotype GA was extremely significantly related to body weight. At the g.4830622 T>G, the body weight of TT was significantly higher than GG and TG. Conclusion These findings indicate the possible effects of expression levels in various tissues and the SNPs of FKBP5 on Muscovy duck body weight trait. FKBP5 could be used as molecular marker for muscle development trait using early marker-assisted selection of Muscovy ducks.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
28
|
Establishment of reporter cells that respond to glucocorticoids by a transposon-mediated promoter-trapping system. Eur J Pharm Sci 2021; 162:105819. [PMID: 33775826 DOI: 10.1016/j.ejps.2021.105819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 11/19/2022]
Abstract
Previously, we had established a highly sensitive trap vector system for the efficient isolation of reporter cells for a certain condition of interest. In this study, we used this system to screen reporter cells that express the luciferase and enhanced green fluorescent protein genes in response to dexamethasone, a glucocorticoid receptor agonist to facilitate glucocorticoid signaling research. In total, 10 clones were isolated. The insertion sites of the trap vector were analyzed using 5' rapid amplification of cDNA ends (5' RACE), whereupon LPIN1, PKP2, and FKBP5 were identified as genes that were upregulated by the dexamethasone treatment. Specifically, PKP2 has not previously been focused as a gene that responds to glucocorticoids. The PKP2 mRNA was analyzed and induction of the endogenous gene was confirmed by real-time polymerase chain reaction. Given that PKP2 does not appear to have a consensus glucocorticoid response element (GRE) sequence, this reporter clone could supplement the current GRE-based reporter systems that are prevalently used. Because different clones showed different responses to glucocorticoids, these clones should provide more information than analysis with a single reporter clone. This paper demonstrates that the previously developed trap vector technology can contribute to the rapid construction of drug evaluation systems.
Collapse
|
29
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
30
|
Kong L, Xiao C, Lin H, Buyse J, Li X, Song Z. Effect of dexamethasone on gene expression of cannabinoid receptor type 1 and adenosine monophosphate-activated protein kinase in the hypothalamus of broilers (Gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111018. [PMID: 34144188 DOI: 10.1016/j.cbpa.2021.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 10/21/2022]
Abstract
Hypothalamic neural circuits play a critical role in integrating peripheral signals and conveying information about energy and nutrient status. We detected cannabinoid receptor type 1 (CB1) distribution in the hypothalamus, liver, duodenum, jejunum, and ileum among 7- and 35-day-old broilers. The effects of dexamethasone (DEX) on CB1 gene expression were evaluated by in vitro and in vivo experiments on glucocorticoid receptor (GR) and adenosine monophosphate-activated protein kinase (AMPK) in the hypothalamus of broilers. In vitro, hypothalamic cells from 17-day-old broiler embryos were incubated with either 0.1% dimethyl sulfoxide or DEX (100 nmol/mL) for 1 h. In the in vivo study, 28-day-old broilers were injected with DEX for 24 h or 72 h. Results showed that CB1 was mainly expressed in the hypothalamus, and 72 h DEX treatment increased the expression. One-day treatment of broilers with DEX did not change the hypothalamic CB1 gene expression. Moreover, DEX treatment for 24 h and 72 h increased the mRNA level of hypothalamic AMPKα2 and GR. However, no differences were observed on the gene expression of CB1, GR, and AMPKα2 in hypothalamic cells with DEX-treated for 1 h. In conclusion, CB1 is mainly expressed in the hypothalamus of broilers; 72-h DEX exposure can regulate the CB1 system and AMPK signaling pathway of the broiler hypothalamus.
Collapse
Affiliation(s)
- Linglian Kong
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chuanpi Xiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China; Precision Livestock and Nutrition Unit, Gembloux Agro-BioTech, University of Liège, Gembloux 5030, Belgium
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Johan Buyse
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, Leuven 3001, Belgium
| | - Xianlei Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
31
|
Li CI, Zhang Y, Cieślik M, Wu YM, Xiao L, Cobain E, Tang MTC, Cao X, Porter P, Guenthoer J, Robinson DR, Chinnaiyan AM. Cancer Cell Intrinsic and Immunologic Phenotypes Determine Clinical Outcomes in Basal-like Breast Cancer. Clin Cancer Res 2021; 27:3079-3093. [PMID: 33753452 DOI: 10.1158/1078-0432.ccr-20-3890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Basal-like breast cancer (BLBC) is a particularly aggressive intrinsic molecular subtype of breast cancer that lacks targeted therapies. There is also no clinically useful test to risk stratify patients with BLBC. We hypothesized that a transcriptome-based phenotypic characterization of BLBC tumors and their microenvironments may overcome these challenges. EXPERIMENTAL DESIGN We conducted a retrospective correlative genomic sequencing study using a matched pairs design with validation in five independent cohorts. The study was conducted on a large population-based prospective cohort of the major molecular subtypes of breast cancer conducted in the greater Seattle-Puget Sound metropolitan area. Cases consisted of women 20-69 years of age first diagnosed with invasive breast cancer identified through the population-based Surveillance Epidemiology and End Results program. Patients for this analysis (n = 949) were identified from the 1,408 patients with stage I-III triple-negative breast cancer [estrogen receptor-negative (ER-), progesterone receptor-negative (PR-), HER2-]. Of the 949 women, 248 developed a recurrence after their initial diagnosis. A matched set of 67 recurrent and nonrecurrent BLBC tumors was subjected to transcriptome sequencing. Through RNA sequencing of the matched sets of recurrent and nonrecurrent BLBC tumors, we aimed to identify prognostic phenotypes.To identify nonredundant and uncorrelated prognostic genes, we used an ensemble of variable selection algorithms, which resulted in a ranking of genes on the basis of their expected utility in classification. Using leave-one-out cross-validation, we trained a random forest classifier on the basis of the top 21 genes (BRAVO-DX). Validations were performed in five independent triple-negative or BLBC cohorts, and biomarker robustness and transferability were demonstrated by employing real-time PCR. RESULTS We found that cancer cell intrinsic and immunologic phenotypes are independent predictors of recurrence. By simultaneously interrogating the tumor and its microenvironment, we developed a compound risk model that stratified patients into low-, medium-, and high-risk groups, with a 14%/56%/74% chance of recurrence, respectively. Biologically, the primary tumors of patients who developed a recurrence had increased growth factor signaling and stem-like features, while nonrecurrent tumors showed high lymphocyte infiltration with clonal expansion of T and B cells, as well as antitumor polarization of macrophages. We validated our model in five independent cohorts, including three large cohorts, where BRAVO-DX was highly informative in identifying patients with disease recurrence [HR, 6.79 (95% confidence interval (CI), 1.89-24.37); HR, 3.45 (95% CI, 2.41-4.93); and HR, 1.69 (95% CI, 1.17-2.46)]. A smaller gene set focused on the tumor immunophenotype, BRAVO-IMMUNE, was highly prognostic in all five cohorts. CONCLUSIONS Together, these results indicate that phenotypic characteristics of BLBCs and their microenvironment are associated with recurrence-free survival and demonstrate the utility of intrinsic and extrinsic phenotypes as independent prognostic biomarkers in BLBC. Pending further evaluation and validation, our prognostic model has the potential to inform clinical decision-making for patients with BLBC as it identifies those at high risk of rapidly progressing on standard chemotherapy, as well as those who may benefit from alternative first-line therapies.
Collapse
Affiliation(s)
- Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Marcin Cieślik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Erin Cobain
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mei-Tzu C Tang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
| | - Peggy Porter
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
32
|
Bauder M, Meyners C, Purder PL, Merz S, Sugiarto WO, Voll AM, Heymann T, Hausch F. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors. J Med Chem 2021; 64:3320-3349. [PMID: 33666419 DOI: 10.1021/acs.jmedchem.0c02195] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogues of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homologue FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively.
Collapse
Affiliation(s)
- Michael Bauder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Christian Meyners
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Patrick L Purder
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Stephanie Merz
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Wisely Oki Sugiarto
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Andreas M Voll
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Tim Heymann
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Felix Hausch
- Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
33
|
Cattane N, Räikkönen K, Anniverno R, Mencacci C, Riva MA, Pariante CM, Cattaneo A. Depression, obesity and their comorbidity during pregnancy: effects on the offspring's mental and physical health. Mol Psychiatry 2021; 26:462-481. [PMID: 32632208 PMCID: PMC7850968 DOI: 10.1038/s41380-020-0813-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Depression and obesity represent two of the most common complications during pregnancy and are associated with severe health risks for both the mother and the child. Although several studies have analysed the individual effects of depression or obesity on the mothers and their children, the effects associated with the co-occurrence of both disorders have so far been poorly investigated. The relationship between depression and obesity is very complex and it is still unclear whether maternal depression leads to obesity or vice versa. It is well known that the intrauterine environment plays an important role in mediating the effects of both depression and obesity in the mother on the fetal programming, increasing the child's risk to develop negative outcomes.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Roberta Anniverno
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
34
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
35
|
Ahmed F, Sarsenbayeva A, Katsogiannos P, Aguer C, Pereira MJ. The effects of bisphenol A and bisphenol S on adipokine expression and glucose metabolism in human adipose tissue. Toxicology 2020; 445:152600. [PMID: 32976960 DOI: 10.1016/j.tox.2020.152600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The environmental endocrine disruptors, bisphenol A (BPA) and bisphenol S (BPS) are associated with the development of type 2 diabetes. We aim to study the effects of BPA or BPS exposure on adipokine expression in human adipose tissue and on adipocyte glucose uptake. METHODS Human subcutaneous adipose tissue was treated for 24 or 72 h with environmentally-relevant and supraphysiological concentrations of BPA or BPS (1-104 nM). Following exposure, gene expression of proinflammatory cytokines, adipokines, and estrogen receptors was measured in adipose tissue. Glucose uptake and the insulin signalling pathway were analyzed in isolated adipocytes following adipose tissue culture with BPA for 24 h. RESULTS Adipose tissue treated with BPA for 24 h had reduced expression of the proinflammatory genes (IL6, IL1B, TNFA) and adipokines (ADIPOQ, FABP4). BPA and BPS had no effect on the expression of other proinflammatory genes (IL33), adipokines (LEP), or receptors (ESR1, ESR2) after 72-h exposure. Adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h had reduced insulin-stimulated glucose uptake, without altered gene and protein levels of key insulin signalling pathway markers. CONCLUSIONS We found that human adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h, but not BPS, reduced expression of proinflammatory genes and adipokines. Furthermore, BPA reduced glucose uptake in adipocytes independently of insulin signalling. Such mechanisms can contribute to the development of insulin resistance associated with BPA exposure.
Collapse
Affiliation(s)
- Fozia Ahmed
- Institut du Savoir Montfort-recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Assel Sarsenbayeva
- Clinical Diabetes and Metabolism, Department of Medical Sciences, Uppsala University, Rudbecklaboratoriet hus R3, våning 2, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Petros Katsogiannos
- Clinical Diabetes and Metabolism, Department of Medical Sciences, Uppsala University, Rudbecklaboratoriet hus R3, våning 2, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden
| | - Céline Aguer
- Institut du Savoir Montfort-recherche, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
| | - Maria J Pereira
- Clinical Diabetes and Metabolism, Department of Medical Sciences, Uppsala University, Rudbecklaboratoriet hus R3, våning 2, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden.
| |
Collapse
|
36
|
Dassonvalle J, Díaz-Castro F, Donoso-Barraza C, Sepúlveda C, Pino-de la Fuente F, Pino P, Espinosa A, Chiong M, Llanos M, Troncoso R. Moderate Aerobic Exercise Training Prevents the Augmented Hepatic Glucocorticoid Response Induced by High-Fat Diet in Mice. Int J Mol Sci 2020; 21:ijms21207582. [PMID: 33066464 PMCID: PMC7590042 DOI: 10.3390/ijms21207582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are critical regulators of energy balance. Their deregulation is associated with the development of obesity and metabolic syndrome. However, it is not understood if obesity alters the tissue glucocorticoid receptor (GR) response, and moreover whether a moderate aerobic exercise prevents the alteration in GR response induced by obesity. Methods: To evaluate the GR response in obese mice, we fed C57BL6J mice with a high-fat diet (HFD) for 12 weeks. Before mice were sacrificed, we injected them with dexamethasone. To assess the exercise role in GR response, we fed mice an HFD and subjected them to moderate aerobic exercise three times a week. Results: We found that mice fed a high-fat diet for 12 weeks developed hepatic GC hypersensitivity without changes in the gastrocnemius or epididymal fat GR response. Therefore, moderate aerobic exercise improved glucose tolerance, increased the corticosterone plasma levels, and prevented hepatic GR hypersensitivity with an increase in epididymal fat GR response. Conclusion: Collectively, our results suggest that mice with HFD-induced obesity develop hepatic GR sensitivity, which could enhance the metabolic effects of HFD in the liver. Moreover, exercise was found to be a feasible non-pharmacological strategy to prevent the deregulation of GR response in obesity.
Collapse
Affiliation(s)
- Jonatan Dassonvalle
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
| | - Francisco Díaz-Castro
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
| | - Camila Donoso-Barraza
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
| | - Carlos Sepúlveda
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
| | - Francisco Pino-de la Fuente
- Departamento de Tecnología Medica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (A.E.)
| | - Pamela Pino
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
| | - Alejandra Espinosa
- Departamento de Tecnología Medica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (F.P.-d.l.F.); (A.E.)
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile;
| | - Miguel Llanos
- Laboratorio de Nutrición y Regulación Metabólica, INTA, Universidad de Chile, Santiago 7830490, Chile;
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnologia de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (J.D.); (F.D.-C.); (C.D.-B.); (C.S.); (P.P.)
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile;
- Correspondence: ; Tel.: +56-929-781-587
| |
Collapse
|
37
|
Willmer T, Goedecke JH, Dias S, Louw J, Pheiffer C. DNA methylation of FKBP5 in South African women: associations with obesity and insulin resistance. Clin Epigenetics 2020; 12:141. [PMID: 32958048 PMCID: PMC7507280 DOI: 10.1186/s13148-020-00932-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruption of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine system associated with the stress response, has been hypothesized to contribute to obesity development. This may be mediated through epigenetic modulation of HPA axis-regulatory genes in response to metabolic stressors. The aim of this study was to investigate adipose tissue depot-specific DNA methylation differences in the glucocorticoid receptor (GR) and its co-chaperone, FK506-binding protein 51 kDa (FKBP5), both key modulators of the HPA axis. METHODS Abdominal subcutaneous adipose tissue (ASAT) and gluteal subcutaneous adipose tissue (GSAT) biopsies were obtained from a sample of 27 obese and 27 normal weight urban-dwelling South African women. DNA methylation and gene expression were measured by pyrosequencing and quantitative real-time PCR, respectively. Spearman's correlation coefficients, orthogonal partial least-squares discriminant analysis and multivariable linear regression were performed to evaluate the associations between DNA methylation, messenger RNA (mRNA) expression and key indices of obesity and metabolic dysfunction. RESULTS Two CpG dinucleotides within intron 7 of FKBP5 were hypermethylated in both ASAT and GSAT in obese compared to normal weight women, while no differences in GR methylation were observed. Higher percentage methylation of the two FKBP5 CpG sites correlated with adiposity (body mass index and waist circumference), insulin resistance (homeostasis model for insulin resistance, fasting insulin and plasma adipokines) and systemic inflammation (c-reactive protein) in both adipose depots. GR and FKBP5 mRNA levels were lower in GSAT, but not ASAT, of obese compared to normal weight women. Moreover, FKBP5 mRNA levels were inversely correlated with DNA methylation and positively associated with adiposity, metabolic and inflammatory parameters. CONCLUSIONS These findings associate dysregulated FKBP5 methylation and mRNA expression with obesity and insulin resistance in South African women. Additional studies are required to assess the longitudinal association of FKBP5 with obesity and associated co-morbidities in large population-based samples.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - Julia H Goedecke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Boundary Road, Newlands, 7700, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
38
|
Starvaggi Cucuzza L, Pregel P, Biolatti B, Cannizzo FT. FKBP5 gene expression in skeletal muscle as a potential biomarker for illegal glucocorticoid treatment in veal calves. Res Vet Sci 2020; 133:157-162. [PMID: 32992127 DOI: 10.1016/j.rvsc.2020.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
For the current European legislation, the chemical analysis of drug residues is the exclusive accepted method to identify animals illicitly treated with growth promoters. Glucocorticoids and their metabolites are no detectable by LC/MS-MS methods in biological fluids when the growth promoter administration is discontinued several days prior to the slaughtering. The aim of this study was to elucidate the effect on the expression of genes belonging to the glucocorticoid pathway in three types of skeletal muscle of calves treated with prednisolone or dexamethasone in combination with estradiol. A gene expression change of glucocorticoid receptors (NR3C1 and NR3C2), their chaperones molecules (FKBP prolyl isomerase 4 and 5, FKBP4 and 5) and pre-receptor system (hydroxysteroid 11-beta dehydrogenases 1 and 2, HSD11B1 and 2) may indicate potential biomarkers of glucocorticoid treatment. In the biceps brachii muscle, the administration of dexamethasone with estradiol increased HSD11B2 (P < 0.01) and NR3C2 (P < 0.01) gene expression, whereas prednisolone administration increased HSD11B1 transcript levels (P < 0.05). In the longissimus lumborum muscle, NR3C2 gene expression decreased following prednisolone administration (P < 0.05). FKBP5 gene expression decreased in all considered muscles of calves administered with dexamethasone and estradiol (P < 0.01), whereas increased in the longissimus lumborum (P < 0.01) and vastus lateralis (P < 0.05) muscle of prednisolone-treated group (P < 0.05). The opposite effect of dexamethasone and prednisolone appears very promising to develop a low-cost screening test, because the expression analysis of a unique gene in a given tissue may distinguish the dispensed molecules.
Collapse
Affiliation(s)
- Laura Starvaggi Cucuzza
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Paola Pregel
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Bartolomeo Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | | |
Collapse
|
39
|
Starvaggi Cucuzza L, Divari S, Biolatti B, Cannizzo FT. Expression of corticosteroid hormone receptors, prereceptors, and molecular chaperones in hypothalamic-pituitary-adrenal axis and adipose tissue after the administration of growth promoters in veal calves. Domest Anim Endocrinol 2020; 72:106473. [PMID: 32361423 DOI: 10.1016/j.domaniend.2020.106473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/14/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
Abstract
The action of glucocorticoids on target tissues is regulated by the glucocorticoid and mineralocorticoid receptors (codified by the NR3C1 and NR3C2 gene, respectively). Moreover, the prereceptor system, represented by the hydroxysteroid 11-beta dehydrogenases (HSD11Bs), catalyzes the interconversion from active glucocorticoids into inactive compounds. This study aimed to determine whether the expression of the prereceptor system, the corticosteroid receptors, and the molecules regulating their intracellular trafficking (FKBP prolyl isomerase 4 and FKBP prolyl isomerase 5) could be regulated in the hypothalamic-pituitary-adrenal axis and in different type of adipose tissue of calves by the administration of dexamethasone in combination with estradiol or prednisolone. Research about the glucocorticoid effects on bovine target tissues may allow development of new diagnostic methods that use potential molecular biomarkers of glucocorticoid treatment. The administration of dexamethasone in combination with estradiol increased the gene expression of HSD11B1 (P < 0.01), HSD11B2 (P < 0.05), NR3C1 (P < 0.01), and NR3C2 (P < 0.01) in the adrenal glands; NR3C2 in the intramuscular adipose tissue (P < 0.01), and HSD11B1 in the subcutaneous adipose tissue (P < 0.01). Prednisolone administration increased the gene expression of HSD11B1 (P < 0.01), NR3C1 (P < 0.05), and NR3C2 (P < 0.05) in the adrenal glands and HSD11B1 (P < 0.01) in the subcutaneous adipose tissue. Interestingly, most of the examined tissues/organs showed a significant variation of FKBP5 gene expression after the administration of dexamethasone in combination with estradiol. So, these changes suggest that the FKBP5 gene expression could be a possible biomarker of the illegal dexamethasone administration in calves.
Collapse
Affiliation(s)
- L Starvaggi Cucuzza
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - S Divari
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - B Biolatti
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - F T Cannizzo
- Dipartimento di Scienze Veterinarie, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
40
|
Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: Deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 2020; 10:10565. [PMID: 32601291 PMCID: PMC7324390 DOI: 10.1038/s41598-020-67293-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/21/2020] [Indexed: 01/04/2023] Open
Abstract
CRISPR/Cas9 has revolutionized the genome-editing field. So far, successful application in human adipose tissue has not been convincingly shown. We present a method for gene knockout using electroporation in preadipocytes from human adipose tissue that achieved at least 90% efficiency without any need for selection of edited cells or clonal isolation. We knocked out the FKBP5 and PPARG genes in preadipocytes and studied the resulting phenotypes. PPARG knockout prevented differentiation into adipocytes. Conversely, deletion of FKBP51, the protein coded by the FKBP5 gene, did not affect adipogenesis. Instead, it markedly modulated glucocorticoid effects on adipocyte glucose metabolism and, furthermore, we show some evidence of altered transcriptional activity of glucocorticoid receptors. This has potential implications for the development of insulin resistance and type 2 diabetes. The reported method is simple, easy to adapt, and enables the use of human primary preadipocytes instead of animal adipose cell models to assess the role of key genes and their products in adipose tissue development, metabolism and pathobiology.
Collapse
|
41
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Weber B, Maier A, Buchner J. Peptides in proteins. J Pept Sci 2019; 26:e3235. [PMID: 31867828 DOI: 10.1002/psc.3235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/18/2022]
Abstract
During evolution C-terminal peptide extensions were added to proteins on the gene level. These convey additional functions such as interaction with partner proteins or oligomerisation. IgM antibodies and molecular chaperones are two prominent examples discussed.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Andreas Maier
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
43
|
Selvaraj S, Mondragon-Gonzalez R, Xu B, Magli A, Kim H, Lainé J, Kiley J, Mckee H, Rinaldi F, Aho J, Tabti N, Shen W, Perlingeiro RCR. Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. eLife 2019; 8:e47970. [PMID: 31710288 PMCID: PMC6845233 DOI: 10.7554/elife.47970] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/29/2019] [Indexed: 01/14/2023] Open
Abstract
Targeted differentiation of pluripotent stem (PS) cells into myotubes enables in vitro disease modeling of skeletal muscle diseases. Although various protocols achieve myogenic differentiation in vitro, resulting myotubes typically display an embryonic identity. This is a major hurdle for accurately recapitulating disease phenotypes in vitro, as disease commonly manifests at later stages of development. To address this problem, we identified four factors from a small molecule screen whose combinatorial treatment resulted in myotubes with enhanced maturation, as shown by the expression profile of myosin heavy chain isoforms, as well as the upregulation of genes related with muscle contractile function. These molecular changes were confirmed by global chromatin accessibility and transcriptome studies. Importantly, we also observed this maturation in three-dimensional muscle constructs, which displayed improved in vitro contractile force generation in response to electrical stimulus. Thus, we established a model for in vitro muscle maturation from PS cells.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
| | - Ricardo Mondragon-Gonzalez
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)Ciudad de MéxicoMexico
| | - Bin Xu
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUnited States
| | - Alessandro Magli
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
- Stem Cell InstituteUniversity of MinnesotaMinneapolisUnited States
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
| | - Jeanne Lainé
- Département de PhysiologieSorbonne Universités, Faculté de Médecine site Pitié-SalpêtrièreParisFrance
| | - James Kiley
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
| | - Holly Mckee
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
| | | | - Joy Aho
- Stem Cell DepartmentBio-TechneMinneapolisUnited States
| | - Nacira Tabti
- Département de PhysiologieSorbonne Universités, Faculté de Médecine site Pitié-SalpêtrièreParisFrance
| | - Wei Shen
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUnited States
- Stem Cell InstituteUniversity of MinnesotaMinneapolisUnited States
| | - Rita CR Perlingeiro
- Lillehei Heart Institute, Department of MedicineUniversity of MinnesotaMinneapolisUnited States
- Stem Cell InstituteUniversity of MinnesotaMinneapolisUnited States
| |
Collapse
|
44
|
Häusl AS, Balsevich G, Gassen NC, Schmidt MV. Focus on FKBP51: A molecular link between stress and metabolic disorders. Mol Metab 2019; 29:170-181. [PMID: 31668388 PMCID: PMC6812026 DOI: 10.1016/j.molmet.2019.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Obesity, Type 2 diabetes (T2D) as well as stress-related disorders are rising public health threats and major burdens for modern society. Chronic stress and depression are highly associated with symptoms of the metabolic syndrome, but the molecular link is still not fully understood. Furthermore, therapies tackling these biological disorders are still lacking. The identification of shared molecular targets underlying both pathophysiologies may lead to the development of new treatments. The FK506 binding protein 51 (FKBP51) has recently been identified as a promising therapeutic target for stress-related psychiatric disorders and obesity-related metabolic outcomes. SCOPE OF THE REVIEW The aim of this review is to summarize current evidence of in vitro, preclinical, and human studies on the stress responsive protein FKBP51, focusing on its newly discovered role in metabolism. Also, we highlight the therapeutic potential of FKBP51 as a new treatment target for symptoms of the metabolic syndrome. MAJOR CONCLUSIONS We conclude the review by emphasizing missing knowledge gaps that remain and future research opportunities needed to implement FKBP51 as a drug target for stress-related obesity or T2D.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| | - Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Ab T2N 4N1, Canada
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, 53127, Bonn, Germany; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
45
|
Hähle A, Geiger TM, Merz S, Meyners C, Tianqi M, Kolos J, Hausch F. FKBP51 and FKBP12.6-Novel and tight interactors of Glomulin. PLoS One 2019; 14:e0221926. [PMID: 31490997 PMCID: PMC6730887 DOI: 10.1371/journal.pone.0221926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022] Open
Abstract
The protein factor Glomulin (Glmn) is a regulator of the SCF (Skp1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex. Mutations of Glmn lead to glomuvenous malformations. Glmn has been reported to be associated with FK506-binding proteins (FKBP). Here we present in vitro binding analyses of the FKBP—Glmn interaction. Interestingly, the previously described interaction of Glmn and FKBP12 was found to be comparatively weak. Instead, the closely related FKBP12.6 and FKBP51 emerged as novel binding partners. We show different binding affinities of full length and truncated FKBP51 and FKBP52 mutants. Using FKBP51 as a model system, we show that two amino acids lining the FK506-binding site are essential for binding Glmn and that the FKBP51-Glmn interaction is blocked by FKBP ligands. This data suggest FKBP inhibition as a pharmacological approach to regulate Glmn and Glmn-controlled processes.
Collapse
Affiliation(s)
- Andreas Hähle
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Thomas M. Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stephanie Merz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Meyners
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Mao Tianqi
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Kolos
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
46
|
Hayashi R, Okuno Y, Mukai K, Kitamura T, Hayakawa T, Onodera T, Murata M, Fukuhara A, Imamura R, Miyagawa Y, Nonomura N, Otsuki M, Shimomura I. Adipocyte GR Inhibits Healthy Adipose Expansion Through Multiple Mechanisms in Cushing Syndrome. Endocrinology 2019; 160:504-521. [PMID: 30649271 DOI: 10.1210/en.2018-01029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022]
Abstract
In Cushing syndrome, excessive glucocorticoids lead to metabolic disturbances, such as insulin resistance, adipocyte hypertrophy, and liver steatosis. In vitro experiments have highlighted the importance of adipocyte glucocorticoid receptor (GR), but its metabolic roles in vivo have not been fully elucidated in Cushing syndrome. In this study, using clinical samples from patients with Cushing syndrome and adipocyte-specific GR knockout (AGRKO) mice, we investigated the roles of adipocyte GR and its clinical relevance in Cushing syndrome. Under chronic treatment with corticosterone, AGRKO mice underwent healthy adipose expansion with diminished ectopic lipid deposition and improved insulin sensitivity. These changes were associated with Atgl-mediated lipolysis through a novel intronic glucocorticoid-responsive element. Additionally, integrated analysis with RNA sequencing of AGRKO mice and clinical samples revealed that healthy adipose expansion was associated with dysregulation of tissue remodeling, preadipocyte proliferation, and expression of the circadian gene. Thus, our study revealed the roles of adipocyte GR on healthy adipose expansion and its multiple mechanisms in Cushing syndrome.
Collapse
Affiliation(s)
- Reiko Hayashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Okuno
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Mukai
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuhiro Kitamura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Hayakawa
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiharu Onodera
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiko Murata
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Abstract
The FK506-binding protein 51 (FKBP51) has emerged as a key regulator of endocrine stress responses in mammals and as a potential therapeutic target for stress-related disorders (depression, post-traumatic stress disorder), metabolic disorders (obesity and diabetes) and chronic pain. Recently, FKBP51 has been implicated in several cellular pathways and numerous interacting protein partners have been reported. However, no consensus on the underlying molecular mechanisms has yet emerged. Here, we review the protein interaction partners reported for FKBP51, the proposed pathways involved, their relevance to FKBP51’s physiological function(s), the interplay with other FKBPs, and implications for the development of FKBP51-directed drugs.
Collapse
|
48
|
Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018; 9:1425. [PMID: 30568592 PMCID: PMC6290070 DOI: 10.3389/fphar.2018.01425] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, many members of the FK506-binding protein (FKBP) family were increasingly linked to various diseases. The binding domain of FKBPs differs only in a few amino acid residues, but their biological roles are versatile. High-affinity ligands with selectivity between close homologs are scarce. This review will give an overview of the most prominent ligands developed for FKBPs and highlight a perspective for future developments. More precisely, human FKBPs and correlated diseases will be discussed as well as microbial FKBPs in the context of anti-bacterial and anti-fungal therapeutics. The last section gives insights into high-affinity ligands as chemical tools and dimerizers.
Collapse
Affiliation(s)
| | | | | | - Felix Hausch
- Department of Chemistry, Institute of Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
49
|
Sidibeh CO, Pereira MJ, Abalo XM, J Boersma G, Skrtic S, Lundkvist P, Katsogiannos P, Hausch F, Castillejo-López C, Eriksson JW. FKBP5 expression in human adipose tissue: potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. Endocrine 2018; 62:116-128. [PMID: 30032404 PMCID: PMC6153563 DOI: 10.1007/s12020-018-1674-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Here, we explore the involvement of FKBP51 in glucocorticoid-induced insulin resistance (IR) in human subcutaneous adipose tissue (SAT), including its potential role in type 2 diabetes (T2D). Moreover, we assess the metabolic effects of reducing the activity of FKBP51 using the specific inhibitor SAFit1. METHODS Human SAT was obtained by needle biopsies of the lower abdominal region. FKBP5 gene expression was assessed in fresh SAT explants from a cohort of 20 T2D subjects group-wise matched by gender, age and BMI to 20 non-diabetic subjects. In addition, human SAT was obtained from non-diabetic volunteers (20F/9M). SAT was incubated for 24 h with or without the synthetic glucocorticoid dexamethasone and SAFit1. Incubated SAT was used to measure the glucose uptake rate in isolated adipocytes. RESULTS FKBP5 gene expression levels in SAT positively correlated with several indices of IR as well as glucose area under the curve during oral glucose tolerance test (r = 0.33, p < 0.05). FKBP5 gene expression levels tended to be higher in T2D subjects compared to non-diabetic subjects (p = 0.088). Moreover, FKBP5 gene expression levels were found to inversely correlate with lipolytic, lipogenic and adipogenic genes. SAFit1 partly prevented the inhibitory effects of dexamethasone on glucose uptake. CONCLUSIONS FKBP5 gene expression in human SAT tends to be increased in T2D subjects and is related to elevated glucose levels. Moreover, FKBP5 gene expression is inversely associated with the expression of lipolytic, lipogenic and adipogenic genes. SAFit1 can partly prevent glucose uptake impairment by glucocorticoids, suggesting that FKBP51 might be a key factor in glucocorticoid-induced IR.
Collapse
Affiliation(s)
- Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Xesus M Abalo
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gretha J Boersma
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Lundkvist
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Felix Hausch
- Institute of Organic Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
50
|
Type 2 diabetes and cardiometabolic risk may be associated with increase in DNA methylation of FKBP5. Clin Epigenetics 2018; 10:82. [PMID: 29951131 PMCID: PMC6010037 DOI: 10.1186/s13148-018-0513-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background Subclinical hypercortisolism and hypothalamic-pituitary-adrenal (HPA) axis dysfunction are associated with type 2 diabetes (T2DM), cardiovascular disease, and metabolic dysfunction. Intronic methylation of FKBP5 has been implicated as a potential indicator of chronic cortisol exposure. Our overall objective in this study was to determine the association of chronic cortisol exposure, measured via percent methylation of FKBP5 at intron 2, with percent glycosylated hemoglobin (HbA1c), low-density lipoprotein cholesterol (LDL-cholesterol), waist circumference (WC), and body mass index (BMI), in a clinic-based sample of 43 individuals with T2DM. Results Greater percent methylation of the FKBP5 intron 2 at one CpG-dinucleotide region was significantly associated with higher HbA1c (β = 0.535, p = 0.003) and LDL cholesterol (β = 0.344, p = 0.037) and a second CpG-dinucleotide region was significantly associated with higher BMI and WC (β = 0.516, p = 0.001; β = 0.403, p = 0.006, respectively). Conclusions FKBP5 methylation may be a marker of higher metabolic risk in T2DM, possibly secondary to higher exposure to cortisol. Further work should aim to assess the longitudinal association of FKBP5 with cardiovascular disease and glycemic outcomes in T2DM as a first step in understanding potential preventive and treatment-related interventions targeting the HPA axis.
Collapse
|