1
|
Gross DC, Cheever CR, Batsis JA. Understanding the development of sarcopenic obesity. Expert Rev Endocrinol Metab 2023; 18:469-488. [PMID: 37840295 PMCID: PMC10842411 DOI: 10.1080/17446651.2023.2267672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Sarcopenic obesity (SarcO) is defined as the confluence of reduced muscle mass and function and excess body fat. The scientific community is increasingly recognizing this syndrome, which affects a subgroup of persons across their lifespans and places them at synergistically higher risk of significant medical comorbidity and disability than either sarcopenia or obesity alone. Joint efforts in clinical and research settings are imperative to better understand this syndrome and drive the development of urgently needed future interventions. AREAS COVERED Herein, we describe the ongoing challenges in defining sarcopenic obesity and the current state of the science regarding its epidemiology and relationship with adverse events. The field has demonstrated an emergence of data over the past decade which we will summarize in this article. While the etiology of sarcopenic obesity is complex, we present data on the underlying pathophysiological mechanisms that are hypothesized to promote its development, including age-related changes in body composition, hormonal changes, chronic inflammation, and genetic predisposition. EXPERT OPINION We describe emerging areas of future research that will likely be needed to advance this nascent field, including changes in clinical infrastructure, an enhanced understanding of the lifecourse, and potential treatments.
Collapse
Affiliation(s)
- Danae C. Gross
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - C. Ray Cheever
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John A. Batsis
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Geriatric Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Beier UH, Baker DJ, Baur JA. Thermogenic T cells: a cell therapy for obesity? Am J Physiol Cell Physiol 2022; 322:C1085-C1094. [PMID: 35476503 PMCID: PMC9169824 DOI: 10.1152/ajpcell.00034.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Obesity is a widespread public health problem with profound medical consequences and its burden is increasing worldwide. Obesity causes significant morbidity and mortality and is associated with conditions including cardiovascular disease and diabetes mellitus. Conventional treatment options are insufficient, or in the case of bariatric surgery, quite invasive. The etiology of obesity is complex, but at its core is often a caloric imbalance with an inability to burn off enough calories to exceed caloric intake, resulting in storage. Interventions such as dieting often lead to decreased resting energy expenditure (REE), with a rebound in weight ("yo-yo effect" or weight cycling). Strategies that increase REE are attractive treatment options. Brown fat tissue engages in nonshivering thermogenesis whereby mitochondrial respiration is uncoupled from ATP production, increasing REE. Medications that replicate brown fat metabolism by mitochondrial uncoupling (e.g., 2,4-dinitrophenol) effectively promote weight loss but are limited by toxicity to a narrow therapeutic range. This review explores the possibility of a new therapeutic approach to engineer autologous T cells into acquiring a thermogenic phenotype like brown fat. Engineered autologous T cells have been used successfully for years in the treatment of cancers (chimeric antigen receptor T cells), and the principle of engineering T cells ex vivo and transferring them back to the patient is established. Engineering T cells to acquire a brown fat-like metabolism could increase REE without the risks of pharmacological mitochondrial uncoupling. These thermogenic T cells may increase basal metabolic rate and are therefore a potentially novel therapeutic strategy for obesity.
Collapse
Affiliation(s)
- Ulf H Beier
- Janssen Research and Development, Spring House, Pennsylvania
| | - Daniel J Baker
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A Baur
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Huo DL, Bao MH, Cao J, Zhao ZJ. Cold exposure prevents fat accumulation in striped hamsters refed a high-fat diet following food restriction. BMC ZOOL 2022; 7:19. [PMID: 37170304 PMCID: PMC10127302 DOI: 10.1186/s40850-022-00122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In mammals, body mass lost during food restriction is often rapidly regained, and fat is accumulated when ad libitum feeding is resumed. Studies in small cold-acclimated mammals have demonstrated significant mobilization of fat deposits during cold exposure to meet the energy requirements of metabolic thermogenesis. However, no studies to our knowledge have examined the effect of cold exposure on fat accumulation during body mass recovery when refed ad libitum. In this study, striped hamsters restricted to 80% of their regular food intake were then refed ad libitum and exposed to one of three conditions: Intermittent cold temperature (5 °C) for 2 h per day (ICE-2 h/d), intermittent cold temperature (5 °C) for 12 h per day (ICE-12 h/d), or persistent cold exposure (PCE) for four weeks. We measured energy intake, fat deposit mass, serum thyroid hormone levels, and uncoupling protein 1 expression in brown adipose tissue.
Results
There was no significant effect of intermittent or persistent cold exposure on body mass regain, whereas energy intake increased significantly and total fat deposit decreased in the ICE-12 h/d and PCE groups compared to the ICE-2 h/d group and control group maintained at 23 °C (CON). In the ICE-12 h/d and PCE groups, hamsters had 39.6 and 38.3% higher serum 3,3′,5-triiodothyronine levels, respectively, and 81.6 and 71.3% up-regulated expression of uncoupling protein 1, respectively, in brown adipose tissue compared to their counterparts in the CON group. The rate of mitochondrial state III and state IV respiration O2 consumption and the activity of cytochrome c oxidase in BAT and liver were significantly higher in the ICE-12 h/d and PCE groups than in the ICE-2 h/d and CON groups.
Conclusions
Our findings suggest thyroid hormone-mediated heat production in brown adipose tissue and liver may be involved in preventing fat accumulation during refeeding in animals frequently or persistently exposed to cold conditions.
Collapse
|
4
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Abstract
The observation that 64% of English adults are overweight or obese despite a rising prevalence in weight-loss attempts suggests our understanding of energy balance is fundamentally flawed. Weight-loss is induced through a negative energy balance; however, we typically view weight change as a static function, in that energy intake and energy expenditure are independent variables, resulting in a fixed rate of weight-loss assuming a constant energy deficit. Such static modelling provides the basis for the clinical assumption that a 14644 kJ (3500 kcal) deficit translates to a 1 lb weight-loss. However, this '3500 kcal (14644 kJ) rule' is consistently shown to significantly overestimate weight-loss. Static modelling disregards obligatory changes in energy expenditure associated with the loss of metabolically active tissue, i.e. skeletal muscle. Additionally, it disregards the presence of adaptive thermogenesis, the underfeeding-associated fall in resting energy expenditure beyond that caused by loss of fat-free mass. This metabolic manipulation of energy expenditure is observed from the onset of energy restriction to maintain weight at a genetically pre-determined set point. As a result, the observed magnitude of weight-loss is disproportionally less, followed by earlier weight plateau, despite strict compliance to a dietary intervention. By simulating dynamic changes in energy expenditure associated with underfeeding, mathematical modelling may provide a more accurate method of weight-loss prediction. However, accuracy at an individual level is limited due to difficulty estimating energy requirements, physical activity and dietary intake in free-living individuals. In the present paper, we aim to outline the contribution of dynamic changes in energy expenditure to weight-loss resistance and weight plateau.
Collapse
|
6
|
Dulloo AG. Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes Rev 2021; 22 Suppl 2:e13189. [PMID: 33543573 DOI: 10.1111/obr.13189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Since its publication in 1950, the Biology of Human Starvation, which describes the classic longitudinal Minnesota Experiment of semistarvation and refeeding in healthy young men, has been the undisputed source of scientific reference about the impact of long-term food deprivation on human physiology and behavior. It has been a guide in developing famine and refugee relief programs for international agencies, in exploring the effects of food deprivation on the cognitive and social functioning of those with anorexia nervosa and bulimia nervosa, and in gaining insights into metabolic adaptations that undermine obesity therapy and cachexia rehabilitation. In more recent decades, the application of a systems approach to the analysis of its data on longitudinal changes in body composition, basal metabolic rate, and food intake during the 24 weeks of semistarvation and 20 weeks of refeeding has provided rare insights into the multitude of control systems that govern the regulation of body composition during weight regain. These have underscored an internal (autoregulatory) control of lean-fat partitioning (highly sensitive to initial adiposity), which operates during weight loss and weight regain and revealed the existence of feedback loops between changes in body composition and the control of food intake and adaptive thermogenesis for the purpose of accelerating the recovery of fat mass and fat-free mass. This paper highlights the general features and design of this grueling experiment of simulated famine that has allowed the unmasking of fundamental control systems in human body composition autoregulation. The integration of its outcomes constitutes the "famine reactions" that drive the normal physiology of weight regain and obesity relapse and provides a mechanistic "autoregulation-based" explanation of how dieting and weight cycling, transition to sedentarity, or developmental programming may predispose to obesity. It also provides a system physiology framework for research toward elucidating proteinstatic and adipostatic mechanisms that control hunger-appetite and adaptive thermogenesis, with major implications for a better understanding (and management) of cachexia, obesity, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Kim KJ, Jeong ES, Lee KH, Na JR, Park S, Kim JS, Na CS, Kim YR, Kim S. Unripe Rubus coreanus Miquel Extract Containing Ellagic Acid Promotes Lipolysis and Thermogenesis In Vitro and In Vivo. Molecules 2020; 25:molecules25245954. [PMID: 33339214 PMCID: PMC7766442 DOI: 10.3390/molecules25245954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, we demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) and ellagic acid has hypocholesterolemic and antiobesity activity, at least partially mediated by the downregulation of adipogenic and lipogenic gene expression in high-fat diet (HFD)-fed animals. The present study investigated the thermogenic and lipolytic antiobesity effects of 5-uRCK and ellagic acid in HFD-induced obese C57BL/6 mice and explored its mechanism of action. Mice fed an HFD received 5-uRCK or ellagic acid as a post-treatment or pretreatment. Both post-treated and pretreated mice showed significant reductions in body weight and adipose tissue mass compared to the HFD-fed mice. The protein levels of lipolysis-associated proteins, such as adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and perilipin1 (PLIN1), were significantly increased in both the 5-uRCK- and ellagic acid-treated mouse epididymal white adipose tissue (eWAT). Additionally, thermogenesis-associated proteins, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transferase-1 (CPT1), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), in inguinal white adipose tissue (ingWAT) were clearly increased in both the 5-uRCK- and ellagic acid-treated mice compared to HFD-fed mice. These results suggest that 5-uRCK and ellagic acid are effective for suppressing body weight gain and enhancing the lipid profile.
Collapse
Affiliation(s)
- Kyeong Jo Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Eui-Seon Jeong
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Ju-Ryun Na
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Soyi Park
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Korea;
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
- Correspondence: (Y.R.K.); (S.K.); Tel.: +82-(62)-528-2201 (S.K.); Fax: +82-(62)-528-2202 (S.K.)
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
- Correspondence: (Y.R.K.); (S.K.); Tel.: +82-(62)-528-2201 (S.K.); Fax: +82-(62)-528-2202 (S.K.)
| |
Collapse
|
8
|
Sung YY, Son E, Im G, Kim DS. Herbal Combination of Phyllostachys pubescens and Scutellaria baicalensis Inhibits Adipogenesis and Promotes Browning via AMPK Activation in 3T3-L1 Adipocytes. PLANTS 2020; 9:plants9111422. [PMID: 33114092 PMCID: PMC7690821 DOI: 10.3390/plants9111422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
To investigate the anti-obesity effects and underlying mechanism of BS21, a combination of Phyllostachys pubescens leaves and Scutellaria baicalensis roots was used to investigate the effects of BS21 on adipogenesis, lipogenesis, and browning in 3T3-L1 adipocytes. The expression of adipocyte-specific genes was observed via Western blot, and the BS21 chemical profile was analyzed using ultra-performance liquid chromatography (UPLC). BS21 treatment inhibited adipocyte differentiation and reduced the expression of the adipogenic proteins peroxisome proliferator-activated receptor γ (PPAR-γ), CCAAT/enhancer-binding protein (C/EBP-α), and adipocyte protein 2 (aP2), as well as the lipogenic proteins sterol regulatory element-binding protein 1c (SREBP-1c) and fatty-acid synthase (FAS). BS21 enhanced protein levels of the beta-oxidation genes carnitine palmitoyltransferase (CPT1) and phospho-acetyl-coA carboxylase (p-ACC). BS21 also induced protein expressions of the browning marker genes PR domain containing 16 (PRDM16), peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1α), and uncoupling protein (UCP) 1, and it induced the expression of the thermogenic gene UCP2. Furthermore, BS21 increased adenosine monophosphate-activated protein kinase (AMPK) activation. UPLC analysis showed that BS21 contains active constituents such as chlorogenic acid, orientin, isoorientin, baicalin, wogonoside, baicalein, tricin, wogonin, and chrysin. Our findings demonstrate that BS21 plays a modulatory role in adipocytes by reducing adipogenesis and lipogenesis, increasing fat oxidation, and inducing browning.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (Y.-Y.S.); (E.S.)
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (Y.-Y.S.); (E.S.)
| | - Gayoung Im
- Nova K Med Co., Ltd., 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea; (Y.-Y.S.); (E.S.)
- Correspondence: ; Tel.: +82-42-868-9639
| |
Collapse
|
9
|
Choi BR, Kim HJ, Lee YJ, Ku SK. Anti-Diabetic Obesity Effects of Wasabia Japonica Matsum Leaf Extract on 45% Kcal High-Fat Diet-Fed Mice. Nutrients 2020; 12:nu12092837. [PMID: 32947952 PMCID: PMC7551095 DOI: 10.3390/nu12092837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
The present study examined the effects of Wasabi leaf (WL) on 45% Kcal high-fat diet (HFD)-fed mild diabetic obese mice. In particular, the hepatoprotective (i.e., liver weight, histopathology of liver, serum aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyltransferase) effects of 12 weeks of continuous oral administration of 250 mg/kg metformin, and 200, 100, or 50 mg/kg WL were investigated. In addition, the hypolipidemic (i.e., serum triglyceride, total cholesterol, high-density lipoprotein-cholesterol, and low-density lipoprotein levels), hypoglycemic (i.e., glycated hemoglobin, blood glucose and insulin levels, pancreatic weight, and immunohistochemical-histopathological analysis of the pancreas), and anti-obesity effects (i.e., body weight, mean food consumption, total and abdominal body fat mass, periovarian fat weight, and histopathology of the periovarian and abdominal wall adipocytes) were monitored. The liver and general antioxidant defense systems were also assessed by lipid metabolism-related gene expression. All diabetes manifestations and related complications, including obesity and non-alcoholic fatty liver disease (NAFLD), were dose-dependently reduced after 84 days of oral treatment with metformin or each of the three dosages of WL. In particular, 50 mg/kg WL showed effective suppression effects against HFD-induced diabetes and related complications of obesity, NAFLD, and hyperlipidemia, comparable to the effects of metformin.
Collapse
Affiliation(s)
- Beom-Rak Choi
- Research Institute, Nutracore Co., Ltd., Gwanggyo SK Viewlake A-3206, Beobjo-Ro 25, Yeongtong-Gu, Suwon, Gyeonggi-Do 16514, Korea;
| | - Hyun-Jee Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Korea;
| | - Young-Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, 1, Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Korea
- Correspondence: (Y.-J.L.); (S.-K.K.); Tel.: +82-53-819-1296 (Y.-J.L.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1, Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Korea
- Correspondence: (Y.-J.L.); (S.-K.K.); Tel.: +82-53-819-1296 (Y.-J.L.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
10
|
Kim KD, Jung HY, Ryu HG, Kim B, Jeon J, Yoo HY, Park CH, Choi BH, Hyun CK, Kim KT, Fang S, Yang SH, Kim JB. Betulinic acid inhibits high-fat diet-induced obesity and improves energy balance by activating AMPK. Nutr Metab Cardiovasc Dis 2019; 29:409-420. [PMID: 30799179 DOI: 10.1016/j.numecd.2018.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Metabolic syndromes are prevalent worldwide and result in various complications including obesity, cardiovascular disease and type II diabetes. Betulinic acid (BA) is a naturally occurring triterpenoid that has anti-inflammatory properties. We hypothesized that treatment with BA may result in decreased body weight gain, adiposity and hepatic steatosis in a diet-induced mouse model of obesity. METHODS AND RESULTS Mice fed a high-fat diet and treated with BA showed less weight gain and tissue adiposity without any change in calorie intake. Gene expression profiling of mouse tissues and cell lines revealed that BA treatment increased expression of lipid oxidative genes and decreased that of lipogenesis-related genes. This modulation was mediated by increased AMP-activated protein kinase (AMPK) phosphorylation, which facilitates energy expenditure, lipid oxidation and thermogenic capacity and exerts protective effects against obesity and nonalcoholic fatty liver disease. Overall, BA markedly inhibited the development of obesity and nonalcoholic fatty liver disease in mice fed a high-fat diet, and AMPK activation in various tissues and enhanced thermogenesis are two possible mechanisms underlying the antiobesity and antisteatogenic effects of BA. CONCLUSIONS The current findings suggest that treatment with BA is a potential dietary strategy for preventing obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- K-D Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea
| | - H-Y Jung
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - H G Ryu
- Department of Life Sciences, POSTECH, Pohang, Gyungbuk, South Korea
| | - B Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - J Jeon
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; R&D Center, NovMetaPharma Co., Ltd., Pohang, Gyungbuk, South Korea
| | - H Y Yoo
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea
| | - C H Park
- Mistle Biotech Co., Ltd., Pohang, Gyungbuk, South Korea
| | - B-H Choi
- Advanced Bio Convergence Center, Pohang Technopark, Pohang, Gyungbuk, South Korea
| | - C-K Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea
| | - K-T Kim
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, Gyungbuk, South Korea; Department of Life Sciences, POSTECH, Pohang, Gyungbuk, South Korea
| | - S Fang
- Severance Biomedical Science Institute, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S H Yang
- Kidney Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Seoul National University Biomedical Research Institute, Seoul, South Korea
| | - J-B Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk, South Korea; Mistle Biotech Co., Ltd., Pohang, Gyungbuk, South Korea.
| |
Collapse
|
11
|
Abstract
The prevalence of obesity in combination with sarcopenia (the age-related loss of muscle mass and strength or physical function) is increasing in adults aged 65 years and older. A major subset of adults over the age of 65 is now classified as having sarcopenic obesity, a high-risk geriatric syndrome predominantly observed in an ageing population that is at risk of synergistic complications from both sarcopenia and obesity. This Review discusses pathways and mechanisms leading to muscle impairment in older adults with obesity. We explore sex-specific hormonal changes, inflammatory pathways and myocellular mechanisms leading to the development of sarcopenic obesity. We discuss the evolution, controversies and challenges in defining sarcopenic obesity and present current body composition modalities used to assess this condition. Epidemiological surveys form the basis of defining its prevalence and consequences beyond comorbidity and mortality. Current treatment strategies, and the evidence supporting them, are outlined, with a focus on calorie restriction, protein supplementation and aerobic and resistance exercises. We also describe weight loss-induced complications in patients with sarcopenic obesity that are relevant to clinical management. Finally, we review novel and potential future therapies including testosterone, selective androgen receptor modulators, myostatin inhibitors, ghrelin analogues, vitamin K and mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- John A Batsis
- Sections of General Internal Medicine and Weight and Wellness, and the Dartmouth Centers for Health and Aging, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Geisel School of Medicine at Dartmouth, The Dartmouth Institute for Health Policy and Clinical Practice, The Health Promotion Research Center and the Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| | - Dennis T Villareal
- Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
12
|
A one-year resistance training program following weight loss has no significant impact on body composition and energy expenditure in postmenopausal women living with overweight and obesity. Physiol Behav 2018; 189:99-106. [DOI: 10.1016/j.physbeh.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
|
13
|
Shim EB, Leem CH, Kim JJ, Kim JY. Lower cellular metabolic power can be an explanation for obesity trend in Tae-Eum type: hypothesis and clinical observation. Integr Med Res 2017; 6:254-259. [PMID: 28951839 PMCID: PMC5605387 DOI: 10.1016/j.imr.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022] Open
Abstract
Background Those classified as Tae-Eum (TE)-type people in Sasang constitutional medicine (SCM) are prone to obesity. Although extensive clinical observations have confirmed this tendency, the underlying physiological mechanisms are unknown. Here, we propose a novel hypothesis using integrative physiology to explain this phenomenon. Methods Hypoactive lung function in the TE type indicates that respiration is attenuated at the cellular level—specifically, mitochondrial oxygen consumption. Because a functional reduction in cellular energy metabolism is suggestive of intrinsic hypoactivity in the consumption (or production) of metabolic energy, we reasoned that this tendency can readily cause weight gain via an increase in anabolism. Thus, this relationship can be derived from the graph of cellular metabolic power plotted against body weight. We analyzed the clinical data of 548 individuals to test this hypothesis. Results The statistical analysis revealed that the cellular metabolic rate was lower in TE-type individuals and that their percentage of obesity (body mass index >25) was significantly higher compared to other constitutional groups. Conclusion Lower cellular metabolic power can be an explanation for the obesity trend in TE type people.
Collapse
Affiliation(s)
- Eun Bo Shim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Korea
| | - Chae Hun Leem
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joong Jae Kim
- Research Institute of Medical Devices, Kangwon National University, Chuncheon, Korea
| | - Jong Yeol Kim
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The aim of this review is to describe and discuss weight loss-induced variations in appetite in women and factors responsible for these changes. RECENT FINDINGS Studies have shown postweight loss increases in fasting and postprandial appetite in individuals engaged in weight loss trials, especially in women. Similarly, appetite-related peptides associated to the homeostatic control of feeding, such as leptin, ghrelin and peptide YY, were also found to be altered in way that promotes increased appetite after weight loss interventions. Sustained caloric deficits also drive increases in the frequency and strength of food cravings, food reward and seem to enhance oro-sensory sensations in women who lost weight. The menstrual cycle has also been to shown to influence caloric intake in women, more specifically food cravings. On the other hand, caloric restriction seems to increase cognitive restraint, decrease habitual disinhibition and susceptibility to hunger among women engaged in weight loss trials. Neural analysis corroborates these results, showing increased activation in brain areas involved in food reward and self-control processing. In conclusion, evidence supports that weight loss increases appetite sensations, and promotes changes in homeostatic and non-homeostatic control of feeding, which collectively seem to upregulate appetite in women.
Collapse
Affiliation(s)
| | | | | | - Éric Doucet
- School of Human Kinetics, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
15
|
Sung YY, Kim DS, Kim SH, Kim HK. Anti-obesity activity, acute toxicity, and chemical constituents of aqueous and ethanol Viola mandshurica extracts. Altern Ther Health Med 2017; 17:297. [PMID: 28587677 PMCID: PMC5461766 DOI: 10.1186/s12906-017-1810-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/26/2017] [Indexed: 11/22/2022]
Abstract
Background Viola mandshurica has traditionally been used as an expectorant, diuretic, and anti-inflammatory drug. The present study was designed to test the hypothesis that low doses of two different V. mandshurica extracts have anti-obesity effects. Methods We evaluated the effects of ethanol extract (VME) and aqueous extract (VMA) from V. mandshurica on high-fat diet (HFD)-induced obese mice as well as the acute oral toxicities and chemical compositions of both extracts. Results Oral administration of VME or VMA (50, 100, or 200 mg/kg) decreased body weight gain, liver and adipose tissue mass, adipocyte size, and serum lipid levels. Both extracts increased adiponectin serum concentrations and mRNA expression in epididymal adipose tissue. VME and VMA also reversed the HFD-induced mRNA expression of lipogenic genes such as CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, sterol regulatory element-binding protein 1c, and leptin in adipose tissue, whereas they increased mRNA expression of uncoupling protein 2 and adenosine monophosphate-activated protein kinase (AMPK). VME and VMA increased the phosphorylation of AMPK and acetyl-coA carboxylase with a concomitant decrease in fat accumulation in the liver. High performance liquid chromatography analysis revealed that both VME and VMA contained esculetin (0.566% for VME, 0.231% for VMA) and schaftoside (0.147% for VME, 0.126% for VMA). In a 2-week acute toxicity study, administration of a single oral dose of VME or VMA (5000 mg/kg) caused no signs of toxicity or mortality. Conclusions These results suggest that both VM extracts exert anti-obesity effects in HFD-induced obese mice by suppressing lipogenesis and activating AMPK in the liver and adipose tissue. Our findings suggest that VM extracts could be a safe and effective treatment for obesity.
Collapse
|
16
|
Tekin S, Erden Y, Sandal S, Etem Onalan E, Ozyalin F, Ozen H, Yilmaz B. Effects of apelin on reproductive functions: relationship with feeding behavior and energy metabolism. Arch Physiol Biochem 2017; 123:9-15. [PMID: 27494693 DOI: 10.1080/13813455.2016.1211709] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apelin is an adipose tissue derived peptidergic hormone. In this study, 40 male Sprague-Dawley rats were used (four groups; n = 10). Apelin-13 at three different dosages (1, 5 and 50 μg/kg) was given intraperitoneally while the control group received vehicle the same route for a period of 14 days. In results, apelin-13 caused significant decreases in serum testosterone, luteinizing hormone and follicle-stimulating hormone levels (p < 0.05). Administration of apelin-13 significantly increased body weights, food intake, serum low-density lipoprotein and total cholesterol levels (p < 0.05), but caused significant decreases in high-density lipoprotein levels (p < 0.05). Serum glucose and triglyceride levels were not significantly altered by apelin-13 administration. Significant decreases in both uncoupling protein (UCP)-1 levels in the white and brown adipose tissues and UCP-3 levels in the biceps muscle (p < 0.05) were noted. The findings of the study suggest that apelin-13 may not only lead to obesity by increasing body weight but also cause infertility by suppressing reproductive hormones.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Dose-Response Relationship, Drug
- Energy Intake/drug effects
- Energy Metabolism/drug effects
- Feeding Behavior/drug effects
- Gonadotropins, Pituitary/antagonists & inhibitors
- Gonadotropins, Pituitary/blood
- Hypercholesterolemia/blood
- Hypercholesterolemia/chemically induced
- Hypercholesterolemia/metabolism
- Infertility, Male/blood
- Infertility, Male/chemically induced
- Infertility, Male/metabolism
- Injections, Intraperitoneal
- Intercellular Signaling Peptides and Proteins/toxicity
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Overweight/blood
- Overweight/chemically induced
- Overweight/metabolism
- Random Allocation
- Rats, Sprague-Dawley
- Testosterone/antagonists & inhibitors
- Testosterone/blood
- Toxicity Tests, Chronic
- Uncoupling Protein 1/antagonists & inhibitors
- Uncoupling Protein 1/genetics
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 3/antagonists & inhibitors
- Uncoupling Protein 3/genetics
- Uncoupling Protein 3/metabolism
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Suat Tekin
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Yavuz Erden
- b Department of Molecular Biology and Genetics , Faculty of Science, Bartin University , Bartin , Turkey
| | - Suleyman Sandal
- a Department of Physiology , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Ebru Etem Onalan
- c Department of Medical Biology , Faculty of Medicine, Firat University , Elazig , Turkey
| | - Fatma Ozyalin
- d Department of Biochemistry , Faculty of Medicine, Inonu University , Malatya , Turkey
| | - Hasan Ozen
- e Department of Pathology , Faculty of Veterinary Medicine, Kafkas University , Kars , Turkey
| | - Bayram Yilmaz
- f Department of Physiology , Faculty of Medicine, Yeditepe University , Istanbul , Turkey
| |
Collapse
|
17
|
Aradillas-Garc X Cd C, Cruz M, Pérez-Luque E, Garay-Sevilla ME, Malacara JM, R A, Peralta J, Burguete-García A, Alegría-Torres JA. Obesity is associated with the Arg389Gly ADRB1 but not with the Trp64Arg ADRB3 polymorphism in children from San Luis PotosÍ and León, México. J Biomed Res 2017; 31:40-46. [PMID: 28808184 PMCID: PMC5274511 DOI: 10.7555/jbr.30.20150169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This research was designed to analyze the possible associations of Arg389Gly ADRB1 and Trp64Arg ADRB3 polymorphisms in children with obesity. A cross-sectional study included 1,046 school-age Mexican participants (6-12 years old) from the cities of San Luis PotosÍ and León. Children were classified as non-obese or obese according to their body mass index (BMI) percentile; obese children had a BMI≥95th percentile for sex and age. Biochemical data were collected. Polymorphisms were detected using TaqMan qPCR assay. A logistic regression analysis was used to calculate the risk of obesity based on genotypes. Differences were found between groups where obese children had a significant increase in systolic and diastolic blood pressure, fasting plasma glucose, insulin, HOMA-IR, LDL-cholesterol, triglycerides, and lower HDL-cholesterol compared with the normal weight group (P<0.05). The distribution of allele frequency in the population was Arg= 87.4 and Gly= 12.6 (Hardy Weinberg equilibrium c2 = 3.16 , P = 0.07 ); Trp= 81.5 and Arg= 18.5 (Hardy Weinberg equilibrium c2 = 2.2, P = 0.14 ) for ADRB1 and ADRB3, respectively. Even though no different frequencies of Arg389Gly polymorphism between groups were found (P = 0.08), children carriers of one Gly389 ADRB1 allele had a risk for obesity of OR=1.40 (95%CI, 1.03-1.90, P = 0.03) after adjustment for age and gender. No other association was found for Trp64Arg ADRB3 polymorphism. Only the Arg389Gly ADRB1 polymorphism was associated with risk for obesity in Mexican children.
Collapse
Affiliation(s)
- Celia Aradillas-Garc X Cd
- Faculty of Medicine of the Autonomous University of San Luis Potosí, México, CIACYT-Faculty of Medicine, Av. Sierra Leona 550, Col. Lomas 2a. Sección, C.P. 78210, San Luis Potosí, S.L.P., México
| | - Miguel Cruz
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, México City, C.P. 06720, México
| | - Elva Pérez-Luque
- Department of Medical Sciences, Campus León, University of Guanajuato. León, C.P. 37320, México
| | - María E Garay-Sevilla
- Department of Medical Sciences, Campus León, University of Guanajuato. León, C.P. 37320, México
| | - Juan M Malacara
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, México City, C.P. 06720, México
| | - Aduna R
- Faculty of Medicine of the Autonomous University of San Luis Potosí, México, CIACYT-Faculty of Medicine, Av. Sierra Leona 550, Col. Lomas 2a. Sección, C.P. 78210, San Luis Potosí, S.L.P., México
| | - Jesús Peralta
- Medical Research Unit in Biochemistry, Hospital de Especialidades, Centro Médico Nacional Siglo XXI del Instituto Mexicano del Seguro Social, México City, C.P. 06720, México
| | - Ana Burguete-García
- Chronic Infection and Cancer Division, Research Center on Infectious Diseases, Instituto Nacional de Salud Pública, C.P. 62100, Cuernavaca, Morelos, México
| | - Jorge A Alegría-Torres
- Department of Pharmacy, Campus Guanajuato, University of Guanajuato, Noria Alta C.P. 36050, Guanajuato, México
| |
Collapse
|
18
|
Sung YY, Kim DS, Kim HK. Akebia quinata extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2015; 168:17-24. [PMID: 25835369 DOI: 10.1016/j.jep.2015.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dry ripe fruit of the Akebia quinata (A. quinata) plant is used as an analgesic, an antiphlogistic, and a diuretic in traditional medicine. A. quinata has also been used in Korea as a crude drug for treating obesity. The aim of the study was to determine the anti-obesity and hypolipidemic effects of A. quinata extract (AQE) in mice consuming a high-fat diet and in 3T3-L1 adipocytes. MATERIALS AND METHODS We measured obesity-related physiological parameters, gene expression, and protein phosphorylation in mice consuming a high-fat diet supplemented with AQE (400mg/kg/day) for 6.5 weeks. RESULTS AQE reduced gain in body weight, adipose tissue weight, and serum lipid levels in mice consuming a high-fat diet. AQE supplementation reduced expression of genes related to adipogenesis and increased expression of PPARα, acetyl-CoA oxidase, and adiponectin in the epididymal adipose tissue. Furthermore, AQE increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase, both of which are related to fatty acid oxidation, in vivo. HPLC analysis revealed that AQE contained chlorogenic acid, isochlorogenic acid A, and isochlorogenic acid C. AQE and all of these constituents inhibited differentiation of 3T3-L1 cells and enhanced AMPK phosphorylation. CONCLUSIONS These results suggest the AQE exerted anti-obesity and hypolipidemic effects in mice consuming a high-fat diet by regulating adipogenesis and fatty acid oxidation via AMPK activation.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Mibyeong Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| | - Dong-Seon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| | - Ho Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
19
|
Short-term food restriction followed by controlled refeeding promotes gorging behavior, enhances fat deposition, and diminishes insulin sensitivity in mice. J Nutr Biochem 2015; 26:721-8. [PMID: 25913018 DOI: 10.1016/j.jnutbio.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/08/2015] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Rodents are commonly used in food restriction refeeding studies to investigate weight regain. Mice that are rationed food every 24 h may consume all allocated food in a short time (gorge) and therefore undergo a brief well-fed period followed by an extended fasted period until the next day's food allotment. These exaggerated metabolic states are not typical in mice fed ad libitum (nibbling). The aim of the current study was to elucidate the intraday and cumulative metabolic consequences of gorging (induced by food restriction) in mice during controlled refeeding. Accordingly, following a temporary food restriction, mice were fed rations similar to intakes of controls fed ad libitum. Temporary food restriction initiated gorging behavior that persisted during refeeding; consequently, metabolism-related measurements were obtained in the gorging mice during their daily fed and fasted metabolic states. Robust differences in adipose tissue lipogenic and inflammatory gene expression were found in the gorging mice by metabolic state (fed versus fasted). Additionally, despite a reduced cumulative food intake compared to mice fed ad libitum, restriction-induced gorging mice had increased intraabdominal fat accumulation, diminished hepatic and peripheral insulin sensitivity, and a gene expression profile favoring lipid deposition. Our findings highlight the intraday differences in gene expression in gorging mice before and after feeding that confound comparisons with mice fed ad libitum, or nibbling. The present study also provides evidence that weight regain following food restriction is associated with cumulative metabolic and behavioral abnormalities in mice.
Collapse
|
20
|
Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J, Isokpehi RD. A candidate multimodal functional genetic network for thermal adaptation. PeerJ 2014; 2:e578. [PMID: 25289178 PMCID: PMC4183952 DOI: 10.7717/peerj.578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/24/2014] [Indexed: 01/20/2023] Open
Abstract
Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms.
Collapse
Affiliation(s)
| | - Rachana Pathak
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Indira Prajapati
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Shannon Bankston
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Aprylle Thompson
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Jaytriece Usher
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Raphael D Isokpehi
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| |
Collapse
|
21
|
Sung YY, Kim DS, Kim HK. Viola mandshurica ethanolic extract prevents high-fat-diet-induced obesity in mice by activating AMP-activated protein kinase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:41-50. [PMID: 24879516 DOI: 10.1016/j.etap.2014.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
Viola mandshurica W. Becker has been used as an expectorant, diuretic, and anti-inflammatory agent. We evaluated the effects of V. mandshurica ethanol extract (VME) on high-fat-diet (HFD)-induced obesity in mice. HPLC analysis showed that the VME contained 11.95 ± 0.37 mg/g esculetin and 0.13 ± 0.01 mg/g scopoletin. Orally administered VME decreased the body weight, adipose tissue mass, adipocyte size, and triglyceride and leptin serum concentrations. In contrast, VME increased serum adiponectin concentrations and adiponectin expression levels in epididymal adipose tissues. VME also significantly reversed the HFD-induced elevation of the mRNA and protein levels of lipogenic genes such as peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty-acid synthase, and adipocyte protein 2. Moreover, VME reversed the HFD-induced inhibition of AMP-activated protein kinase (AMPK) and acetyl-coA carboxylase phosphorylation in epididymal adipose tissues. Furthermore, treatment of VME and esculetin in 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation. These results suggest that VME exerts anti-obesity effects in HFD-induced obese mice by activating AMPK and suppressing PPARγ expression in adipose tissues.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Ho Kyoung Kim
- Herbal Medicine Resources Group, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
22
|
Müller MJ, Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring) 2013; 21:218-28. [PMID: 23404923 DOI: 10.1002/oby.20027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/15/2012] [Accepted: 06/28/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED Adaptive thermogenesis (AT) with weight loss refers to underfeeding-associated fall in resting and non-resting energy expenditure (REE, non-REE); this is independent of body weight and body composition. In humans, the existence of AT was inconsistently shown and its clinical significance has been questioned. OBJECTIVES Discrepant findings are mainly due to different definitions of AT, the use of various and nonstandardized study protocols, and the limits of accuracy of methods to assess energy expenditure. With controlled underfeeding, AT takes more than 2 wk to develop. AT accounts to an average of 0.5 MJ (or 120 kcal) with a considerable between subject variance. DESIGN AND METHODS Low-sympathetic nervous system activity, 3,5,3'-tri-iodothyronine (T3) and leptin are likely to add to AT; however, the kinetic changes of their plasma levels with underfeeding differ from the time course of AT and controlled intervention studies substituting and titrating these hormones are rare in humans. AT in response to underfeeding is independent of thermogenesis in response to either diet or cold. Although fat-free mass (FFM) and, thus, liver, and skeletal muscle are considered as major sites of AT, cold-induced nonshivering thermogenesis relates to the metabolism of brown adipose tissue (BAT). In humans, diet-induced thermogenesis is related to postprandial substrate metabolism of FFM with a questionable role of BAT. Obviously, the REE component of AT differs from and its non-REE component with respect to organ contribution as well as mechanisms. Thus, AT cannot be considered as unique. CONCLUSIONS AT should be characterized based on individual components of daily energy expenditure, detailed body composition analyses, and mathematical modeling. The biological basis of AT as well as the influences of age, sex, obesity, stress, and inflammation remain to be established in humans.
Collapse
Affiliation(s)
- M J Müller
- Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Düsternbrooker Weg 17, 24105 Kiel, Germany.
| | | |
Collapse
|
23
|
Collins S, Pi J, Yehuda-Shnaidman E. Uncoupling and reactive oxygen species (ROS)--a double-edged sword for β-cell function? "Moderation in all things". Best Pract Res Clin Endocrinol Metab 2012; 26:753-8. [PMID: 23168277 DOI: 10.1016/j.beem.2012.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ability of the mitochondrion to (a) manage fuel import to oxidize for adenosine tri-phosphate (ATP) generation while (b) protecting itself and the cellular environment from electron leak, which can generate highly reactive oxygen species (ROS) is a delicate balancing act. ATP is the currency of the cell and as such serves a signaling function as a substrate partner to many kinases and ion channels. While various ROS species have been viewed as a dangerous and toxic group of molecules, it also has a role as a signal derived from mitochondria, as well as other enzymatic sources: a double-edged sword. Current efforts to understand the biochemical mechanisms affected by ROS as a signal--usually noted to be hydrogen peroxide (H(2)O(2))--are exciting, but this duality of ROS effects also pose challenges in managing its levels to protect cells. The mitochondrial uncoupling protein-2 (UCP2), UCP3, and the permeability transition pore have been integral to efforts to try to understand what role mitochondrial-derived ROS have in cells. In this piece we reflect on mitochondrial ROS and uncoupling proteins as signaling regulators. It seems that when it comes to ROS and uncoupling the proverb "Moderation in all things" is apt.
Collapse
Affiliation(s)
- Sheila Collins
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, SBMRI-Lake Nona, 6400 Sanger Road, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
24
|
Dulloo AG, Jacquet J, Montani JP, Schutz Y. Adaptive thermogenesis in human body weight regulation: more of a concept than a measurable entity? Obes Rev 2012; 13 Suppl 2:105-21. [PMID: 23107264 DOI: 10.1111/j.1467-789x.2012.01041.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
According to Lavoisier, 'Life is combustion'. But to what extent humans adapt to changes in food intake through adaptive thermogenesis--by turning down the rate of heat production during energy deficit (so as to conserve energy) or turning it up during overnutrition (so as to dissipate excess calories)--has been one of the most controversial issues in nutritional sciences over the past 100 years. The debate nowadays is not whether adaptive thermogenesis exists or not, but rather about its quantitative importance in weight homoeostasis and its clinical relevance to the pathogenesis and management of obesity. Such uncertainties are likely to persist in the foreseeable future primarily because of limitations to unobtrusively measure changes in energy expenditure and body composition with high enough accuracy and precision, particularly when even small inter-individual variations in thermogenesis can, in dynamic systems and over the long term, be important in the determining weight maintenance in some and obesity and weight regain in others. This paper reviews the considerable body of evidence, albeit fragmentary, suggesting the existence of quantitatively important adaptive thermogenesis in several compartments of energy expenditure in response to altered food intake. It then discusses the various limitations that lead to over- or underestimations in its assessment, including definitional and semantics, technical and methodological, analytical and statistical. While the role of adaptive thermogenesis in human weight regulation is likely to remain more a concept than a strictly 'quantifiable' entity in the foreseeable future, the evolution of this concept continues to fuel exciting hypothesis-driven mechanistic research which contributes to advance knowledge in human metabolism and which is bound to result in improved strategies for the management of a healthy body weight.
Collapse
Affiliation(s)
- A G Dulloo
- Department of Medicine/Physiology, University of Fribourg, Chemin du musée 5, Fribourg, Switzerland.
| | | | | | | |
Collapse
|
25
|
Taeeum-type people in Sasang constitutional medicine have a reduced mitochondrial metabolism. Integr Med Res 2012; 1:41-45. [PMID: 28664046 PMCID: PMC5481683 DOI: 10.1016/j.imr.2012.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 11/20/2022] Open
Abstract
Sasang constitutional medicine (SCM) is a traditional form of medicine that is widely used in Korea to clinically diagnose and treat disease. The main characteristic of SCM is its classification of people according to physical constitution. The theory asserts that four different types of physical constitution exist: Taeyang, Soyang, Taeeum, and Soeum. One noticeable clinical observation in SCM is that Taeeum-type people are prone to obesity. Although extensive clinical investigations have shown this tendency in SCM, no scientific hypothesis has been proposed to delineate its mechanism. According to SCM theory, Taeeum-type people have a hypoactive lung system and a hyperactive liver system. In this paper, we propose a new hypothesis explaining this finding from a physiological viewpoint. A functional weakness in the lung system indicates intrinsic hypoactivity in the consumption of metabolic energy, therefore we deduced that the tendency can easily induce body weight gain via an increase in anabolism.
Collapse
|
26
|
Abstract
The increasing prevalence of obesity and its comorbidities represents a major threat to human health globally. Pharmacological treatments exist to achieve weight loss, but the subsequent weight maintenance is prone to fail in the long run. Accordingly, efficient new strategies to persistently control body weight need to be elaborated. Exercise and dietary interventions constitute classical approaches to reduce and maintain body weight, yet people suffering from metabolic diseases are often unwilling or unable to move adequately. The administration of drugs that partially mimic exercise adaptation might circumvent this problem by easing and supporting physical activity. The thermogenic peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) largely mediates the adaptive response of skeletal muscle to endurance exercise and is a potential target for such interventions. Here, we review the role of PGC-1α in mediating exercise adaptation, coordinating metabolic circuits and enhancing thermogenic capacity in skeletal muscle. We suggest a combination of elevated muscle PGC-1α and exercise as a modified approach for the efficient long-term control of body weight and the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- S Summermatter
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Basel, Switzerland
| | | |
Collapse
|
27
|
Of mice and men: Their diet, metabolism, and weight change. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Dulloo AG. The search for compounds that stimulate thermogenesis in obesity management: from pharmaceuticals to functional food ingredients. Obes Rev 2011; 12:866-83. [PMID: 21951333 DOI: 10.1111/j.1467-789x.2011.00909.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept of managing obesity through the stimulation of thermogenesis is currently a focus of considerable attention by the pharmaceutical, nutraceutical and functional food industries. This paper first reviews the landmark discoveries that have fuelled the search for thermogenic anti-obesity products that range from single-target drugs to multi-target functional foods. It subsequently analyses the thermogenic and fat-oxidizing potentials of a wide array of bioactive food ingredients which are categorized under methylxanthines, polyphenols, capsaicinoids/capsinoids, minerals, proteins/amino acids, carbohydrates/sugars and fats/fatty acids. The main outcome of this analysis is that the compounds or combination of compounds with thermogenic and fat-oxidizing potentials are those that possess both sympathomimetic stimulatory activity and acetyl-coA carboxylase inhibitory property, and are capable of targeting both skeletal muscle and brown adipose tissue. The thermogenic potentials of products so far tested in humans range from marginal to modest, i.e. 2-5% above daily energy expenditure. With an increasing number of bioactive food ingredients awaiting screening in humans, there is hope that this thermogenic potential could be safely increased to 10-15% above daily energy expenditure - which would have clinically significant impact on weight management, particularly in the prevention of obesity and in improving the long-term prognosis of post-slimming weight maintenance.
Collapse
Affiliation(s)
- A G Dulloo
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
29
|
Pourtau L, Leemburg S, Roux P, Leste-Lasserre T, Costaglioli P, Garbay B, Drutel G, Konsman JP. Hormonal, hypothalamic and striatal responses to reduced body weight gain are attenuated in anorectic rats bearing small tumors. Brain Behav Immun 2011; 25:777-86. [PMID: 21334429 DOI: 10.1016/j.bbi.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 01/23/2023] Open
Abstract
Lack of compensatory or even reduced food intake is frequently observed in weight-losing cancer patients and contributes to increased morbidity and mortality. Our previous work has shown increased transcription factor expression in the hypothalamus and ventral striatum of anorectic rats bearing small tumors. mRNA expression of molecules known to be involved in pathways regulating appetite in these structures was therefore assessed in this study. Given that pain, pro-inflammatory cytokines and metabolic hormones can modify food intake, spinal cord cellular activation patterns and plasma concentrations of cytokines and hormones were also studied. Morris hepatoma 7777 cells injected subcutaneously in Buffalo rats provoked a 10% lower body weight and 15% reduction in food intake compared to free-feeding tumor-free animals 4 weeks later when the tumor represented 1-2% of body mass. No differences in spinal cord activation patterns or plasma concentration of pro-inflammatory cytokines were observed between groups. However, the changes in plasma ghrelin and leptin concentrations found in food-restricted weight-matched rats in comparison to ad libitum-fed animals did not occur in anorectic tumor-bearing animals. Real-time PCR showed that tumor-bearing rats did not display the increase in hypothalamic agouti-related peptide mRNA observed in food-restricted weight-matched animals. In addition, microarray analysis and real-time PCR revealed increased ventral striatal prostaglandin D synthase expression in food-restricted animals compared to anorectic tumor-bearing rats. These findings indicate that blunted hypothalamic AgRP mRNA expression, probably as a consequence of relatively high leptin and low ghrelin concentrations, and reduced ventral striatal prostaglandin D synthesis play a role in maintaining cancer-associated anorexia.
Collapse
Affiliation(s)
- Line Pourtau
- CNRS UMR 5226-INRA 1286, Université de Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Uncoupling protein 1 gene −3826 A/G polymorphism is associated with weight loss on a short-term, controlled-energy diet in young women. Nutr Res 2011; 31:255-61. [DOI: 10.1016/j.nutres.2011.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
|
31
|
Eberwine J, Bartfai T. Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther 2010; 129:241-59. [PMID: 20970451 DOI: 10.1016/j.pharmthera.2010.09.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
We report on an 'unbiased' molecular characterization of individual, adult neurons, active in a central, anterior hypothalamic neuronal circuit, by establishing cDNA libraries from each individual, electrophysiologically identified warm sensitive neuron (WSN). The cDNA libraries were analyzed by Affymetrix microarray. The presence and frequency of cDNAs were confirmed and enhanced with Illumina sequencing of each single cell cDNA library. cDNAs encoding the GABA biosynthetic enzyme Gad1 and of adrenomedullin, galanin, prodynorphin, somatostatin, and tachykinin were found in the WSNs. The functional cellular and in vivo studies on dozens of the more than 500 neurotransmitters, hormone receptors and ion channels, whose cDNA was identified and sequence confirmed, suggest little or no discrepancy between the transcriptional and functional data in WSNs; whenever agonists were available for a receptor whose cDNA was identified, a functional response was found. Sequencing single neuron libraries permitted identification of rarely expressed receptors like the insulin receptor, adiponectin receptor 2 and of receptor heterodimers; information that is lost when pooling cells leads to dilution of signals and mixing signals. Despite the common electrophysiological phenotype and uniform Gad1 expression, WSN transcriptomes show heterogeneity, suggesting strong epigenetic influence on the transcriptome. Our study suggests that it is well-worth interrogating the cDNA libraries of single neurons by sequencing and chipping.
Collapse
Affiliation(s)
- James Eberwine
- Department of Pharmacology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | |
Collapse
|
32
|
Leptin intake during the suckling period improves the metabolic response of adipose tissue to a high-fat diet. Int J Obes (Lond) 2010; 34:809-19. [PMID: 20157325 DOI: 10.1038/ijo.2010.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The intake of leptin during the suckling period protects against obesity and improves insulin and central leptin sensitivity in adult rats. OBJECTIVE We analyzed whether leptin treatment to neonates may also improve later peripheral leptin sensitivity in adipose tissue under high-fat (HF) diet conditions. DESIGN Male rats were supplemented with a daily oral dose of leptin or the vehicle (controls) during the suckling period. After weaning, animals were fed a normal-fat or an HF diet until the age of 6 months. At this age, mRNA and protein levels of the long-form leptin receptor (OB-Rb) and the expression of other genes related with energy metabolism were measured in various adipose depots (inguinal, mesenteric and retroperitoneal). RESULTS HF-diet feeding resulted in lower OB-Rb mRNA and protein levels in internal depots in controls but not in leptin-treated animals; these animals maintained OB-Rb mRNA and protein levels under HF-diet conditions in these depots, particularly in the mesenteric one, and this was accompanied by increased expression of genes related with energy uptake (GLUT4, CD36), fatty acid oxidation (peroxisome proliferator activated receptor-alpha (PPARalpha), CPT1, UCP3) and lipogenesis (PPARgamma, GPAT). Leptin-treatment also ameliorated HF-diet-induced hepatic fat accumulation occurring in control animals. CONCLUSION Leptin treatment during the suckling period may improve the lasting effects of HF-diet feeding on leptin receptor abundance in the adipose tissue and increase its oxidative capacity, resulting in a better handling and partitioning of excess fuel. This, together with the described improvement of central leptin sensitivity, may explain why these animals are more protected against diet-induced obesity and its metabolic-related disorders.
Collapse
|
33
|
Sánchez J, Palou A, Picó C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 2009; 150:5341-50. [PMID: 19837871 DOI: 10.1210/en.2009-0466] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to assess the effects of carbohydrate (CHO) and fat intake on the expression of key genes related with nutrient partitioning and metabolism in main tissues involved in energy metabolism (white adipose tissue, liver, and skeletal muscle). Rats were studied under different conditions: feeding state, 24 h fasting, and 12 h refeeding after 24 h fasting with isocaloric amounts of CHO or fat. Fat, but not CHO, refeeding was associated with an increase in serum and liver triglyceride content. Main changes in gene expression elicited by CHO compared with fat refeeding were: 1) higher expression levels of genes related with lipogenesis (PPARgamma2, ChREBP, FAS), glucose uptake and metabolism (GLUT4, HKII), fatty acid uptake (LPL, CD36), and lipolysis (ATGL, HSL) in white adipose tissue; 2) higher expression levels of genes related with lipogenesis (FAS, SCD1) but lower ones related with fatty acid uptake (CD36) and oxidation (PPARalpha, CPT1, PDK4) in liver; and 3) higher expression levels of GLUT4 but lower ones related with fatty acid oxidation (PDK4 and UCP3) in muscle. It is worth mentioning that both CHO and fat refeeding resulted in a robust increase in both hepatic mRNA and circulating levels of fibroblast growth factor-21, compared with fasted levels. In summary, these results, showing marked differences in gene expression after CHO and fat refeeding, can explain diet-associated differences in fuel handling and partitioning between tissues; in addition, a role of fibroblast growth factor-21 in metabolic adaptations, not only in the ketotic state but also to face an unbalanced nutritional situation, is suggested.
Collapse
Affiliation(s)
- J Sánchez
- University of the Balearic Islands and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Palma de Mallorca 07122, Spain
| | | | | |
Collapse
|
34
|
Mitochondrial dysfunction and metabolic syndrome-looking for environmental factors. Biochim Biophys Acta Gen Subj 2009; 1800:282-9. [PMID: 19914351 DOI: 10.1016/j.bbagen.2009.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 10/28/2009] [Accepted: 11/06/2009] [Indexed: 01/06/2023]
Abstract
The centerpiece of the pathophysiologic mechanism of metabolic syndrome is insulin resistance. Recently, it is becoming evident that mitochondrial dysfunction is closely related to insulin resistance and metabolic syndrome. The underlying mechanism of mitochondrial dysfunction is very complex, which includes genetic factors from both nuclear and mitochondrial genome and numerous environmental factors. Several mitochondrial DNA polymorphisms are associated with the components of metabolic syndrome. Numerous chemicals and drugs may cause mitochondrial dysfunction and insulin resistance. Notably, it was recently reported that serum levels of several mitochondrial toxins, such as persistent organic pollutants are associated with metabolic syndrome, which necessitates further investigation to reveal its precise mechanism. Given that the health impact of metabolic syndrome is tremendous, it is necessary to develop therapeutic modalities to correct mitochondrial dysfunction or at least to halt its aggravation. In this regard, exercise can improve both mitochondrial function and insulin sensitivity, and some pharmaceutical agents were reported to improve mitochondrial function. However, further studies are warranted to find more effective therapeutic strategies to treat mitochondrial dysfunction. By doing so, we can also shed light on the path of research for other diseases related to mitochondrial dysfunction.
Collapse
|
35
|
Pankevich DE, Mueller BR, Brockel B, Bale TL. Prenatal stress programming of offspring feeding behavior and energy balance begins early in pregnancy. Physiol Behav 2009; 98:94-102. [PMID: 19394351 DOI: 10.1016/j.physbeh.2009.04.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/29/2022]
Abstract
To examine the long-term effects of stress experienced early in gestation on the programming of offspring feeding behaviors and energy balance, pregnant mice were exposed to stress during early pregnancy (days 1-7) and adult offspring examined on chow and high fat diets for long-term outcomes. Placental 11 beta-hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) and insulin-like growth factor 2 (IGF-2) expression was measured to determine the possible sex-specific contribution of prenatal stress (PNS) on fetal programming of embryo growth and development during early pregnancy. PNS mice showed a basal hyperphagia when on chow diet. Prenatal treatment differences were ameliorated when adult mice were on a high fat diet. Interestingly, PNS male mice also had significantly reduced body weights compared to control males on both chow and high fat diets. Body composition analyses revealed reduced body fat and increased lean mass in PNS mice on the high fat diet, but no differences were detected in plasma leptin or insulin-like growth factor 1 (IGF-1) levels. Mechanistic examination of gene expression in embryonic day 12 placentas found that early PNS was associated with increased IGF-2 expression and sex-dependent effects of stress on 11 beta-HSD2, supporting specific aspects of early pregnancy. These studies suggest that the long-term effects of stress during pregnancy on programming of feeding behavior and energy homeostasis begin much earlier in development than previously thought.
Collapse
Affiliation(s)
- Diana E Pankevich
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
36
|
Smith JMD, Maas JA, Garnsworthy PC, Owen MR, Coombes S, Pillay TS, Barrett DA, Symonds ME. Mathematical modeling of glucose homeostasis and its relationship with energy balance and body fat. Obesity (Silver Spring) 2009; 17:632-9. [PMID: 19148129 DOI: 10.1038/oby.2008.604] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- James M D Smith
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Obesity originates from a failure of the body-weight control systems, which may be affected by changing environmental influences. Basically, the obesity risk depends on two important mutually-interacting factors: (1) genetic variants (single-nucleotide polymorphisms, haplotypes); (2) exposure to environmental risks (diet, physical activity etc.). Common single-nucleotide polymorphisms at candidate genes for obesity may act as effect modifiers for environmental factors. More than 127 candidate genes for obesity have been reported and there is evidence to support the role of twenty-two genes in at least five different populations. Gene-environment interactions imply that the synergy between genotype and environment deviates from either the additive or multiplicative effect (the underlying model needs to be specified to appraise the nature of the interaction). Unravelling the details of these interactions is a complex task. Emphasis should be placed on the accuracy of the assessment methods for both genotype and lifestyle factors. Appropriate study design (sample size) is crucial in avoiding false positives and ensuring that studies have enough power to detect significant interactions, the ideal design being a nested case-control study within a cohort. A growing number of studies are examining the influence of gene-environmental interactions on obesity in either epidemiological observational or intervention studies. Positive evidence has been obtained for genes involved in adiposity, lipid metabolism or energy regulation such as PPARgamma2 (Pro12Ala), beta-adrenoceptor 2 (Gln27Glu) or uncoupling proteins 1, 2 and 3. Variants on other genes relating to appetite regulation such as melanocortin and leptin receptors have also been investigated. Examples of some recently-identified interactions are discussed.
Collapse
|
38
|
De Luca M, Chambers MM, Casazza K, Lok KH, Hunter GR, Gower BA, Fernández JR. Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans. BMC Genet 2008; 9:52. [PMID: 18694491 PMCID: PMC2533007 DOI: 10.1186/1471-2156-9-52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 08/11/2008] [Indexed: 11/23/2022] Open
Abstract
Background The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG) storage using quantitative complementation procedures in Drosophila melanogaster. Based on our results from Drosophila, we performed a human population-based association study to investigate the effect of natural variation in LAMA5 gene on body composition in humans. Results We identified four candidate genes that contributed to differences in TAG storage between two strains of D. melanogaster, including Laminin A (LanA), which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable LanA mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. Drosophila LanA is closely related to human LAMA5 gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs) in the human LAMA5 gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA) and African American (AA) descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: P = 0.008; AA: P = 0.05) and lean mass (EA: P= 0.003; AA: P = 0.03). We also found this SNP to be associated with height (P = 0.01), total fat mass (P = 0.01), and HDL-cholesterol (P = 0.003) but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (P = 0.02) and HDL-cholesterol (P = 0.03) were observed in AA women. Conclusion Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, School of Health Professions, University of Alabama at Birmingham, 3rd Avenue South, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Bjursell M, Gerdin AK, Lelliott CJ, Egecioglu E, Elmgren A, Törnell J, Oscarsson J, Bohlooly-Y M. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2008; 294:E251-60. [PMID: 18029443 DOI: 10.1152/ajpendo.00401.2007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to investigate the short- and long-term effects of a high-fat Western diet (WD) on intake, storage, expenditure, and fecal loss of energy as well as effects on locomotor activity and thermogenesis. WD for only 24 h resulted in a marked physiological shift in energy homeostasis, including increased body weight gain, body fat, and energy expenditure (EE) but an acutely lowered locomotor activity. The acute reduction in locomotor activity was observed after only 3-5 h on WD. The energy intake and energy absorption were increased during the first 24 h, lower after 72 h, and normalized between 7 and 14 days on WD compared with mice given chow diet. Core body temperature and EE was increased between 48 and 72 h but normalized after 21 days on WD. These changes paralleled plasma T(3) levels and uncoupling protein-1 expression in brown adipose tissue. After 21 days of WD, energy intake and absorption, EE, and body temperature were normalized. In contrast, the locomotor activity was reduced and body weight gain was increased over the entire 21-day study period on WD. Calculations based on the correlation between locomotor activity and EE in 2-h intervals at days 21-23 indicated that a large portion of the higher body weight gain in the WD group could be attributed to the reduced locomotor activity. In summary, an acute and persisting decrease in locomotor activity is most important for the effect of WD on body weight gain and obesity in mice.
Collapse
|
40
|
Summermatter S, Mainieri D, Russell AP, Seydoux J, Montani JP, Buchala A, Solinas G, Dulloo AG. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase. FASEB J 2007; 22:774-85. [PMID: 17928359 DOI: 10.1096/fj.07-8972com] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling-two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.
Collapse
Affiliation(s)
- S Summermatter
- Department of Medicine, Division of Physiology, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rikke BA, Johnson TE. Physiological genetics of dietary restriction: uncoupling the body temperature and body weight responses. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1522-7. [PMID: 17686887 DOI: 10.1152/ajpregu.00215.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous physiological and molecular changes accompany dietary restriction (DR), which has been a major impediment to elucidating the causal basis underlying DR's many health benefits. Two major metabolic responses to DR that potentially underlie many of these changes are the body temperature ( Tb) and body weight (BW) responses. These responses also represent an especially difficult challenge to uncouple during DR. We demonstrate in this study, using two recombinant inbred (RI) panels of mice (the LXS and LSXSS) that naturally occurring genetic variation serves as a powerful tool for modulating Tb and BW independently during DR. The correlation coefficient between the two responses was essentially zero, with R = −0.04 in the LXS and −0.03 in the LSXSS, the latter averaged across replicate cohorts. This study is also the first to report that there is highly significant ( P = 10−10) strain variation in the Tb response to DR in the LXS (51 strains tested), with strain means ranging from 2 to 4°C below normal. The results suggest that the strain variation in the Tb response to DR is largely due to differences in the rate of heat loss rather than heat production (i.e., metabolic rate). This variation can thus be used to assess the long-term effects of lower Tb independent of BW or metabolic rate, as well as independent of food intake and motor activity as previously shown. These results also suggest that murine genetic variation may be useful for uncoupling many more responses to DR.
Collapse
Affiliation(s)
- Brad A Rikke
- Institute for Behavioral Genetics, Campus Box 447, Univ. of Colorado, Boulder, CO 80309-0447, USA.
| | | |
Collapse
|
42
|
Abstract
One of the most pervasive weight loss rules is that a cumulative energy deficit of 3500 kcal is required per pound of body weight loss, or equivalently 32.2 MJ kg(-1). Under what conditions is it appropriate to use this rule of thumb and what are the factors that determine the cumulative energy deficit required per unit weight loss? Here, I examine this question using a modification of the classic Forbes equation that predicts the composition of weight loss as a function of the initial body fat and magnitude of weight loss. The resulting model predicts that a larger cumulative energy deficit is required per unit weight loss for people with greater initial body fat-a prediction supported by published weight loss data from obese and lean subjects. This may also explain why men can lose more weight than women for a given energy deficit since women typically have more body fat than men of similar body weight. Furthermore, additional weight loss is predicted to be associated with a lower average cumulative energy deficit since a greater proportion of the weight loss is predicted to result from loss of lean body mass, which has a relatively low energy density in comparison with body fat. The rule of thumb approximately matches the predicted energy density of lost weight in obese subjects with an initial body fat above 30 kg but overestimates the cumulative energy deficit required per unit weight loss for people with lower initial body fat. International Journal of Obesity (2008) 32, 573-576; doi:10.1038/sj.ijo.0803720; published online 11 September 2007.
Collapse
Affiliation(s)
- K D Hall
- Laboratory of Biological Modeling, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-5621, USA.
| |
Collapse
|
43
|
Wang P, Renes J, Bouwman F, Bunschoten A, Mariman E, Keijer J. Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression. Diabetologia 2007; 50:654-65. [PMID: 17245590 PMCID: PMC1914285 DOI: 10.1007/s00125-006-0565-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 10/19/2006] [Indexed: 11/10/2022]
Abstract
AIMS/HYPOTHESIS The thiazolidinedione (TZD) rosiglitazone is a peroxisome proliferator-activated receptor-gamma agonist that induces adipocyte differentiation and, hence, lipid accumulation. This is in apparent contrast to the long-term glucose-lowering, insulin-sensitising effect of rosiglitazone. We tested whether the action of rosiglitazone involves specific effects on mature adipocytes, which are different from those on preadipocytes. MATERIALS AND METHODS Differentiated mature 3T3-L1 adipocytes were used as an in vitro model. Transcriptomics, proteomics and assays of metabolism were applied to assess the effect of rosiglitazone in different insulin and glucose conditions. RESULTS Rosiglitazone does not induce an increase, but rather a decrease in the lipid content of mature adipocytes. Analysis of transcriptome data, confirmed by quantitative RT-PCR and measurements of lipolysis, indicates that an altered energy metabolism may underlie this change. The pathway analysis shows a consistent picture dominated by lipid catabolism. In addition, we confirmed at both mRNA level and protein level that rosiglitazone represses adipokine expression and production, except for genes encoding adiponectin and apolipoprotein E. Moreover, transcriptome changes indicate that a general repression of genes encoding secreted proteins occurs. CONCLUSIONS/INTERPRETATION Our findings suggest that the change of adiposity as seen in vivo reflects a shift in balance between the different effects of TZDs on preadipocytes and on mature adipocytes, while the changes in circulating adipokine levels primarily result from an effect on mature adipocytes.
Collapse
Affiliation(s)
- P. Wang
- Functional Genomics Group, The Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, Maastricht, The Netherlands
- Food Bioactives Group, RIKILT-Institute of Food Safety, Bornsesteeg 45, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - J. Renes
- Functional Genomics Group, The Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - F. Bouwman
- Functional Genomics Group, The Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - A. Bunschoten
- Food Bioactives Group, RIKILT-Institute of Food Safety, Bornsesteeg 45, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - E. Mariman
- Functional Genomics Group, The Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - J. Keijer
- Food Bioactives Group, RIKILT-Institute of Food Safety, Bornsesteeg 45, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
44
|
Mashiko S, Ishihara A, Iwaasa H, Sano H, Ito J, Gomori A, Oda Z, Moriya R, Matsushita H, Jitsuoka M, Okamoto O, MacNeil DJ, Van der Ploeg LHT, Fukami T, Kanatani A. A pair-feeding study reveals that a Y5 antagonist causes weight loss in diet-induced obese mice by modulating food intake and energy expenditure. Mol Pharmacol 2006; 71:602-8. [PMID: 17105869 DOI: 10.1124/mol.106.029991] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptide Y (NPY) is thought to have a significant role in the physiological control of energy homeostasis. We recently reported that an NPY Y5 antagonist inhibits body weight gain in diet-induced obese (DIO) mice, with a moderate reduction in food intake. To clarify the mechanism of the antiobesity effects of the Y5 antagonist, we conducted a pair-feeding study in DIO mice. The Y5 antagonist at 100 mg/kg produced a moderate feeding suppression leading to an 18% decrease in body weight, without altering body temperature. In contrast, the pair-fed group showed only a transient weight reduction and a reduced body temperature, thus indicating that the Y5 antagonist stimulates thermogenesis. The Y5 antagonist-treated mice showed an up-regulation of uncoupling protein mRNA in brown adipose tissue (BAT) and white adipose tissue (WAT), suggesting that both BAT and WAT contribute to energy expenditure. Thus, the Y5 antagonist induces its antiobesity effects by acting on both energy intake and expenditure.
Collapse
Affiliation(s)
- Satoshi Mashiko
- Tsukuba Research Institute, Banyu Pharmaceutical Co. Ltd., Okubo 3, Tsukuba 300-2611, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guillerm-Regost C, Louveau I, Sébert SP, Damon M, Champ MM, Gondret F. Cellular and biochemical features of skeletal muscle in obese Yucatan minipigs. Obesity (Silver Spring) 2006; 14:1700-7. [PMID: 17062798 DOI: 10.1038/oby.2006.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To examine cellular and biochemical features of skeletal muscle in response to dietary-induced obesity in a novel Yucatan minipig model of childhood obesity. RESEARCH METHODS AND PROCEDURES From 4 to 16 months of age, minipigs were fed either a recommended human-type diet (NF; n = 4) or were overfed a western-type diet with saturated fat and high-glycemic index carbohydrates (OF, n = 4). Muscle samples (biceps femoris) were histochemically stained for the identification of intramuscular adipocytes, intramyocellular lipid aggregates (oil red O), and myofiber types (myosin ATPase, succinate dehydrogenase). Gene expressions and/or activities of factors involved in lipogenesis, lipolysis, or energetic metabolism were quantified in muscle. RESULTS Cross-sectional areas of myofibers paralleled pig body weight (r = 0.86, p < 0.01). The size of intramuscular adipocytes, the relative proportion of oil red O-stained fibers, and total muscle lipid content tended (p < or = 0.10) to increase in response to OF diet. Hormone-sensitive lipase, carnitine palmityl transferase-I, and uncoupling protein 2 mRNA levels were lower (p < 0.05) in OF pigs than in NF pigs. Activities of beta-hydroxyacyl-coenzyme A dehydrogenase and citrate synthase assessing post-carnitine palmityl transferase I events and the proportion of oxidative myofibers were not altered by OF diet. Activity and gene expression of fatty acid synthase were lower (p < 0.02) in OF pigs than in NF pigs. DISCUSSION Overfeeding in Yucatan minipigs reduced the expression levels of three catabolic steps in skeletal muscle that are involved also in the etiology of human obesity.
Collapse
Affiliation(s)
- Christelle Guillerm-Regost
- Institut National de la Recherche Agronomique/AgroCampus Rennes, Unité Mixte de Recherche, Livestock Production Systems, Animal and Human Nutrition, Saint Gilles, France
| | | | | | | | | | | |
Collapse
|
46
|
Abe T, Mujahid A, Sato K, Akiba Y, Toyomizu M. Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens. FEBS Lett 2006; 580:4815-22. [PMID: 16904672 DOI: 10.1016/j.febslet.2006.07.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/25/2006] [Accepted: 07/25/2006] [Indexed: 11/16/2022]
Abstract
Little is known about the precise physiological roles of uncoupling protein 1 (UCP1) homologs (UCP2, UCP3, avian UCP) whose levels are up-regulated during fasting. UCPs in skeletal muscle are thought to play a role in the regulation of lipids as fuel substrates, and/or in controlling the production of reactive oxygen species (ROS). The aim of this investigation, using skeletal muscle from fasted chickens, was to examine alterations in the expression of genes encoding for avian UCP and key enzymes relevant to lipid flux across the mitochondrial beta-oxidation pathway. We also clarified whether an increase in avUCP content could be associated with altered ROS production by mitochondria. Transcription levels of avUCP and CPT-I genes were increased 7.7- and 9.5-fold after a 24h fast and slightly diminished but remained about 5.0- and 7.7-fold higher than baseline levels, respectively, after 48h of fasting. In contrast, members of the beta-oxidation pathway, LCAD and 3HADH, were gradually up-regulated from 12 to 48h of fasting. This suggests that processes involved in the transfer and oxidation of fatty acids are up-regulated differently during the initial stage of fasting. Analysis of ROS production by lucigenin-derived chemiluminescence showed that the FFA-sensitive portion of carboxyatractyloside-upregulated ROS production was greater in skeletal muscle mitochondria from 24h-fasted chickens compared with control, which leads us to postulate that ROS production is potentially down-regulated by UCP. The possible involvement of a backlog of fatty acid for oxidation, observed in chickens after a 24h fast, in a transmembrane gradient of free non-oxidized fatty acids is also discussed.
Collapse
Affiliation(s)
- Tomoki Abe
- Laboratory of Animal Nutrition, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
47
|
Crescenzo R, Lionetti L, Mollica MP, Ferraro M, D'Andrea E, Mainieri D, Dulloo AG, Liverini G, Iossa S. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes 2006; 55:2286-93. [PMID: 16873692 DOI: 10.2337/db06-0312] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An accelerated rate of fat recovery (catch-up fat) and insulin resistance are characteristic features of weight recovery after caloric restriction, with implications for the pathophysiology of catch-up growth and weight fluctuations. Using a previously described rat model of weight recovery in which catch-up fat and skeletal muscle insulin resistance have been linked to suppressed thermogenesis per se, we investigated alterations in mitochondrial energetics and oxidative stress in subsarcolemmal (SS) and intermyofibrillar (IMF) skeletal muscle mitochondria. After 2 weeks of semistarvation followed by 1 week of refeeding, the refed rats show persistent and selective reductions in SS mitochondrial mass (assessed from citrate synthase activity in tissue homogenate and isolated mitochondria) and oxidative capacity. Furthermore, the refed rats show, in both SS and IMF muscle mitochondria, a lower aconitase activity (whose inactivation is an index of increased reactive oxygen species [ROS]), associated with higher superoxide dismutase activity and increased proton leak. Taken together, these studies suggest that diminished skeletal muscle mitochondrial mass and function, specifically in the SS mitochondrial compartment, contribute to the high metabolic efficiency for catch-up fat after caloric restriction and underscore a potential link between diminished skeletal muscle SS mitochondrial energetics, increased ROS concentration, and insulin resistance during catch-up fat.
Collapse
Affiliation(s)
- Raffaella Crescenzo
- Department of Biological Sciences, Section of Physiology, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Westerterp-Plantenga M, Diepvens K, Joosen AMCP, Bérubé-Parent S, Tremblay A. Metabolic effects of spices, teas, and caffeine. Physiol Behav 2006; 89:85-91. [PMID: 16580033 DOI: 10.1016/j.physbeh.2006.01.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 11/29/2022]
Abstract
Consumption of spiced foods or herbal drinks leads to greater thermogenesis and in some cases to greater satiety. In this regard, capsaicin, black pepper, ginger, mixed spices, green tea, black tea and caffeine are relevant examples. These functional ingredients have the potential to produce significant effects on metabolic targets such as satiety, thermogenesis, and fat oxidation. A significant clinical outcome sometimes may appear straightforwardly but also depends too strongly on full compliance of subjects. Nevertheless, thermogenic ingredients may be considered as functional agents that could help in preventing a positive energy balance and obesity.
Collapse
|
49
|
Diepvens K, Westerterp KR, Westerterp-Plantenga MS. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 2006; 292:R77-85. [PMID: 16840650 DOI: 10.1152/ajpregu.00832.2005] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The global prevalence of obesity has increased considerably in the last decade. Tools for obesity management, including caffeine, ephedrine, capsaicin, and green tea have been proposed as strategies for weight loss and weight maintenance, since they may increase energy expenditure and have been proposed to counteract the decrease in metabolic rate that is present during weight loss. A combination of caffeine and ephedrine has shown to be effective in long-term weight management, likely due to different mechanisms that may operate synergistically, e.g., respectively inhibiting the phosphodiesterase-induced degradation of cAMP and enhancing the sympathetic release of catecholamines. However, adverse effects of ephedrine prevent the feasibility of this approach. Capsaicin has been shown to be effective, yet when it is used clinically it requires a strong compliance to a certain dosage, that has not been shown to be feasible yet. Also positive effects on body-weight management have been shown using green tea mixtures. Green tea, by containing both tea catechins and caffeine, may act through inhibition of catechol O-methyl-transferase, and inhibition of phosphodiesterase. Here, the mechanisms may also operate synergistically. In addition, tea catechins have antiangiogenic properties that may prevent development of overweight and obesity. Furthermore, the sympathetic nervous system is involved in the regulation of lipolysis, and the sympathetic innervation of white adipose tissue may play an important role in the regulation of total body fat in general.
Collapse
Affiliation(s)
- Kristel Diepvens
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
50
|
Abstract
Changes in body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semistarvation and refeeding as model inputs and computed whole body energy expenditure, de novo lipogenesis, and gluconeogenesis as well as turnover and oxidation of carbohydrate, fat, and protein. Published in vivo human data provided the basis for the model components that were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semistarvation and refeeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Refeeding caused an elevation of de novo lipogenesis that, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the prestarvation diet and physical activity, the original body weight and composition were eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes in body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements, thereby providing support for the validity of the model.
Collapse
Affiliation(s)
- Kevin D Hall
- NIDDK/NIH, 12 South Drive, Rm. 4007, Bethesda, MD 20892-5621, USA.
| |
Collapse
|