1
|
Kumar R, Næss G, Sørensen M. Xylooligosaccharides from lignocellulosic biomass and their applications as nutraceuticals: a review on their production, purification, and characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7765-7775. [PMID: 38625727 DOI: 10.1002/jsfa.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.9% compound annual growth rate between 2022 and 2030, indicating a huge demand. These XOS are non-digestible pentose sugar oligomers comprising mainly xylose. Xylose is naturally present in the lignocellulosic biomass (LCB), fruits and vegetables. Apart from the prebiotic effect, these XOS have been reported to reduce blood cholesterol, possess antioxidant effects, increase calcium absorption, reduce colon cancer risk, and benefit diabetic patients. The primary use of XOS is reported in the feed industry followed by health, medical use, food and drinks. LCB mainly contains glucan, xylan and lignin. After glucan, xylan is the second-highest available sugar on the globe composed of xylose. Therefore, the xylan fraction of LCB has great significance in producing food, feed and energy. Glucan has been exploited for the commercial production of ethanol, xylitol, furfural, hydroxymethyl furfural and glucose. As of now, xylan has limited applications. Therefore, xylan can be exploited to convert to XOS. The production of XOS from LCB fraction not only helps to produce these at a very low price, but also helps in the reduction of greenhouse gases. Its use in food and drinks is increasing as it can be derived from the abundantly and cheaply available LCB. The article provides a review on the production, purification and characterization of XOS in view of their use as nutraceuticals. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ravindra Kumar
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Geir Næss
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
2
|
Bhardwaj K, Singh AA, Kumar H. Unveiling the Journey from the Gut to the Brain: Decoding Neurodegeneration-Gut Connection in Parkinson's Disease. ACS Chem Neurosci 2024; 15:2454-2469. [PMID: 38896463 DOI: 10.1021/acschemneuro.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Aditya A Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER-A), Opposite Air force station, Palaj, Gandhinagar, 382355 Gujarat, India
| |
Collapse
|
3
|
Kallur RK, Madapati S, Mathur A, Bhattacharya S. The role of Weizmannia (Bacillus) coagulans LMG S-31876 in treating IBS-diarrhea. Front Nutr 2024; 10:1310462. [PMID: 38375355 PMCID: PMC10875997 DOI: 10.3389/fnut.2023.1310462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/15/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Irritable bowel syndrome (IBS) is a common gastrointestinal condition. Some studies have shown the efficacy of probiotics in the treatment of irritable bowel syndrome (IBS). Weizmannia (Bacillus) coagulans LMG S-31876 has been marketed as a dietary ingredient, but to date, its efficacy in diarrhea-predominant irritable bowel syndrome (IBS) condition has not been clinically elucidated. Thus, a double-blind placebo-controlled multi-centered trial was planned to evaluate the safety and efficacy of Weizmannia (Bacillus) coagulans LMG S-31876 in diarrhea-predominant IBS patients. Experimental design Study participants (n = 50) diagnosed with IBS prominent symptoms that include abdominal pain and other GI-related symptoms were treated with ProBC Plus (2 billion CFU) along with a placebo capsule once daily for approximately 8 weeks. Study participants were evaluated for the treatment success determined by the differences in stool consistency and frequency per day between the intervention and placebo groups over the study period. Results The vital signs and the biochemistry parameters were under the normal range; the other parameters showed a significant result as compared to the placebo during the study period. Conclusion This study depicts a significant decline in the clinical symptoms such as abdominal pain, bloating, diarrhea, and frequency of the stool as compared to the placebo. All the parameters such as hematology, lipid profile, and vital signs were in the normal range during the supplementation of ProBC Plus for a period of 8 weeks. Furthermore, the study verified that Weizmannia (Bacillus) coagulans LMG S-31876 and its probiotic product ProBC Plus at a dose of 2 billion/CFU/day has a prominent action in the relief from the clinical symptoms of IBS-D. Therefore, the product is intended safe to utilize for IBS-related symptoms.Clinical trial registration: The clinical study has been registered with CTRI/2023/01/048644 with https://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=77708&EncHid=24313.96864&userName=CTRI/2023/01/048644 [CTRI/2023/01/048644].
Collapse
Affiliation(s)
| | | | | | - Sourish Bhattacharya
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| |
Collapse
|
4
|
Attia YA, Basiouni S, Abdulsalam NM, Bovera F, Aboshok AA, Shehata AA, Hafez HM. Alternative to antibiotic growth promoters: beneficial effects of Saccharomyces cerevisiae and/or Lactobacillus acidophilus supplementation on the growth performance and sustainability of broilers' production. Front Vet Sci 2023; 10:1259426. [PMID: 37771941 PMCID: PMC10523395 DOI: 10.3389/fvets.2023.1259426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Although antibiotics growth promoters (AGPs), including zinc-bacitracin (ZnB), can threaten human health due to developing antimicrobial resistance, as well as drug residue in animal and poultry products, ZnB is still widely used, particularly in developing countries, for the sustainability of poultry farming. The present investigation aims to assess the use of Saccharomyces cerevisiae and Lactobacillus acidophilus, with or without a prebiotic (mannooligosaccharide, MOS), as alternatives to ZnB. For this reason, 150 one-day-old chicks were grouped into six groups, designated negative control, LA, SC, ZnB, SA + MOS, and LA + MOS (5 replicates of 5 chicks for each group). Chicks kept in the control group were fed the basal diet. Chickens kept in LA and SC groups received L. acidophilus, S. cerevisiae at a 1 g/kg diet and 2 g/Kg, respectively. Chickens kept in ZnB received ZnB at 0.5 g/kg. Chicks kept in the SC + MOS and LA + MOS were fed a basal diet containing 2 g S. cerevisiae + 1 g MOS/kg or 1 g L. acidophilus + 1 g MOS /kg, respectively. The efficacy was assessed based on the growth performance, carcass traits, meat quality, nutrient digestibility, and blood biochemistry composition during the entire trial 1-36 days of age. Results showed that chicks kept in the SC group had greater BW than the control (p < 0.05). Chicks kept in the SC, LA, SC + MOS, and LA + MOS consumed less feed than the control and Zn-B groups (p < 0.05). Supplementation with S. cerevisiae resulted in a better (p < 0.05) feed conversion rate (FCR) than the control group. Supplementation with L. acidophilus + MOS significantly increased (p < 0.05) the relative liver weight compared to those supplemented with ZnB, S. cerevisiae, and L. acidophilus. In addition, supplementation with ZnB-induced spleen hypertrophy compared to S. cerevisiae and L. acidophilus-supplemented groups (p < 0.05). Plasma, meat, and liver cholesterol, as well as the cholesterol-to-lipid ratio of meat and liver, were significantly decreased (p < 0.05) in both SC and LA groups compared to the control group. Our research indicates that adding 2 g/kg of S. cerevisiae to broiler feed can effectively replace ZnB and enhance productive performance and economic profits, making it a viable and sustainable option for broiler farming.
Collapse
Affiliation(s)
- Youssef A. Attia
- Sustainable Agriculture Production Research Group, Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Nisreen M. Abdulsalam
- Department of Food and Nutrition, Faculty of Human Sciences and Design, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fulvia Bovera
- Sustainable Agriculture Production Research Group, Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Napoli, Italy
| | - Afaf A. Aboshok
- Department of Poultry Nutrition, Animal Production Research Institute, ARC, Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Awad A. Shehata
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), Garching, Germany
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| |
Collapse
|
5
|
Haghshenas B, Nami Y, Kiani A, Moazami N, Tavallaei O. Cytotoxic effect of potential probiotic Lactiplantibacillus plantarum KUMS-Y8 isolated from traditional dairy samples on the KB and OSCC human cancer cell lines. Heliyon 2023; 9:e20147. [PMID: 37809760 PMCID: PMC10559912 DOI: 10.1016/j.heliyon.2023.e20147] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, and its prevalence is especially high in developing countries. As an oral cancer treatment, traditional therapies are commonly used. Nonetheless, these treatments frequently result in a variety of side effects. As a consequence, there is an urgent need to enhance oral cancer therapies. Probiotics have recently demonstrated intriguing properties as therapeutic options for cancer treatment. Thus, the purpose of this study was to investigate the anticancer effect of probiotic Lactobacillus strains on the mouth epidermal carcinoma cells (KB) and oral squamous cell carcinoma (OSCC) cell lines. In this study, we looked at 21 Lactobacillus strains isolated from traditional dairy products in the Kermanshah province of western Iran to see if they had any inhibitory effects on oral cancer cell lines in vitro. We isolated and characterized Lactobacillus strains before assessing and comparing their probiotic potential and safety. Using the MTT assay, the bacterial extract was then prepared and used as an anti-proliferative agent on oral cancer (KB and OSCC) and normal (fibroblast and human umbilical vein endothelial cells (HUVEK) cell lines. Finally, acridine orange/ethidium bromide staining was used to determine whether cell death was caused by apoptosis. Four Lactobacillus isolates (C14, M22, M42, and Y8) were shown to have beneficial probiotic qualities. Lactobacillus extracts (of a protein nature) decreased the survival and proliferation of the KB and OSCC cancer cell lines (dose- and time-dependent) by inducing apoptosis, with no basic damaging effects on normal cells. The staining with acridine orange/ethidium bromide revealed that the cell death was caused by apoptosis. Furthermore, of the four Lactobacillus strains examined, isolate Y8 (Lactiplantibacillus plantarum) showed the strongest probiotic potential for suppressing KB and OSCC cell proliferation when compared to anticancer medicines (doxorubicin and paclitaxel). The current research found that Lactobacillus extract might reduce the growth and viability of the KB and OSCC cancer cell lines by inducing apoptosis, increasing the survival rate of oral cancer patients.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesa Moazami
- Students Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Improvement of Probiotic Viability by Mixing with Ultrasound-Treated Yeast Cells and Spray Drying. Curr Microbiol 2023; 80:124. [PMID: 36872377 DOI: 10.1007/s00284-023-03225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/12/2023] [Indexed: 03/07/2023]
Abstract
The objective of the study was to determine the efficacy of ultrasound-treatment Saccharomyces cerevisiae and spray drying in preserving the viability of Lactiplantibacillus plantarum. The combination of ultrasound-treated S. cerevisiae and L. plantarum was evaluated. Next, the mixture was blended with maltodextrin and either Stevia rebaudiana-extracted fluid, prior to undergoing spray drying. The L. plantarum viability was assessed after the spray drying process, during storage, and in simulated digestive fluid (SDF) conditions. The results showed that the impact of ultrasound caused the crack and holes in the yeast cell wall. Besides, the moisture content values were not significantly different in all samples after spray drying. Although the amount of powder recovery in stevia-supplemented samples was not higher than that of the control sample, the L. plantarum viability was significantly improved after the spray drying process. The density of L. plantarum tended to be stable during the first 30 days of storage and decreased more rapidly after that. The results reveal that there was no statistically significant difference in the trend of the samples before and after storage. In the SDF test, the L. plantarum viability mixing with ultrasound-treated yeast cells in the spray drying samples was significantly improved. Besides, the presence of Stevia showed positive efficiency on the L. plantarum viability. The L. plantarum viability mixing with ultrasound-treated yeast cells and stevia-extracted fluid by spray drying process showed potential application due to making powder form which helped to improve the L. plantarum stability during the storage time.
Collapse
|
7
|
Cameron SJS, Edwards A, Lambert RJ, Stroud M, Mur LAJ. Participants in the Trans-Antarctic Winter Traverse Expedition Showed Increased Bacterial Load and Diversity in Saliva but Maintained Individual Differences within Stool Microbiota and Across Metabolite Fingerprints. Int J Mol Sci 2023; 24:ijms24054850. [PMID: 36902282 PMCID: PMC10002533 DOI: 10.3390/ijms24054850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the impact of long-term physiological and environmental stress on the human microbiota and metabolome may be important for the success of space flight. This work is logistically difficult and has a limited number of available participants. Terrestrial analogies present important opportunities to understand changes in the microbiota and metabolome and how this may impact participant health and fitness. Here, we present work from one such analogy: the Transarctic Winter Traverse expedition, which we believe is the first assessment of the microbiota and metabolome from different bodily locations during prolonged environmental and physiological stress. Bacterial load and diversity were significantly higher during the expedition when compared with baseline levels (p < 0.001) in saliva but not stool, and only a single operational taxonomic unit assigned to the Ruminococcaceae family shows significantly altered levels in stool (p < 0.001). Metabolite fingerprints show the maintenance of individual differences across saliva, stool, and plasma samples when analysed using flow infusion electrospray mass spectrometry and Fourier transform infrared spectroscopy. Significant activity-associated changes in terms of both bacterial diversity and load are seen in saliva but not in stool, and participant differences in metabolite fingerprints persist across all three sample types.
Collapse
Affiliation(s)
- Simon J. S. Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Chlorine Gardens, Belfast BT9 5DL, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
| | - Robert J. Lambert
- Department of Orthopaedics, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Mike Stroud
- NIHR BRC Nutrition, University of Southampton Medical School, Southampton SO16 6YD, UK
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| |
Collapse
|
8
|
Diet-Induced Microbiome's Impact on Heart Failure: A Double-Edged Sword. Nutrients 2023; 15:nu15051223. [PMID: 36904222 PMCID: PMC10004801 DOI: 10.3390/nu15051223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Heart failure (HF) is a debilitating disease with a significant clinical and economic impact worldwide. Multiple factors seem to increase the risk of developing HF, such as hypertension, obesity and diabetes. Since chronic inflammation plays a significant role in HF pathophysiology and gut dysbiosis is associated with low-grade chronic inflammation, the risk of cardiovascular diseases is likely modulated by the gut microbiome (GM). Considerable progress has been made in HF management. However, there is a need to find new strategies to reduce mortality and increase the quality of life, mainly of HFpEF patients, since its prevalence continues to rise. Recent studies validate that lifestyle changes, such as diet modulation, represent a potential therapeutic approach to improve several cardiometabolic diseases, although their effects on the GM and its indirect cardiac impact still warrant further research. Hence, in this paper, we aim to clarify the link between HF and the human microbiome.
Collapse
|
9
|
Lee-Ling C, Hui Yan T, Saupi N, Nazamid S, Sarbini SR. An in vitro study: prebiotic effects of edible palm hearts in batch human fecal fermentation system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7231-7238. [PMID: 35760587 DOI: 10.1002/jsfa.12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Edible palm hearts (EPH), known as palmito, chonta or swamp cabbage in America or umbut in Malaysia, is a type of vegetable harvested from palm tree species. EPH is firm and smooth and described as having a flavor resembling artichoke. It has underlying prebiotic potential that selectively stimulates the growth and activity of beneficial colonic microbiota, thus enhancing the host's health. This study is the first to present results of EPH from local species such as oil palm (Elaeis guineensis), sago palm (Metroxylon sagu) and coconut (Cocos nucifera) using in vitro colonic fermentation with human fecal slurry. Samples obtained at 0, 6, 12 and 24 h were evaluated by bacterial enumeration using fluorescent in situ hybridization (FISH), and short-chain fatty acids (SCFA) were analyzed by high-performance liquid chromatography (HPLC). RESULTS All EPH samples revealed induction effects towards Bifidobacterium spp., Lactobacillus-Enterococcus and Bacteroidaceae/Prevotellaceae populations similar to those in inulin fermentation. A significant decrease (P ≤ 0.05) in pathogenic Clostridium histolyticum group was observed in the response of raw sago palm hearts. In general, all samples stimulate the production of SCFA. Particularly in the colonic fermentation of sago palm heart, acetate and propionate revealed the highest concentrations of 286.18 and 284.83 mmol L-1 in raw and cooked form, respectively. CONCLUSION This study concluded that edible palm hearts can be a potential prebiotic ingredient that promotes human gastrointestinal health, as well as discovering a new direction towards an alternative source of functional foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chai Lee-Ling
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Tan Hui Yan
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Noorasmah Saupi
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
| | - Saari Nazamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shahrul Razid Sarbini
- Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, Bintulu, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
10
|
Dahiya D, Nigam PS. Clinical Potential of Microbial Strains, Used in Fermentation for Probiotic Food, Beverages and in Synbiotic Supplements, as Psychobiotics for Cognitive Treatment through Gut-Brain Signaling. Microorganisms 2022; 10:1687. [PMID: 36144289 PMCID: PMC9505539 DOI: 10.3390/microorganisms10091687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022] Open
Abstract
Pure and viable strains of microorganisms identified and characterized as probiotic strains are used in the fermentation process to prepare probiotic food and beverages. These products are sources of nutrition and help in the maintenance of gut microflora. The intake of food products prepared with the use of probiotic microorganisms and containing their metabolites and whole microbial cells can be considered as a natural formulation of synbiotic products with prebiotic substrates and culture. Other than through the intake of fermented food and beverages, probiotic microorganisms can be taken through a supplement, which is a complementary form prepared by combining separate sources of prebiotic substrates and specific probiotic cultures. Whether a fermented solid food or beverage, both the components in the product are in a synergistic relationship and contribute to several health benefits at a lower cost. The aim of this article is to review the relevant literature and present the outcomes of recent studies which have been conducted to explore the clinical potential of probiotic strains and their effect on psychological conditions. Studies have shown the relationship between gut microbiota and the brain, and their interaction through signaling. The studies have concluded that the gut-brain axis can be manipulated with the intake of probiotic foods or synbiotic supplements containing specific probiotic strains accompanied with their complementary prebiotics for the enhanced sustainability of healthy GIT microflora.
Collapse
Affiliation(s)
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
11
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
12
|
Sarwar A, Al-Dalali S, Aziz T, Yang Z, Ud Din J, Khan AA, Daudzai Z, Syed Q, Nelofer R, Qazi NU, Jian Z, Dablool AS. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J Fungi (Basel) 2022; 8:jof8070713. [PMID: 35887468 PMCID: PMC9317841 DOI: 10.3390/jof8070713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 01/12/2023] Open
Abstract
Fermentation of available sugars in milk by yogurt starter culture initially and later by Saccharomyces boulardii (Probiotic yeast) improves the bioavailability of nutrients and produces bioactive substances and volatile compounds that enhance consumer acceptability. The combination of S. boulardii, a unique species of probiotic yeast, and inulin, an exopolysaccharide used as a prebiotic, showed remarkable probiotic and hydrocolloid properties in dairy products. The present study was designed to study the effect of fermentation and storage on antioxidant and volatile capacities of probiotic and synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), compared with the probiotic and control plain yogurt. All samples were stored at 4 °C, and during these four weeks, they were analyzed in terms of their antioxidant and volatile compounds. The synbiotic yogurt samples having inulin and S. boulardii displayed significantly higher DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical activity values and more values of TPC (total phenol contents) than control plain yogurt. A total of 16 volatile compounds were identified in S5-syn2 and S4-syn1.5, while S3-syn1 and S2-P had 14, compared with the control S1-C plain yogurt samples, which had only 6. The number of volatile compounds increased with the increasing concentration of inulin throughout the storage period. Therefore, this novel synbiotic yogurt with higher antioxidant and volatile compounds, even with chilling storage conditions, will be a good choice for consumer acceptability.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Haripur 22621, Pakistan
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Correspondence: ; Tel.: +86-10-6898-4870
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan;
| | - Zubaida Daudzai
- Department of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Quratulain Syed
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Rubina Nelofer
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Nazif Ullah Qazi
- Department of Microbiology, University of Swabi, Ambar 94640, Pakistan;
| | - Zhang Jian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| |
Collapse
|
13
|
Mazkour S, Shekarforoush SS, Basiri S, Namazi F, Zarei‐Kordshouli F. Protective effects of oral administration of mixed probiotic spores of
Bacillus subtilis
and
Bacillus coagulans
on gut microbiota changes and intestinal and liver damage of rats infected with
Salmonella
Typhimurium
. J Food Saf 2022. [DOI: 10.1111/jfs.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Somaye Mazkour
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | | - Sara Basiri
- Department of Food Hygiene and Public Health School of Veterinary Medicine, Shiraz University Shiraz Iran
| | - Fatemeh Namazi
- Department of Pathology School of Veterinary Medicine, Shiraz University Shiraz Iran
| | | |
Collapse
|
14
|
Scardaci R, Bietto F, Racine PJ, Boukerb AM, Lesouhaitier O, Feuilloley MGJ, Scutera S, Musso T, Connil N, Pessione E. Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved? Microorganisms 2022; 10:microorganisms10030487. [PMID: 35336063 PMCID: PMC8954575 DOI: 10.3390/microorganisms10030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.
Collapse
Affiliation(s)
- Rossella Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
- Correspondence:
| | - Francesca Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| | - Pierre-Jean Racine
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Amine M. Boukerb
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Olivier Lesouhaitier
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Sara Scutera
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Tiziana Musso
- Laboratory of Immunology, Department of Public Health and Pediatric Sciences, University of Turin, Via Santena 9, 10126 Torino, Italy; (S.S.); (T.M.)
| | - Nathalie Connil
- Laboratory of Microbiology—Bacterial Communication and Anti-infectious Strategies, University of Rouen Normandy, 27000 Evreux, France; (P.-J.R.); (A.M.B.); (O.L.); (M.G.J.F.); (N.C.)
| | - Enrica Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (F.B.); (E.P.)
| |
Collapse
|
15
|
Peng S, Wang X, Wang Y, Lv T, Zhao H, Wang Y, Zhu S, Qiu H, Zeng J, Dai Q, Lin Q. Effects of Dietary Bacillus and Non-starch Polysaccharase on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Intestinal Morphology, and Serum Antioxidant Profiles in Ducks. Front Microbiol 2021; 12:786121. [PMID: 34956153 PMCID: PMC8692731 DOI: 10.3389/fmicb.2021.786121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Given the desirable results of using probiotics and enzyme preparations as feed supplements in poultry health, here, the effects of Bacillus and Non-starch Polysaccharase (NSPase) on the growth performance, serum antioxidant profiles, and gut microbial communities of early stage ducks is investigated. A total of 400 Zhijiang ducks (of similar body weight and 1 day age) was selected and randomly divided into four groups. The feeding period was 28 days. Each group contained 10 replicates of 10 birds. Control group (I) was fed with basal diet, while treatment groups II to IV were fed, respectively, with 150 mg/kg NSPases, 25 mg/kg Bacillus probiotics, and 150 mg/kg NSPases + 25 mg/kg Bacillus probiotics in their basal diet. The results demonstrated that dietary Bacillus (25 mg/kg) increased average final weight, average daily gain (ADG), and decreased the malonaldehyde (MDA) in birds (P < 0.05). Dietary Bacillus (25 mg/kg) and NSPases + Bacillus (150 mg/kg + 25 mg/kg) presented much higher glutathione (GSH) and activities of superoxide dismutase (SOD) in birds (P < 0.05). Additionally, as revealed by β-diversity indices and analysis of similarities, dietary NSPases + Bacillus could affect the ileum microbial abundances and diversities at the genera level (P < 0.05), but it had no effect on the caecal microbiota. Also, 16S rRNA sequencing revealed that dietary Bacillus and NSPases + Bacillus increased the populations of Ruminococcaceae genera in the cecum (P < 0.05), and S24-7_group and Lactobacillus genera in the ileum (P < 0.05). However, dietary NSPases and Bacillus alone and in combination could significantly decrease the content of Bacteroides in the ileum (P < 0.05). According to Spearman correlation analysis, 7 ilea bacterial microbiomes (S24-7 group, Lactobacillus, Subgroup 2, Subgroup 1, Kitasatospora, Candidatus Solibacter, and Akkermansia) were positively correlated with SOD (P < 0.05). In conclusion, Bacillus (25 mg/kg) and NSPases (150 mg/kg) included in the diet could efficiently enhance the growth performance by altered gut microbiota composition at the genera level and antioxidant indices of ducks.
Collapse
Affiliation(s)
- Simin Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xin Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yuyu Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianguo Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
16
|
Chondracanthus teedei var. lusitanicus: The Nutraceutical Potential of an Unexploited Marine Resource. Mar Drugs 2021; 19:md19100570. [PMID: 34677469 PMCID: PMC8539408 DOI: 10.3390/md19100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Presently, there is a high demand for nutritionally enhanced foods, so it is a current challenge to look at new raw food sources that can supplement beneficially the human diet. The nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight the high mineral content of this seaweed, representing 29.35 g 100 g−1 of its dry weight (DW). Despite the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g−1 DW, respectively), this seaweed is an interesting source of nitrogen and potassium (2.13 and 2.29 g−1 DW, accordingly). Furthermore, the high content of carbohydrates (56.03 g 100 g−1 DW), which acts as dietary fibers, confers a low caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is in fact an unexploited potential resource with the capability to provide key minerals to the human diet with promising nutraceutical properties.
Collapse
|
17
|
de Moura NA, Caetano BFR, Bidinotto LT, Rodrigues MAM, Barbisan LF. Synbiotic supplementation attenuates the promoting effect of indole-3-carbinol on colon tumorigenesis. Benef Microbes 2021; 12:493-501. [PMID: 34463193 DOI: 10.3920/bm2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Indole-3 carbinol (I3C) has shown dual effects on the promotion and progression stages of colon carcinogenesis while synbiotics (Syn) have exerted anti-carcinogenic activities in most rodent studies. This study aimed to investigate the effects of I3C given alone or together with a Syn intervention on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis. All animals were given four subcutaneous DMH injections (4×40 mg/kg bodyweight, twice a week for two weeks) and then received either basal diet (G1), basal diet containing I3C (1g/kg chow) (G2) or basal diet containing I3C+Syn (I3C + inulin 50g/kg chow + Bifidobacterium lactis BB-12®), 2.5×1010 cfu/g of basal diet), (G3) for 21 weeks. Dietary I3C (G2) significantly increased tumour volume and cell proliferation when compared to the DMH control group (G1). Syn intervention (G3) significantly reduced tumour volume and cell proliferation when compared to I3C (G2). The colon tumours found were classified into well-differentiated tubular adenomas or adenocarcinomas. Dietary I3C or I3C+Syn did not significantly affect the incidence and the multiplicity of tumours in comparison with the DMH control group. Furthermore, Syn intervention (G3) increased Gstm1 and reduced Mapk9 gene expression in colonic tumours. The findings of the present study show that the dietary I3C shows a weak promoting activity, while the combination with Syn ameliorates I3C effects.
Collapse
Affiliation(s)
- N A de Moura
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| | - B F R Caetano
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L T Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil.,Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, SP, Brazil.,Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M A M Rodrigues
- Department of Pathology, School of Medicine, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Prof. Dr. Antônio Celso Wagner Zanin 250, Distrito de Rubião Junior, Botucatu, SP, Brazil
| |
Collapse
|
18
|
He Y, Maltecca C, Tiezzi F. Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals (Basel) 2021; 11:ani11061833. [PMID: 34205322 PMCID: PMC8235026 DOI: 10.3390/ani11061833] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Heat stress is a significant environmental challenge faced by food animal production worldwide because of its adverse effects on animal performance and productivity. Trillions of microorganisms living in the gut are essential for host health by participating in various digestive, immune, and metabolic activities. At the same time, they are known to be sensitive to changes in the surrounding environment. The present review summarizes current research progress of how the gut microbial community responds to elevated ambient heat in monogastric animal species and discusses the use of the gut microbiota composition as a potential indicator for heat stress. Abstract Heat stress is a current challenge for livestock production, and its impact could dramatically increase if global temperatures continue to climb. Exposure of agricultural animals to high ambient temperatures and humidity would lead to substantial economic losses because it compromises animal performance, productivity, health, and welfare. The gut microbiota plays essential roles in nutrient absorption, energy balance, and immune defenses through profound symbiotic interactions with the host. The homeostasis of those diverse gut microorganisms is critical for the host’s overall health and welfare status and also is sensitive to environmental stressors, like heat stress, reflected in altered composition and functionality. This article aims to summarize the research progress on the interactions between heat stress and gut microbiome and discuss the potential use of the gut microbiota composition as a biomarker of heat stress in monogastric animal species. A comprehensive understanding of the gut microbiota’s role in responding to or regulating physiological activities induced by heat stress would contribute to developing mitigation strategies.
Collapse
|
19
|
Alberoni D, Baffoni L, Braglia C, Gaggìa F, Di Gioia D. Honeybees Exposure to Natural Feed Additives: How Is the Gut Microbiota Affected? Microorganisms 2021; 9:microorganisms9051009. [PMID: 34067140 PMCID: PMC8151652 DOI: 10.3390/microorganisms9051009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/28/2023] Open
Abstract
The role of a balanced gut microbiota to maintain health and prevent diseases is largely established in humans and livestock. Conversely, in honeybees, studies on gut microbiota perturbations by external factors have started only recently. Natural methods alternative to chemical products to preserve honeybee health have been proposed, but their effect on the gut microbiota has not been examined in detail. This study aims to investigate the effect of the administration of a bacterial mixture of bifidobacteria and Lactobacillaceae and a commercial product HiveAliveTM on honeybee gut microbiota. The study was developed in 18 hives of about 2500 bees, with six replicates for each experimental condition for a total of three experimental groups. The absolute abundance of main microbial taxa was studied using qPCR and NGS. The results showed that the majority of the administered strains were detected in the gut. On the whole, great perturbations upon the administration of the bacterial mixture and the plant-based commercial product were not observed in the gut microbiota. Significant variations with respect to the untreated control were only observed for Snodgrassella sp. for the bacterial mixture, Bartonella sp. in HiveAliveTM and Bombilactobacillus sp. for both. Therefore, the studied approaches are respectful of the honeybee microbiota composition, conceivably without compromising the bee nutritional, social and ecological functions.
Collapse
|
20
|
Dias AMM, Douhard R, Hermetet F, Regimbeau M, Lopez TE, Gonzalez D, Masson S, Marcion G, Chaumonnot K, Uyanik B, Causse SZ, Rieu A, Hadi T, Basset C, Chluba J, Grober J, Guzzo J, Neiers F, Ortega-Deballon P, Demidov ON, Lirussi F, Garrido C. Lactobacillus stress protein GroEL prevents colonic inflammation. J Gastroenterol 2021; 56:442-455. [PMID: 33782752 DOI: 10.1007/s00535-021-01774-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/27/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND We previously showed that supernatants of Lactobacillus biofilms induced an anti-inflammatory response by affecting the secretion of macrophage-derived cytokines, which was abrogated upon immunodepletion of the stress protein GroEL. METHODS We purified GroEL from L. reuteri and analysed its anti-inflammatory properties in vitro in human macrophages isolated from buffy coats, ex vivo in explants from human biopsies and in vivo in a mouse model of DSS induced intestinal inflammation. As a control, we used GroEL purified (LPS-free) from E. coli. RESULTS We found that L. reuteri GroEL (but not E. coli GroEL) inhibited pro-inflammatory M1-like macrophages markers, and favored M2-like markers. Consequently, L. reuteri GroEL inhibited pro-inflammatory cytokines (TNFα, IL-1β, IFNγ) while favouring an anti-inflammatory secretome. In colon tissues from human biopsies, L. reuteri GroEL was also able to decrease markers of inflammation and apoptosis (caspase 3) induced by LPS. In mice, we found that rectal administration of L. reuteri GroEL (but not E. coli GroEL) inhibited all signs of haemorrhagic colitis induced by DSS including intestinal mucosa degradation, rectal bleeding and weight loss. It also decreased intestinal production of inflammatory cytokines (such as IFNγ) while increasing anti-inflammatory IL-10 and IL-13. These effects were suppressed when animals were immunodepleted in macrophages. From a mechanistic point of view, the effect of L. reuteri GroEL seemed to involve TLR4, since it was lost in TRL4-/- mice, and the activation of a non-canonical TLR4 pathway. CONCLUSIONS L. reuteri GroEL, by affecting macrophage inflammatory features, deserves to be explored as an alternative to probiotics.
Collapse
Affiliation(s)
- Alexandre M M Dias
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Romain Douhard
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - François Hermetet
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mathilde Regimbeau
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Tatiana E Lopez
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Daniel Gonzalez
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Sophie Masson
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Guillaume Marcion
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Killian Chaumonnot
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Burhan Uyanik
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Z Causse
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Tarik Hadi
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Christelle Basset
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Johanna Chluba
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | - Jacques Grober
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Fabrice Neiers
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, Dijon, France
| | - Pablo Ortega-Deballon
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
- Centre Hospitalier Universitaire, Dijon, France
| | - Oleg N Demidov
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
- Institute of Cytology, RAS, St. Petersburg, Russia
| | - Frédéric Lirussi
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France
- Centre Hospitalier Universitaire, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale Contre Le Cancer », 7 boulevard Jeanne d'Arc, 21079, Dijon, France.
- Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon, France.
- Anticancer Centre Georges-François Leclerc (CGFL), Dijon, France.
| |
Collapse
|
21
|
Choi Y, Park E, Kim S, Ha J, Oh H, Kim Y, Lee Y, Seo Y, Kang J, Lee S, Lee H, Yoon Y, Choi KH. Fermented milk with Lactobacillus curvatus SMFM2016-NK alleviates periodontal and gut inflammation, and alters oral and gut microbiota. J Dairy Sci 2021; 104:5197-5207. [PMID: 33685682 DOI: 10.3168/jds.2020-19625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
This study aimed to analyze the effect of milk fermented with Lactobacillus curvatus SMFM2016-NK on periodontal diseases and gut health in a rat model. To improve the effect of Lb. curvatus SMFM2016-NK-fermented milk administration for relieving periodontitis, the periodontitis rat models were treated with the following for 4 wk: 10% skim milk (normal), periodontitis + 10% skim milk (negative control), periodontitis + Lactobacillus rhamnosus GG-fermented milk (positive control), and periodontitis + Lb. curvatus SMFM2016-NK-fermented milk (PD+LCFM). Transcriptional analysis of inflammatory cytokines [tumor necrosis factor α (TNF-α), IL-1β, IL-6, and IL-10] was performed via quantitative reverse-transcription PCR. The changes in the oral and gut microbiomes after administering Lb. curvatus SMFM2016-NK-fermented milk were analyzed with metagenomics sequencing using DNA extracted from the oral gingival tissues and feces from the cecum of the rat models. After treatment with Lb. curvatus SMFM2016-NK-fermented milk, the relative gene expression levels of TNFA and IL1B in the gingiva decreased in the PD+LCFM group compared with those in the negative control group. In the oral microbiome, the proportion of the phylum Proteobacteria in the PD+LCFM group was lower than that in the negative control after treatment with Lb. curvatus SMFM2016-NK-fermented milk. For the effect in the gut, the relative gene expression levels of inflammatory cytokines in the colon between the normal and negative control groups were not different; however, the expression levels of TNFA and IL1B in the PD+LCFM and positive control groups, respectively, were lower than those in the negative control group. The composition and diversity of the gut microbiome differed among normal, periodontitis, and Lb. curvatus SMFM2016-NK-fermented milk treatment groups. These results indicate that Lb. curvatus SMFM2016-NK-fermented milk could alleviate periodontal and gut inflammation and change oral and gut microbiota.
Collapse
Affiliation(s)
- Y Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - E Park
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - S Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - J Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - H Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Y Seo
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - J Kang
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - S Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - H Lee
- Food Standard Research Center, Korea Food Research Institute, Jeollabuk-do 55365, Korea
| | - Y Yoon
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea; Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea.
| | - K-H Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Korea.
| |
Collapse
|
22
|
Cotas J, Pacheco D, Araujo GS, Valado A, Critchley AT, Pereira L. On the Health Benefits vs. Risks of Seaweeds and Their Constituents: The Curious Case of the Polymer Paradigm. Mar Drugs 2021; 19:164. [PMID: 33808736 PMCID: PMC8003528 DOI: 10.3390/md19030164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.
Collapse
Affiliation(s)
- João Cotas
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Diana Pacheco
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| | - Glacio Souza Araujo
- Federal Institute of Education, Science and Technology of Ceará—IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceara, Brazil;
| | - Ana Valado
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
- Department of Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, Apartamento 7006, 3046-854 Coimbra, Portugal
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, NS B1P 6L2, Canada
| | - Leonel Pereira
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (D.P.); (L.P.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal;
| |
Collapse
|
23
|
Inclusion of Oat and Yeast Culture in Sow Gestational and Lactational Diets Alters Immune and Antimicrobial Associated Proteins in Milk. Animals (Basel) 2021; 11:ani11020497. [PMID: 33672799 PMCID: PMC7918739 DOI: 10.3390/ani11020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This study investigated the impact that supplementing sow’s gestation and lactation feed with oat alone or together with brewer’s yeast has on milk proteins and piglet growth and health. Oat and yeast supplements increased abundance of several milk proteins involved in immune protection. Piglets born from either the oat- or yeast-supplemented sows had decreased incidence of diarrhea after weaning. The average birth weights for piglets born of dams that consumed Oat were significantly greater than those that did not. However, piglets born to sows that consumed yeast in combination with oat weighed less at weaning and gained the least amount of weight post-weaning. These data suggest that oat, and to a lesser extent, yeast, added to maternal diets during gestation and lactation can positively impact milk, growth, and health of offspring but given in combination can potentially negatively affect piglet weight gain. Abstract Maternal diet supplementation with pro- and prebiotics is associated with decreased incidence of diarrhea and greater piglet performance. This study investigated the impact adding whole ground oat as a prebiotic, alone or in combination with a probiotic, yeast culture (YC) (Saccharomyces cerevisiae), to sow gestation and lactation rations had on milk protein composition, piglet growth, and incidence of post-weaning diarrhea (PWD). Diets: control (CON), CON + yeast culture (YC) [5 g/kg], CON + oat (15% inclusion rate) (Oat) or CON+ YC [5 g/kg] + Oat (15%) were fed the last 30 days of gestation and throughout lactation (18–21 days). Shotgun proteome analysis of day 4 and 7 postpartum milk found 36 differentially abundant proteins (P-adj < 0.1) in both Oat and YC supplemented sows relative to CON. Notable was the increased expression of antimicrobial proteins, lactoferrin and chitinase in milk of Oat and YC sows compared to CON. The levels of IgA, IgM (within colostrum and milk) and IgG (within milk) were similar across treatments. However, colostral IgG levels in Oat-supplemented sows were significantly lower (p < 0.05) than that of the control sows, IgG from Oat-supplemented sows displayed greater reactivity to E. coli-antigens compared with CON and YC. Piglets from sows that consumed Oat alone or in combination weighed significantly more (p < 0.05) at birth compared to CON and YC. However, piglets in the Oat + YC group weighed less at weaning and had the lowest weight gain (p < 0.05) postweaning, compared with CON. Taken together with the observation that piglets of either YC- or Oat-fed sows had less PWD compared to CON and YC+ Oat suggests that Oat or YC supplementation positively impacts piglets through expression of certain milk-associated immune and antimicrobial proteins.
Collapse
|
24
|
A Single Dose of Synbiotics and Vitamins at Birth Affects Piglet Microbiota before Weaning and Modifies Post-Weaning Performance. Animals (Basel) 2021; 11:ani11010084. [PMID: 33466412 PMCID: PMC7824832 DOI: 10.3390/ani11010084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary For pig producers, enhancing piglet performance and reinforcing their health is crucial to ensure the optimal development and welfare of the animals, and to reduce the use of antimicrobials. This study investigated the effect of a single-dose application of a supplement on piglet growth and health, and on their microbiota in the suckling period and after weaning. At birth, piglets from eight litters received a supplement containing two probiotic strains, prebiotics, vitamins, and immunoglobulins, while piglets from six other litters received a dose of water. The supplement given at birth improved post-weaning piglet growth and reduced post-weaning diarrhea. These better post-weaning performances seem to be related to slight changes in the microbiota in the suckling period but not in the post-weaning period. In the suckling period, supplemented piglets shared some growth-related taxa, such as bacteria from the Lactobacillus genus, that unsupplemented piglets did not share. The present study highlights the importance of early-life microbial colonization on the subsequent performance and health of piglets. Abstract Early-life microbial colonization is an important driver for the development and maturation of the gut. The present study aimed to determine whether a single-dose supplement given only at birth would improve piglet performance and modify their fecal microbiota during the suckling and post-weaning periods. At birth, piglets from eight litters received a supplement (SUP+) while piglets from six other litters received water (SUP−). All piglets were monitored until two weeks post-weaning, and fecal samples were collected on Day 16 of age and two weeks post-weaning (Day 39 ± 1). The supplementation resulted in an improvement of average daily gain during the whole experimental period, mainly due to a better growth and a reduction in the incidence of diarrhea in the post-weaning period. There were no differences in the abundance and diversity of the main taxa, although the supplementation increased the relative abundance of rare taxa, such as bacteria from the Saccharibacteria and Cyanobacteria phyla, and the Lentisphaeria class in the suckling period. In addition, at 16 days of age, SUP+ piglets had a more diverse core microbiota, with bacteria from the Lactobacillus genus being present in the core microbiota of SUP+ piglets and absent from SUP− piglets. Therefore, the enhanced growth performance and reduction in diarrhea seem to be related to changes in fecal microbiota during the suckling period rather than at two weeks post-weaning.
Collapse
|
25
|
Nisar H, Sharif M, Rahman MA, Rehman S, Kamboh AA, Saeed M. Effects of Dietary Supplementations of Synbiotics on Growth Performance, Carcass Characteristics and Nutrient Digestibility of Broiler Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- H Nisar
- University of Agriculture, Pakistan
| | - M Sharif
- University of Agriculture, Pakistan
| | | | - S Rehman
- University of Agriculture, Pakistan
| | - AA Kamboh
- Sindh Agriculture University, Pakistan
| | - M Saeed
- Cholistan University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
26
|
Dietary supplementation of Bacillus sp. DU106 activates innate immunity and regulates intestinal microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
27
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
28
|
Ansari F, Pashazadeh F, Nourollahi E, Hajebrahimi S, Munn Z, Pourjafar H. A Systematic Review and Meta-Analysis: The Effectiveness of Probiotics for Viral Gastroenteritis. Curr Pharm Biotechnol 2020; 21:1042-1051. [PMID: 32297578 DOI: 10.2174/1389201021666200416123931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Probiotics can be used for the treatment of viral gastroenteritis. OBJECTIVE This systematic review is to evaluate the evidence regarding the effect of probiotics on human cases of viral gastroenteritis. METHODS The objective of this review is to evaluate the effectiveness of probiotics against placebo or standard treatment for viral gastroenteritis. A comprehensive search of Cochrane Library, EMBASE, MEDLINE via PubMed and Ovid databases, and unpublished studies (till 27 January 2018) was conducted followed by a process of study selection and critical appraisal by two independent reviewers. Randomized controlled trials assessing probiotic administration in human subjects infected with any species of gastroenteritis viruses were considered for inclusion. Only studies with a confirmed viral cause of infection were included. This study was developed using the JBI methodology for systematic reviews, which is in accordance with the PRISMA guideline. Meta-analysis was conducted where feasible. Data were pooled using the inverse variance method with random effects models and expressed as Mean Differences (MDs) with 95% Confidence Intervals (CIs). Heterogeneity was assessed by Cochran Q statistic and quantified by the I2 statistic. We included 17 RCTs, containing 3,082 patients. RESULTS Probiotics can improve symptoms of viral gastroenteritis, including the duration of diarrhea (mean difference 0.7 days, 95% CI 0.31 to 1.09 days, n = 740, ten trials) and duration of hospitalization (mean difference 0.76 days, 95% CI 0.61 to 0.92 days, n = 329, four trials). CONCLUSION The results of this review show that the administration of probiotics in patients with viral gastroenteritis should be considered.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Nourollahi
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zachary Munn
- The Joanna Briggs Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hadi Pourjafar
- Department of Food Sciences and Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
29
|
Mustafa SE, Mustafa S, Ismail A, Abas F, Abd Manap MY, Ahmed Hamdi OA, Elzen S, Nahar L, Sarker SD. Impact of prebiotics on equol production from soymilk isoflavones by two Bifidobacterium species. Heliyon 2020; 6:e05298. [PMID: 33134584 PMCID: PMC7586118 DOI: 10.1016/j.heliyon.2020.e05298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
The influence of commercial prebiotics (fructo-oligosaccharides and inulin) and sugars (glucose and sucrose) on enhancing equol production from soymilk isoflavones by Bifidobacterium longum BB536 and Bifidobacterium breve ATCC 15700 was evaluated in vitro. Sterilized soymilk was inoculated with each bacterial species at 37 °C for 48 h. The growth and β-glucosidase enzyme activity for the two Bifidobacterium species in soymilk throughout fermentation were assessed. The highest viable count for B. breve (8.75 log CFU/ml) was reached at 36 h and for B. longum (8.55 log CFU/ml) at 24 h. Both bacterial species displayed β-glucosidase activity. B. breve showed increased enzyme activity (4.126 U) at 36 h, while B. longum exhibited maximum activity (3.935 U) at 24 h of fermentation. Among the prebiotics screened for their effect in isoflavones transformation to equol, inulin delivered the highest effect on equol production. The co-culture of B. longum BB536 and B. breve ATCC15700 in soymilk supplemented with inulin produced the highest level (11.49 mmol/l) of equol at 48 h of fermentation process. Level of daidzin declined whereas that of daidzein increased, and then gradually decreased due to formation of equol when soymilk was fermented using bifidobacterial. This suggests that the nutritional value of soymilk may be increased by increasing bioavailability of the bioactive ingredients. Collectively these data identify probiotics and prebiotic combinations suitable for inclusion in soymilk to enhance equol production.
Collapse
Affiliation(s)
- Salma Elghali Mustafa
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Mohd Yaizd Abd Manap
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Omer Abdalla Ahmed Hamdi
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, 11121, Khartoum, Sudan
| | - Salma Elzen
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan
| | - Lutfun Nahar
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
30
|
Shin MY, Yong CC, Oh S. Regulatory Effect of Lactobacillus brevis Bmb6 on Gut Barrier Functions in Experimental Colitis. Foods 2020; 9:foods9070864. [PMID: 32630643 PMCID: PMC7404641 DOI: 10.3390/foods9070864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The integrity of gut barrier functions is closely associated with the pathogenesis of colitis. It is speculated that Lactobacillus brevis Bmb6 alleviates colitis by improving the tight junction (TJ) of the inflamed intestinal epithelial layer. In the present study, the regulatory effects of L. brevis Bmb6 on the TJ barrier to ameliorate colitis-symptoms were investigated. Preliminary screening showed that L. brevis Bmb6 exhibited strong acid and bile acid tolerance, along with antioxidants and β-galactosidase activities. In a 14-day dextran sulfate sodium (DSS)-induced colitis mouse model, treatment with L. brevis Bmb6 significantly decreased in the disease activity index score. In addition, histological analyses showed that treatment with L. brevis Bmb6 protected the structural integrity of the intestinal epithelial layer and mucin-secreting goblet cells from DSS-induced damage, with only slight infiltration of immune cells. Interestingly, western blotting analyses showed that the expression of the TJ protein, zona occluden-1, was restored in Bmb6-treated mice, but not in DSS-induced mice. Consistently, the gene expression of inflammatory cytokines (tumor necrosis factor-α and interferon-γ) was also suppressed in the Bmb6-treated mice. Hence, our findings suggest that suppression of inflammatory conditions enhanced expression of TJ protein, ZO-1, or vice versa, contributing to a colitis-ameliorating effect in L. brevis Bmb6.
Collapse
Affiliation(s)
- Mi-Young Shin
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea;
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Cheng-Chung Yong
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: ; Tel.: +82-62-530-2116
| |
Collapse
|
31
|
Li H, Zhang T, Li C, Zheng S, Li H, Yu J. Development of a microencapsulated synbiotic product and its application in yoghurt. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Macedo LL, Vimercati WC, Araújo CDS. Fruto-oligossacarídeos: aspectos nutricionais, tecnológicos e sensoriais. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.08019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resumo Este trabalho objetivou apresentar os fundamentos sobre fruto-oligossacarídeos (FOS), seus métodos de obtenção, estabilidade em alimentos processados e aspectos nutricionais. Os FOS são carboidratos naturais presentes em diversas espécies de plantas, compostos por 2 a 10 monômeros de sacarídeos. Além da obtenção natural, que ocorre através da extração em fontes vegetais, esses carboidratos podem ser obtidos pela hidrólise enzimática da inulina, realizada pelas inulinases, ou ainda sintetizados a partir de resíduos de sacarose. Os FOS são estáveis perante a maioria dos processos realizados nos alimentos, sofrendo maiores degradações em processos térmicos envolvendo alta temperatura e/ou pH extremo. Tal característica favorece a industrialização de produtos ricos em FOS e a adição desses compostos como ingredientes. Esse grupo de carboidratos tem ganhado cada vez mais destaque nos últimos anos perante a capacidade de exercerem diversas funções benéficas ao organismo, pois são considerados como prebióticos e fibras solúveis. A ingestão de FOS está associada à redução do risco de câncer de cólon, diabetes, obesidade, doenças cardiovasculares e ao aumento da absorção de alguns minerais. Além disso, são caracterizados pela boa aceitação sensorial, solubilidade e capacidade de retenção de água. Entretanto, o consumo deve ser moderado, pois, em grandes porções, pode causar alguns desconfortos ao indivíduo, tais como flatulência.
Collapse
|
34
|
Exploring the Potentiality of Lactobacillus Cultures on the Production of Milk-Derived Bioactive Peptides with Antidiabetic Activity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09958-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Tiller NB, Roberts JD, Beasley L, Chapman S, Pinto JM, Smith L, Wiffin M, Russell M, Sparks SA, Duckworth L, O'Hara J, Sutton L, Antonio J, Willoughby DS, Tarpey MD, Smith-Ryan AE, Ormsbee MJ, Astorino TA, Kreider RB, McGinnis GR, Stout JR, Smith JW, Arent SM, Campbell BI, Bannock L. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr 2019; 16:50. [PMID: 31699159 PMCID: PMC6839090 DOI: 10.1186/s12970-019-0312-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Background In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~ 60% of energy intake, 5–8 g·kg− 1·d− 1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg− 1·d− 1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg− 1·d− 1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150–400 Kcal·h− 1 (carbohydrate, 30–50 g·h− 1; protein, 5–10 g·h− 1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450–750 mL·h− 1 (~ 150–250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L− 1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety.
Collapse
Affiliation(s)
- Nicholas B Tiller
- Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA. .,Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.
| | - Justin D Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK.
| | - Liam Beasley
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Shaun Chapman
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Jorge M Pinto
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Melanie Wiffin
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sports Science, Anglia Ruskin University, Cambridge, UK
| | - Mark Russell
- School of Social and Health Sciences, Leeds Trinity University, Leeds, UK
| | - S Andy Sparks
- Sport Nutrition and Performance Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, UK
| | | | - John O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Jose Antonio
- College of Health Care Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Darryn S Willoughby
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | - Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Michael J Ormsbee
- Institute of Sports Sciences & Medicine, Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.,Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Todd A Astorino
- Department of Kinesiology, California State University San Marcos, San Marcos, CA, USA
| | - Richard B Kreider
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Graham R McGinnis
- Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV, USA
| | - Jeffrey R Stout
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, USA
| | - JohnEric W Smith
- Department of Kinesiology, Mississippi State University, Mississippi, MS, USA
| | - Shawn M Arent
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Bill I Campbell
- Exercise Science Program, Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | |
Collapse
|
36
|
Sarwar A, Aziz T, Al-Dalali S, Zhao X, Zhang J, Ud Din J, Chen C, Cao Y, Yang Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019; 8:E468. [PMID: 31658700 PMCID: PMC6835504 DOI: 10.3390/foods8100468] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces boulardii is a unique species of yeast previously characterized as a probiotic strain (CNCM I-745) among a few probiotic yeasts reported to date. Inulin is one of the most common prebiotics that exhibit twisted hydrocolloidal properties in dairy products. The present study was designed to develop a synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), comparing with the probiotic and control plain yogurts. Microrheological, microstructural, microbiological, sensory properties, and volatile compounds of the yogurt samples were evaluated. Microrheological analysis showed that addition of inulin to yogurt slightly reduced the values of G' and G″, while solid-liquid balance (SLB) values confirmed more solid properties of the synbiotic yogurt (0.582~0.595) than the plain yogurt (0.503~0.518). A total of 18 volatile compounds were identified in the synbiotic yogurt, while only five and six compounds were identified in plain and probiotic yogurts, respectively. Physiochemical parameters such as pH, acidity, and protein content were in the normal range (as with the control), while fat content in the synbiotic yogurt decreased significantly. Addition of 1% inulin not only reduced syneresis but also maintained viability of S. boulardii after 28 days of storage. Microstructural and microrheological studies confirmed the dense, compressed, homogeneous structure of the synbiotic yogurt. Thus, addition of inulin improved the textural and sensory properties of the synbiotic yogurt, as well as survival of S. boulardii with viable count above 6.0 log CFU/g in yogurt, as generally required for probiotics. Therefore, novel synbiotic yogurt with desirable quality was developed as an effective carrier for delivery of the probiotic yeast exerting its beneficial health effects.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Sam Al-Dalali
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiao Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Chen
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Yongqiang Cao
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| |
Collapse
|
37
|
Prebiotics: tools to manipulate the gut microbiome and metabolome. ACTA ACUST UNITED AC 2019; 46:1445-1459. [DOI: 10.1007/s10295-019-02203-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Abstract
The human gut is an ecosystem comprising trillions of microbes interacting with the host. The composition of the microbiota and their interactions play roles in different biological processes and in the development of human diseases. Close relationships between dietary modifications, microbiota composition and health status have been established. This review focuses on prebiotics, or compounds which selectively encourage the growth of beneficial bacteria, their mechanisms of action and benefits to human hosts. We also review advances in synthesis technology for human milk oligosaccharides, part of one of the most well-characterized prebiotic–probiotic relationships. Current and future research in this area points to greater use of prebiotics as tools to manipulate the microbial and metabolic diversity of the gut for the benefit of human health.
Collapse
|
38
|
Song L, Qiao X, Zhao D, Xie W, Bukhari SM, Meng Q, Wang L, Cui W, Jiang Y, Zhou H, Li Y, Xu Y, Tang L. Effects of Lactococcus lactis MG1363 producing fusion proteins of bovine lactoferricin-lactoferrampin on growth, intestinal morphology and immune function in weaned piglet. J Appl Microbiol 2019; 127:856-866. [PMID: 31161702 DOI: 10.1111/jam.14339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
AIMS We developed a strategy for localized delivery of the LFCA (lactoferricinlactoferrampin), which is actively synthesized in situ by Lactococcus lactis (pAMJ399-LFCA/LLMG1363), and explored the possibility of using pAMJ399-LFCA/LLMG1363 as an alternative additive diet to antibiotics. METHODS AND RESULTS The antimicrobial activities of the LFCA derived from pAMJ399-LFCA/LLMG1363 were tested in vitro. The results showed that LFCA had an inhibitory effect on Staphylococcus aureus, Escherichia coli and Salmonella enteritidis. Then, the pAMJ399-LFCA/LLMG1363 was used as an additive diet for piglets. Our data demonstrated that oral administration of pAMJ399-LFCA/LLMG1363 significantly improved the average daily gain, feed-to-gain ratio, intestinal mucosal integrity and decreased the serum endotoxin and d-lactic acid levels. The mRNA expression levels of intestinal tight junction proteins (including occludin, Claudin-1 and ZO-1) were significantly upregulated by pAMJ399-LFCA/LLMG1363 administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, IL-2, IL-10 and TGF-β levels were significantly increased by pAMJ399-LFCA/LLMG1363. Furthermore, our data revealed that oral administration of pAMJ399-LFCA/LLMG1363 significantly increased the number of general Lactobacillus, and decreased the total viable E. coli counts in the ileum and cecum contents. CONCLUSIONS We developed a novel pAMJ399-LFCA/LLMG1363 secreting LFCA, which had probiotic effects on the growth performance, intestinal morphology, intestinal barrier function and immunological indices of weaned piglets. SIGNIFICANCE AND IMPACT OF THE STUDY pAMJ399-LFCA/LLMG1363, with probiotic effects on the health of weaned piglets, may be a promising feed additive for weaned piglets.
Collapse
Affiliation(s)
- L Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - X Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - W Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - S M Bukhari
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Q Meng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - W Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - H Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Y Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - L Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
39
|
Moludi J, Alizadeh M, Davari M, Golmohammadi A, Maleki V. The efficacy and safety of probiotics intervention in attenuating cardiac remodeling following myocardial infraction: Literature review and study protocol for a randomized, double-blinded, placebo controlled trial. Contemp Clin Trials Commun 2019; 15:100364. [PMID: 31193187 PMCID: PMC6520668 DOI: 10.1016/j.conctc.2019.100364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/05/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Structural and functional changes that occur post myocardial infraction (MI) lead to the syndrome of heart failure (HF). However, their pathogenesis is poorly understood. Recently, alteration of the intestinal microbiota (dysbiosis) has emerged as a new candidate that may be correlated with risk of HF development. We hypothesized that selective gut modulation by probiotic administration may improve metabolic dysfunction and attenuate cardiac remodeling (CR) in MI subjects. METHODS /Design: This article is presented in two sections: First, we provided a review of recent findings related to gut microbiota and CR and their association with probiotic supplementation. Secondly, we will conduct a randomized double-blinded controlled clinical trial in 46 Iranian patients with MI after successful percutaneous coronary intervention (PCI). The participants (age: ≥ 30 years; ejection fraction (EF) greater than 30) will be selected by a simple random sampling method and will be assigned to 3 months of 1.6* 109 CFU probiotic (Lactobacillus rhamnosus), or placebo groups (maltodextrin). The primary outcome is development of CR. The secondary outcomes measures include gut microbiota profile, biochemical variables and the safety of the probiotics supplementation. Also, echocardiography will be measured at baseline and following treatment. The data will be compared within and between groups using appropriate statistical methods. DISCUSSION The results of this trial will provide evidence about the efficacy and safety of gut microbiota manipulation by probiotics in post-MI cardiac remodeling prevention. ETHICAL ISSUES Present study protocol was approved by the regional committee of ethics in international branch of Tabriz University of Medical sciences (TBZMED) as a thesis proposal for PhD degree in Nutrition Sciences (IR.TBZMED.REC.1397.184).Trial registration The Clinical trial was registered in the Iranian Registry of Clinical Trials (IRCT20121028011288N15).
Collapse
Affiliation(s)
- Jalal Moludi
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Davari
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Golmohammadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Maleki
- Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
FIGUEROA-GONZÁLEZ I, RODRÍGUEZ-SERRANO G, GÓMEZ-RUIZ L, GARCÍA-GARIBAY M, CRUZ-GUERRERO A. Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.07318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
42
|
Abstract
The present review is focused on the prebiotic impact of inulin on the management of the gastrointestinal disorder. Prebiotics can be described as "non-digestible food ingredient stimulating the growth of a certain number of bacteria in the colon, which can improve the host health". In 2004 this definition was modernized to include other areas that may benefit from selective targeting of particular microorganisms: "selectively fermented ingredients that alter the configuration and activity in the gastrointestinal microbiota that confer positive effect". The positive impact of prebiotics in experimental colitis and human inflammatory bowel disease (IBD) has already been established. Prebiotics shows a positive effect in the prevention of IBD by modulating the trophic functions of the flora. Inulin enhances the growth of indigenous lactobacilli and/or bifidobacteria by inducing colonic production of short chain fatty acids (SCFA's) and these properties are related to decreased mucosal lesion scores and diminished mucosal inflammation. Inulin shows a positive approach to retain microbial populations and to support epithelial barrier function by their prebiotic effect which helps in the host defense against invasion and pathogens translocation (endogenous and/or exogenous) and in the inhibition of gastrointestinal diseases and this impact should be verified in further clinical studies. In the present review, we discussed the positive effect of prebiotics in rat IBD models and in human subjects along with their potential protective mechanisms. Preclinical and clinical data revealed that the gut mucosal barrier would be improved by the use of prebiotics in IBD.
Collapse
Affiliation(s)
- Wasim Akram
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Navneet Garud
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| | - Ramakant Joshi
- School of Studies in Pharmaceutical Sciences, Jiwaji University
| |
Collapse
|
43
|
Cirrincione S, Neumann B, Zühlke D, Riedel K, Pessione E. Detailed Soluble Proteome Analyses of a Dairy-Isolated Enterococcus faecalis: A Possible Approach to Assess Food Safety and Potential Probiotic Value. Front Nutr 2019; 6:71. [PMID: 31157229 PMCID: PMC6533484 DOI: 10.3389/fnut.2019.00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enterococci are common inhabitants of the gastrointestinal tracts of humans and animals and thanks to their capability to tolerate different environmental conditions and their high rates of gene transfer, they are able to colonize various ecological niches, as food matrices. Enterococcus faecalis bacteria are defined as controversial microorganisms. From one side they are used as food starters, bio-control agents and probiotics to improve human or animal health. From the other side, in the last two decades enterococci have emerged as important nosocomial pathogens, because bearing high-level of resistance to antibiotics and several putative virulence factors. In this study, the soluble proteome quantitation data (LC-MS/MS) of the food-isolated strain E. faecalis D27 (dairy-isolate) was compared with the soluble proteome quantitation data of the pathogenic E. faecalis UW3114 (urinary tract infection isolate) and with the one of the health promoting strain E. faecalis Symbioflor1, respectively. The comparison of cytosolic protein expression profiles highlighted statistically significant changes in the abundance of proteins mainly involved in specific metabolic pathways, nutrient transport, stress response, and cell wall modulation. Moreover, especially in the dairy isolate and the clinical isolate, several proteins with potential pathogenic implications were found, such as serine proteases, von Willebrand factor, serine hydrolase with beta lactamase activity, efflux transporter, and proteins involved in horizontal gene transfer. The analysis of the extracellular proteome provided interesting results concerning proteins involved in bacterial communication, such as pheromones and conjugative elements and also proteins able to interact with human components. The phenotypic characterization evaluating (i) biofilm formation (ii) hemolytic activity on blood agar plates (iii) protease activity (iv) gelatinase (v) antibiotic resistance pattern, enabled us to elucidate the risks associated with the poor characterized foodborne E. faecalis D27.
Collapse
Affiliation(s)
- Simona Cirrincione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| | - Bernd Neumann
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, Univerity of Torino, Turin, Italy
| |
Collapse
|
44
|
|
45
|
Hensley-McBain T, Wu MC, Manuzak JA, Cheu RK, Gustin A, Driscoll CB, Zevin AS, Miller CJ, Coronado E, Smith E, Chang J, Gale M, Somsouk M, Burgener AD, Hunt PW, Hope TJ, Collier AC, Klatt NR. Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathog 2019; 15:e1007672. [PMID: 30973942 PMCID: PMC6459500 DOI: 10.1371/journal.ppat.1007672] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/02/2019] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal (GI) mucosal dysfunction predicts and likely contributes to non-infectious comorbidities and mortality in HIV infection and persists despite antiretroviral therapy. However, the mechanisms underlying this dysfunction remain incompletely understood. Neutrophils are important for containment of pathogens but can also contribute to tissue damage due to their release of reactive oxygen species and other potentially harmful effector molecules. Here we used a flow cytometry approach to investigate increased neutrophil lifespan as a mechanism for GI neutrophil accumulation in chronic, treated HIV infection and a potential role for gastrointestinal dysbiosis. We report that increased neutrophil survival contributes to neutrophil accumulation in colorectal biopsy tissue, thus implicating neutrophil lifespan as a new therapeutic target for mucosal inflammation in HIV infection. Additionally, we characterized the intestinal microbiome of colorectal biopsies using 16S rRNA sequencing. We found that a reduced Lactobacillus: Prevotella ratio associated with neutrophil survival, suggesting that intestinal bacteria may contribute to GI neutrophil accumulation in treated HIV infection. Finally, we provide evidence that Lactobacillus species uniquely decrease neutrophil survival and neutrophil frequency in vitro, which could have important therapeutic implications for reducing neutrophil-driven inflammation in HIV and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Tiffany Hensley-McBain
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Michael C. Wu
- Biostatistics and Biomathematics Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Jennifer A. Manuzak
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Ryan K. Cheu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Andrew Gustin
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Connor B. Driscoll
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Alexander S. Zevin
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Charlene J. Miller
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Ernesto Coronado
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Michael Gale
- Washington National Primate Research Center, Seattle, WA, United States of America
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Departments of Obstetrics & Gynecology and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Thomas J. Hope
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, Seattle, WA, United States of America
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
46
|
Rani A, Baruah R, Goyal A. Prebiotic Chondroitin Sulfate Disaccharide Isolated from Chicken Keel Bone Exhibiting Anticancer Potential Against Human Colon Cancer Cells. Nutr Cancer 2018; 71:825-839. [DOI: 10.1080/01635581.2018.1521446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aruna Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rwivoo Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
47
|
Mohanty D, Misra S, Mohapatra S, Sahu PS. Prebiotics and synbiotics: Recent concepts in nutrition. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol 2018; 78:131-139. [DOI: 10.1016/j.jtherbio.2018.08.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/16/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023]
|
49
|
Mustafa SE, Mustafa S, Abas F, Manap MYABD, Ismail A, Amid M, Elzen S. Optimization of culture conditions of soymilk for equol production by Bifidobacterium breve 15700 and Bifidobacterium longum BB536. Food Chem 2018; 278:767-772. [PMID: 30583440 DOI: 10.1016/j.foodchem.2018.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
This study analyzed the effect of pH (X1), temperature (X2) and inulin amount (X3) on transformation of isoflavones (daidzin and daidzein) to equol in soymilk fermented with Bifidobacterium spp. All responses significantly (p < 0.05) fitted into quadratic models with coefficients of determination (R2) close to 1 (0.935-0.989). At 24 h of fermentation, amounts of daidzin and daidzein were influenced by all factors. While at 48 h, all factors affected daidzin and only temperature affected daidzein. Equol production was influenced by pH and temperature in 24 h and by all factors in 48 h fermentation. The optimum conditions for equol production were pH 8, 30 °C and 0.5% inulin. Model validation demonstrated there was no significant (p > 0.05) difference between the experimental and predicted values, suggested the suitability of established models in explaining the daidzin and daidzein transformation to equol as a function of pH, temperature and inulin.
Collapse
Affiliation(s)
- Salma Elghali Mustafa
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan.
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mohd Yaizd A B D Manap
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Mehrnoush Amid
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Salma Elzen
- Department of Food Science and Technology, College of Agricultural Studies, Sudan University of Science and Technology, P.O. Box 71, Shambat, Khartoum North, Sudan
| |
Collapse
|
50
|
Berean KJ, Ha N, Ou JZ, Chrimes AF, Grando D, Yao CK, Muir JG, Ward SA, Burgell RE, Gibson PR, Kalantar-Zadeh K. The safety and sensitivity of a telemetric capsule to monitor gastrointestinal hydrogen production in vivo in healthy subjects: a pilot trial comparison to concurrent breath analysis. Aliment Pharmacol Ther 2018; 48:646-654. [PMID: 30067289 DOI: 10.1111/apt.14923] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal gases are currently used for the diagnosis of disorders including small intestinal bacterial overgrowth and carbohydrate malabsorption. AIM To compare the performance of measuring hydrogen production within the gut directly with the telemetric gas-sensing capsule with that of indirect measurement through breath testing. METHODS Using standard breath testing protocols, the capsules and breath tests were simultaneously evaluated in a single-blinded trial in 12 healthy subjects. Eight received a single dose of 1.25-40 g inulin and four 20 or 40 g glucose. Safety and reliability of the capsules were also assessed. RESULTS There were no reported adverse events. All capsules were retrieved and operated without failure. Capsule measurements were in agreement with breath test measurements in magnitude but not in timing; minimal hydrogen production was observed after glucose ingestion and capsule measurements correlated with breath hydrogen after ingestion of 40 g inulin. A dose-dependent increase in concentration of hydrogen was observed from the capsule following ingestion of inulin as low as 1.25 g compared with >10 g for breath measurements. Specifically, the capsule measured >3000 times higher concentrations of hydrogen compared to breath tests, resulting in a signal-to-noise ratio of 23.4 for the capsule compared to 4.2 for the breath test. CONCLUSIONS The capsule showed high sensitivity and signal-to-noise ratio in measuring luminal hydrogen concentrations, provided information on the site of intestinal gas production, and demonstrated safety and reliability. The capsule has potential for improving diagnostic precision for disorders such as small intestinal bacterial overgrowth.
Collapse
Affiliation(s)
- Kyle J Berean
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Adam F Chrimes
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | - Danilla Grando
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Chu K Yao
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Jane G Muir
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Stephanie A Ward
- Monash School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rebecca E Burgell
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Alfred Health and Monash University, Melbourne, Victoria, Australia
| | - Kourosh Kalantar-Zadeh
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.,School of Chemical Engineering, University of New South Wales (UNSW), Kensington, Victoria, Australia
| |
Collapse
|