1
|
Rahrig H, Beloborodova P, Castro C, Sabet K, Johnson M, Pearce O, Celik E, Brown KW. Examining emotion reactivity to politically polarizing media in a randomized controlled trial of mindfulness training versus active coping training. Sci Rep 2025; 15:5209. [PMID: 39939651 PMCID: PMC11822039 DOI: 10.1038/s41598-024-84510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
Emotional appraisals of political stimuli (e.g., videos) have been shown to drive shared neural encoding, which correspond to shared, yet divisive, interpretations of such stimuli. However, mindfulness practice may entrain a form of emotion regulation that de-automatizes social biases, possibly through alteration of such neural mechanisms. The present study combined a naturalistic neuroimaging paradigm and a randomized controlled trial to examine the effects of short-term mindfulness training (MT) (n = 35) vs structurally equivalent Cognitive Reappraisal training (CT) (n = 37) on politically-situated emotions while evaluating the mechanistic role of prefrontal cortical neural synchrony. Participants underwent functional near-infrared spectroscopy (fNIRS) recording while viewing inflammatory partisan news clips and continuously rating their momentary discrete emotions. MT participants were more likely to respond with extreme levels of anger (odds ratio = 0.12, p < 0.001) and disgust (odds ratio = 0.08, p < 0.001) relative to CT participants. Neural synchrony-based analyses suggested that participants with extreme emotion reactions exhibited greater prefrontal cortical neural synchrony, but that this pattern was less prominent in participants receiving MT relative to CT (CT > MT; channel 1 ISC = 0.040, p = 0.030).
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, University of Wisconsin-Madison, 625 W. Washington Ave, Madison, WI, 53703, USA.
| | - Polina Beloborodova
- Department of Psychology, University of Wisconsin-Madison, 625 W. Washington Ave, Madison, WI, 53703, USA
| | - Christina Castro
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Kayla Sabet
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Melina Johnson
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Orion Pearce
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Elif Celik
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Kirk Warren Brown
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
2
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2025; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
3
|
Ye J, Mehta S, Peterson H, Ibrahim A, Saeed G, Linsky S, Kreinin I, Tsang S, Nwanaji-Enwerem U, Raso A, Arora J, Tokoglu F, Yip SW, Hahn CA, Lacadie C, Greene AS, Constable RT, Barry DT, Redeker NS, Yaggi HK, Scheinost D. Neural Variability and Cognitive Control in Individuals With Opioid Use Disorder. JAMA Netw Open 2025; 8:e2455165. [PMID: 39821393 PMCID: PMC11742521 DOI: 10.1001/jamanetworkopen.2024.55165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/11/2024] [Indexed: 01/19/2025] Open
Abstract
Importance Opioid use disorder (OUD) impacts millions of people worldwide. Prior studies investigating its underpinning neural mechanisms have not often considered how brain signals evolve over time, so it remains unclear whether brain dynamics are altered in OUD and have subsequent behavioral implications. Objective To characterize brain dynamic alterations and their association with cognitive control in individuals with OUD. Design, Setting, and Participants This case-control study collected functional magnetic resonance imaging (fMRI) data from individuals with OUD and healthy control (HC) participants. The study was performed at an academic research center and an outpatient clinic from August 2019 to May 2024. Exposure Individuals with OUD were all recently stabilized on medications for OUD (<24 weeks). Main Outcomes and Measures Recurring brain states supporting different cognitive processes were first identified in an independent sample with 390 participants. A multivariate computational framework extended these brain states to the current dataset to assess their moment-to-moment engagement within each individual. Resting-state and naturalistic fMRI investigated whether brain dynamic alterations were consistently observed in OUD. Using a drug cue paradigm in participants with OUD, the association between cognitive control and brain dynamics during exposure to opioid-related information was studied. Variations in continuous brain state engagement (ie, state engagement variability [SEV]) were extracted during resting-state, naturalistic, and drug-cue paradigms. Stroop assessed cognitive control. Results Overall, 99 HC participants (54 [54.5%] female; mean [SD] age, 31.71 [12.16] years) and 76 individuals with OUD (31 [40.8%] female; mean [SD] age, 39.37 [10.47] years) were included. Compared with HC participants, individuals with OUD demonstrated consistent SEV alterations during resting-state (99 HC participants; 71 individuals with OUD; F4,161 = 6.83; P < .001) and naturalistic (96 HC participants; 76 individuals with OUD; F4,163 = 9.93; P < .001) fMRI. Decreased cognitive control was associated with lower SEV during the rest period of a drug cue paradigm among 70 participants with OUD. For example, lower incongruent accuracy scores were associated with decreased transition SEV (ρ58 = 0.34; P = .008). Conclusions and Relevance In this case-control study of brain dynamics in OUD, individuals with OUD experienced greater difficulty in effectively engaging various brain states to meet changing demands. Decreased cognitive control during the rest period of a drug cue paradigm suggests that these individuals had an impaired ability to disengage from opioid-related information. The current study introduces novel information that may serve as groundwork to strengthen cognitive control and reduce opioid-related preoccupation in OUD.
Collapse
Affiliation(s)
- Jean Ye
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Saloni Mehta
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Hannah Peterson
- Department of Health Policy, Vanderbilt University, Nashville, Tennessee
| | - Ahmad Ibrahim
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Gul Saeed
- Department of Internal Medicine, Roger Williams Medical Center, Providence, Rhode Island
| | | | - Iouri Kreinin
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sui Tsang
- Program of Aging, Yale University, New Haven, Connecticut
| | | | - Anthony Raso
- Frank H. Netter MD School of Medicine, Quinnipiac University, Hamden, Connecticut
| | - Jagriti Arora
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fuyuze Tokoglu
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Sarah W. Yip
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - C. Alice Hahn
- Yale Center for Clinical Investigation, Yale School of Medicine, New Haven, Connecticut
| | - Cheryl Lacadie
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Abigail S. Greene
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, Massachusetts
| | - R. Todd Constable
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Declan T. Barry
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
- Department of Research, APT Foundation, New Haven, Connecticut
| | | | - H. Klar Yaggi
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Clinical Epidemiology Research Center, VA CT Healthcare System, West Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
- Department of Statistics & Data Science, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Li LY, Grzelak LN, Auerbach RP, Shankman SA. Siblings' similarity in neural responses to loss reflects mechanisms of familial transmission for depression. J Psychiatr Res 2025; 181:286-293. [PMID: 39637720 PMCID: PMC11750602 DOI: 10.1016/j.jpsychires.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Having a depressed first-degree relative is one of the most replicated risk factors for depression. Research on the familial transmission of depression, however, has largely ignored siblings, even though sibling relationships are commonplace and characterized by frequent and intense emotions. It has been suggested that frequent contacts in close relationships lead to similarities in emotions and cognitions over time, a process underpinned by biobehavioral synchrony. Consequently, to shed light on the neural mechanism underlying familial transmission of depression, the present study tested whether neural similarity in response to reward and loss, indexed by inter-subject correlation (ISC), was associated with major depressive disorder (MDD) diagnosis, depression symptom severity, and relationship quality in sibling pairs. Same-sex, full-sibling pairs (N = 108 pairs) with a wide range of depression severity separately completed a monetary reward task during electroencephalography acquisition. The ISC in response to reward and loss feedback was calculated using circular correlation between siblings' phase angles in delta and theta frequency bands, respectively. Significant sibling ISC to reward and loss was observed, with activity maximal at frontocentral sites. Loss-related theta, but not reward-related delta, ISC was associated with: (a) greater depression risk (both lifetime MDD diagnosis and self-reported symptom severity), but not anxiety, and (b) worse sibling relationship quality during childhood in each sibling. Findings provide initial evidence that similarities in neural responses to loss may be a result of disturbed childhood sibling relationships, which may specifically increase risk for depression during adulthood.
Collapse
Affiliation(s)
- Lilian Y Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University, USA
| | - Lauren N Grzelak
- Department of Psychiatry and Behavioral Sciences, Northwestern University, USA
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, USA; Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, USA
| | - Stewart A Shankman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, USA.
| |
Collapse
|
5
|
Schilbach L, Redcay E. Synchrony Across Brains. Annu Rev Psychol 2025; 76:883-911. [PMID: 39441884 DOI: 10.1146/annurev-psych-080123-101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Second-person neuroscience focuses on studying the behavioral and neuronal mechanisms of real-time social interactions within single and across interacting brains. In this review article, we describe the developments that have been undertaken to study socially interactive phenomena and the behavioral and neurobiological processes that extend across interaction partners. More specifically, we focus on the role that synchrony across brains plays in enabling and facilitating social interaction and communication and in shaping social coordination and learning, and we consider how reduced synchrony across brains may constitute a core feature of psychopathology.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf / Kliniken der Heinrich-Heine-Universität, Düsseldorf, Germany;
- Department of Psychiatry and Psychotherapy, Clinic of the Ludwig-Maximilians-University, Munich, Germany
| | - Elizabeth Redcay
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Roche EC, Redcay E, Romeo RR. Caregiver-child neural synchrony: Magic, mirage, or developmental mechanism? Dev Cogn Neurosci 2025; 71:101482. [PMID: 39693894 PMCID: PMC11720112 DOI: 10.1016/j.dcn.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Young children transition in and out of synchronous states with their caregivers across physiology, behavior, and brain activity, but what do these synchronous periods mean? One body of two-brain studies using functional near-infrared spectroscopy (fNIRS) finds that individual, family, and moment-to-moment behavioral and contextual factors are associated with caregiver-child neural synchrony, while another body of literature finds that neural synchrony is associated with positive child outcomes. Taken together, it is tempting to conclude that caregiver-child neural synchrony may act as a foundational developmental mechanism linking children's experiences to their healthy development, but many questions remain. In this review, we synthesize recent findings and open questions from caregiver-child studies using fNIRS, which is uniquely well suited for use with caregivers and children, but also laden with unique constraints. Throughout, we highlight open questions alongside best practices for optimizing two-brain fNIRS to examine hypothesized developmental mechanisms. We particularly emphasize the need to consider immediate and global stressors as context for interpretation of neural synchrony findings, and the need for full inclusion of socioeconomically and racially diverse families in future studies.
Collapse
Affiliation(s)
- Ellen C Roche
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Elizabeth Redcay
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| | - Rachel R Romeo
- Language, Experience, and Development (LEAD) Lab, Benjamin Building (4th Floor), 3942 Campus Dr., College Park, MD 20742, United States.
| |
Collapse
|
7
|
Amormino P, Kagel A, Li JL, Marsh AA. Close relationship partners of impartial altruists do not report diminished relationship quality and are similarly altruistic. COMMUNICATIONS PSYCHOLOGY 2024; 2:128. [PMID: 39730983 DOI: 10.1038/s44271-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Impartial altruism is often considered a moral ideal but is rare in practice. Instead, generosity typically decreases as social distance increases, a phenomenon termed social discounting. Most people prefer this partiality in their close relationships and view impartial altruists as poorer relationship partners. This suggests real-world impartial altruism may be rare because it reduces-or is perceived to reduce-the quality of close relationships. To investigate this, we compared patterns of generosity and social relationship quality in a rare sample of individuals who had engaged in extraordinary real-world impartial altruism (altruistic kidney donors; n = 59) and their closest friend or family member (n = 59) to controls (n = 71) and their closest others (n = 71). We designed a direct test of third-party social discounting, which experimentally confirmed real-world altruists' impartiality, finding that they are more likely than controls to split resources evenly between close and distant others rather than favoring close others. However, we found no statistically significant association between impartial altruism and social relationship quality. Instead, we found that altruists' close others also show more impartiality than controls. This suggests value homophily (shared moral values) among altruists, which may represent a protective factor for close relationships in the context of impartial altruism.
Collapse
Affiliation(s)
- Paige Amormino
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Adam Kagel
- Department of Physics, University of California at San Diego, San Diego, CA, USA
| | - Joanna L Li
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Abigail A Marsh
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
8
|
Feldman MJ, Capella J, Dai J, Bonar AS, Field NH, Lewis K, Prinstein MJ, Telzer EH, Lindquist KA. Proximity within adolescent peer networks predicts neural similarity during affective experience. Soc Cogn Affect Neurosci 2024; 19:nsae072. [PMID: 39412190 PMCID: PMC11540295 DOI: 10.1093/scan/nsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Individuals befriend others who are similar to them. One important source of similarity in relationships is similarity in felt emotion. In the present study, we used novel methods to assess whether greater similarity in the multivoxel brain representation of affective stimuli was associated with adolescents' proximity within real-world school-based social networks. We examined dyad-level neural similarity within a set of brain regions associated with the representation of affect including the ventromedial prefrontal cortex (vmPFC), amygdala, insula, and temporal pole. Greater proximity was associated with greater vmPFC neural similarity during pleasant and neutral experiences. Moreover, we used unsupervised clustering on social networks to identify groups of friends and observed that individuals from the same (versus different) friend groups were more likely to have greater vmPFC neural similarity during pleasant and negative experiences. These findings suggest that similarity in the multivoxel brain representation of affect may play an important role in adolescent friendships.
Collapse
Affiliation(s)
- Mallory J Feldman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jimmy Capella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Junqiang Dai
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, Atlanta, GA 30303, USA
- Department of Psychology, Georgia State University, Atlanta, GA 30303, United States
| | - Adrienne S Bonar
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nathan H Field
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, United States
| | - Kevin Lewis
- Department of Sociology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
9
|
Ren W, Yu S, Guo K, Lu C, Zhang YQ. Disrupted Human-Dog Interbrain Neural Coupling in Autism-Associated Shank3 Mutant Dogs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402493. [PMID: 39257367 PMCID: PMC11538694 DOI: 10.1002/advs.202402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Indexed: 09/12/2024]
Abstract
Dogs interact with humans effectively and intimately. However, the neural underpinnings for such interspecies social communication are not understood. It is known that interbrain activity coupling, i.e., the synchronization of neural activity between individuals, represents the neural basis of social interactions. Here, previously unknown cross-species interbrain activity coupling in interacting human-dog dyads is reported. By analyzing electroencephalography signals from both dogs and humans, it is found that mutual gaze and petting induce interbrain synchronization in the frontal and parietal regions of the human-dog dyads, respectively. The strength of the synchronization increases with growing familiarity of the human-dog dyad over five days, and the information flow analysis suggests that the human is the leader while the dog is the follower during human-dog interactions. Furthermore, dogs with Shank3 mutations, which represent a promising complementary animal model of autism spectrum disorders (ASD), show a loss of interbrain coupling and reduced attention during human-dog interactions. Such abnormalities are rescued by the psychedelic lysergic acid diethylamide (LSD). The results reveal previously unknown interbrain synchronizations within an interacting human-dog dyad which may underlie the interspecies communication, and suggest a potential of LSD for the amelioration of social impairment in patients with ASD.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain‐inspired IntelligenceInstitute of Automation, Chinese Academy of SciencesBeijing100190China
| | - Kun Guo
- School of PsychologyUniversity of LincolnBrayford PoolLincolnLN6 7TSUK
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yong Q. Zhang
- State Key Laboratory for Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- School of Life SciencesHubei UniversityWuhan430062China
| |
Collapse
|
10
|
Welker C, Wheatley T, Cason G, Gorman C, Meyer M. Self-views converge during enjoyable conversations. Proc Natl Acad Sci U S A 2024; 121:e2321652121. [PMID: 39401349 PMCID: PMC11513911 DOI: 10.1073/pnas.2321652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
Based on current research, it is evident that the way people see themselves is shaped by their conversation partners. Historically, this literature focuses on how one individual's expectations can shape another person's self-views. Given the reciprocal nature of conversation, we wondered whether conversation partners' self-views may mutually evolve. Using four-person round-robin conversation networks, we found that participants tended to have more similar self-views post-conversation than pre-conversation, an effect we term "inter-self alignment." Further, the more two partners' self-views aligned, the more they enjoyed their conversation and were inclined to interact again. This effect depended on both conversation partners becoming aligned. These findings suggest that the way we see ourselves is coauthored in the act of dialogue and that as shared self-views develop, the desire to continue the conversation increases.
Collapse
Affiliation(s)
- Christopher Welker
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Thalia Wheatley
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
- Santa Fe Institute, Santa Fe, NM87501
| | - Grace Cason
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Catherine Gorman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Meghan Meyer
- Department of Psychology, Columbia University, New York, NY10027
| |
Collapse
|
11
|
Thompson JC, Parkinson C. Interactions between neural representations of the social and spatial environment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220522. [PMID: 39230453 PMCID: PMC11449203 DOI: 10.1098/rstb.2022.0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- James C. Thompson
- Department of Psychology, and Center for Adaptive Systems of Brain-Body Interactions, George Mason University, MS3F5 4400 University Drive, Fairfax, VA22030, USA
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Capella J, Telzer EH. A framework for integrating neural development and social networks in adolescence. Dev Cogn Neurosci 2024; 69:101442. [PMID: 39241455 PMCID: PMC11408384 DOI: 10.1016/j.dcn.2024.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Adolescence is a developmental period characterized by increasingly complex and influential peer contexts. Concurrently, developmental changes in neural circuits, particularly those related to social cognition, affective salience, and cognitive control, contribute to individuals' social interactions and behaviors. However, while adolescents' behaviors and overall outcomes are influenced by the entirety of their social environments, insights from developmental and social neuroscience often come from studies of individual relationships or specific social actors. By capturing information about both adolescents' individual relations and their larger social contexts, social network analysis offers a powerful opportunity to enhance our understanding of how social factors interact with adolescent development. In this review, we highlight the relevant features of adolescent social and neural development that should be considered when integrating social network analysis and neuroimaging methods. We focus on broad themes of adolescent development, including identity formation, peer sensitivity, and the pursuit of social goals, that serve as potential mechanisms for the relations between neural processes and social network features. With these factors in mind, we review the current research and propose future applications of these methods and theories.
Collapse
Affiliation(s)
- Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
13
|
Speer SPH, Mwilambwe-Tshilobo L, Tsoi L, Burns SM, Falk EB, Tamir DI. Hyperscanning shows friends explore and strangers converge in conversation. Nat Commun 2024; 15:7781. [PMID: 39237568 PMCID: PMC11377434 DOI: 10.1038/s41467-024-51990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
During conversation, people often endeavor to convey information in an understandable way (finding common ground) while also sharing novel or surprising information (exploring new ground). Here, we test how friends and strangers balance these two strategies to connect with each other. Using fMRI hyperscanning, we measure a preference for common ground as convergence over time and exploring new ground as divergence over time by tracking dyads' neural and linguistic trajectories over the course of semi-structured intimacy-building conversations. In our study, 60 dyads (30 friend dyads) engaged in a real-time conversation with discrete prompts and demarcated turns. Our analyses reveal that friends diverge neurally and linguistically: their neural patterns become more dissimilar over time and they explore more diverse topics. In contrast, strangers converge: neural patterns and language become more similar over time. The more a conversation between strangers resembles the exploratory conversations of friends, the more they enjoy it. Our results highlight exploring new ground as a strategy for a successful conversation.
Collapse
Affiliation(s)
| | - Laetitia Mwilambwe-Tshilobo
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
| | - Lily Tsoi
- Department of Psychology, Caldwell University, Caldwell, NJ, USA
| | - Shannon M Burns
- Department of Psychological Science, Pomona College, Claremont, CA, USA
- Department of Neuroscience, Pomona College, Claremont, CA, USA
| | - Emily B Falk
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Wharton Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Operations, Information, and Decisions Department, University of Pennsylvania, Philadelphia, PA, USA
| | - Diana I Tamir
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
14
|
Bacha-Trams M, Yorulmaz GE, Glerean E, Ryyppö E, Tapani K, Virmavirta E, Saaristo J, Jääskeläinen IP, Sams M. Sisterhood predicts similar neural processing of a film. Neuroimage 2024; 297:120712. [PMID: 38945181 DOI: 10.1016/j.neuroimage.2024.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
Relationships between humans are essential for how we see the world. Using fMRI, we explored the neural basis of homophily, a sociological concept that describes the tendency to bond with similar others. Our comparison of brain activity between sisters, friends and acquaintances while they watched a movie, indicate that sisters' brain activity is more similar than that of friends and friends' activity is more similar than that of acquaintances. The increased similarity in brain activity measured as inter-subject correlation (ISC) was found both in higher-order brain areas including the default-mode network (DMN) and sensory areas. Increased ISC could not be explained by genetic relation between sisters neither by similarities in eye-movements, emotional experiences, and physiological activity. Our findings shed light on the neural basis of homophily by revealing that similarity in brain activity in the DMN and sensory areas is the stronger the closer is the relationship between the people.
Collapse
Affiliation(s)
- Mareike Bacha-Trams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Institute of Research Methods in Psychology - Media-based Knowledge Construction, Computer Science and Applied Cognitive Science, University of Duisburg-Essen, Germany.
| | - Gökce Ertas Yorulmaz
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Enrico Glerean
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Elisa Ryyppö
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Karoliina Tapani
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Eero Virmavirta
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jenni Saaristo
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Iiro P Jääskeläinen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland.
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Aalto Studios - MAGICS, Aalto University, Espoo, Finland
| |
Collapse
|
15
|
Forbes CE. On the neural networks of self and other bias and their role in emergent social interactions. Cortex 2024; 177:113-129. [PMID: 38848651 DOI: 10.1016/j.cortex.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Extensive research has documented the brain networks that play an integral role in bias, or the alteration and filtration of information processing in a manner that fundamentally favors an individual. The roots of bias, whether self- or other-oriented, are a complex constellation of neural and psychological processes that start at the most fundamental levels of sensory processing. From the millisecond information is received in the brain it is filtered at various levels and through various brain networks in relation to extant intrinsic activity to provide individuals with a perception of reality that complements and satisfies the conscious perceptions they have for themselves and the cultures in which they were reared. The products of these interactions, in turn, are dynamically altered by the introduction of others, be they friends or strangers who are similar or different in socially meaningful ways. While much is known about the various ways that basic biases alter specific aspects of neural function to support various forms of bias, the breadth and scope of the phenomenon remains entirely unclear. The purpose of this review is to examine the brain networks that shape (i.e., bias) the self-concept and how interactions with similar (ingroup) compared to dissimilar (outgroup) others alter these network (and subsequent interpersonal) interactions in fundamental ways. Throughout, focus is placed on an emerging understanding of the brain as a complex system, which suggests that many of these network interactions likely occur on a non-linear scale that blurs the lines between network hierarchies.
Collapse
Affiliation(s)
- Chad E Forbes
- Social Neuroscience Laboratory, Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA; Florida Atlantic University Stiles-Nicholson Brain Institute, USA.
| |
Collapse
|
16
|
Wang D, Ren Y, Chen W. Relationship evolution shapes inter-brain synchrony in affective sharing: The role of self-expansion. Brain Struct Funct 2024:10.1007/s00429-024-02841-0. [PMID: 39052095 DOI: 10.1007/s00429-024-02841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The development of social relationships influences a person's self-concept, which in turn affects their perceptions and neural correlates in social interactions. This study employed an EEG-based hyperscanning technique and a longitudinal design to investigate how the evolution of interpersonal relationships impacts inter-brain synchrony during nonverbal social-emotional interactions. The framework for this study is based on the self-expansion model. We found that dyads exhibited enhanced affective sharing abilities and increased brain-to-brain synchrony, particularly in the gamma rhythm across the frontal, parietal, and left temporoparietal regions, after seven months together compared to when they first met. Additionally, the results indicate that inter-brain coupling evolves as relationships develop, with synchrony in nonverbal social-emotional interactions increasing as self-expansion progresses. Crucially, in the deep learning model, interpersonal closeness can be successfully classified by inter-brain synchrony during emotional-social interactions. The longitudinal EEG-hyperscanning design of our study allows for capturing dynamic changes over time, offering new insights into the neurobiological foundations of social interaction and the potential of neural synchrony as a biomarker for relationship dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Department of Psychology, Renmin University of China, Beijing, China
| | - Yong Ren
- Department of Psychology, Renmin University of China, Beijing, China
| | - Wenfeng Chen
- Department of Psychology, Renmin University of China, Beijing, China.
| |
Collapse
|
17
|
Oakes RA, Peschel L, Barraclough NE. Inter-subject correlation of audience facial expressions predicts audience engagement during theatrical performances. iScience 2024; 27:109843. [PMID: 38779478 PMCID: PMC11109022 DOI: 10.1016/j.isci.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
During performances, audiences experience various emotional states, and these are reflected in their ongoing facial expressions. We investigated if audience engagement could be determined by measuring the inter-subject correlation (ISC) of non-invasively recorded audience facial expressions. We filmed the faces of multiple audience members at theatrical performances and determined the intensity of their different facial expressions throughout the performances. Neutral, happy, anger, and disgust expression ISCs accounted for up to 24% of the performance dramaturge's predictions of audience engagement. Expression synchrony was greater between individuals in close proximity, suggesting effects of emotional contagion or cognitive similarities between neighboring individuals, whereas expression synchrony was greatest between individuals who were younger, female, and with greater levels of empathy, showing that individual characteristics impact shared audience experiences. Together, our results show that facial expression synchronization could be used as a real-time non-invasive indicator of engagement in audiences larger than achieved using previous approaches.
Collapse
Affiliation(s)
- Richard A. Oakes
- Department of Psychology, University of York, Heslington, YO10 5DD York, UK
- Department of Theatre, Film and Television and Interactive Media, University of York, Heslington, YO10 5DD York, UK
| | - Lisa Peschel
- Department of Theatre, Film and Television and Interactive Media, University of York, Heslington, YO10 5DD York, UK
| | | |
Collapse
|
18
|
Moffat R, Roos L, Casale C, Cross ES. Dyadic body competence predicts movement synchrony during the mirror game. Front Hum Neurosci 2024; 18:1401494. [PMID: 38962145 PMCID: PMC11220161 DOI: 10.3389/fnhum.2024.1401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
The process of synchronizing our body movements with others is known to enhance rapport, affect, and prosociality. Furthermore, emerging evidence suggests that synchronizing activities may enhance cognitive performance. Unknown, by contrast, is the extent to which people's individual traits and experiences influence their ability to achieve and maintain movement synchrony with another person, which is key for unlocking the social and affective benefits of movement synchrony. Here, we take a dyad-centered approach to gain a deeper understanding of the role of embodiment in achieving and maintaining movement synchrony. Using existing data, we explored the relationship between body competence and body perception scores at the level of the dyad, and the dyad's movement synchrony and complexity while playing a 2.5-min movement mirroring game. The data revealed that dyadic body competence scores positively correlate with movement synchrony, but not complexity, and that dyadic body perception scores are not associated with movement synchrony or complexity. Movement synchrony was greater when the more experienced member of the dyad was responsible for copying movements. Finally, movement synchrony and complexity were stable across the duration of the mirror game. These findings show that movement synchrony is sensitive to the composition of the dyad involved, specifically the dyad's embodiment, illuminating the value of dyadic approaches to understanding body movements in social contexts.
Collapse
Affiliation(s)
- Ryssa Moffat
- Professorship for Social Brain Sciences, ETH, Zurich, Switzerland
| | - Leonie Roos
- Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany
| | - Courtney Casale
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily S. Cross
- Professorship for Social Brain Sciences, ETH, Zurich, Switzerland
| |
Collapse
|
19
|
Crone EA, Bol T, Braams BR, de Rooij M, Franke B, Franken I, Gazzola V, Güroğlu B, Huizenga H, Hulshoff Pol H, Keijsers L, Keysers C, Krabbendam L, Jansen L, Popma A, Stulp G, van Atteveldt N, van Duijvenvoorde A, Veenstra R. Growing Up Together in Society (GUTS): A team science effort to predict societal trajectories in adolescence and young adulthood. Dev Cogn Neurosci 2024; 67:101403. [PMID: 38852381 PMCID: PMC11214182 DOI: 10.1016/j.dcn.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Our society faces a great diversity of opportunities for youth. The 10-year Growing Up Together in Society (GUTS) program has the long-term goal to understand which combination of measures best predict societal trajectories, such as school success, mental health, well-being, and developing a sense of belonging in society. Our leading hypothesis is that self-regulation is key to how adolescents successfully navigate the demands of contemporary society. We aim to test these questions using socio-economic, questionnaire (including experience sampling methods), behavioral, brain (fMRI, sMRI, EEG), hormonal, and genetic measures in four large cohorts including adolescents and young adults. Two cohorts are designed as test and replication cohorts to test the developmental trajectory of self-regulation, including adolescents of different socioeconomic status thereby bridging individual, family, and societal perspectives. The third cohort consists of an entire social network to examine how neural and self-regulatory development influences and is influenced by whom adolescents and young adults choose to interact with. The fourth cohort includes youth with early signs of antisocial and delinquent behavior to understand patterns of societal development in individuals at the extreme ends of self-regulation and societal participation, and examines pathways into and out of delinquency. We will complement the newly collected cohorts with data from existing large-scale population-based and case-control cohorts. The study is embedded in a transdisciplinary approach that engages stakeholders throughout the design stage, with a strong focus on citizen science and youth participation in study design, data collection, and interpretation of results, to ensure optimal translation to youth in society.
Collapse
Affiliation(s)
- Eveline A Crone
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Leiden University, Institute of Psychology, the Netherlands.
| | - Thijs Bol
- Department of Sociology, University of Amsterdam, the Netherlands
| | - Barbara R Braams
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Mark de Rooij
- Leiden University, Institute of Psychology, the Netherlands
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Cognitive Neuroscience and Human Genetics, Nijmegen, the Netherlands
| | - Ingmar Franken
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Berna Güroğlu
- Leiden University, Institute of Psychology, the Netherlands
| | - Hilde Huizenga
- Department of Psychology, University of Amsterdam, the Netherlands
| | | | - Loes Keijsers
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience (KNAW) and University of Amsterdam, Amsterdam, the Netherlands
| | - Lydia Krabbendam
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | - Lucres Jansen
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Arne Popma
- Department of Child and Adolescent Psychiatry & Psychosocial Care, AmsterdamUMC and Research Institute Amsterdam Public Health, Amsterdam, the Netherlands
| | - Gert Stulp
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands
| | | | - René Veenstra
- University of Groningen, Department of Sociology / Inter-University Center for Social Science Theory and Methodology, Groningen, the Netherlands
| |
Collapse
|
20
|
Schwyck ME, Du M, Li Y, Chang LJ, Parkinson C. Similarity Among Friends Serves as a Social Prior: The Assumption That "Birds of a Feather Flock Together" Shapes Social Decisions and Relationship Beliefs. PERSONALITY AND SOCIAL PSYCHOLOGY BULLETIN 2024; 50:823-840. [PMID: 36727604 PMCID: PMC11080385 DOI: 10.1177/01461672221140269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/16/2022] [Indexed: 02/03/2023]
Abstract
Social interactions unfold within networks of relationships. How do beliefs about others' social ties shape-and how are they shaped by-expectations about how others will behave? Here, participants joined a fictive online game-playing community and interacted with its purported members, who varied in terms of their trustworthiness and apparent relationships with one another. Participants were less trusting of partners with untrustworthy friends, even after they consistently showed themselves to be trustworthy, and were less willing to engage with them in the future. To test whether people not only expect friends to behave similarly but also expect those who behave similarly to be friends, an incidental memory test was given. Participants were exceptionally likely to falsely remember similarly behaving partners as friends. Thus, people expect friendship to predict similar behavior and vice versa. These results suggest that knowledge of social networks and others' behavioral tendencies reciprocally interact to shape social thought and behavior.
Collapse
Affiliation(s)
| | - Meng Du
- University of California, Los Angeles, USA
| | - Yuchen Li
- University of California, Los Angeles, USA
| | | | | |
Collapse
|
21
|
Ma C, Liu Y. Neural Similarity and Synchrony among Friends. Brain Sci 2024; 14:562. [PMID: 38928562 PMCID: PMC11202270 DOI: 10.3390/brainsci14060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Researchers have long recognized that friends tend to exhibit behaviors that are more similar to each other than to those of non-friends. In recent years, the concept of neural similarity or neural synchrony among friends has garnered significant attention. This body of research bifurcates into two primary areas of focus: the specificity of neural similarity among friends (vs. non-friends) and the situational factors that influence neural synchrony among friends. This review synthesizes the complex findings to date, highlighting consistencies and identifying gaps in the current understanding. It aims to provide a coherent overview of the nuanced interplay between social relationships and neural processes, offering valuable insights for future investigations in this field.
Collapse
Affiliation(s)
- Chao Ma
- School of Psychology, Northeast Normal University, Changchun 130024, China;
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| | - Yi Liu
- School of Psychology, Northeast Normal University, Changchun 130024, China;
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun 130024, China
| |
Collapse
|
22
|
Sievers B, Welker C, Hasson U, Kleinbaum AM, Wheatley T. Consensus-building conversation leads to neural alignment. Nat Commun 2024; 15:3936. [PMID: 38729961 PMCID: PMC11087652 DOI: 10.1038/s41467-023-43253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/03/2023] [Indexed: 05/12/2024] Open
Abstract
Conversation is a primary means of social influence, but its effects on brain activity remain unknown. Previous work on conversation and social influence has emphasized public compliance, largely setting private beliefs aside. Here, we show that consensus-building conversation aligns future brain activity within groups, with alignment persisting through novel experiences participants did not discuss. Participants watched ambiguous movie clips during fMRI scanning, then conversed in groups with the goal of coming to a consensus about each clip's narrative. After conversation, participants' brains were scanned while viewing the clips again, along with novel clips from the same movies. Groups that reached consensus showed greater similarity of brain activity after conversation. Participants perceived as having high social status spoke more and signaled disbelief in others, and their groups had unequal turn-taking and lower neural alignment. By contrast, participants with central positions in their real-world social networks encouraged others to speak, facilitating greater group neural alignment. Socially central participants were also more likely to become neurally aligned to others in their groups.
Collapse
Affiliation(s)
- Beau Sievers
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA.
| | - Christopher Welker
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Uri Hasson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Adam M Kleinbaum
- Tuck School of Business, Dartmouth College, Hanover, NH, 03755, USA
| | - Thalia Wheatley
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
23
|
Broom TW, Iyer S, Courtney AL, Meyer ML. Loneliness corresponds with neural representations and language use that deviate from shared cultural perceptions. COMMUNICATIONS PSYCHOLOGY 2024; 2:40. [PMID: 38721125 PMCID: PMC11073992 DOI: 10.1038/s44271-024-00088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 09/01/2024]
Abstract
The word zeitgeist refers to common perceptions shared in a given culture. Meanwhile, a defining feature of loneliness is feeling that one's views are not shared with others. Does loneliness correspond with deviating from the zeitgeist? Across two independent brain imaging datasets, lonely participants' neural representations of well-known celebrities strayed from group-consensus neural representations in the medial prefrontal cortex-a region that encodes and retrieves social knowledge (Studies 1 A/1B: N = 40 each). Because communication fosters social connection by creating shared reality, we next asked whether lonelier participants' communication about well-known celebrities also deviates from the zeitgeist. Indeed, when a strong group consensus exists, lonelier individuals use idiosyncratic language to describe well-known celebrities (Study 2: N = 923). Collectively, results support lonely individuals' feeling that their views are not shared. This suggests loneliness may not only reflect impoverished relationships with specific individuals, but also feelings of disconnection from prevalently shared views of contemporary culture.
Collapse
Affiliation(s)
| | - Siddhant Iyer
- Department of Neuroscience, Columbia University, New York, NY USA
| | | | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY USA
| |
Collapse
|
24
|
Rahrig H, Beloboradova P, Castro C, Sabet K, Johnson M, Pearce O, Brown KW. Managing emotions in the age of political polarization: A randomized controlled trial comparing mindfulness to cognitive reappraisal. RESEARCH SQUARE 2024:rs.3.rs-3947259. [PMID: 38586010 PMCID: PMC10996818 DOI: 10.21203/rs.3.rs-3947259/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Emotional appraisals of political stimuli (e.g., videos) have been shown to drive shared neural encoding, which correspond to shared, yet divisive, interpretations of such stimuli. However, mindfulness practice may entrain a form of emotion regulation that de-automatizes social biases, possibly through alteration of such neural mechanisms. The present study combined a naturalistic neuroimaging paradigm and a randomized controlled trial to examine the effects of short-term mindfulness training (MT) (n = 35) vs structurally equivalent Cognitive Reappraisal training (CT) (n = 37) on politically-situated emotions while evaluating the mechanistic role of prefrontal cortical neural synchrony. Participants underwent functional near-infrared spectroscopy (fNIRS) recording while viewing inflammatory partisan news clips and continuously rating their momentary discrete emotions. MT participants were more likely to respond with extreme levels of anger (odds ratio = 0.12, p < .001) and disgust (odds ratio = 0.08, p < .001) relative to CT participants. Neural synchrony-based analyses suggested that participants with extreme emotion reactions exhibited greater prefrontal cortical neural synchrony, but that this pattern was less prominent in participants receiving MT relative to CT (CT > MT; channel 1 ISC = .040, p = .030).
Collapse
Affiliation(s)
- Hadley Rahrig
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53703, United States of America
| | - Polina Beloboradova
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Christina Castro
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Kayla Sabet
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Melina Johnson
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Orion Pearce
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
| | - Kirk Warren Brown
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, United States of America
- Health and Human Performance Lab, Carnegie Mellon University, Pittsburgh, PA, 15213, United States of America
| |
Collapse
|
25
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Wheatley T, Thornton MA, Stolk A, Chang LJ. The Emerging Science of Interacting Minds. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:355-373. [PMID: 38096443 PMCID: PMC10932833 DOI: 10.1177/17456916231200177] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
For over a century, psychology has focused on uncovering mental processes of a single individual. However, humans rarely navigate the world in isolation. The most important determinants of successful development, mental health, and our individual traits and preferences arise from interacting with other individuals. Social interaction underpins who we are, how we think, and how we behave. Here we discuss the key methodological challenges that have limited progress in establishing a robust science of how minds interact and the new tools that are beginning to overcome these challenges. A deep understanding of the human mind requires studying the context within which it originates and exists: social interaction.
Collapse
Affiliation(s)
- Thalia Wheatley
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
- Santa Fe Institute
| | - Mark A. Thornton
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| | - Arjen Stolk
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| | - Luke J. Chang
- Consortium for Interacting Minds, Psychological and Brain Sciences, Dartmouth, Hanover, NH USA
| |
Collapse
|
27
|
Habouba N, Talmon R, Kraus D, Farah R, Apter A, Steinberg T, Radhakrishnan R, Barazany D, Horowitz-Kraus T. Parent-child couples display shared neural fingerprints while listening to stories. Sci Rep 2024; 14:2883. [PMID: 38311616 PMCID: PMC10838923 DOI: 10.1038/s41598-024-53518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
Neural fingerprinting is a method to identify individuals from a group of people. Here, we established a new connectome-based identification model and used diffusion maps to show that biological parent-child couples share functional connectivity patterns while listening to stories. These shared fingerprints enabled the identification of children and their biological parents from a group of parents and children. Functional patterns were evident in both cognitive and sensory brain networks. Defining "typical" shared biological parent-child brain patterns may enable predicting or even preventing impaired parent-child connections that develop due to genetic or environmental causes. Finally, we argue that the proposed framework opens new opportunities to link similarities in connectivity patterns to behavioral, psychological, and medical phenomena among other populations. To our knowledge, this is the first study to reveal the neural fingerprint that represents distinct biological parent-child couples.
Collapse
Affiliation(s)
- Nir Habouba
- Educational Neuroimaging Group, Faculty of Biomedical Engineering, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ronen Talmon
- Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dror Kraus
- The Institute of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Rola Farah
- Educational Neuroimaging Group, Faculty of Biomedical Engineering, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alan Apter
- The Department of Psychological Medicine, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Tamar Steinberg
- The Department of Psychological Medicine, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | | | - Daniel Barazany
- The Alfredo Federico Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Biomedical Engineering, Faculty of Education in Science and Technology, Technion - Israel Institute of Technology, Haifa, Israel.
- The Institute of Child Neurology, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel.
- Department of Neuropsychology, Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Psychology and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Song X, Dong M, Feng K, Li J, Hu X, Liu T. Influence of interpersonal distance on collaborative performance in the joint Simon task-An fNIRS-based hyperscanning study. Neuroimage 2024; 285:120473. [PMID: 38040400 DOI: 10.1016/j.neuroimage.2023.120473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Collaboration is a critical skill in everyday life. It has been suggested that collaborative performance may be influenced by social factors such as interpersonal distance, which is defined as the perceived psychological distance between individuals. Previous literature has reported that close interpersonal distance may promote the level of self-other integration between interacting members, and in turn, enhance collaborative performance. These studies mainly focused on interdependent collaboration, which requires high levels of shared representations and self-other integration. However, little is known about the effect of interpersonal distance on independent collaboration (e.g., the joint Simon task), in which individuals perform the task independently while the final outcome is determined by the parties. To address this issue, we simultaneously measured the frontal activations of ninety-four pairs of participants using a functional near-infrared spectroscopy (fNIRS)-based hyperscanning technique while they performed a joint Simon task. Behavioral results showed that the Joint Simon Effect (JSE), defined as the RT difference between incongruent and congruent conditions indicating the level of self-other integration between collaborators, was larger in the friend group than in the stranger group. Consistently, the inter-brain neural synchronization (INS) across the dorsolateral and medial parts of the prefrontal cortex was also stronger in the friend group. In addition, INS in the left dorsolateral prefrontal cortex negatively predicted JSE only in the friend group. These results suggest that close interpersonal distance may enhance the shared mental representation among collaborators, which in turn influences their collaborative performance.
Collapse
Affiliation(s)
- Xiaolei Song
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China.
| | - Meimei Dong
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Kun Feng
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Jiaqi Li
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Xiaofei Hu
- School of Psychology, Shaanxi Normal University, Xi'an, China; Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai, China; Department of Psychology, Fujian Medical University, Fuzhou, China; School of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Knyazev GG, Savostyanov AN, Bocharov AV, Saprigyn AE. Representational similarity analysis of self- versus other-processing: Effect of trait aggressiveness. Aggress Behav 2024; 50:e22125. [PMID: 38268387 DOI: 10.1002/ab.22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 01/26/2024]
Abstract
In this study, using the self/other adjective judgment task, we aimed to explore how people perceive themselves in comparison to various other people, including friends, strangers, and those they dislike. Next, using representational similarity analysis, we sought to elucidate how these perceptual similarities and differences are represented in brain activity and how aggressiveness is related to these representations. Behavioral ratings show that, on average, people tend to consider themselves more like their friends than neutral strangers, and least like people they dislike. This pattern of similarity is positively correlated with neural representation in social and cognitive circuits of the brain and negatively correlated with neural representation in emotional centers that may represent emotional arousal associated with various social objects. Aggressiveness seems to predispose a person to a pattern of behavior that is the opposite of the average pattern, that is, a tendency to think of oneself as less like one's friends and more like one's enemies. This corresponds to an increase in the similarity of the behavioral representation with the representation in the emotional centers and a decrease in its similarity with the representation in the social and cognitive centers. This can be seen as evidence that in individuals prone to aggression, behavior in the social environment may depend to a greater extent on the representation of social objects in the emotional rather than social and cognitive brain circuits.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Alexander N Savostyanov
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
- Laboratory of Psychological Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| | - Alexander E Saprigyn
- Laboratory of Differential Psychophysiology, Institute of Neurosciences and Medicine, Novosibirsk, Russia
| |
Collapse
|
30
|
Delgado MR, Fareri DS, Chang LJ. Characterizing the mechanisms of social connection. Neuron 2023; 111:3911-3925. [PMID: 37804834 PMCID: PMC10842352 DOI: 10.1016/j.neuron.2023.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Understanding how individuals form and maintain strong social networks has emerged as a significant public health priority as a result of the increased focus on the epidemic of loneliness and the myriad protective benefits conferred by social connection. In this review, we highlight the psychological and neural mechanisms that enable us to connect with others, which in turn help buffer against the consequences of stress and isolation. Central to this process is the experience of rewards derived from positive social interactions, which encourage the sharing of perspectives and preferences that unite individuals. Sharing affective states with others helps us to align our understanding of the world with another's, thereby continuing to reinforce bonds and strengthen relationships. These psychological processes depend on neural systems supporting reward and social cognitive function. Lastly, we also consider limitations associated with pursuing healthy social connections and outline potential avenues of future research.
Collapse
Affiliation(s)
- Mauricio R Delgado
- Department of Psychology, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Dominic S Fareri
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
| | - Luke J Chang
- Consortium for Interacting Minds, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
31
|
Xu J, Wainio-Theberge S, Wolff A, Qin P, Zhang Y, She X, Wang Y, Wolman A, Smith D, Ignaszewski J, Choueiry J, Knott V, Scalabrini A, Northoff G. Culture shapes spontaneous brain dynamics - Shared versus idiosyncratic neural features among Chinese versus Canadian subjects. Soc Neurosci 2023; 18:312-330. [PMID: 37909114 DOI: 10.1080/17470919.2023.2278199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Environmental factors, such as culture, are known to shape individual variation in brain activity including spontaneous activity, but less is known about their population-level effects. Eastern and Western cultures differ strongly in their cultural norms about relationships between individuals. For example, the collectivism, interdependence and tightness of Eastern cultures relative to the individualism, independence and looseness of Western cultures, promote interpersonal connectedness and coordination. Do such cultural contexts therefore influence the group-level variability of their cultural members' spontaneous brain activity? Using novel methods adapted from studies of inter-subject neural synchrony, we compare the group-level variability of resting state EEG dynamics in Chinese and Canadian samples. We observe that Chinese subjects show significantly higher inter-subject correlation and lower inter-subject distance in their EEG power spectra than Canadian subjects, as well as lower variability in theta power and alpha peak frequency. We demonstrate, for the first time, different relationships among subjects' resting state brain dynamics in Chinese and Canadian samples. These results point to more idiosyncratic neural dynamics among Canadian participants, compared with more shared neural features in Chinese participants.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Philosophy, Xiamen University, Xiamen, Fujian, China
| | - Soren Wainio-Theberge
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Annemarie Wolff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Pengmin Qin
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yihui Zhang
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Xuan She
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yingying Wang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David Smith
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia Ignaszewski
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Joelle Choueiry
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Dimanova P, Borbás R, Raschle NM. From mother to child: How intergenerational transfer is reflected in similarity of corticolimbic brain structure and mental health. Dev Cogn Neurosci 2023; 64:101324. [PMID: 37979300 PMCID: PMC10692656 DOI: 10.1016/j.dcn.2023.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Intergenerational transfer effects include traits transmission from parent to child. While behaviorally well documented, studies on intergenerational transfer effects for brain structure or functioning are scarce, especially those examining relations of behavioral and neurobiological endophenotypes. This study aims to investigate behavioral and neural intergenerational transfer effects associated with the corticolimbic circuitry, relevant for socioemotional functioning and mental well-being. METHODS T1-neuroimaging and behavioral data was obtained from 72 participants (39 mother-child dyads/ 39 children; 7-13 years; 16 girls/ 33 mothers; 26-52 years). Gray matter volume (GMV) was extracted from corticolimbic regions (subcortical: amygdala, hippocampus, nucleus accumbens; neocortical: anterior cingulate, medial orbitofrontal areas). Mother-child similarity was quantified by correlation coefficients and comparisons to random adult-child pairs. RESULTS We identified significant corticolimbic mother-child similarity (r = 0.663) stronger for subcortical over neocortical regions. Mother-child similarity in mental well-being was significant (r = 0.409) and the degree of dyadic similarity in mental well-being was predicted by similarity in neocortical, but not subcortical GMV. CONCLUSION Intergenerational neuroimaging reveals significant mother-child transfer for corticolimbic GMV, most strongly for subcortical regions. However, variations in neocortical similarity predicted similarity in mother-child well-being. Ultimately, such techniques may enhance our knowledge of behavioral and neural familial transfer effects relevant for health and disease.
Collapse
Affiliation(s)
- Plamina Dimanova
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Réka Borbás
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Nora Maria Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Cheong JH, Molani Z, Sadhukha S, Chang LJ. Synchronized affect in shared experiences strengthens social connection. Commun Biol 2023; 6:1099. [PMID: 37898664 PMCID: PMC10613250 DOI: 10.1038/s42003-023-05461-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
People structure their days to experience events with others. We gather to eat meals, watch TV, and attend concerts together. What constitutes a shared experience and how does it manifest in dyadic behavior? The present study investigates how shared experiences-measured through emotional, motoric, physiological, and cognitive alignment-promote social bonding. We recorded the facial expressions and electrodermal activity (EDA) of participants as they watched four episodes of a TV show for a total of 4 h with another participant. Participants displayed temporally synchronized and spatially aligned emotional facial expressions and the degree of synchronization predicted the self-reported social connection ratings between viewing partners. We observed a similar pattern of results for dyadic physiological synchrony measured via EDA and their cognitive impressions of the characters. All four of these factors, temporal synchrony of positive facial expressions, spatial alignment of expressions, EDA synchrony, and character impression similarity, contributed to a latent factor of a shared experience that predicted social connection. Our findings suggest that the development of interpersonal affiliations in shared experiences emerges from shared affective experiences comprising synchronous processes and demonstrate that these complex interpersonal processes can be studied in a holistic and multi-modal framework leveraging naturalistic experimental designs.
Collapse
Affiliation(s)
- Jin Hyun Cheong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Zainab Molani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Sushmita Sadhukha
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Luke J Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
34
|
Zaff O, Wyngaarden JB, Dennison JB, Sazhin D, Chein J, McCloskey M, Alloy LB, Jarcho JM, Smith DV, Fareri DS. Social Context and Reward Sensitivity Enhance Corticostriatal Function during Experiences of Shared Rewards. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562908. [PMID: 37905048 PMCID: PMC10614966 DOI: 10.1101/2023.10.19.562908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Although prior research has demonstrated enhanced striatal response when sharing rewards with close social connections, less is known about how individual differences affect ventral striatal (VS) activation and connectivity when experiencing rewards within social contexts. Given that self-reported reward sensitivity and level of substance use have been associated with differences in VS activation, we set out to investigate whether these factors would be independently associated with enhancements to neural reward responses within social contexts. In this pre-registered study, participants (N=45) underwent fMRI while playing a card guessing game in which correct or incorrect guesses resulted in monetary gains and losses that were shared evenly with either a close friend, stranger (confederate), or non-human partner. Consistent with our prior work, we found increased VS activation when sharing rewards with a socially close peer as opposed to an out-of-network stranger. As self-reported reward sensitivity increased, the difference in VS response to rewards shared with friends and strangers decreased. We also found enhanced connectivity between the VS and temporoparietal junction when sharing rewards with close friends as opposed to strangers. Finally, exploratory analyses revealed that as reward sensitivity and sub-clinical substance use increase, the difference in VS connectivity with the right fusiform face area increases as a function of social context. These findings demonstrate that responsivity to the context of close friends may be tied to individual reward sensitivity or sub-clinical substance use habits; together these factors may inform predictions of risk for future mental health disorders.
Collapse
Affiliation(s)
- Ori Zaff
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - James B. Wyngaarden
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jeffrey B. Dennison
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jason Chein
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Michael McCloskey
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lauren B. Alloy
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Johanna M. Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V. Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Dominic S. Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
35
|
Gordon AM, Diamond E. Feeling understood and appreciated in relationships: Where do these perceptions come from and why do they matter? Curr Opin Psychol 2023; 53:101687. [PMID: 37708610 DOI: 10.1016/j.copsyc.2023.101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Perceptions of romantic partners (even inaccurate perceptions) are important determinants of initial liking and long-term relationship satisfaction. In the current article, we consider the role of perceptions in romantic relationships through the lens of felt understanding and appreciation. We first examine where perceptions of feeling understood and appreciated come from, considering partner, self, and dyadic influences. We then examine how feeling understood and appreciated shape relationship quality, focusing on these perceptions as buffers of negative relationship experiences and mechanisms through which couples can create positive upward cycles of responsiveness and appreciation. Finally, we theorize about the unique dyadic experience of feeling understood and appreciated, positing that moments of mutual understanding and appreciation play a critical role in increasing social connection.
Collapse
|
36
|
Dziura SL, Hosangadi A, Shariq D, Merchant JS, Redcay E. Partner similarity and social cognitive traits predict social interaction success among strangers. Soc Cogn Affect Neurosci 2023; 18:nsad045. [PMID: 37698369 PMCID: PMC10516339 DOI: 10.1093/scan/nsad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/02/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Social interactions are a ubiquitous part of engaging in the world around us, and determining what makes an interaction successful is necessary for social well-being. This study examined the separate contributions of individual social cognitive ability and partner similarity to social interaction success among strangers, measured by a cooperative communication task and self-reported interaction quality. Sixty participants engaged in a 1-h virtual social interaction with an unfamiliar partner (a laboratory confederate) including a 30-min cooperative 'mind-reading' game and then completed several individual tasks and surveys. They then underwent a separate functional MRI session in which they passively viewed video clips that varied in content. The neural responses to these videos were correlated with those of their confederate interaction partners to yield a measure of pairwise neural similarity. We found that trait empathy (assessed by the interpersonal reactivity index) and neural similarity to partner both predicted communication success in the mind-reading game. In contrast, perceived similarity to partner and (to a much lesser extent) trait mind-reading motivation predicted self-reported interaction quality. These results highlight the importance of sharing perspectives in successful communication as well as differences between neurobiological similarity and perceived similarity in supporting different types of interaction success.
Collapse
Affiliation(s)
- Sarah L Dziura
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Aditi Hosangadi
- Center for Mind and Brain University of California Davis, Davis, CA 95618, USA
| | - Deena Shariq
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Junaid S Merchant
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Redcay
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
37
|
Zadina JN. The Synergy Zone: Connecting the Mind, Brain, and Heart for the Ideal Classroom Learning Environment. Brain Sci 2023; 13:1314. [PMID: 37759915 PMCID: PMC10526388 DOI: 10.3390/brainsci13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
This paper proposes a new perspective on implementing neuroeducation in the classroom. The pandemic exacerbated the mental health issues of faculty and students, creating a mental health crisis that impairs learning. It is important to get our students back in "the zone", both cognitively and emotionally, by creating an ideal learning environment for capturing our students and keeping them-the Synergy Zone. Research that examines the classroom environment often focuses on the foreground-instructors' organizational and instructional aspects and content. However, the emotional climate of the classroom affects student well-being. This emotional climate would ideally exhibit the brain states of engagement, attention, connection, and enjoyment by addressing the mind, brain, and heart. This ideal learning environment would be achieved by combining proposed practices derived from three areas of research: flow theory, brain synchronization, and positive emotion with heart engagement. Each of these enhances the desired brain states in a way that the whole is greater than the sum of the individual parts. I call this the Synergy Zone. A limitation of this proposed model is that implementation of some aspects may be challenging, and professional development resources might be needed. This essay presenting this perspective provides the relevant scientific research and the educational implications of implementation.
Collapse
Affiliation(s)
- Janet N Zadina
- Brain Research and Instruction, New Orleans, LA 70002, USA
| |
Collapse
|
38
|
Wu X, Wang X, Lu XJ, Kong YZ, Hu L. Enhanced neural synchrony associated with long-term ballroom dance training. Neuroimage 2023; 278:120301. [PMID: 37524169 DOI: 10.1016/j.neuroimage.2023.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Long-term dance training offers numerous benefits, including improvements in physical health, posture, body coordination, and mental health and well-being. Since dance is an art form of body-to-body communication, professional dancers may share feelings and thoughts on dance with their partners, owing to their shared training experiences. Considering this perspective, one may expect that professional dancers would demonstrate pronounced neural similarities when viewing dancing videos, which could be associated with their training duration. To test these hypotheses, we collected functional magnetic resonance imaging (fMRI) data while presenting ballroom dancing and neutral video clips with long durations (∼100 s each) to 41 professional ballroom dancers (19 pairs of dance partners) and 39 age- and sex-matched nondancers. Our findings revealed that dancers exhibited broader and stronger neural similarities across the whole brain when watching dancing video clips, as compared to the control group. These increased neural similarities could be interpreted in at least two distinct ways. First, neural similarities in certain brain regions within the motor control circuit (i.e., frontal cortical-basal ganglia-thalamic circuit) were significantly correlated with dance-related information (e.g., dance partners' cooperation duration), which reinforced the impact of long-term dance training on neural synchronization. Second, neural similarities in other brain regions (e.g., memory-related brain regions) were significantly correlated with subjects' impression of the viewed videos (i.e., whether they have watched before, familiarity, and liking), which may not necessarily be directly linked to long-term dance training. Altogether, our study provided solid evidence for synchronized neural mechanisms in professional dancers due to long-term dance training.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Wang
- School of Art, Beijing Sport University, Beijing 100084, China
| | - Xue-Jing Lu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya-Zhuo Kong
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Koul A, Ahmar D, Iannetti GD, Novembre G. Spontaneous dyadic behaviour predicts the emergence of interpersonal neural synchrony. Neuroimage 2023:120233. [PMID: 37348621 DOI: 10.1016/j.neuroimage.2023.120233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Synchronization of neural activity across brains - interpersonal neural synchrony (INS) - is emerging as a powerful marker of social interaction that predicts success of multi-person coordination, communication, and cooperation. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements and facial expressions) while dyads of participants were instructed to look at each other without speaking or making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three notable social behavioral cues - body movement, eye contact, and smiling - and demonstrated that these behaviors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social behaviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an entrainment phenomenon, promoted by real-time dyadic behavior.
Collapse
Affiliation(s)
- Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| | - Davide Ahmar
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy
| | - Gian Domenico Iannetti
- Neuroscience and Behavior Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| |
Collapse
|
40
|
Baek EC, Hyon R, López K, Du M, Porter MA, Parkinson C. Lonely Individuals Process the World in Idiosyncratic Ways. Psychol Sci 2023; 34:683-695. [PMID: 37027033 PMCID: PMC10404901 DOI: 10.1177/09567976221145316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 04/08/2023] Open
Abstract
Loneliness is detrimental to well-being and is often accompanied by self-reported feelings of not being understood by other people. What contributes to such feelings in lonely people? We used functional MRI of 66 first-year university students to unobtrusively measure the relative alignment of people's mental processing of naturalistic stimuli and tested whether lonely people actually process the world in idiosyncratic ways. We found evidence for such idiosyncrasy: Lonely individuals' neural responses were dissimilar to those of their peers, particularly in regions of the default-mode network in which similar responses have been associated with shared perspectives and subjective understanding. These relationships persisted when we controlled for demographic similarities, objective social isolation, and individuals' friendships with each other. Our findings raise the possibility that being surrounded by people who see the world differently from oneself, even if one is friends with them, may be a risk factor for loneliness.
Collapse
Affiliation(s)
- Elisa C. Baek
- Department of Psychology, University of California, Los Angeles
| | - Ryan Hyon
- Department of Psychology, University of California, Los Angeles
| | - Karina López
- Department of Psychology, University of California, Los Angeles
| | - Meng Du
- Department of Psychology, University of California, Los Angeles
| | - Mason A. Porter
- Department of Mathematics, University of California, Los Angeles
- Santa Fe Institute
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles
- Brain Research Institute, University of California, Los Angeles
| |
Collapse
|
41
|
Walla P, Külzer D, Leeb A, Moidl L, Kalt S. Brain Activities Show There Is Nothing Like a Real Friend in Contrast to Influencers and Other Celebrities. Brain Sci 2023; 13:brainsci13050831. [PMID: 37239305 DOI: 10.3390/brainsci13050831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Especially for young people, influencers and other celebrities followed on social media evoke affective closeness that in their young minds seems real even though it is fake. Such fake friendships are potentially problematic because of their felt reality on the consumer side while lacking any inversely felt true closeness. The question arises if the unilateral friendship of a social media user is equal or at least similar to real reciprocal friendship. Instead of asking social media users for explicit responses (conscious deliberation), the present exploratory study aimed to answer this question with the help of brain imaging technology. Thirty young participants were first invited to provide individual lists including (i) twenty names of their most followed and loved influencers or other celebrities (fake friend names), (ii) twenty names of loved real friends and relatives (real friend names) as well as (iii) twenty names they do not feel any closeness to (no friend names). They then came to the Freud CanBeLab (Cognitive and Affective Neuroscience and Behavior Lab) where they were shown their selected names in a random sequence (two rounds), while their brain activities were recorded via electroencephalography (EEG) and later calculated into event-related potentials (ERPs). We found short (ca. 100 ms) left frontal brain activity starting at around 250 ms post-stimulus to process real friend and no friend names similarly, while both ERPs differed from those elicited by fake friend names. This is followed by a longer effect (ca. 400 ms), where left and right frontal and temporoparietal ERPs also differed between fake and real friend names, but at this later processing stage, no friend names elicited similar brain activities to fake friend names in those regions. In general, real friend names elicited the most negative going brain potentials (interpreted as highest brain activation levels). These exploratory findings represent objective empirical evidence that the human brain clearly distinguishes between influencers or other celebrities and close people out of real life even though subjective feelings of closeness and trust can be similar. In summary, brain imaging shows there is nothing like a real friend. The findings of this study might be seen as a starting point for future studies using ERPs to investigate social media impact and topics such as fake friendship.
Collapse
Affiliation(s)
- Peter Walla
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud University, Sigmund Freud Platz 1, 1020 Vienna, Austria
- Faculty of Medicine, Sigmund Freud University, Sigmund Freud Platz 3, 1020 Vienna, Austria
- School of Psychology, Newcastle University, University Drive, Callaghan, NSW 2308, Australia
| | - Dimitrios Külzer
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud University, Sigmund Freud Platz 1, 1020 Vienna, Austria
| | - Annika Leeb
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud University, Sigmund Freud Platz 1, 1020 Vienna, Austria
| | - Lena Moidl
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud University, Sigmund Freud Platz 1, 1020 Vienna, Austria
| | - Stefan Kalt
- Freud CanBeLab, Faculty of Psychology, Sigmund Freud University, Sigmund Freud Platz 1, 1020 Vienna, Austria
| |
Collapse
|
42
|
Hu Z, Di X, Yang Z. Editorial: Shared responses and individual differences in the human brain during naturalistic stimulations. Front Hum Neurosci 2023; 17:1201728. [PMID: 37213928 PMCID: PMC10198652 DOI: 10.3389/fnhum.2023.1201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Affiliation(s)
- Zhishan Hu
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhi Yang
- Neuroimaging Core, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Gratch J. The promise and peril of interactive embodied agents for studying non-verbal communication: a machine learning perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210475. [PMID: 36871588 PMCID: PMC9985969 DOI: 10.1098/rstb.2021.0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
In face-to-face interactions, parties rapidly react and adapt to each other's words, movements and expressions. Any science of face-to-face interaction must develop approaches to hypothesize and rigorously test mechanisms that explain such interdependent behaviour. Yet conventional experimental designs often sacrifice interactivity to establish experimental control. Interactive virtual and robotic agents have been offered as a way to study true interactivity while enforcing a measure of experimental control by allowing participants to interact with realistic but carefully controlled partners. But as researchers increasingly turn to machine learning to add realism to such agents, they may unintentionally distort the very interactivity they seek to illuminate, particularly when investigating the role of non-verbal signals such as emotion or active-listening behaviours. Here I discuss some of the methodological challenges that may arise when machine learning is used to model the behaviour of interaction partners. By articulating and explicitly considering these commitments, researchers can transform 'unintentional distortions' into valuable methodological tools that yield new insights and better contextualize existing experimental findings that rely on learning technology. This article is part of a discussion meeting issue 'Face2face: advancing the science of social interaction'.
Collapse
Affiliation(s)
- Jonathan Gratch
- Department of Computer Science, University of Southern California, Los Angeles, CA 90292, USA
| |
Collapse
|
44
|
Li Z, Dong Q, Hu B, Wu H. Every individual makes a difference: A trinity derived from linking individual brain morphometry, connectivity and mentalising ability. Hum Brain Mapp 2023; 44:3343-3358. [PMID: 37051692 PMCID: PMC10171537 DOI: 10.1002/hbm.26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the "social brain", are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ( N = 24 $$ N=24 $$ ). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
Collapse
Affiliation(s)
- Zhaoning Li
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| |
Collapse
|
45
|
Sun L, Li C, Wang S, Si Q, Lin M, Wang N, Sun J, Li H, Liang Y, Wei J, Zhang X, Zhang J. Left frontal eye field encodes sound locations during passive listening. Cereb Cortex 2023; 33:3067-3079. [PMID: 35858212 DOI: 10.1093/cercor/bhac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies reported that auditory cortices (AC) were mostly activated by sounds coming from the contralateral hemifield. As a result, sound locations could be encoded by integrating opposite activations from both sides of AC ("opponent hemifield coding"). However, human auditory "where" pathway also includes a series of parietal and prefrontal regions. It was unknown how sound locations were represented in those high-level regions during passive listening. Here, we investigated the neural representation of sound locations in high-level regions by voxel-level tuning analysis, regions-of-interest-level (ROI-level) laterality analysis, and ROI-level multivariate pattern analysis. Functional magnetic resonance imaging data were collected while participants listened passively to sounds from various horizontal locations. We found that opponent hemifield coding of sound locations not only existed in AC, but also spanned over intraparietal sulcus, superior parietal lobule, and frontal eye field (FEF). Furthermore, multivariate pattern representation of sound locations in both hemifields could be observed in left AC, right AC, and left FEF. Overall, our results demonstrate that left FEF, a high-level region along the auditory "where" pathway, encodes sound locations during passive listening in two ways: a univariate opponent hemifield activation representation and a multivariate full-field activation pattern representation.
Collapse
Affiliation(s)
- Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Songjian Wang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Qian Si
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Meng Lin
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ningyu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Juan Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
46
|
Tuen YJ, Bulley A, Palombo DJ, O'Connor BB. Social value at a distance: Higher identification with all of humanity is associated with reduced social discounting. Cognition 2023; 230:105283. [PMID: 36209687 DOI: 10.1016/j.cognition.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
Abstract
How much we value the welfare of others has critical implications for the collective good. Yet, it is unclear what leads people to make more or less equal decisions about the welfare of those from whom they are socially distant. The current research sought to explore the psychological mechanisms that might underlie welfare judgements across social distance. Here, a social discounting paradigm was used to measure the tendency for the value of a reward to be discounted as the social distance of its recipient increased. Across two cohorts (one discovery, one replication), we found that a more expansive identity with all of humanity was associated with reduced social discounting. Additionally, we investigated the specificity of this association by examining whether this relationship extended to delay discounting, the tendency for the value of a reward to be discounted as the temporal distance to its receipt increases. Our findings suggest that the observed association with identity was unique to social discounting, thus underscoring a distinction in value-based decision-making processes across distances in time and across social networks. As data were collected during the COVID-19 pandemic, we also considered how stress associated with this global threat might influence welfare judgements across social distances. We found that, even after controlling for COVID-19 related stress, correlations between identity and social discounting held. Together, these findings elucidate the psychological processes that are associated with a more equal distribution of generosity.
Collapse
Affiliation(s)
- Young Ji Tuen
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Adam Bulley
- The University of Sydney, School of Psychology and Brain and Mind Centre, 94 Mallett Street Camperdown, NSW 2050, Australia; Department of Psychology, Harvard University, 33 Kirkland Street, Cambridge, MA 02138, United States of America
| | - Daniela J Palombo
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Brendan Bo O'Connor
- Department of Psychology, University of Albany (SUNY), Social Science 399, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
47
|
Broom TW, Stahl JL, Ping EEC, Wagner DD. They Saw a Debate: Political Polarization Is Associated with Greater Multivariate Neural Synchrony When Viewing the Opposing Candidate Speak. J Cogn Neurosci 2022; 35:60-73. [PMID: 35802592 DOI: 10.1162/jocn_a_01888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
With rampant polarization in current U.S. politics, it seems as though political partisans with opposing viewpoints are living in parallel realities. Indeed, prior research shows that people's impressions/attitudes toward political candidates are intertwined with their political affiliation. The current study investigated the relationship between political affiliation and intersubject neural synchrony of multivariate patterns of activity during naturalistic viewing of a presidential debate. Before the 2016 U.S. presidential election, 20 individuals varying in political affiliation underwent functional neuroimaging while watching the first debate between candidates Hillary Clinton and Donald Trump. Pairs of participants with more polarized political affiliations were higher in neural synchrony in a system of brain regions involved in self-referential processing when viewing the opposing candidate speak compared with that candidate's supporters regardless of which extreme of the political spectrum they occupied. Moreover, pairs of political partisans matching in the candidate they supported were higher in neural synchrony when watching the candidate they opposed compared with the one they both supported. These findings suggest that political groups' shared understanding may be driven more by perceptions of outgroups than of their own party/candidates.
Collapse
|
48
|
Wood A, Templeton E, Morrel J, Schubert F, Wheatley T. Tendency to laugh is a stable trait: findings from a round-robin conversation study. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210187. [PMID: 36126663 PMCID: PMC9489291 DOI: 10.1098/rstb.2021.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
People often laugh during conversation. Who is more responsible for the laughter, the person laughing or their partner for eliciting it? We used a round-robin design where participants (N = 66) engaged in 10 different conversations with 10 same-gender strangers and counted the instances of laughter for each person in each conversation. After each conversation, participants rated their perceived similarity with their partner and how much they enjoyed the conversation. More than half the variability in the amount a person laughed was attributable to the person laughing-some people tend to laugh more than others. By contrast, less than 5% of the variability was attributable to the laugher's partner. We also found that the more a person laughed, the more their partners felt similar to them. Counterintuitively, laughter negatively predicted conversation enjoyment. These findings suggest that, in conversations between strangers, laughter may not be a straightforward signal of amusement, but rather a social tool. We did not find any personality predictors of how much a person laughs or elicits laughter. In summary, how much a person laughs in conversation appears to be a stable trait associated with being relatable, and is not necessarily reflective of enjoyment. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Adrienne Wood
- University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | - Thalia Wheatley
- Dartmouth College, Hanover, NH 03755, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
49
|
Vidiella B, Carrignon S, Bentley RA, O’Brien MJ, Valverde S. A cultural evolutionary theory that explains both gradual and punctuated change. J R Soc Interface 2022; 19:20220570. [PMID: 36382378 PMCID: PMC9667142 DOI: 10.1098/rsif.2022.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cumulative cultural evolution (CCE) occurs among humans who may be presented with many similar options from which to choose, as well as many social influences and diverse environments. It is unknown what general principles underlie the wide range of CCE dynamics and whether they can all be explained by the same unified paradigm. Here, we present a scalable evolutionary model of discrete choice with social learning, based on a few behavioural science assumptions. This paradigm connects the degree of transparency in social learning to the human tendency to imitate others. Computer simulations and quantitative analysis show the interaction of three primary factors-information transparency, popularity bias and population size-drives the pace of CCE. The model predicts a stable rate of evolutionary change for modest degrees of popularity bias. As popularity bias grows, the transition from gradual to punctuated change occurs, with maladaptive subpopulations arising on their own. When the popularity bias gets too severe, CCE stops. This provides a consistent framework for explaining the rich and complex adaptive dynamics taking place in the real world, such as modern digital media.
Collapse
Affiliation(s)
- Blai Vidiella
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
| | - Simon Carrignon
- McDonald Institute for Archaeological Research, Downing Street, Cambridge CB2 3ER, UK
| | | | - Michael J. O’Brien
- Department of Communication, History, and Philosophy and Department of Life Sciences, Texas A&M University–San Antonio, Texas 78224, USA
- Department of Anthropology, University of Missouri-Columbia, Missouri 65201, USA
| | - Sergi Valverde
- Evolution of Networks Lab, Institute of Evolutionary Biology (UPF-CSIC), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain
- European Centre for Living Technology (ECLT), Ca’ Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venezia, Italy
| |
Collapse
|
50
|
Broda MD, de Haas B. Individual fixation tendencies in person viewing generalize from images to videos. Iperception 2022; 13:20416695221128844. [PMID: 36353505 PMCID: PMC9638695 DOI: 10.1177/20416695221128844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Fixation behavior toward persons in static scenes varies considerably between individuals. However, it is unclear whether these differences generalize to dynamic stimuli. Here, we examined individual differences in the distribution of gaze across seven person features (i.e. body and face parts) in static and dynamic scenes. Forty-four participants freely viewed 700 complex static scenes followed by eight director-cut videos (28,925 frames). We determined the presence of person features using hand-delineated pixel masks (images) and Deep Neural Networks (videos). Results replicated highly consistent individual differences in fixation tendencies for all person features in static scenes and revealed that these tendencies generalize to videos. Individual fixation behavior for both, images and videos, fell into two anticorrelated clusters representing the tendency to fixate faces versus bodies. These results corroborate a low-dimensional space for individual gaze biases toward persons and show they generalize from images to videos.
Collapse
Affiliation(s)
- Maximilian D. Broda
- Department of Experimental
Psychology, Justus Liebig University Giessen, Germany; Center for Mind, Brain and Behavior
(CMBB), University of Marburg and Justus Liebig University Giessen,
Germany
| | - Benjamin de Haas
- Department of Experimental
Psychology, Justus Liebig University Giessen, Germany; Center for Mind, Brain and Behavior
(CMBB), University of Marburg and Justus Liebig University Giessen,
Germany
| |
Collapse
|