1
|
Chen R, Duffy Á, Petrazzini BO, Vy HM, Stein D, Mort M, Park JK, Schlessinger A, Itan Y, Cooper DN, Jordan DM, Rocheleau G, Do R. Expanding drug targets for 112 chronic diseases using a machine learning-assisted genetic priority score. Nat Commun 2024; 15:8891. [PMID: 39406732 PMCID: PMC11480483 DOI: 10.1038/s41467-024-53333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Identifying genetic drivers of chronic diseases is necessary for drug discovery. Here, we develop a machine learning-assisted genetic priority score, which we call ML-GPS, that incorporates genetic associations with predicted disease phenotypes to enhance target discovery. First, we construct gradient boosting models to predict 112 chronic disease phecodes in the UK Biobank and analyze associations of predicted and observed phenotypes with common, rare, and ultra-rare variants to model the allelic series. We integrate these associations with existing evidence using gradient boosting with continuous feature encoding to construct ML-GPS, training it to predict drug indications in Open Targets and externally testing it in SIDER. We then generate ML-GPS predictions for 2,362,636 gene-phecode pairs. We find that the use of predicted phenotypes, which identify substantially more genetic associations than observed phenotypes across the allele frequency spectrum, significantly improves the performance of ML-GPS. ML-GPS increases coverage of drug targets, with the top 1% of all scores providing support for 15,077 gene-phecode pairs that previously had no support. ML-GPS can also identify well-known target-disease relationships, promising targets without indicated drugs, and targets for several drugs in clinical trials, including LRRK2 inhibitors for Parkinson's disease and olpasiran for cardiovascular disease.
Collapse
Affiliation(s)
- Robert Chen
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Áine Duffy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ben O Petrazzini
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ha My Vy
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Stein
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Joshua K Park
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Daniel M Jordan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ghislain Rocheleau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Genomic Data Analytics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Tambets R, Kolde A, Kolberg P, Love MI, Alasoo K. Extensive co-regulation of neighboring genes complicates the use of eQTLs in target gene prioritization. HGG ADVANCES 2024; 5:100348. [PMID: 39210598 PMCID: PMC11416642 DOI: 10.1016/j.xhgg.2024.100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Identifying causal genes underlying genome-wide association studies (GWASs) is a fundamental problem in human genetics. Although colocalization with gene expression quantitative trait loci (eQTLs) is often used to prioritize GWAS target genes, systematic benchmarking has been limited due to unavailability of large ground truth datasets. Here, we re-analyzed plasma protein QTL data from 3,301 individuals of the INTERVAL cohort together with 131 eQTL Catalog datasets. Focusing on variants located within or close to the affected protein identified 793 proteins with at least one cis-pQTL where we could assume that the most likely causal gene was the gene coding for the protein. We then benchmarked the ability of cis-eQTLs to recover these causal genes by comparing three Bayesian colocalization methods (coloc.susie, coloc.abf, and CLPP) and five Mendelian randomization (MR) approaches (three varieties of inverse-variance weighted MR, MR-RAPS, and MRLocus). We found that assigning fine-mapped pQTLs to their closest protein coding genes outperformed all colocalization methods regarding both precision (71.9%) and recall (76.9%). Furthermore, the colocalization method with the highest recall (coloc.susie - 46.3%) also had the lowest precision (45.1%). Combining evidence from multiple conditionally distinct colocalizing QTLs with MR increased precision to 81%, but this was accompanied by a large reduction in recall to 7.1%. Furthermore, the choice of the MR method greatly affected performance, with the standard inverse-variance-weighted MR often producing many false positives. Our results highlight that linking GWAS variants to target genes remains challenging with eQTL evidence alone, and prioritizing novel targets requires triangulation of evidence from multiple sources.
Collapse
Affiliation(s)
- Ralf Tambets
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Anastassia Kolde
- Institute of Genomics, University of Tartu, Tartu, Estonia; Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Peep Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Bruner WS, Grant SFA. Translation of genome-wide association study: from genomic signals to biological insights. Front Genet 2024; 15:1375481. [PMID: 39421299 PMCID: PMC11484060 DOI: 10.3389/fgene.2024.1375481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Since the turn of the 21st century, genome-wide association study (GWAS) have successfully identified genetic signals associated with a myriad of common complex traits and diseases. As we transition from establishing robust genetic associations with diverse phenotypes, the central challenge is now focused on characterizing the underlying functional mechanisms driving these signals. Previous GWAS efforts have revealed multiple variants, each conferring relatively subtle susceptibility, collectively contributing to the pathogenesis of various common diseases. Such variants can further exhibit associations with multiple other traits and differ across ancestries, plus disentangling causal variants from non-causal due to linkage disequilibrium complexities can lead to challenges in drawing direct biological conclusions. Combined with cellular context considerations, such challenges can reduce the capacity to definitively elucidate the biological significance of GWAS signals, limiting the potential to define mechanistic insights. This review will detail current and anticipated approaches for functional interpretation of GWAS signals, both in terms of characterizing the underlying causal variants and the corresponding effector genes.
Collapse
Affiliation(s)
- Winter S. Bruner
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Struan F. A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
4
|
Grenko CM, Taylor HJ, Bonnycastle LL, Xue D, Lee BN, Weiss Z, Yan T, Swift AJ, Mansell EC, Lee A, Robertson CC, Narisu N, Erdos MR, Chen S, Collins FS, Taylor DL. Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h. Diabetologia 2024; 67:2246-2259. [PMID: 38967666 PMCID: PMC11447040 DOI: 10.1007/s00125-024-06214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 07/06/2024]
Abstract
AIMS/HYPOTHESIS Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes. METHODS We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-βH1 cells, followed by a glucose-stimulated insulin secretion assay. RESULTS In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-βH1 cells. CONCLUSIONS/INTERPRETATION The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production. DATA AVAILABILITY The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .
Collapse
Affiliation(s)
- Caleb M Grenko
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Brian N Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Weiss
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy J Swift
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin C Mansell
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Robertson
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Shi M, Cheng X, Dai Y. STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data. Comput Biol Chem 2024; 112:108127. [PMID: 38870559 DOI: 10.1016/j.compbiolchem.2024.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.
Collapse
Affiliation(s)
- Mingguang Shi
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xudong Cheng
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yulong Dai
- Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
6
|
Loeb GB, Kathail P, Shuai RW, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu AY, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis NM, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. Nat Genet 2024; 56:2078-2092. [PMID: 39256582 DOI: 10.1038/s41588-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Kidney failure, the decrease of kidney function below a threshold necessary to support life, is a major cause of morbidity and mortality. We performed a genome-wide association study (GWAS) of 406,504 individuals in the UK Biobank, identifying 430 loci affecting kidney function in middle-aged adults. To investigate the cell types affected by these loci, we integrated the GWAS with human kidney candidate cis-regulatory elements (cCREs) identified using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq). Overall, 56% of kidney function heritability localized to kidney tubule epithelial cCREs and an additional 7% to kidney podocyte cCREs. Thus, most heritable differences in adult kidney function are a result of altered gene expression in these two cell types. Using enhancer assays, allele-specific scATAC-seq and machine learning, we found that many kidney function variants alter tubule epithelial cCRE chromatin accessibility and function. Using CRISPRi, we determined which genes some of these cCREs regulate, implicating NDRG1, CCNB1 and STC1 in human kidney function.
Collapse
Affiliation(s)
- Gabriel B Loeb
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Richard W Shuai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Reinier J Grona
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Y Chu
- Human Genetics and Genomics, GSK, Cambridge, MA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genome Biology, Research Technologies, GSK, Stevenage, UK
| | - Nilah M Ioannidis
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
7
|
Baya NA, Erdem IS, Venkatesh SS, Reibe S, Charles PD, Navarro-Guerrero E, Hill B, Lassen FH, Claussnitzer M, Palmer DS, Lindgren CM. Combining evidence from human genetic and functional screens to identify pathways altering obesity and fat distribution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24313913. [PMID: 39371160 PMCID: PMC11451655 DOI: 10.1101/2024.09.19.24313913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare variant (minor allele frequency<1%) association testing using exome-sequencing data from 402,375 participants in the UK Biobank (UKB) for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted P<1.58×10-7) and 52 additional genes at FDR≤1% (P≤4.37×10-5). These 71 genes exhibited higher (P=3.58×10-18) common variant prioritisation scores than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count≤10) in 22 genes. Five of the 71 genes have cognate protein UKB Olink data available; all five associated (P<3.80×10-6) with three or more analysed traits. Combining rare and common variation evidence, allelic series and proteomics, we selected 17 genes for CRISPR knockout in human white adipose tissue cell lines. In three previously uncharacterised target genes, knockout increased (two-sided t-test P<0.05) lipid accumulation, a cellular phenotype relevant for fat mass traits, compared to Cas9-empty negative controls: COL5A3 (fold change [FC]=1.72, P=0.0028), EXOC7 (FC=1.35, P=0.0096), and TRIP10 (FC=1.39, P=0.0157); furthermore, knockout of SLTM resulted in reduced lipid accumulation (FC=0.51, P=1.91×10-4). Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.
Collapse
Affiliation(s)
- Nikolas A Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Ilknur Sur Erdem
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Samvida S Venkatesh
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Saskia Reibe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Philip D Charles
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Elena Navarro-Guerrero
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Barney Hill
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Frederik Heymann Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Novo Nordisk Foundation Center for Genomic Mechanisms of Disease & Type 2 Diabetes Systems Genomics Initiative, Cambridge, Massachusetts, United States of America
- Center for Genomic Medicine and Endocrine Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Duncan S Palmer
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Cecilia M Lindgren
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
- Nuffield Department of Women's and Reproductive Health, Medical Sciences Division, University of Oxford, United Kingdom
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
8
|
Contreras RE, Gruber T, González-García I, Schriever SC, De Angelis M, Mallet N, Bernecker M, Legutko B, Kabra D, Schmidt M, Tschöp MH, Gutierrez-Aguilar R, Mellor J, García-Cáceres C, Pfluger PT. HDAC5 controls a hypothalamic STAT5b-TH axis, the sympathetic activation of ATP-consuming futile cycles and adult-onset obesity in male mice. Mol Metab 2024; 90:102033. [PMID: 39304061 PMCID: PMC11481749 DOI: 10.1016/j.molmet.2024.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/31/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
With age, metabolic perturbations accumulate to elevate our obesity burden. While age-onset obesity is mostly driven by a sedentary lifestyle and high calorie intake, genetic and epigenetic factors also play a role. Among these, members of the large histone deacetylase (HDAC) family are of particular importance as key metabolic determinants for healthy ageing, or metabolic dysfunction. Here, we aimed to interrogate the role of class 2 family member HDAC5 in controlling systemic metabolism and age-related obesity under non-obesogenic conditions. Starting at 6 months of age, we observed adult-onset obesity in chow-fed male global HDAC5-KO mice, that was accompanied by marked reductions in adrenergic-stimulated ATP-consuming futile cycles, including BAT activity and UCP1 levels, WAT-lipolysis, skeletal muscle, WAT and liver futile creatine and calcium cycles, and ultimately energy expenditure. Female mice did not differ between genotypes. The lower peripheral sympathetic nervous system (SNS) activity in mature male KO mice was linked to higher dopaminergic neuronal activity within the dorsomedial arcuate nucleus (dmARC) and elevated hypothalamic dopamine levels. Mechanistically, we reveal that hypothalamic HDAC5 acts as co-repressor of STAT5b over the control of Tyrosine hydroxylase (TH) gene transactivation, which ultimately orchestrates the activity of dmARH dopaminergic neurons and energy metabolism in male mice under non-obesogenic conditions.
Collapse
Affiliation(s)
- Raian E Contreras
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine & Health, Technische Universität München, München, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Van Andel Institute, Grand Rapids, MI, USA
| | - Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C Schriever
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Meri De Angelis
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Munich, Neuherberg, Germany
| | - Noemi Mallet
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Miriam Bernecker
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine & Health, Technische Universität München, München, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dhiraj Kabra
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Biological Research Pharmacology Department, Sun Pharma Advanced Research Company Ltd., Vadodara, India
| | - Mathias Schmidt
- Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias H Tschöp
- Division of Metabolic Diseases, TUM School of Medicine & Health, Technical University of München, Munich, Germany; Helmholtz Center Munich, Neuherberg, Germany
| | - Ruth Gutierrez-Aguilar
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico; Laboratorio de Investigación en Enfermedades Metabólicas, Obesidad y Diabetes, Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK; Chronos Therapeutics, Oxford, UK
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Medical Clinic and Polyclinic IV, Ludwig-Maximilians University of München, Munich, Germany
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Neurobiology of Diabetes, TUM School of Medicine & Health, Technische Universität München, München, Germany.
| |
Collapse
|
9
|
Arbabi K, Newton DF, Oh H, Davie MC, Lewis DA, Wainberg M, Tripathy SJ, Sibille E. Transcriptomic pathology of neocortical microcircuit cell types across psychiatric disorders. Mol Psychiatry 2024:10.1038/s41380-024-02707-1. [PMID: 39237723 DOI: 10.1038/s41380-024-02707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.
Collapse
Affiliation(s)
- Keon Arbabi
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dwight F Newton
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Hyunjung Oh
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Melanie C Davie
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Wainberg
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Shreejoy J Tripathy
- The Krembil Centre for Neuroinformatics, Centre for Addiction & Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Wen J, Tian YE, Skampardoni I, Yang Z, Cui Y, Anagnostakis F, Mamourian E, Zhao B, Toga AW, Zalesky A, Davatzikos C. The genetic architecture of biological age in nine human organ systems. NATURE AGING 2024; 4:1290-1307. [PMID: 38942983 PMCID: PMC11446180 DOI: 10.1038/s43587-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
Collapse
Affiliation(s)
- Junhao Wen
- Laboratory of AI and Biomedical Science (LABS), University of Southern California, Los Angeles, CA, USA.
| | - Ye Ella Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ioanna Skampardoni
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Engreitz JM, Lawson HA, Singh H, Starita LM, Hon GC, Carter H, Sahni N, Reddy TE, Lin X, Li Y, Munshi NV, Chahrour MH, Boyle AP, Hitz BC, Mortazavi A, Craven M, Mohlke KL, Pinello L, Wang T, Kundaje A, Yue F, Cody S, Farrell NP, Love MI, Muffley LA, Pazin MJ, Reese F, Van Buren E, Dey KK, Kircher M, Ma J, Radivojac P, Balliu B, Williams BA, Huangfu D, Park CY, Quertermous T, Das J, Calderwood MA, Fowler DM, Vidal M, Ferreira L, Mooney SD, Pejaver V, Zhao J, Gazal S, Koch E, Reilly SK, Sunyaev S, Carpenter AE, Buenrostro JD, Leslie CS, Savage RE, Giric S, Luo C, Plath K, Barrera A, Schubach M, Gschwind AR, Moore JE, Ahituv N, Yi SS, Hallgrimsdottir I, Gaulton KJ, Sakaue S, Booeshaghi S, Mattei E, Nair S, Pachter L, Wang AT, Shendure J, Agarwal V, Blair A, Chalkiadakis T, Chardon FM, Dash PM, Deng C, Hamazaki N, Keukeleire P, Kubo C, Lalanne JB, Maass T, Martin B, McDiarmid TA, Nobuhara M, Page NF, Regalado S, Sims J, Ushiki A, Best SM, Boyle G, Camp N, Casadei S, Da EY, Dawood M, Dawson SC, Fayer S, Hamm A, James RG, Jarvik GP, McEwen AE, Moore N, Pendyala S, Popp NA, Post M, Rubin AF, Smith NT, Stone J, Tejura M, Wang ZR, Wheelock MK, Woo I, Zapp BD, Amgalan D, Aradhana A, Arana SM, Bassik MC, Bauman JR, Bhattacharya A, Cai XS, Chen Z, Conley S, Deshpande S, Doughty BR, Du PP, Galante JA, Gifford C, Greenleaf WJ, Guo K, Gupta R, Isobe S, Jagoda E, Jain N, Jones H, Kang HY, Kim SH, Kim Y, Klemm S, Kundu R, Kundu S, Lago-Docampo M, Lee-Yow YC, Levin-Konigsberg R, Li DY, Lindenhofer D, Ma XR, Marinov GK, Martyn GE, McCreery CV, Metzl-Raz E, Monteiro JP, Montgomery MT, Mualim KS, Munger C, Munson G, Nguyen TC, Nguyen T, Palmisano BT, Pampari A, Rabinovitch M, Ramste M, Ray J, Roy KR, Rubio OM, Schaepe JM, Schnitzler G, Schreiber J, Sharma D, Sheth MU, Shi H, Singh V, Sinha R, Steinmetz LM, Tan J, Tan A, Tycko J, Valbuena RC, Amiri VVP, van Kooten MJFM, Vaughan-Jackson A, Venida A, Weldy CS, Worssam MD, Xia F, Yao D, Zeng T, Zhao Q, Zhou R, Chen ZS, Cimini BA, Coppin G, Coté AG, Haghighi M, Hao T, Hill DE, Lacoste J, Laval F, Reno C, Roth FP, Singh S, Spirohn-Fitzgerald K, Taipale M, Teelucksingh T, Tixhon M, Yadav A, Yang Z, Kraus WL, Armendariz DA, Dederich AE, Gogate A, El Hayek L, Goetsch SC, Kaur K, Kim HB, McCoy MK, Nzima MZ, Pinzón-Arteaga CA, Posner BA, Schmitz DA, Sivakumar S, Sundarrajan A, Wang L, Wang Y, Wu J, Xu L, Xu J, Yu L, Zhang Y, Zhao H, Zhou Q, Won H, Bell JL, Broadaway KA, Degner KN, Etheridge AS, Koller BH, Mah W, Mu W, Ritola KD, Rosen JD, Schoenrock SA, Sharp RA, Bauer D, Lettre G, Sherwood R, Becerra B, Blaine LJ, Che E, Francoeur MJ, Gibbs EN, Kim N, King EM, Kleinstiver BP, Lecluze E, Li Z, Patel ZM, Phan QV, Ryu J, Starr ML, Wu T, Gersbach CA, Crawford GE, Allen AS, Majoros WH, Iglesias N, Rai R, Venukuttan R, Li B, Anglen T, Bounds LR, Hamilton MC, Liu S, McCutcheon SR, McRoberts Amador CD, Reisman SJ, ter Weele MA, Bodle JC, Streff HL, Siklenka K, Strouse K, Bernstein BE, Babu J, Corona GB, Dong K, Duarte FM, Durand NC, Epstein CB, Fan K, Gaskell E, Hall AW, Ham AM, Knudson MK, Shoresh N, Wekhande S, White CM, Xi W, Satpathy AT, Corces MR, Chang SH, Chin IM, Gardner JM, Gardell ZA, Gutierrez JC, Johnson AW, Kampman L, Kasowski M, Lareau CA, Liu V, Ludwig LS, McGinnis CS, Menon S, Qualls A, Sandor K, Turner AW, Ye CJ, Yin Y, Zhang W, Wold BJ, Carilli M, Cheong D, Filibam G, Green K, Kawauchi S, Kim C, Liang H, Loving R, Luebbert L, MacGregor G, Merchan AG, Rebboah E, Rezaie N, Sakr J, Sullivan DK, Swarna N, Trout D, Upchurch S, Weber R, Castro CP, Chou E, Feng F, Guerra A, Huang Y, Jiang L, Liu J, Mills RE, Qian W, Qin T, Sartor MA, Sherpa RN, Wang J, Wang Y, Welch JD, Zhang Z, Zhao N, Mukherjee S, Page CD, Clarke S, Doty RW, Duan Y, Gordan R, Ko KY, Li S, Li B, Thomson A, Raychaudhuri S, Price A, Ali TA, Dey KK, Durvasula A, Kellis M, Iakoucheva LM, Kakati T, Chen Y, Benazouz M, Jain S, Zeiberg D, De Paolis Kaluza MC, Velyunskiy M, Gasch A, Huang K, Jin Y, Lu Q, Miao J, Ohtake M, Scopel E, Steiner RD, Sverchkov Y, Weng Z, Garber M, Fu Y, Haas N, Li X, Phalke N, Shan SC, Shedd N, Yu T, Zhang Y, Zhou H, Battle A, Jerby L, Kotler E, Kundu S, Marderstein AR, Montgomery SB, Nigam A, Padhi EM, Patel A, Pritchard J, Raine I, Ramalingam V, Rodrigues KB, Schreiber JM, Singhal A, Sinha R, Wang AT, Abundis M, Bisht D, Chakraborty T, Fan J, Hall DR, Rarani ZH, Jain AK, Kaundal B, Keshari S, McGrail D, Pease NA, Yi VF, Wu H, Kannan S, Song H, Cai J, Gao Z, Kurzion R, Leu JI, Li F, Liang D, Ming GL, Musunuru K, Qiu Q, Shi J, Su Y, Tishkoff S, Xie N, Yang Q, Yang W, Zhang H, Zhang Z, Beer MA, Hadjantonakis AK, Adeniyi S, Cho H, Cutler R, Glenn RA, Godovich D, Hu N, Jovanic S, Luo R, Oh JW, Razavi-Mohseni M, Shigaki D, Sidoli S, Vierbuchen T, Wang X, Williams B, Yan J, Yang D, Yang Y, Sander M, Gaulton KJ, Ren B, Bartosik W, Indralingam HS, Klie A, Mummey H, Okino ML, Wang G, Zemke NR, Zhang K, Zhu H, Zaitlen N, Ernst J, Langerman J, Li T, Sun Y, Rudensky AY, Periyakoil PK, Gao VR, Smith MH, Thomas NM, Donlin LT, Lakhanpal A, Southard KM, Ardy RC, Cherry JM, Gerstein MB, Andreeva K, Assis PR, Borsari B, Douglass E, Dong S, Gabdank I, Graham K, Jolanki O, Jou J, Kagda MS, Lee JW, Li M, Lin K, Miyasato SR, Rozowsky J, Small C, Spragins E, Tanaka FY, Whaling IM, Youngworth IA, Sloan CA, Belter E, Chen X, Chisholm RL, Dickson P, Fan C, Fulton L, Li D, Lindsay T, Luan Y, Luo Y, Lyu H, Ma X, Macias-Velasco J, Miga KH, Quaid K, Stitziel N, Stranger BE, Tomlinson C, Wang J, Zhang W, Zhang B, Zhao G, Zhuo X, Brennand K, Ciccia A, Hayward SB, Huang JW, Leuzzi G, Taglialatela A, Thakar T, Vaitsiankova A, Dey KK, Ali TA, Kim A, Grimes HL, Salomonis N, Gupta R, Fang S, Lee-Kim V, Heinig M, Losert C, Jones TR, Donnard E, Murphy M, Roberts E, Song S, Mostafavi S, Sasse A, Spiro A, Pennacchio LA, Kato M, Kosicki M, Mannion B, Slaven N, Visel A, Pollard KS, Drusinsky S, Whalen S, Ray J, Harten IA, Ho CH, Sanjana NE, Caragine C, Morris JA, Seruggia D, Kutschat AP, Wittibschlager S, Xu H, Fu R, He W, Zhang L, Osorio D, Bly Z, Calluori S, Gilchrist DA, Hutter CM, Morris SA, Samer EK. Deciphering the impact of genomic variation on function. Nature 2024; 633:47-57. [PMID: 39232149 DOI: 10.1038/s41586-024-07510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/02/2024] [Indexed: 09/06/2024]
Abstract
Our genomes influence nearly every aspect of human biology-from molecular and cellular functions to phenotypes in health and disease. Studying the differences in DNA sequence between individuals (genomic variation) could reveal previously unknown mechanisms of human biology, uncover the basis of genetic predispositions to diseases, and guide the development of new diagnostic tools and therapeutic agents. Yet, understanding how genomic variation alters genome function to influence phenotype has proved challenging. To unlock these insights, we need a systematic and comprehensive catalogue of genome function and the molecular and cellular effects of genomic variants. Towards this goal, the Impact of Genomic Variation on Function (IGVF) Consortium will combine approaches in single-cell mapping, genomic perturbations and predictive modelling to investigate the relationships among genomic variation, genome function and phenotypes. IGVF will create maps across hundreds of cell types and states describing how coding variants alter protein activity, how noncoding variants change the regulation of gene expression, and how such effects connect through gene-regulatory and protein-interaction networks. These experimental data, computational predictions and accompanying standards and pipelines will be integrated into an open resource that will catalyse community efforts to explore how our genomes influence biology and disease across populations.
Collapse
|
12
|
Xu Y, He C, Fan J, Zhou Y, Cheng C, Meng R, Cui Y, Li W, Gamazon ER, Zhou D. A multi-modal framework improves prediction of tissue-specific gene expression from a surrogate tissue. EBioMedicine 2024; 107:105305. [PMID: 39180788 PMCID: PMC11388271 DOI: 10.1016/j.ebiom.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue-specific analysis of the transcriptome is critical to elucidating the molecular basis of complex traits, but central tissues are often not accessible. We propose a methodology, Multi-mOdal-based framework to bridge the Transcriptome between PEripheral and Central tissues (MOTPEC). METHODS Multi-modal regulatory elements in peripheral blood are incorporated as features for gene expression prediction in 48 central tissues. To demonstrate the utility, we apply it to the identification of BMI-associated genes and compare the tissue-specific results with those derived directly from surrogate blood. FINDINGS MOTPEC models demonstrate superior performance compared with both baseline models in blood and existing models across the 48 central tissues. We identify a set of BMI-associated genes using the central tissue MOTPEC-predicted transcriptome data. The MOTPEC-based differential gene expression (DGE) analysis of BMI in the central tissues (including brain caudate basal ganglia and visceral omentum adipose tissue) identifies 378 genes overlapping the results from a TWAS of BMI, while only 162 overlapping genes are identified using gene expression in blood. Cellular perturbation analysis further supports the utility of MOTPEC for identifying trait-associated gene sets and narrowing the effect size divergence between peripheral blood and central tissues. INTERPRETATION The MOTPEC framework improves the gene expression prediction accuracy for central tissues and enhances the identification of tissue-specific trait-associated genes. FUNDING This research is supported by the National Natural Science Foundation of China 82204118 (D.Z.), the seed funding of the Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province (2020E10004), the National Institutes of Health (NIH) Genomic Innovator Award R35HG010718 (E.R.G.), NIH/NHGRI R01HG011138 (E.R.G.), NIH/NIA R56AG068026 (E.R.G.), NIH Office of the Director U24OD035523 (E.R.G.), and NIH/NIGMS R01GM140287 (E.R.G.).
Collapse
Affiliation(s)
- Yue Xu
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chunfeng He
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chunxiao Cheng
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ran Meng
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Cui
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Eric R Gamazon
- Vanderbit Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Kamineni M, Raghu V, Truong B, Alaa A, Schuermans A, Friedman S, Reeder C, Bhattacharya R, Libby P, Ellinor PT, Maddah M, Philippakis A, Hornsby W, Yu Z, Natarajan P. Deep learning-derived splenic radiomics, genomics, and coronary artery disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.16.24312129. [PMID: 39185532 PMCID: PMC11343250 DOI: 10.1101/2024.08.16.24312129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Despite advances in managing traditional risk factors, coronary artery disease (CAD) remains the leading cause of mortality. Circulating hematopoietic cells influence risk for CAD, but the role of a key regulating organ, spleen, is unknown. The understudied spleen is a 3-dimensional structure of the hematopoietic system optimally suited for unbiased radiologic investigations toward novel mechanistic insights. Methods Deep learning-based image segmentation and radiomics techniques were utilized to extract splenic radiomic features from abdominal MRIs of 42,059 UK Biobank participants. Regression analysis was used to identify splenic radiomics features associated with CAD. Genome-wide association analyses were applied to identify loci associated with these radiomics features. Overlap between loci associated with CAD and the splenic radiomics features was explored to understand the underlying genetic mechanisms of the role of the spleen in CAD. Results We extracted 107 splenic radiomics features from abdominal MRIs, and of these, 10 features were associated with CAD. Genome-wide association analysis of CAD-associated features identified 219 loci, including 35 previously reported CAD loci, 7 of which were not associated with conventional CAD risk factors. Notably, variants at 9p21 were associated with splenic features such as run length non-uniformity. Conclusions Our study, combining deep learning with genomics, presents a new framework to uncover the splenic axis of CAD. Notably, our study provides evidence for the underlying genetic connection between the spleen as a candidate causal tissue-type and CAD with insight into the mechanisms of 9p21, whose mechanism is still elusive despite its initial discovery in 2007. More broadly, our study provides a unique application of deep learning radiomics to non-invasively find associations between imaging, genetics, and clinical outcomes.
Collapse
Affiliation(s)
| | - Vineet Raghu
- Cardiovascular Imaging Research Center, Department of Radiology, MGH and HMS
- Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | - Buu Truong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Ahmed Alaa
- Computational Precision Health Program, University of California, Berkeley, Berkeley, CA 94720
- Computational Precision Health Program, University of California, San Francisco, San Francisco, CA 94143
| | - Art Schuermans
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Sam Friedman
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Christopher Reeder
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Romit Bhattacharya
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston MA 02114
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mahnaz Maddah
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA
| | | | - Whitney Hornsby
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Pradeep Natarajan
- Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Personalized Medicine, Mass General Brigham, Boston, MA
| |
Collapse
|
14
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
15
|
Lui JC, Palmer AC, Christian P. Nutrition, Other Environmental Influences, and Genetics in the Determination of Human Stature. Annu Rev Nutr 2024; 44:205-229. [PMID: 38759081 DOI: 10.1146/annurev-nutr-061121-091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Linear growth during three distinct stages of life determines attained stature in adulthood: namely, in utero, early postnatal life, and puberty and the adolescent period. Individual host factors, genetics, and the environment, including nutrition, influence attained human stature. Each period of physical growth has its specific biological and environmental considerations. Recent epidemiologic investigations reveal a strong influence of prenatal factors on linear size at birth that in turn influence the postnatal growth trajectory. Although average population height changes have been documented in high-income regions, stature as a complex human trait is not well understood or easily modified. This review summarizes the biology of linear growth and its major drivers, including nutrition from a life-course perspective, the genetics of programmed growth patterns or height, and gene-environment interactions that determine human stature in toto over the life span. Implications for public health interventions and knowledge gaps are discussed.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Parul Christian
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
16
|
Qi T, Song L, Guo Y, Chen C, Yang J. From genetic associations to genes: methods, applications, and challenges. Trends Genet 2024; 40:642-667. [PMID: 38734482 DOI: 10.1016/j.tig.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Liyang Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yazhou Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chang Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
17
|
Schipper M, Ulirsch J, Posthuma D, Ripke S, Heilbron K. Simplifying causal gene identification in GWAS loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.26.24311057. [PMID: 39132490 PMCID: PMC11312651 DOI: 10.1101/2024.07.26.24311057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS gene prioritization tools are powerful, but often use complex black box models trained on datasets containing unaddressed biases. Here we present CALDERA, a gene prioritization tool that achieves similar or better performance than state-of-the-art methods, but uses just 12 features and a simple logistic regression model with L1 regularization. We use a data-driven approach to construct a truth set of causal genes in 406 GWAS loci and correct for potential confounders. We demonstrate that CALDERA is well-calibrated in external datasets and prioritizes genes with expected properties, such as being mutation-intolerant (OR = 1.751 for pLI > 90%, P = 8.45×10-3). CALDERA facilitates the prioritization of potentially causal genes in GWAS loci and may help identify novel genetics-driven drug targets.
Collapse
Affiliation(s)
- Marijn Schipper
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jacob Ulirsch
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Stephan Ripke
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Karl Heilbron
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
18
|
Wang L, Wen X, Morrison J. Imperfect gold standard gene sets yield inaccurate evaluation of causal gene identification methods. Commun Biol 2024; 7:873. [PMID: 39020054 PMCID: PMC11255313 DOI: 10.1038/s42003-024-06482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/21/2024] [Indexed: 07/19/2024] Open
Abstract
Causal gene discovery methods are often evaluated using reference sets of causal genes, which are treated as gold standards (GS) for the purposes of evaluation. However, evaluation methods typically treat genes not in the GS positive set as known negatives rather than unknowns. This leads to inaccurate estimates of sensitivity, specificity, and AUC. Labeling biases in GS gene sets can also lead to inaccurate ordering of alternative causal gene discovery methods. We argue that the evaluation of causal gene discovery methods should rely on statistical techniques like those used for variant discovery rather than on comparison with GS gene sets.
Collapse
Affiliation(s)
- Lijia Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Jean Morrison
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Urzúa-Traslaviña CG, van Lieshout T, Boulogne F, Domanegg K, Zidan M, Bakker OB, Claringbould A, de Ridder J, Zwart W, Westra HJ, Deelen P, Franke L. Co-expression in tissue-specific gene networks links genes in cancer-susceptibility loci to known somatic driver genes. BMC Med Genomics 2024; 17:186. [PMID: 39010058 PMCID: PMC11247850 DOI: 10.1186/s12920-024-01941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The genetic background of cancer remains complex and challenging to integrate. Many somatic mutations within genes are known to cause and drive cancer, while genome-wide association studies (GWAS) of cancer have revealed many germline risk factors associated with cancer. However, the overlap between known somatic driver genes and positional candidate genes from GWAS loci is surprisingly small. We hypothesised that genes from multiple independent cancer GWAS loci should show tissue-specific co-regulation patterns that converge on cancer-specific driver genes. RESULTS We studied recent well-powered GWAS of breast, prostate, colorectal and skin cancer by estimating co-expression between genes and subsequently prioritising genes that show significant co-expression with genes mapping within susceptibility loci from cancer GWAS. We observed that the prioritised genes were strongly enriched for cancer drivers defined by COSMIC, IntOGen and Dietlein et al. The enrichment of known cancer driver genes was most significant when using co-expression networks derived from non-cancer samples of the relevant tissue of origin. CONCLUSION We show how genes within risk loci identified by cancer GWAS can be linked to known cancer driver genes through tissue-specific co-expression networks. This provides an important explanation for why seemingly unrelated sets of genes that harbour either germline risk factors or somatic mutations can eventually cause the same type of disease.
Collapse
Affiliation(s)
- Carlos G Urzúa-Traslaviña
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Tijs van Lieshout
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Floranne Boulogne
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Kevin Domanegg
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mahmoud Zidan
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Olivier B Bakker
- Wellcome Sanger Institute, Human Genetics, Hinxton, UK
- Open Targets, Hinxton, UK
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- EMBL Heidelberg, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Jeroen de Ridder
- Oncode Institute, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, Utrecht, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Gilliland T, Dron JS, Selvaraj MS, Trinder M, Paruchuri K, Urbut SM, Haidermota S, Bernardo R, Uddin MM, Honigberg MC, Peloso GM, Natarajan P. Genetic Architecture and Clinical Outcomes of Combined Lipid Disturbances. Circ Res 2024; 135:265-276. [PMID: 38828614 PMCID: PMC11223949 DOI: 10.1161/circresaha.123.323973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Dyslipoproteinemia often involves simultaneous derangements of multiple lipid traits. We aimed to evaluate the phenotypic and genetic characteristics of combined lipid disturbances in a general population-based cohort. METHODS Among UK Biobank participants without prevalent coronary artery disease, we used blood lipid and apolipoprotein B concentrations to ascribe individuals into 1 of 6 reproducible and mutually exclusive dyslipoproteinemia subtypes. Incident coronary artery disease risk was estimated for each subtype using Cox proportional hazards models. Phenome-wide analyses and genome-wide association studies were performed for each subtype, followed by in silico causal gene prioritization and heritability analyses. Additionally, the prevalence of disruptive variants in causal genes for Mendelian lipid disorders was assessed using whole-exome sequence data. RESULTS Among 450 636 UK Biobank participants: 63 (0.01%) had chylomicronemia; 40 005 (8.9%) had hypercholesterolemia; 94 785 (21.0%) had combined hyperlipidemia; 13 998 (3.1%) had remnant hypercholesterolemia; 110 389 (24.5%) had hypertriglyceridemia; and 49 (0.01%) had mixed hypertriglyceridemia and hypercholesterolemia. Over a median (interquartile range) follow-up of 11.1 (10.4-11.8) years, incident coronary artery disease risk varied across subtypes, with combined hyperlipidemia exhibiting the largest hazard (hazard ratio, 1.92 [95% CI, 1.84-2.01]; P=2×10-16), even when accounting for non-HDL-C (hazard ratio, 1.45 [95% CI, 1.30-1.60]; P=2.6×10-12). Genome-wide association studies revealed 250 loci significantly associated with dyslipoproteinemia subtypes, of which 72 (28.8%) were not detected in prior single lipid trait genome-wide association studies. Mendelian lipid variant carriers were rare (2.0%) among individuals with dyslipoproteinemia, but polygenic heritability was high, ranging from 23% for remnant hypercholesterolemia to 54% for combined hyperlipidemia. CONCLUSIONS Simultaneous assessment of multiple lipid derangements revealed nuanced differences in coronary artery disease risk and genetic architectures across dyslipoproteinemia subtypes. These findings highlight the importance of looking beyond single lipid traits to better understand combined lipid and lipoprotein phenotypes and implications for disease risk.
Collapse
Affiliation(s)
- Thomas Gilliland
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Mark Trinder
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC
| | - Kaavya Paruchuri
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sarah M. Urbut
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Sara Haidermota
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Rachel Bernardo
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Md Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
| | - Michael C. Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
21
|
Ooi E, Xiang R, Chamberlain AJ, Goddard ME. Archetypal clustering reveals physiological mechanisms linking milk yield and fertility in dairy cattle. J Dairy Sci 2024; 107:4726-4742. [PMID: 38369117 DOI: 10.3168/jds.2023-23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Fertility in dairy cattle has declined as an unintended consequence of single-trait selection for high milk yield. The unfavorable genetic correlation between milk yield and fertility is now well documented; however, the underlying physiological mechanisms are still uncertain. To understand the relationship between these traits, we developed a method that clusters variants with similar patterns of effects and, after the integration of gene expression data, identifies the genes through which they are likely to act. Biological processes that are enriched in the genes of each cluster were then identified. We identified several clusters with unique patterns of effects. One of the clusters included variants associated with increased milk yield and decreased fertility, where the "archetypal" variant (i.e., the one with the largest effect) was associated with the GC gene, whereas others were associated with TRIM32, LRRK2, and U6-associated snRNA. These genes have been linked to transcription and alternative splicing, suggesting that these processes are likely contributors to the unfavorable relationship between the 2 traits. Another cluster, with archetypal variant near DGAT1 and including variants associated with CDH2, BTRC, SFRP2, ZFHX3, and SLITRK5, appeared to affect milk yield but have little effect on fertility. These genes have been linked to insulin, adipose tissue, and energy metabolism. A third cluster with archetypal variant near ZNF613 and including variants associated with ROBO1, EFNA5, PALLD, GPC6, and PTPRT were associated with fertility but not milk yield. These genes have been linked to GnRH neuronal migration, embryonic development, or ovarian function. The use of archetypal clustering to group variants with similar patterns of effects may assist in identifying the biological processes underlying correlated traits. The method is hypothesis generating and requires experimental confirmation. However, we have uncovered several novel mechanisms potentially affecting milk production and fertility such as GnRH neuronal migration. We anticipate our method to be a starting point for experimental research into novel pathways, which have been previously unexplored within the context of dairy production.
Collapse
Affiliation(s)
- E Ooi
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - R Xiang
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
| |
Collapse
|
22
|
Xiu Z, Sun L, Liu K, Cao H, Qu HQ, Glessner JT, Ding Z, Zheng G, Wang N, Xia Q, Li J, Li MJ, Hakonarson H, Liu W, Li J. Shared molecular mechanisms and transdiagnostic potential of neurodevelopmental disorders and immune disorders. Brain Behav Immun 2024; 119:767-780. [PMID: 38677625 DOI: 10.1016/j.bbi.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Department of Child and Adolescent Psychology, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Kunlun Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haiyan Cao
- Department of Child and Adolescent Psychology, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei Liu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
23
|
Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, Mendes de Oliveira E, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santoni F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia RY, Terao C, Riggan MJ, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington de Gonzalez A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Huebner H, Hunter DJ, Jernström H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PKE, Mannermaa A, McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O'Brien KM, Offit K, Oldehinkel AJ, Ostrowski SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SFA, Gudnason V, Hayward C, Kolčić I, Kraft P, Lawlor DA, Martin NG, Nøhr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, Snieder H, Sovio U, Spector TD, Stöckl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, Ulivi S, Völzke H, Wareham NJ, Widen E, Wilson JF, Pharoah PDP, Li L, Easton DF, Njølstad PR, Sulem P, Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JRB, Ong KK. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat Genet 2024; 56:1397-1411. [PMID: 38951643 PMCID: PMC11250262 DOI: 10.1038/s41588-024-01798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024]
Abstract
Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.
Collapse
Affiliation(s)
- Katherine A Kentistou
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Lena R Kaisinger
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Stasa Stankovic
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Vaudel
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Andrea Messina
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Alexander S Busch
- Department of General Pediatrics, University of Münster, Münster, Germany
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Federico Santoni
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Konstantin M Petricek
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Berlin, Germany
| | - Yassine Zouaghi
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Isabel Huang-Doran
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Eirik Bratland
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Yajie Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Raina Y Jia
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Marjorie J Riggan
- Department of Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Jonathan P Bradfield
- Quantinuum Research, Wayne, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diana L Cousminer
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Lude H Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Chunyan He
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, KY, USA
- Cancer Prevention and Control Research Program, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Children and Young People and Families, National Institute for Health and Welfare, Oulu, Finland
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, UK
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, University Hospital of Augsburg, Augsburg, Germany
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Eleonora Porcu
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Susan M Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Marek Zygmunt
- Clinic of Gynaecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoda Anton-Culver
- Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Catriona L K Barnes
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Laura Crisponi
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- School of Life Sciences, University of Westminster, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Yong Loo Lin School of Medicine, Department of Obstetrics and Gynecology and Human Potential Translational Research Programme, National University Singapore, Singapore City, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | | | - Liana Ferreli
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, International Cancer Genetics and Epidemiology Group Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS Santiago de Compostela, Coruña, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics National Cancer Institute, National Institutes of Health, Department of Health and Human Services Bethesda, Bethesda, MD, USA
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Pascal Guénel
- Team 'Exposome and Heredity', CESP, Gustave Roussy INSERM, University Paris-Saclay, UVSQ, Orsay, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger J Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Crawley, Western Australia, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and The Royal Women's Hospital, Parkville, Victoria, Australia
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health School of Public Health, Boston, MA, USA
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine Stanford, Stanford, CA, USA
- Department of Medicine, Division of Oncology Stanford Cancer Institute, Stanford University School of Medicine Stanford, Stanford, CA, USA
| | - David Karasik
- Hebrew SeniorLife Institute for Aging Research, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Vessela N Kristensen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - James V Lacey
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Penelope A Lind
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dale R Nyholt
- School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nadia Obi
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet-University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology-IBE, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Giulia Pianigiani
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology 'Georgi D. Efremov', MASA, Skopje, Republic of North Macedonia
| | - Anneli Pouta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Alfred Pozarickij
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Paolo Radice
- Unit of Preventive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gad Rennert
- Faculty of Medicine, Clalit National Cancer Control Center, Carmel Medical Center and Technion, Haifa, Israel
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | - Emmanouil Saloustros
- Division of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH Research Triangle Park, Durham, NC, USA
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Kerrin Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Meir Stampfer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Stone
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia Perth, Perth, Western Australia, Australia
| | - Rulla M Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Emmi Tikkanen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ko W van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam; Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- IRCCS Neuromed, Isernia, Italy
| | | | - Francesco Cucca
- Institute of Genetics and Biomedical Research, National Research Council, Sardinia, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ellen A Nøhr
- Institute of Clinical Research, University of Southern Denmark, Department of Obstetrics and Gynecology, Odense University Hospital, Odense, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulla Sovio
- Department of Epidemiology and Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Doris Stöckl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Cathie Sudlow
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nic J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffele Hospital, Milano, Italy
| | - André Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Sheila Ulivi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, Scotland
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness and Response, Peking University, Beijing, China
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Adolescent Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Boston University Chobanian and Avedisian School of Medicine, Department of Medicine, Section of General Internal Medicine, Boston, MA, USA
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, RILD Level 3, Royal Devon and Exeter Hospital, Exeter, UK
| | - Despoina Manousaki
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Anders Juul
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Nelly Pitteloud
- Division of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Felix R Day
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Ken K Ong
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Liu A, Genovese G, Zhao Y, Pirinen M, Zekavat SM, Kentistou KA, Yang Z, Yu K, Vlasschaert C, Liu X, Brown DW, Hudjashov G, Gorman BR, Dennis J, Zhou W, Momozawa Y, Pyarajan S, Tuzov V, Pajuste FD, Aavikko M, Sipilä TP, Ghazal A, Huang WY, Freedman ND, Song L, Gardner EJ, Sankaran VG, Palotie A, Ollila HM, Tukiainen T, Chanock SJ, Mägi R, Natarajan P, Daly MJ, Bick A, McCarroll SA, Terao C, Loh PR, Ganna A, Perry JRB, Machiela MJ. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature 2024; 631:134-141. [PMID: 38867047 DOI: 10.1038/s41586-024-07533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.
Collapse
Affiliation(s)
- Aoxing Liu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Yajie Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Seyedeh M Zekavat
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Zhiyu Yang
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Georgi Hudjashov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valdislav Tuzov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mervi Aavikko
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Timo P Sipilä
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Awaisa Ghazal
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Vijay G Sankaran
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pradeep Natarajan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andrea Ganna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
25
|
García-González J, Garcia-Gonzalez S, Liou L, O'Reilly PF. The Gene Expression Landscape of Disease Genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.20.24309121. [PMID: 38947033 PMCID: PMC11213058 DOI: 10.1101/2024.06.20.24309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Fine-mapping and gene-prioritisation techniques applied to the latest Genome-Wide Association Study (GWAS) results have prioritised hundreds of genes as causally associated with disease. Here we leverage these recently compiled lists of high-confidence causal genes to interrogate where in the body disease genes operate. Specifically, we combine GWAS summary statistics, gene prioritisation results and gene expression RNA-seq data from 46 tissues and 204 cell types in relation to 16 major diseases (including 8 cancers). In tissues and cell types with well-established relevance to the disease, the prioritised genes typically have higher absolute and relative (i.e. tissue/cell specific) expression compared to non-prioritised 'control' genes. Examples include brain tissues in psychiatric disorders (P-value < 1×10-7), microglia cells in Alzheimer's Disease (P-value = 9.8×10-3) and colon mucosa in colorectal cancer (P-value < 1×10-3). We also observe significantly higher expression for disease genes in multiple tissues and cell types with no established links to the corresponding disease. While some of these results may be explained by cell types that span multiple tissues, such as macrophages in brain, blood, lung and spleen in relation to Alzheimer's disease (P-values < 1×10-3), the cause for others is unclear and motivates further investigation that may provide novel insights into disease etiology. For example, mammary tissue in Type 2 Diabetes (P-value < 1×10-7); reproductive tissues such as breast, uterus, vagina, and prostate in Coronary Artery Disease (P-value < 1×10-4); and motor neurons in psychiatric disorders (P-value < 3×10-4). In the GTEx dataset, tissue type is the major predictor of gene expression but the contribution of each predictor (tissue, sample, subject, batch) varies widely among disease-associated genes. Finally, we highlight genes with the highest levels of gene expression in relevant tissues to guide functional follow-up studies. Our results could offer novel insights into the tissues and cells involved in disease initiation, inform drug target and delivery strategies, highlighting potential off-target effects, and exemplify the relative performance of different statistical tests for linking disease genes with tissue and cell type gene expression.
Collapse
Affiliation(s)
- Judit García-González
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Saul Garcia-Gonzalez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
- Center for Excellence in Youth Education, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Lathan Liou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
26
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Sifuna D, Omwoma S, Lagat S, Okello F, Nelson FA, Pembere A. Theory guided engineering of zeolite adsorbents for acaricide residue adsorption from the environment. J Mol Model 2024; 30:208. [PMID: 38877313 DOI: 10.1007/s00894-024-06004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
CONTEXT Zeolites have attracted attention for their potential in adsorbing environmental contaminants. However, contaminants, such as acaricides used extensively in livestock production to control ticks and mites, have received limited exploration regarding their adsorption onto zeolite surfaces. This study aimed to identify the most appropriate zeolite frameworks for the adsorption of acaricide residues, deduce the mechanism underlying the adsorption process, and evaluate the impact of surface modification on the adsorption capabilities of zeolites. METHODS Grand Canonical Monte Carlo (GCMC) was used to screen the entire zeolite database to analyze their adsorption properties, where the cloverite zeolite framework (CLO) exhibits the highest adsorption capacity (percentage weight, 54%). Machine learning was employed to rank structural feature importance on adsorption. Density and helium void fraction appeared to be the most important structural features. Thus, engineering these features is of utmost significance in harvesting the desired acaricides. The second step involved engineering the structural and electronic properties of the shortlisted zeolite frameworks via cation substitution with suitable atoms. DFT calculations involving natural bond orbital (NBO) analysis and quantum theory of atoms in molecules (QTAIM) have been done to understand the influence of cation substitution on the electronic structure.
Collapse
Affiliation(s)
- Douglas Sifuna
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Silas Lagat
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Felix Okello
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Favour A Nelson
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
28
|
Hemerich D, Svenstrup V, Obrero VD, Preuss M, Moscati A, Hirschhorn JN, Loos RJF. An integrative framework to prioritize genes in more than 500 loci associated with body mass index. Am J Hum Genet 2024; 111:1035-1046. [PMID: 38754426 PMCID: PMC11179420 DOI: 10.1016/j.ajhg.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.
Collapse
Affiliation(s)
- Daiane Hemerich
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bristol Myers Squibb, Summit, NJ, USA
| | - Victor Svenstrup
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Virginia Diez Obrero
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Regeneron Genetics Center, Tarrytown, NY, USA
| | - Joel N Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Chin IM, Gardell ZA, Corces MR. Decoding polygenic diseases: advances in noncoding variant prioritization and validation. Trends Cell Biol 2024; 34:465-483. [PMID: 38719704 DOI: 10.1016/j.tcb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 06/09/2024]
Abstract
Genome-wide association studies (GWASs) provide a key foundation for elucidating the genetic underpinnings of common polygenic diseases. However, these studies have limitations in their ability to assign causality to particular genetic variants, especially those residing in the noncoding genome. Over the past decade, technological and methodological advances in both analytical and empirical prioritization of noncoding variants have enabled the identification of causative variants by leveraging orthogonal functional evidence at increasing scale. In this review, we present an overview of these approaches and describe how this workflow provides the groundwork necessary to move beyond associations toward genetically informed studies on the molecular and cellular mechanisms of polygenic disease.
Collapse
Affiliation(s)
- Iris M Chin
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Zachary A Gardell
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Shen S, Sobczyk MK, Paternoster L, Brown SJ. From GWASs toward Mechanistic Understanding with Case Studies in Dermatogenetics. J Invest Dermatol 2024; 144:1189-1199.e8. [PMID: 38782533 DOI: 10.1016/j.jid.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 03/06/2024] [Indexed: 05/25/2024]
Abstract
Many human skin diseases result from the complex interplay of genetic and environmental mechanisms that are largely unknown. GWASs have yielded insight into the genetic aspect of complex disease by highlighting regions of the genome or specific genetic variants associated with disease. Leveraging this information to identify causal genes and cell types will provide insight into fundamental biology, inform diagnostics, and aid drug discovery. However, the etiological mechanisms from genetic variant to disease are still unestablished in most cases. There now exists an unprecedented wealth of data and computational methods for variant interpretation in a functional context. It can be challenging to decide where to start owing to a lack of consensus on the best way to identify causal genetic mechanisms. This article highlights 3 key aspects of genetic variant interpretation: prioritizing causal genes, cell types, and pathways. We provide a practical overview of the main methods and datasets, giving examples from recent atopic dermatitis studies to provide a blueprint for variant interpretation. A collection of resources, including brief description and links to the packages and web tools, is provided for researchers looking to start in silico follow-up genetic analysis of associated genetic variants.
Collapse
Affiliation(s)
- Silvia Shen
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Institute for Evolution and Ecology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom; Department of Dermatology, NHS Lothian, Edinburgh, United Kingdom
| |
Collapse
|
31
|
Dorans E, Jagadeesh K, Dey K, Price AL. Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307813. [PMID: 38826240 PMCID: PMC11142273 DOI: 10.1101/2024.05.24.24307813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Methods that analyze single-cell paired RNA-seq and ATAC-seq multiome data have shown great promise in linking regulatory elements to genes. However, existing methods differ in their modeling assumptions and approaches to account for biological and technical noise-leading to low concordance in their linking scores-and do not capture the effects of genomic distance. We propose pgBoost, an integrative modeling framework that trains a non-linear combination of existing linking strategies (including genomic distance) on fine-mapped eQTL data to assign a probabilistic score to each candidate SNP-gene link. We applied pgBoost to single-cell multiome data from 85k cells representing 6 major immune/blood cell types. pgBoost attained higher enrichment for fine-mapped eSNP-eGene pairs (e.g. 21x at distance >10kb) than existing methods (1.2-10x; p-value for difference = 5e-13 vs. distance-based method and < 4e-35 for each other method), with larger improvements at larger distances (e.g. 35x vs. 0.89-6.6x at distance >100kb; p-value for difference < 0.002 vs. each other method). pgBoost also outperformed existing methods in enrichment for CRISPR-validated links (e.g. 4.8x vs. 1.6-4.1x at distance >10kb; p-value for difference = 0.25 vs. distance-based method and < 2e-5 for each other method), with larger improvements at larger distances (e.g. 15x vs. 1.6-2.5x at distance >100kb; p-value for difference < 0.009 for each other method). Similar improvements in enrichment were observed for links derived from Activity-By-Contact (ABC) scores and GWAS data. We further determined that restricting pgBoost to features from a focal cell type improved the identification of SNP-gene links relevant to that cell type. We highlight several examples where pgBoost linked fine-mapped GWAS variants to experimentally validated or biologically plausible target genes that were not implicated by other methods. In conclusion, a non-linear combination of linking strategies, including genomic distance, improves power to identify target genes underlying GWAS associations.
Collapse
|
32
|
Kraft J, Braun A, Awasthi S, Panagiotaropoulou G, Schipper M, Bell N, Posthuma D, Pardiñas AF, Ripke S, Heilbron K. Identifying drug targets for schizophrenia through gene prioritization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307423. [PMID: 38798390 PMCID: PMC11118622 DOI: 10.1101/2024.05.15.24307423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Schizophrenia genome-wide association studies (GWASes) have identified >250 significant loci and prioritized >100 disease-related genes. However, gene prioritization efforts have mostly been restricted to locus-based methods that ignore information from the rest of the genome. Methods To more accurately characterize genes involved in schizophrenia etiology, we applied a combination of highly-predictive tools to a published GWAS of 67,390 schizophrenia cases and 94,015 controls. We combined both locus-based methods (fine-mapped coding variants, distance to GWAS signals) and genome-wide methods (PoPS, MAGMA, ultra-rare coding variant burden tests). To validate our findings, we compared them with previous prioritization efforts, known neurodevelopmental genes, and results from the PsyOPS tool. Results We prioritized 62 schizophrenia genes, 41 of which were also highlighted by our validation methods. In addition to DRD2, the principal target of antipsychotics, we prioritized 9 genes that are targeted by approved or investigational drugs. These included drugs targeting glutamatergic receptors (GRIN2A and GRM3), calcium channels (CACNA1C and CACNB2), and GABAB receptor (GABBR2). These also included genes in loci that are shared with an addiction GWAS (e.g. PDE4B and VRK2). Conclusions We curated a high-quality list of 62 genes that likely play a role in the development of schizophrenia. Developing or repurposing drugs that target these genes may lead to a new generation of schizophrenia therapies. Rodent models of addiction more closely resemble the human disorder than rodent models of schizophrenia. As such, genes prioritized for both disorders could be explored in rodent addiction models, potentially facilitating drug development.
Collapse
Affiliation(s)
- Julia Kraft
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Alice Braun
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Swapnil Awasthi
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Georgia Panagiotaropoulou
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | | | - Nathaniel Bell
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Antonio F. Pardiñas
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| | - Karl Heilbron
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
33
|
Siraj L, Castro RI, Dewey H, Kales S, Nguyen TTL, Kanai M, Berenzy D, Mouri K, Wang QS, McCaw ZR, Gosai SJ, Aguet F, Cui R, Vockley CM, Lareau CA, Okada Y, Gusev A, Jones TR, Lander ES, Sabeti PC, Finucane HK, Reilly SK, Ulirsch JC, Tewhey R. Functional dissection of complex and molecular trait variants at single nucleotide resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592437. [PMID: 38766054 PMCID: PMC11100724 DOI: 10.1101/2024.05.05.592437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.
Collapse
Affiliation(s)
- Layla Siraj
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biophysics, Harvard Graduate School of Arts and Sciences, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology MD/PhD Program, Harvard Medical School, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Qingbo S. Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | | | - Sager J. Gosai
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - François Aguet
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Caleb A. Lareau
- Program in Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Alexander Gusev
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thouis R. Jones
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric S. Lander
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Pardis C. Sabeti
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Hilary K. Finucane
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Jacob C. Ulirsch
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
- Illumina Artificial Intelligence Laboratory, Illumina, San Diego, CA, USA
| | - Ryan Tewhey
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Rämö JT, Kany S, Hou CR, Friedman SF, Roselli C, Nauffal V, Koyama S, Karjalainen J, Maddah M, Palotie A, Ellinor PT, Pirruccello JP. Cardiovascular Significance and Genetics of Epicardial and Pericardial Adiposity. JAMA Cardiol 2024; 9:418-427. [PMID: 38477908 PMCID: PMC10938251 DOI: 10.1001/jamacardio.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Importance Epicardial and pericardial adipose tissue (EPAT) has been associated with cardiovascular diseases such as atrial fibrillation or flutter (AF) and coronary artery disease (CAD), but studies have been limited in sample size or drawn from selected populations. It has been suggested that the association between EPAT and cardiovascular disease could be mediated by local or paracrine effects. Objective To evaluate the association of EPAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of EPAT in a large population cohort. Design, Setting, and Participants A deep learning model was trained to quantify EPAT area from 4-chamber magnetic resonance images using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. Prospective associations were additionally controlled for abdominal visceral adipose tissue (VAT) volumes. A genome-wide association study was performed, and a polygenic score (PGS) for EPAT was examined in independent FinnGen cohort study participants. Data analyses were conducted from March 2022 to December 2023. Exposures The primary exposures were magnetic resonance imaging-derived continuous measurements of epicardial and pericardial adipose tissue area and visceral adipose tissue volume. Main Outcomes and Measures Prevalent and incident CAD, AF, heart failure (HF), stroke, and type 2 diabetes (T2D). Results After exclusions, this study included 44 475 participants (mean [SD] age, 64.1 [7.7] years; 22 972 female [51.7%]) from the UK Biobank. Cross-sectional and prospective cardiovascular disease associations were evaluated for a mean (SD) of 3.2 (1.5) years of follow-up. Prospective associations were additionally controlled for abdominal VAT volumes for 38 527 participants. A PGS for EPAT was examined in 453 733 independent FinnGen cohort study participants. EPAT was positively associated with male sex (β = +0.78 SD in EPAT; P < 3 × 10-324), age (Pearson r = 0.15; P = 9.3 × 10-229), body mass index (Pearson r = 0.47; P < 3 × 10-324), and VAT (Pearson r = 0.72; P < 3 × 10-324). EPAT was more elevated in prevalent HF (β = +0.46 SD units) and T2D (β = +0.56) than in CAD (β = +0.23) or AF (β = +0.18). EPAT was associated with incident HF (hazard ratio [HR], 1.29 per +1 SD in EPAT; 95% CI, 1.17-1.43), T2D (HR, 1.63; 95% CI, 1.51-1.76), and CAD (HR, 1.19; 95% CI, 1.11-1.28). However, the associations were no longer significant when controlling for VAT. Seven genetic loci were identified for EPAT, implicating transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2, and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The EPAT PGS was associated with T2D (odds ratio [OR], 1.06; 95% CI, 1.05-1.07; P =3.6 × 10-44), HF (OR, 1.05; 95% CI, 1.04-1.06; P =4.8 × 10-15), CAD (OR, 1.04; 95% CI, 1.03-1.05; P =1.4 × 10-17), AF (OR, 1.04; 95% CI, 1.03-1.06; P =7.6 × 10-12), and stroke in FinnGen (OR, 1.02; 95% CI, 1.01-1.03; P =3.5 × 10-3) per 1 SD in PGS. Conclusions and Relevance Results of this cohort study suggest that epicardial and pericardial adiposity was associated with incident cardiovascular diseases, but this may largely reflect a metabolically unhealthy adiposity phenotype similar to abdominal visceral adiposity.
Collapse
Affiliation(s)
- Joel T. Rämö
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cody R. Hou
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- University of Minnesota Medical School, Minneapolis
| | | | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Victor Nauffal
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Satoshi Koyama
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Juha Karjalainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Mahnaz Maddah
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Neurology, Massachusetts General Hospital, Boston
| | - Patrick T. Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, Massachusetts
| | - James P. Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco
- Division of Cardiology, University of California San Francisco, San Francisco
- Institute for Human Genetics, University of California San Francisco, San Francisco
| |
Collapse
|
35
|
Ghouse J, Sveinbjörnsson G, Vujkovic M, Seidelin AS, Gellert-Kristensen H, Ahlberg G, Tragante V, Rand SA, Brancale J, Vilarinho S, Lundegaard PR, Sørensen E, Erikstrup C, Bruun MT, Jensen BA, Brunak S, Banasik K, Ullum H, Verweij N, Lotta L, Baras A, Mirshahi T, Carey DJ, Kaplan DE, Lynch J, Morgan T, Schwantes-An TH, Dochtermann DR, Pyarajan S, Tsao PS, Laisk T, Mägi R, Kozlitina J, Tybjærg-Hansen A, Jones D, Knowlton KU, Nadauld L, Ferkingstad E, Björnsson ES, Ulfarsson MO, Sturluson Á, Sulem P, Pedersen OB, Ostrowski SR, Gudbjartsson DF, Stefansson K, Olesen MS, Chang KM, Holm H, Bundgaard H, Stender S. Integrative common and rare variant analyses provide insights into the genetic architecture of liver cirrhosis. Nat Genet 2024; 56:827-837. [PMID: 38632349 PMCID: PMC11096111 DOI: 10.1038/s41588-024-01720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.
Collapse
Affiliation(s)
- Jonas Ghouse
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne-Sofie Seidelin
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helene Gellert-Kristensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gustav Ahlberg
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren A Rand
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Brancale
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Pia Rengtved Lundegaard
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Søren Brunak
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | | | - Niek Verweij
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Luca Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - David E Kaplan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy Morgan
- Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Tae-Hwi Schwantes-An
- Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Daniel R Dochtermann
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Jones
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Lincoln Nadauld
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
- Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Einar S Björnsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Magnus O Ulfarsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | - Ole B Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Morten Salling Olesen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hilma Holm
- deCODE Genetics/Amgen, Reykjavik, Iceland
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Abou-Karam R, Cheng F, Gady S, Fahed AC. The Role of Genetics in Advancing Cardiometabolic Drug Development. Curr Atheroscler Rep 2024; 26:153-162. [PMID: 38451435 DOI: 10.1007/s11883-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW The objective of this review is to explore the role of genetics in cardiometabolic drug development. The declining costs of sequencing and the availability of large-scale genomic data have deepened our understanding of cardiometabolic diseases, revolutionizing drug discovery and development methodologies. We highlight four key areas in which genetics is empowering drug development for cardiometabolic disease: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. RECENT FINDINGS Identifying novel drug targets through genetic discovery studies and the use of genetic variants as indicators of potential drug efficacy and safety have become critical components of cardiometabolic drug discovery. We highlight the successes of genetically-informed therapeutic strategies, such as PCSK9 and ANGPTL3 inhibitors in lipid lowering and the emerging role of polygenic risk scores in improving the efficiency of clinical trials. Additionally, we explore the potential of gene silencing and editing technologies, such as antisense oligonucleotides and small interfering RNA, showcasing their promise in addressing diseases refractory to conventional treatments. In this review, we highlight four use cases that demonstrate the vital role of genetics in cardiometabolic drug development: (1) identifying drug candidates, (2) anticipating drug target failures, (3) silencing and editing genes, and (4) enriching clinical trials. Through these advances, genetics has paved the way to increased efficiency of drug development as well as the discovery of more personalized and effective treatments for cardiometabolic disease.
Collapse
Affiliation(s)
- Roukoz Abou-Karam
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street|CPZN 3.128, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fangzhou Cheng
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street|CPZN 3.128, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shoshana Gady
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street|CPZN 3.128, Boston, MA, 02114, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akl C Fahed
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street|CPZN 3.128, Boston, MA, 02114, USA.
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
37
|
Jeong R, Bulyk ML. Chromatin accessibility variation provides insights into missing regulation underlying immune-mediated diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589213. [PMID: 38659802 PMCID: PMC11042205 DOI: 10.1101/2024.04.12.589213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Most genetic loci associated with complex traits and diseases through genome-wide association studies (GWAS) are noncoding, suggesting that the causal variants likely have gene regulatory effects. However, only a small number of loci have been linked to expression quantitative trait loci (eQTLs) detected currently. To better understand the potential reasons for many trait-associated loci lacking eQTL colocalization, we investigated whether chromatin accessibility QTLs (caQTLs) in lymphoblastoid cell lines (LCLs) explain immune-mediated disease associations that eQTLs in LCLs did not. The power to detect caQTLs was greater than that of eQTLs and was less affected by the distance from the transcription start site of the associated gene. Meta-analyzing LCL eQTL data to increase the sample size to over a thousand led to additional loci with eQTL colocalization, demonstrating that insufficient statistical power is still likely to be a factor. Moreover, further eQTL colocalization loci were uncovered by surveying eQTLs of other immune cell types. Altogether, insufficient power and context-specificity of eQTLs both contribute to the 'missing regulation.'
Collapse
Affiliation(s)
- Raehoon Jeong
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Bioinformatics and Integrative Genomics Graduate Program, Harvard University, Cambridge, MA 02138, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
39
|
Pardo-Cea MA, Farré X, Esteve A, Palade J, Espín R, Mateo F, Alsop E, Alorda M, Blay N, Baiges A, Shabbir A, Comellas F, Gómez A, Arnan M, Teulé A, Salinas M, Berrocal L, Brunet J, Rofes P, Lázaro C, Conesa M, Rojas JJ, Velten L, Fendler W, Smyczynska U, Chowdhury D, Zeng Y, He HH, Li R, Van Keuren-Jensen K, de Cid R, Pujana MA. Biological basis of extensive pleiotropy between blood traits and cancer risk. Genome Med 2024; 16:21. [PMID: 38308367 PMCID: PMC10837955 DOI: 10.1186/s13073-024-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.
Collapse
Affiliation(s)
- Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Xavier Farré
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Anna Esteve
- Badalona Applied Research Group in Oncology (B-ARGO), Catalan Institute of Oncology, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Joanna Palade
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA
| | - Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Eric Alsop
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA
| | - Marc Alorda
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Natalia Blay
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Francesc Comellas
- Department of Mathematics, Technical University of Catalonia, Castelldefels, 08860, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Department of Biosciences, Faculty of Sciences and Technology (FCT), University of Vic - Central University of Catalonia (UVic-UCC), Vic, 08500, Barcelona, Catalonia, Spain
| | - Montserrat Arnan
- Department of Hematology, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Alex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Monica Salinas
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Laura Berrocal
- OncoGir, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Catalonia, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- OncoGir, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), 17190, Salt, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Paula Rofes
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Cancer (CIBERONC), Instituto de Salud Carlos III, 28222, Madrid, Spain
| | - Miquel Conesa
- Department of Pathology and Experimental Therapies, University of Barcelona (UB), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Juan Jose Rojas
- Department of Pathology and Experimental Therapies, University of Barcelona (UB), Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
- University Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Urszula Smyczynska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215, Lodz, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Center for BRCA and Related Genes, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Kendall Van Keuren-Jensen
- Cancer and Cell Biology, Translational Genomics Research Institute (TGen), Arizona, Phoenix, AZ, 85004, USA.
| | - Rafael de Cid
- Genomes for Life - GCAT Lab Group, Institut Germans Trias i Pujol (IGTP), Badalona, 08916, Barcelona, Catalonia, Spain.
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain.
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28222, Madrid, Spain.
| |
Collapse
|
40
|
Debette S, Chasman DI. Multiomic approaches to stroke: the beginning of a journey. Nat Rev Neurol 2024; 20:65-66. [PMID: 38102384 DOI: 10.1038/s41582-023-00908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Affiliation(s)
- Stéphanie Debette
- University of Bordeaux, INSERM U1219, Bordeaux Population Health (BPH) Research Center, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France.
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Schnitzler GR, Kang H, Fang S, Angom RS, Lee-Kim VS, Ma XR, Zhou R, Zeng T, Guo K, Taylor MS, Vellarikkal SK, Barry AE, Sias-Garcia O, Bloemendal A, Munson G, Guckelberger P, Nguyen TH, Bergman DT, Hinshaw S, Cheng N, Cleary B, Aragam K, Lander ES, Finucane HK, Mukhopadhyay D, Gupta RM, Engreitz JM. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024; 626:799-807. [PMID: 38326615 PMCID: PMC10921916 DOI: 10.1038/s41586-024-07022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.
Collapse
Affiliation(s)
- Gavin R Schnitzler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Helen Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Shi Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Vivian S Lee-Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Ronghao Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Tony Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aurelie E Barry
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar Sias-Garcia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephen Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Computing and Data Sciences, Departments of Biology and Biomedical Engineering, Biological Design Center, and Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Krishna Aragam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Zekavat SM, Jorshery SD, Rauscher FG, Horn K, Sekimitsu S, Koyama S, Nguyen TT, Costanzo MC, Jang D, Burtt NP, Kühnapfel A, Shweikh Y, Ye Y, Raghu V, Zhao H, Ghassemi M, Elze T, Segrè AV, Wiggs JL, Del Priore L, Scholz M, Wang JC, Natarajan P, Zebardast N. Phenome- and genome-wide analyses of retinal optical coherence tomography images identify links between ocular and systemic health. Sci Transl Med 2024; 16:eadg4517. [PMID: 38266105 DOI: 10.1126/scitranslmed.adg4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The human retina is a multilayered tissue that offers a unique window into systemic health. Optical coherence tomography (OCT) is widely used in eye care and allows the noninvasive, rapid capture of retinal anatomy in exquisite detail. We conducted genotypic and phenotypic analyses of retinal layer thicknesses using macular OCT images from 44,823 UK Biobank participants. We performed OCT layer cross-phenotype association analyses (OCT-XWAS), associating retinal thicknesses with 1866 incident conditions (median 10-year follow-up) and 88 quantitative traits and blood biomarkers. We performed genome-wide association studies (GWASs), identifying inherited genetic markers that influence retinal layer thicknesses and replicated our associations among the LIFE-Adult Study (N = 6313). Last, we performed a comparative analysis of phenome- and genome-wide associations to identify putative causal links between retinal layer thicknesses and both ocular and systemic conditions. Independent associations with incident mortality were detected for thinner photoreceptor segments (PSs) and, separately, ganglion cell complex layers. Phenotypic associations were detected between thinner retinal layers and ocular, neuropsychiatric, cardiometabolic, and pulmonary conditions. A GWAS of retinal layer thicknesses yielded 259 unique loci. Consistency between epidemiologic and genetic associations suggested links between a thinner retinal nerve fiber layer with glaucoma, thinner PS with age-related macular degeneration, and poor cardiometabolic and pulmonary function with a thinner PS. In conclusion, we identified multiple inherited genetic loci and acquired systemic cardio-metabolic-pulmonary conditions associated with thinner retinal layers and identify retinal layers wherein thinning is predictive of future ocular and systemic conditions.
Collapse
Affiliation(s)
- Seyedeh Maryam Zekavat
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Saman Doroodgar Jorshery
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Computer Science/Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
- Department of Computer Science and Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Franziska G Rauscher
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig 04107, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, Leipzig 04103, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig 04107, Germany
| | | | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Trang T Nguyen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria C Costanzo
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dongkeun Jang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andreas Kühnapfel
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig 04107, Germany
| | - Yusrah Shweikh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Yixuan Ye
- Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT 06511, USA
| | - Vineet Raghu
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hongyu Zhao
- Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT 06511, USA
- School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Marzyeh Ghassemi
- Departments of Computer Science/Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
- Department of Computer Science and Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tobias Elze
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lucian Del Priore
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06510, USA
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology (IMISE), Leipzig University, Leipzig 04107, Germany
- Leipzig Research Centre for Civilization Diseases (LIFE), Leipzig University, Leipzig 04103, Germany
| | - Jay C Wang
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT 06510, USA
- Northern California Retina Vitreous Associates, Mountain View, CA 94040, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
43
|
Brechtmann F, Bechtler T, Londhe S, Mertes C, Gagneur J. Evaluation of input data modality choices on functional gene embeddings. NAR Genom Bioinform 2023; 5:lqad095. [PMID: 37942285 PMCID: PMC10629286 DOI: 10.1093/nargab/lqad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023] Open
Abstract
Functional gene embeddings, numerical vectors capturing gene function, provide a promising way to integrate functional gene information into machine learning models. These embeddings are learnt by applying self-supervised machine-learning algorithms on various data types including quantitative omics measurements, protein-protein interaction networks and literature. However, downstream evaluations comparing alternative data modalities used to construct functional gene embeddings have been lacking. Here we benchmarked functional gene embeddings obtained from various data modalities for predicting disease-gene lists, cancer drivers, phenotype-gene associations and scores from genome-wide association studies. Off-the-shelf predictors trained on precomputed embeddings matched or outperformed dedicated state-of-the-art predictors, demonstrating their high utility. Embeddings based on literature and protein-protein interactions inferred from low-throughput experiments outperformed embeddings derived from genome-wide experimental data (transcriptomics, deletion screens and protein sequence) when predicting curated gene lists. In contrast, they did not perform better when predicting genome-wide association signals and were biased towards highly-studied genes. These results indicate that embeddings derived from literature and low-throughput experiments appear favourable in many existing benchmarks because they are biased towards well-studied genes and should therefore be considered with caution. Altogether, our study and precomputed embeddings will facilitate the development of machine-learning models in genetics and related fields.
Collapse
Affiliation(s)
- Felix Brechtmann
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Thibault Bechtler
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Shubhankar Londhe
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Christian Mertes
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
44
|
Roychowdhury T, Klarin D, Levin MG, Spin JM, Rhee YH, Deng A, Headley CA, Tsao NL, Gellatly C, Zuber V, Shen F, Hornsby WE, Laursen IH, Verma SS, Locke AE, Einarsson G, Thorleifsson G, Graham SE, Dikilitas O, Pattee JW, Judy RL, Pauls-Verges F, Nielsen JB, Wolford BN, Brumpton BM, Dilmé J, Peypoch O, Juscafresa LC, Edwards TL, Li D, Banasik K, Brunak S, Jacobsen RL, Garcia-Barrio MT, Zhang J, Rasmussen LM, Lee R, Handa A, Wanhainen A, Mani K, Lindholt JS, Obel LM, Strauss E, Oszkinis G, Nelson CP, Saxby KL, van Herwaarden JA, van der Laan SW, van Setten J, Camacho M, Davis FM, Wasikowski R, Tsoi LC, Gudjonsson JE, Eliason JL, Coleman DM, Henke PK, Ganesh SK, Chen YE, Guan W, Pankow JS, Pankratz N, Pedersen OB, Erikstrup C, Tang W, Hveem K, Gudbjartsson D, Gretarsdottir S, Thorsteinsdottir U, Holm H, Stefansson K, Ferreira MA, Baras A, Kullo IJ, Ritchie MD, Christensen AH, Iversen KK, Eldrup N, Sillesen H, Ostrowski SR, Bundgaard H, Ullum H, Burgess S, Gill D, Gallagher K, Sabater-Lleal M, Surakka I, Jones GT, Bown MJ, Tsao PS, Willer CJ, Damrauer SM. Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target. Nat Genet 2023; 55:1831-1842. [PMID: 37845353 PMCID: PMC10632148 DOI: 10.1038/s41588-023-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model.
Collapse
Affiliation(s)
- Tanmoy Roychowdhury
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| | - Derek Klarin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua M Spin
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yae Hyun Rhee
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alicia Deng
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Colwyn A Headley
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Corry Gellatly
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Fred Shen
- University of Michigan Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ina Holst Laursen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam E Locke
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | | | | | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ozan Dikilitas
- Department of Internal Medicine, Mayo Clinic Rochester, Rochester, MN, USA
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
- Mayo Clinician Investigator Training Program, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Renae L Judy
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ferran Pauls-Verges
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jaume Dilmé
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Olga Peypoch
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Department of Vascular and Endovascular Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dadong Li
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke L Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Lars M Rasmussen
- Department of Clinical Biochemistry, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Anders Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Kevin Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Lasse M Obel
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense, Denmark
| | - Ewa Strauss
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Grzegorz Oszkinis
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Vascular and General Surgery, Institute of Medical Sciences, University of Opole, Opole, Poland
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Katie L Saxby
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Joost A van Herwaarden
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessica van Setten
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mercedes Camacho
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
| | - Frank M Davis
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Henke
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ole B Pedersen
- Department of Clinical Immunology, Zealand University Hospital-Køge, Køge, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Daniel Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Aris Baras
- Regeneron Genetics Center, LLC, Tarrytown, NY, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine and the Gonda Vascular Center, Mayo Clinic Rochester, Rochester, MN, USA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alex H Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper K Iversen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Vascular Surgery, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sillesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - Stephen Burgess
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Chief Scientific Advisor Office, Research and Early Development, Novo Nordisk, Copenhagen, Denmark
| | - Katherine Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Philip S Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Scott M Damrauer
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Williams AT, Chen J, Coley K, Batini C, Izquierdo A, Packer R, Abner E, Kanoni S, Shepherd DJ, Free RC, Hollox EJ, Brunskill NJ, Ntalla I, Reeve N, Brightling CE, Venn L, Adams E, Bee C, Wallace SE, Pareek M, Hansell AL, Esko T, Stow D, Jacobs BM, van Heel DA, Hennah W, Rao BS, Dudbridge F, Wain LV, Shrine N, Tobin MD, John C. Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease. Nat Commun 2023; 14:6713. [PMID: 37872160 PMCID: PMC10593800 DOI: 10.1038/s41467-023-42284-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.
Collapse
Affiliation(s)
- Alexander T Williams
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Kayesha Coley
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Abril Izquierdo
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Richard Packer
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David J Shepherd
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Robert C Free
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ioanna Ntalla
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Nicola Reeve
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Division of Population Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - Christopher E Brightling
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester, UK
| | - Laura Venn
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Emma Adams
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine Bee
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Susan E Wallace
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Manish Pareek
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L Hansell
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Daniel Stow
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Benjamin M Jacobs
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - William Hennah
- Orion Pharma, Espoo, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Frank Dudbridge
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Nick Shrine
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Catherine John
- Department of Population Health Sciences, University of Leicester, Leicester, UK.
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK.
| |
Collapse
|
46
|
Urbut SM, Koyama S, Hornsby W, Bhukar R, Kheterpal S, Truong B, Selvaraj MS, Neale B, O’Donnell CJ, Peloso GM, Natarajan P. Bayesian multivariate genetic analysis improves translational insights. iScience 2023; 26:107854. [PMID: 37766997 PMCID: PMC10520309 DOI: 10.1016/j.isci.2023.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
While lipid traits are known essential mediators of cardiovascular disease, few approaches have taken advantage of their shared genetic effects. We apply a Bayesian multivariate size estimator, mash, to GWAS of four lipid traits in the Million Veterans Program (MVP) and provide posterior mean and local false sign rates for all effects. These estimates borrow information across traits to improve effect size accuracy. We show that controlling local false sign rates accurately and powerfully identifies replicable genetic associations and that multivariate control furthers the ability to explain complex diseases. Our application yields high concordance between independent datasets, more accurately prioritizes causal genes, and significantly improves polygenic prediction beyond state-of-the-art methods by up to 59% for lipid traits. The use of Bayesian multivariate genetic shrinkage has yet to be applied to human quantitative trait GWAS results, and we present a staged approach to prediction on a polygenic scale.
Collapse
Affiliation(s)
- Sarah M. Urbut
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Satoshi Koyama
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Whitney Hornsby
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Rohan Bhukar
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Sumeet Kheterpal
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Buu Truong
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Margaret S. Selvaraj
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Neale
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- Analytic Translational and Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher J. O’Donnell
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
- VA Boston Department of Veterans Affairs, Boston, MA 02130, USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02218, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Tsai MJ, Jeong S, Yu F, Chen TF, Li PH, Juan HF, Huang JH, Hsu YH. Translating GWAS Findings to Inform Drug Repositioning Strategies for COVID-19 Treatment. RESEARCH SQUARE 2023:rs.3.rs-3443080. [PMID: 37886583 PMCID: PMC10602133 DOI: 10.21203/rs.3.rs-3443080/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
We developed a computational framework that integrates Genome-Wide Association Studies (GWAS) and post-GWAS analyses, designed to facilitate drug repurposing for COVID-19 treatment. The comprehensive approach combines transcriptomic-wide associations, polygenic priority scoring, 3D genomics, viral-host protein-protein interactions, and small-molecule docking. Through GWAS, we identified nine druggable host genes associated with COVID-19 severity and SARS-CoV-2 infection, all of which show differential expression in COVID-19 patients. These genes include IFNAR1, IFNAR2, TYK2, IL10RB, CXCR6, CCR9, and OAS1. We performed an extensive molecular docking analysis of these targets using 553 small molecules derived from five therapeutically enriched categories, namely antibacterials, antivirals, antineoplastics, immunosuppressants, and anti-inflammatories. This analysis, which comprised over 20,000 individual docking analyses, enabled the identification of several promising drug candidates. All results are available via the DockCoV2 database (https://dockcov2.org/drugs/). The computational framework ultimately identified nine potential drug candidates: Peginterferon alfa-2b, Interferon alfa-2b, Interferon beta-1b, Ruxolitinib, Dactinomycin, Rolitetracycline, Irinotecan, Vinblastine, and Oritavancin. While its current focus is on COVID-19, our proposed computational framework can be applied more broadly to assist in drug repurposing efforts for a variety of diseases. Overall, this study underscores the potential of human genetic studies and the utility of a computational framework for drug repurposing in the context of COVID-19 treatment, providing a valuable resource for researchers in this field.
Collapse
|
48
|
Hou L, Xiong X, Park Y, Boix C, James B, Sun N, He L, Patel A, Zhang Z, Molinie B, Van Wittenberghe N, Steelman S, Nusbaum C, Aguet F, Ardlie KG, Kellis M. Multitissue H3K27ac profiling of GTEx samples links epigenomic variation to disease. Nat Genet 2023; 55:1665-1676. [PMID: 37770633 PMCID: PMC10562256 DOI: 10.1038/s41588-023-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Genetic variants associated with complex traits are primarily noncoding, and their effects on gene-regulatory activity remain largely uncharacterized. To address this, we profile epigenomic variation of histone mark H3K27ac across 387 brain, heart, muscle and lung samples from Genotype-Tissue Expression (GTEx). We annotate 282 k active regulatory elements (AREs) with tissue-specific activity patterns. We identify 2,436 sex-biased AREs and 5,397 genetically influenced AREs associated with 130 k genetic variants (haQTLs) across tissues. We integrate genetic and epigenomic variation to provide mechanistic insights for disease-associated loci from 55 genome-wide association studies (GWAS), by revealing candidate tissues of action, driver SNPs and impacted AREs. Lastly, we build ARE-gene linking scores based on genetics (gLink scores) and demonstrate their unique ability to prioritize SNP-ARE-gene circuits. Overall, our epigenomic datasets, computational integration and mechanistic predictions provide valuable resources and important insights for understanding the molecular basis of human diseases/traits such as schizophrenia.
Collapse
Affiliation(s)
- Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yongjin Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Carles Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liang He
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aman Patel
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhizhuo Zhang
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benoit Molinie
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Scott Steelman
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chad Nusbaum
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - François Aguet
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
49
|
Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, Hasbani NR, de Vries PS, Bowden DW, Chopade S, Deelen J, Benavente ED, Guo X, Hofer E, Hwang SJ, Lutz SM, Lyytikäinen LP, Slenders L, Smith AV, Stanislawski MA, van Setten J, Wong Q, Yanek LR, Becker DM, Beekman M, Budoff MJ, Feitosa MF, Finan C, Hilliard AT, Kardia SLR, Kovacic JC, Kral BG, Langefeld CD, Launer LJ, Malik S, Hoesein FAAM, Mokry M, Schmidt R, Smith JA, Taylor KD, Terry JG, van der Grond J, van Meurs J, Vliegenthart R, Xu J, Young KA, Zilhão NR, Zweiker R, Assimes TL, Becker LC, Bos D, Carr JJ, Cupples LA, de Kleijn DPV, de Winther M, den Ruijter HM, Fornage M, Freedman BI, Gudnason V, Hingorani AD, Hokanson JE, Ikram MA, Išgum I, Jacobs DR, Kähönen M, Lange LA, Lehtimäki T, Pasterkamp G, Raitakari OT, Schmidt H, Slagboom PE, Uitterlinden AG, Vernooij MW, Bis JC, Franceschini N, Psaty BM, Post WS, Rotter JI, Björkegren JLM, O'Donnell CJ, Bielak LF, Peyser PA, Malhotra R, van der Laan SW, Miller CL. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat Genet 2023; 55:1651-1664. [PMID: 37770635 PMCID: PMC10601987 DOI: 10.1038/s41588-023-01518-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Coronary artery calcification (CAC), a measure of subclinical atherosclerosis, predicts future symptomatic coronary artery disease (CAD). Identifying genetic risk factors for CAC may point to new therapeutic avenues for prevention. Currently, there are only four known risk loci for CAC identified from genome-wide association studies (GWAS) in the general population. Here we conducted the largest multi-ancestry GWAS meta-analysis of CAC to date, which comprised 26,909 individuals of European ancestry and 8,867 individuals of African ancestry. We identified 11 independent risk loci, of which eight were new for CAC and five had not been reported for CAD. These new CAC loci are related to bone mineralization, phosphate catabolism and hormone metabolic pathways. Several new loci harbor candidate causal genes supported by multiple lines of functional evidence and are regulators of smooth muscle cell-mediated calcification ex vivo and in vitro. Together, these findings help refine the genetic architecture of CAC and extend our understanding of the biological and potential druggable pathways underlying CAC.
Collapse
Affiliation(s)
- Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Maxime M Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hanna J Barnes
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Haojie Lu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lennart P L Landsmeer
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Natalie R Hasbani
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Center at Houston, Houston, TX, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sandesh Chopade
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - Joris Deelen
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Edith Hofer
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | | | - Sharon M Lutz
- Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Lotte Slenders
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Maggie A Stanislawski
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Diane M Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marian Beekman
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthew J Budoff
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brian G Kral
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences and Data Science, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Shaista Malik
- Susan Samueli Integrative Health Institute, Department of Medicine, University of California Irvine, Irvine, CA, USA
| | | | - Michal Mokry
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Reinhold Schmidt
- Department of Neurology, Clinical Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joyce van Meurs
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jianzhao Xu
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado, Anschutz Medical Campus, Denver, CO, USA
| | | | - Robert Zweiker
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Themistocles L Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J Jeffrey Carr
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Dominique P V de Kleijn
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischemic syndromes, Amsterdam Infection and Immunity: Inflammatory diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Public Health, University of Iceland, Reykjavik, Iceland
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
- University College London British Heart Foundation Research Accelerator Centre, London, UK
| | - John E Hokanson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Helena Schmidt
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Medical University of Graz, Graz, Austria
| | - P Eline Slagboom
- Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Vascular Surgery, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Christopher J O'Donnell
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiology Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
50
|
West CE, Karim M, Falaguera MJ, Speidel L, Green CJ, Logie L, Schwartzentruber J, Ochoa D, Lord JM, Ferguson MAJ, Bountra C, Wilkinson GF, Vaughan B, Leach AR, Dunham I, Marsden BD. Integrative GWAS and co-localisation analysis suggests novel genes associated with age-related multimorbidity. Sci Data 2023; 10:655. [PMID: 37749083 PMCID: PMC10520009 DOI: 10.1038/s41597-023-02513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Advancing age is the greatest risk factor for developing multiple age-related diseases. Therapeutic approaches targeting the underlying pathways of ageing, rather than individual diseases, may be an effective way to treat and prevent age-related morbidity while reducing the burden of polypharmacy. We harness the Open Targets Genetics Portal to perform a systematic analysis of nearly 1,400 genome-wide association studies (GWAS) mapped to 34 age-related diseases and traits, identifying genetic signals that are shared between two or more of these traits. Using locus-to-gene (L2G) mapping, we identify 995 targets with shared genetic links to age-related diseases and traits, which are enriched in mechanisms of ageing and include known ageing and longevity-related genes. Of these 995 genes, 128 are the target of an approved or investigational drug, 526 have experimental evidence of binding pockets or are predicted to be tractable, and 341 have no existing tractability evidence, representing underexplored genes which may reveal novel biological insights and therapeutic opportunities. We present these candidate targets for exploration and prioritisation in a web application.
Collapse
Affiliation(s)
- Clare E West
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
| | - Mohd Karim
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Maria J Falaguera
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Leo Speidel
- Francis Crick Institute, London, UK
- Genetics Institute, University College London, London, UK
| | | | - Lisa Logie
- Drug Discovery Unit, University of Dundee, Dundee, UK
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Jeremy Schwartzentruber
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David Ochoa
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | - Chas Bountra
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graeme F Wilkinson
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield, Cheshire, UK
| | - Beverley Vaughan
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Andrew R Leach
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|