1
|
Sankina P, Lal R, Khare P, von Hörsten S, Fester L, Aggarwal V, Zimmermann K, Bishnoi M. Topical menthol, a pharmacological cold mimic, induces cold sensitivity, adaptive thermogenesis and brown adipose tissue activation in mice. Diabetes Obes Metab 2024; 26:4329-4345. [PMID: 39044311 DOI: 10.1111/dom.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
AIM Brown adipose tissue (BAT) thermogenesis has profound energy-expanding potential, which makes it an attractive target tissue to combat ever-increasing obesity and its other associated metabolic complications. Although it is fairly accepted that cold is a potent inducer of BAT activation and function, there are limited studies on the mechanisms of pharmacological cold-mimicking agents, such as the TRPM8 agonist, menthol, on BAT thermogenesis and activation. METHODS Herein, we sought to determine the effect of topical application of menthol (10% w/v [4 g/kg] cream formulation/day for 15 days) on temperature sensitivity behaviour (thermal gradient assay, nesting behaviour), adaptive thermogenesis (infrared thermography, core body temperature), BAT sympathetic innervation (tyrosine hydroxylase immunohistochemistry) and activation (18F-FDG PET-CT analysis, Uncoupling Protein 1 immunohistochemistry and BAT gene expression), whole-body energy expenditure (indirect calorimetry) and other metabolic variables in male C57BL/6N mice. RESULTS We show that male C57BL/6N mice: (a) develop a warm-seeking and cold-avoiding thermal preference phenotype; (b) display increased locomotor activity and adaptive thermogenesis; (c) show augmented sympathetic innervation in BAT and its activation; (d) exhibit enhanced gluconeogenic capacity (increased glucose excursion in response to pyruvate) and insulin sensitivity; and (e) show enhanced whole-body energy expenditure and induced lipid-utilizing phenotype after topical menthol application. CONCLUSIONS Taken together, our findings highlight that pharmacological cold mimicking using topical menthol application presents a potential therapeutic strategy to counter weight gain and related complications.
Collapse
Affiliation(s)
- Polina Sankina
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Roshan Lal
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Fester
- Department of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Katharina Zimmermann
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Mahendra Bishnoi
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
| |
Collapse
|
2
|
Gong D, Lei J, He X, Hao J, Zhang F, Huang X, Gu W, Yang X, Yu J. Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids Health Dis 2024; 23:322. [PMID: 39342273 PMCID: PMC11439242 DOI: 10.1186/s12944-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
As one of the main pathogenic factors of cardiovascular and cerebrovascular diseases, the incidence of metabolic diseases such as adiposity and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing annually. It is urgent and crucial to find more therapeutic targets to treat these diseases. Mainly expressed in brown adipocytes, mitochondrial uncoupling protein 1 (UCP1) is key to the thermogenesis of classical brown adipose tissue (BAT). Furthermore, white adipose tissue (WAT) is likely to express more UCP1 and subsequently acquire the ability to undergo thermogenesis under certain stimuli. Therefore, targeting and activating UCP1 to promote increased BAT thermogenesis and browning of WAT are helpful in treating metabolic diseases, such as adiposity and MASLD. In this case, the stimuli that activate UCP1 are emerging. Therefore, we summarize the thermogenic stimuli that have activated UCP1 in recent decades, among which cold exposure is one of the stimuli first discovered to activate BAT thermogenesis. As a convenient and efficient therapy with few side effects and good metabolic benefits, physical exercise can also activate the expression of UCP1 in adipose tissue. Notably, for the first time, we have summarized and demonstrated the stimuli of traditional Chinese medicines that can activate UCP1, such as acupuncture, Chinese herbal formulas, and Chinese medicinal herbs. Moreover, pharmacological agents, functional foods, food ingredients, and the gut microbiota are also commonly associated with regulating and activating UCP1. The identification and analysis of UCP1 stimuli can greatly facilitate our understanding of adipose tissue thermogenesis, including the browning of WAT. Thus, it is more conducive to further research and therapy for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Dihong Gong
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Juanhong Lei
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xudong He
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Junjie Hao
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Fan Zhang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinya Huang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| |
Collapse
|
3
|
Wang CH, Tsuji T, Wu LH, Yang CY, Huang TL, Sato M, Shamsi F, Tseng YH. Endothelin 3/EDNRB signaling induces thermogenic differentiation of white adipose tissue. Nat Commun 2024; 15:7215. [PMID: 39174539 PMCID: PMC11341701 DOI: 10.1038/s41467-024-51579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Thermogenic adipose tissue, consisting of brown and beige fat, regulates nutrient utilization and energy metabolism. Human brown fat is relatively scarce and decreases with obesity and aging. Hence, inducing thermogenic differentiation of white fat offers an attractive way to enhance whole-body metabolic capacity. Here, we show the role of endothelin 3 (EDN3) and endothelin receptor type B (EDNRB) in promoting the browning of white adipose tissue (WAT). EDNRB overexpression stimulates thermogenic differentiation of human white preadipocytes through cAMP-EPAC1-ERK activation. In mice, cold induces the expression of EDN3 and EDNRB in WAT. Deletion of EDNRB in adipose progenitor cells impairs cold-induced beige adipocyte formation in WAT, leading to excessive weight gain, glucose intolerance, and insulin resistance upon high-fat feeding. Injection of EDN3 into WAT promotes browning and improved whole-body glucose metabolism. The findings shed light on the mechanism of WAT browning and offer potential therapeutics for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Li-Hong Wu
- Graduate Institute of Cell Biology, China Medical University, Taichung City, Taiwan
| | - Cheng-Ying Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Mari Sato
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Cheng Y, Liang S, Zhang S, Hui X. Thermogenic Fat as a New Obesity Management Tool: From Pharmaceutical Reagents to Cell Therapies. Biomedicines 2024; 12:1474. [PMID: 39062047 PMCID: PMC11275133 DOI: 10.3390/biomedicines12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a complex medical condition caused by a positive imbalance between calorie intake and calorie consumption. Brown adipose tissue (BAT), along with the newly discovered "brown-like" adipocytes (called beige cells), functions as a promising therapeutic tool to ameliorate obesity and metabolic disorders by burning out extra nutrients in the form of heat. Many studies in animal models and humans have proved the feasibility of this concept. In this review, we aim to summarize the endeavors over the last decade to achieve a higher number/activity of these heat-generating adipocytes. In particular, pharmacological compounds, especially agonists to the β3 adrenergic receptor (β3-AR), are reviewed in terms of their feasibility and efficacy in elevating BAT function and improving metabolic parameters in human subjects. Alternatively, allograft transplantation of BAT and the transplantation of functional brown or beige adipocytes from mesenchymal stromal cells or human induced pluripotent stem cells (hiPSCs) make it possible to increase the number of these beneficial adipocytes in patients. However, practical and ethical issues still need to be considered before the therapy can eventually be applied in the clinical setting. This review provides insights and guidance on brown- and beige-cell-based strategies for the management of obesity and its associated metabolic comorbidities.
Collapse
Affiliation(s)
- Ying Cheng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shiqing Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shuhan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| |
Collapse
|
6
|
Cai Z, Zhong Q, Feng Y, Wang Q, Zhang Z, Wei C, Yin Z, Liang C, Liew CW, Kazak L, Cypess AM, Liu Z, Cai K. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging. Nat Metab 2024; 6:1367-1379. [PMID: 39054361 PMCID: PMC11272596 DOI: 10.1038/s42255-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Thermogenic brown adipose tissue (BAT) has a positive impact on whole-body metabolism. However, in vivo mapping of BAT activity typically relies on techniques involving ionizing radiation, such as [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) and computed tomography (CT). Here we report a noninvasive metabolic magnetic resonance imaging (MRI) approach based on creatine chemical exchange saturation transfer (Cr-CEST) contrast to assess in vivo BAT activity in rodents and humans. In male rats, a single dose of the β3-adrenoceptor agonist (CL 316,243) or norepinephrine, as well as cold exposure, triggered a robust elevation of the Cr-CEST MRI signal, which was consistent with the [18F]FDG PET and CT data and 1H nuclear magnetic resonance measurements of creatine concentration in BAT. We further show that Cr-CEST MRI detects cold-stimulated BAT activation in humans (both males and females) using a 3T clinical scanner, with data-matching results from [18F]FDG PET and CT measurements. This study establishes Cr-CEST MRI as a promising noninvasive and radiation-free approach for in vivo mapping of BAT activity.
Collapse
Affiliation(s)
- Zimeng Cai
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Chong Wee Liew
- Physiology and Biophysics Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Kang DW, Koh SH, Kim MK, Kim DY. Effects of aquatic versus land-based exercise on irisin and fibroblast growth factor 21 expression and triiodothyronine and free fatty acid levels in elderly women. Osong Public Health Res Perspect 2024; 15:238-247. [PMID: 38988027 PMCID: PMC11237314 DOI: 10.24171/j.phrp.2023.0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study investigated the impacts of exercise on irisin and fibroblast growth factor 21 (FGF-21) expression, as well as triiodothyronine (T3 ) and free fatty acid (FFA) levels in elderly women. METHODS Thirty women aged 65 to 70 years (10 per group) were randomly assigned to aquatic exercise, land exercise, and control groups. The aquatic and land groups engaged in 3 exercise sessions per week (60 min/session) for 16 weeks. The intensity was progressively increased every 4 weeks. RESULTS Irisin and FGF-21 levels significantly increased in the aquatic exercise group. In the posttest, the aquatic exercise group had the highest irisin levels. Significant findings were observed for irisin and FGF-21 for the main effect between aquatic and band exercise groups (p<0.05 for both), the main effect between measurement times (p<0.01 and p<0.001, respectively), and the interaction effect (p<0.05 and p<0.001, respectively). The irisin level was significantly higher in the aquatic than in the land group 30 minutes after the last session (p<0.05). In both exercise groups, T3 levels were significantly higher 30 minutes after the final session (p<0.05) than before the program. The FFA level was significantly higher in the aquatic exercise group than the others. In the aquatic group, FFA levels were significantly higher 30 minutes after both the first (p<0.01) and the last (p<0.001) session compared to pre-program values. CONCLUSION Differences in exercise type and environment can promote fat metabolism by stimulating hormonal changes that induce brown fat activity and browning.
Collapse
Affiliation(s)
- Du-Wang Kang
- Department of Physical Education, Pusan National University, Busan, Republic of Korea
| | - Su-Han Koh
- Department of Physical Education, Pusan National University, Busan, Republic of Korea
| | - Min-Kyo Kim
- Department of Physical Education, Pusan National University, Busan, Republic of Korea
| | - Do-Yeon Kim
- Department of Physical Education, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Carpentier AC, Blondin DP. Is stimulation of browning of human adipose tissue a relevant therapeutic target? ANNALES D'ENDOCRINOLOGIE 2024; 85:184-189. [PMID: 38871497 DOI: 10.1016/j.ando.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada.
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
9
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 2024; 12:RP87756. [PMID: 38775132 PMCID: PMC11111218 DOI: 10.7554/elife.87756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.
Collapse
Affiliation(s)
- Corey D Holman
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ryan P Calhoun
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan C Fein
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
10
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.20.533514. [PMID: 36993336 PMCID: PMC10055201 DOI: 10.1101/2023.03.20.533514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with age and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified natriuretic peptide clearance receptor Npr3, a beige fat repressor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a unique resource for identifying cold and aging-regulated pathways in adipose tissue.
Collapse
Affiliation(s)
- Corey D. Holman
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander P. Sakers
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Calhoun
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan C. Fein
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
12
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
13
|
Lynes MD, Huang Q, Cora C, Su SC, Yi P, Tseng YH. A CRISPR Screen Identifies the E3 Ubiquitin Ligase Rfwd2 as a Negative Regulator of Glucose Uptake in Brown Adipocytes. Genes (Basel) 2023; 14:1865. [PMID: 37895214 PMCID: PMC10606202 DOI: 10.3390/genes14101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Brown adipose tissue activation increases energy expenditure and has been shown to improve glucose tolerance, making it a promising target for the treatment of obesity and type 2 diabetes. Brown adipocytes differentiate into cells with multilocular lipid droplets, which can efficiently absorb and oxidize glucose; however, the mechanisms regulating these processes are not completely understood. We conducted a genome-wide loss-of-function screen using a CRISPR-based approach to identify genes that promote or inhibit adipogenesis and glucose uptake in brown adipocytes. We validated genes that negatively or positively regulated these pathways and verified that the E3-ubiquitin ligase Rfwd2 suppressed brown adipocyte glucose uptake. Brown adipocytes with CRISPR-targeted Rfwd2 deletion showed an altered proteomic landscape and increased basal, as well as insulin-stimulated, glucose uptake. These data reveal the complexity of genetic regulation of brown adipogenesis and glucose metabolism.
Collapse
Affiliation(s)
- Matthew D. Lynes
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
- Department of Medicine, Maine Health, Portland, ME 04101, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Roux Institute at Northeastern University, Portland, ME 04101, USA
| | - Qian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
| | - Carolina Cora
- Center for Molecular Medicine, Maine Health Institute for Research, Scarborough, ME 04074, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Sheng-Chiang Su
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Peng Yi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA; (Q.H.); (S.-C.S.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Zhang X, Hou X, Xu C, Cheng S, Ni X, Shi Y, Yao Y, Chen L, Hu MG, Xia D. Kaempferol regulates the thermogenic function of adipocytes in high-fat-diet-induced obesity via the CDK6/RUNX1/UCP1 signaling pathway. Food Funct 2023; 14:8201-8216. [PMID: 37551935 DOI: 10.1039/d3fo00613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Activation of adipose tissue thermogenesis is a promising strategy in the treatment of obesity and obesity-related metabolic disorders. Kaempferol (KPF) is a predominant dietary flavonoid with multiple pharmacological properties, such as anti-inflammatory and antioxidant activities. In this study, we sought to characterize the role of KPF in adipocyte thermogenesis. We demonstrated that KPF-treated mice were protected from diet-induced obesity, glucose tolerance, and insulin resistance, accompanied by markedly increased energy expenditure, ex vivo oxygen consumption of white fat, and increased expression of proteins related to adaptive thermogenesis. KPF-promoted beige cell formation is a cell-autonomous effect, since the overexpression of cyclin-dependent kinase 6 (CDK6) in preadipocytes partially reversed browning phenotypes observed in KPF-treated cells. Overall, these data implicate that KPF is involved in promoting beige cell formation by suppressing CDK6 protein expression. This study provides evidence that KPF is a promising natural product for obesity treatment by boosting energy expenditure.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoli Hou
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Xu
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Siyao Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xintao Ni
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yueyue Shi
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanjing Yao
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liangxin Chen
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology Oncology, Tufts Medical Center, Boston, MA, 02111, USA.
| | - Daozong Xia
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
15
|
Woolcott OO, Seuring T, Castillo OA. Lower Prevalence of Body Fat-Defined Obesity at Higher Altitudes in Peruvian Adults. High Alt Med Biol 2023; 24:214-222. [PMID: 37327017 DOI: 10.1089/ham.2022.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Woolcott, Orison O., Till Seuring, and Oscar A. Castillo. Lower prevalence of body fat-defined obesity at higher altitudes in Peruvian adults. High Alt Med Biol. 24:214-222, 2023. Background: Previous studies have reported a lower prevalence of obesity (defined as a body mass index [BMI] ≥30 kg/m2) in populations from higher altitudes. Since BMI does not distinguish fat mass and fat-free mass, it is unclear whether there is an inverse association between altitude and body fat-defined obesity. Methods: We performed an analysis of cross-sectional data to examine the association between altitude and body fat-defined obesity (as opposed to BMI-defined obesity) using individual-level data from a nationally representative sample of the Peruvian adult population living between 0 and 5,400 m altitude. Body fat-defined obesity was diagnosed using the relative fat mass (RFM), an anthropometric index validated to estimate whole-body fat percentage. RFM cutoffs for obesity diagnosis were ≥40% for women and ≥30% for men. We utilized Poisson regression to estimate the prevalence ratio and confidence intervals (CIs) as the measure of the association, adjusting for age, cigarette use, and diabetes. Results: Analysis comprised 36,727 individuals (median age, 39 years; 50.1% women). In rural areas, for a one-km increase in altitude, the prevalence of body fat-defined obesity decreased by 12% among women (adjusted prevalence ratio: 0.88; 95% CI, 0.86 - 0.90; p < 0.001) and 19% among men (adjusted prevalence ratio: 0.81; 95% CI, 0.77 - 0.86; p < 0.001), on average, when all the other variables were held constant. The inverse association between altitude and obesity was less strong in urban areas than in rural areas but remained significant among women (p = 0.001) and men (p < 0.001). However, the relationship between altitude and obesity in women who live in urban areas appears to be nonlinear. Conclusions: In Peruvian adults, the prevalence of body fat-defined obesity was inversely associated with altitude. Whether this inverse association is explained by altitude per se or confounded by socioeconomic or other environmental factors, or differences in race/ethnicity or lifestyle, warrants further investigation.
Collapse
Affiliation(s)
- Orison O Woolcott
- Institute for Globally Distributed Open Research and Education (IGDORE), Los Angeles, California, USA
- Ronin Institute, Montclair, New Jersey, USA
| | - Till Seuring
- Luxembourg Institute of Socio-Economic Research (LISER), Esch-sur-Alzette, Luxembourg
| | - Oscar A Castillo
- National Institute of Andean Biology, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
16
|
Amin A, Badenes M, Tüshaus J, de Carvalho É, Burbridge E, Faísca P, Trávníčková K, Barros A, Carobbio S, Domingos PM, Vidal-Puig A, Moita LF, Maguire S, Stříšovský K, Ortega FJ, Fernández-Real JM, Lichtenthaler SF, Adrain C. Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis. Mol Metab 2023; 73:101731. [PMID: 37121509 PMCID: PMC10197113 DOI: 10.1016/j.molmet.2023.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
Collapse
Affiliation(s)
- Abdulbasit Amin
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Faculty of Veterinary Medicine, Lusofona University, Lisbon, Portugal; Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Érika de Carvalho
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Emma Burbridge
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Květa Trávníčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - André Barros
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Stefania Carobbio
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Pedro M Domingos
- Instituto de Tecnologia Química da Universidade Nova de Lisboa (ITQB-Nova), Oeiras, Portugal
| | - Antonio Vidal-Puig
- Centro de Investigacíon Principe Felipe (CIPF), Valencia, Spain; Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, UK
| | - Luís F Moita
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland
| | - Kvido Stříšovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Francisco J Ortega
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Department of Medical Sciences, University of Girona, Girona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Institute of Salud Carlos III (ISCIII), Madrid, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal; Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, N. Ireland.
| |
Collapse
|
17
|
Liu Q, Long Q, Zhao J, Wu W, Lin Z, Sun W, Gu P, Deng T, Loomes KM, Wu D, Kong APS, Zhou J, Cheng AS, Hui HX. Cold-Induced Reprogramming of Subcutaneous White Adipose Tissue Assessed by Single-Cell and Single-Nucleus RNA Sequencing. RESEARCH (WASHINGTON, D.C.) 2023; 6:0182. [PMID: 37398933 PMCID: PMC10308956 DOI: 10.34133/research.0182] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Adipose browning has demonstrated therapeutic potentials in several diseases. Here, by conducting transcriptomic profiling at the single-cell and single-nucleus resolution, we reconstituted the cellular atlas in mouse inguinal subcutaneous white adipose tissue (iWAT) at thermoneutrality or chronic cold condition. All major nonimmune cells within the iWAT, including adipose stem and progenitor cells (ASPCs), mature adipocytes, endothelial cells, Schwann cells, and smooth muscle cells, were recovered, allowing us to uncover an overall and detailed blueprint for transcriptomes and intercellular cross-talks and the dynamics during white adipose tissue brown remodeling. Our findings also unravel the existence of subpopulations in mature adipocytes, ASPCs, and endothelial cells, as well as new insights on their interconversion and reprogramming in response to cold. The adipocyte subpopulation competent of major histocompatibility complex class II (MHCII) antigen presentation is potentiated. Furthermore, a subcluster of ASPC with CD74 expression was identified as the precursor of this MHCII+ adipocyte. Beige adipocytes are transdifferented from preexisting lipid generating adipocytes, which exhibit developmental trajectory from de novo differentiation of amphiregulin cells (Aregs). Two distinct immune-like endothelial subpopulations are present in iWAT and are responsive to cold. Our data reveal fundamental changes during cold-evoked adipose browning.
Collapse
Affiliation(s)
- Qing Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyun Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayu Zhao
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Wenjie Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexin Lin
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Sun
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kerry Martin Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred S. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Coulter AA, Greenway FL, Zhang D, Ghosh S, Coulter CR, James SL, He Y, Cusimano LA, Rebello CJ. Naringenin and β-carotene convert human white adipocytes to a beige phenotype and elevate hormone- stimulated lipolysis. Front Endocrinol (Lausanne) 2023; 14:1148954. [PMID: 37143734 PMCID: PMC10153092 DOI: 10.3389/fendo.2023.1148954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Naringenin, a peroxisome proliferator-activated receptor (PPAR) activator found in citrus fruits, upregulates markers of thermogenesis and insulin sensitivity in human adipose tissue. Our pharmacokinetics clinical trial demonstrated that naringenin is safe and bioavailable, and our case report showed that naringenin causes weight loss and improves insulin sensitivity. PPARs form heterodimers with retinoic-X-receptors (RXRs) at promoter elements of target genes. Retinoic acid is an RXR ligand metabolized from dietary carotenoids. The carotenoid β-carotene reduces adiposity and insulin resistance in clinical trials. Our goal was to examine if carotenoids strengthen the beneficial effects of naringenin on human adipocyte metabolism. Methods Human preadipocytes from donors with obesity were differentiated in culture and treated with 8µM naringenin + 2µM β-carotene (NRBC) for seven days. Candidate genes involved in thermogenesis and glucose metabolism were measured as well as hormone-stimulated lipolysis. Results We found that β-carotene acts synergistically with naringenin to boost UCP1 and glucose metabolism genes including GLUT4 and adiponectin, compared to naringenin alone. Protein levels of PPARα, PPARγ and PPARγ-coactivator-1α, key modulators of thermogenesis and insulin sensitivity, were also upregulated after treatment with NRBC. Transcriptome sequencing was conducted and the bioinformatics analyses of the data revealed that NRBC induced enzymes for several non-UCP1 pathways for energy expenditure including triglyceride cycling, creatine kinases, and Peptidase M20 Domain Containing 1 (PM20D1). A comprehensive analysis of changes in receptor expression showed that NRBC upregulated eight receptors that have been linked to lipolysis or thermogenesis including the β1-adrenergic receptor and the parathyroid hormone receptor. NRBC increased levels of triglyceride lipases and agonist-stimulated lipolysis in adipocytes. We observed that expression of RXRγ, an isoform of unknown function, was induced ten-fold after treatment with NRBC. We show that RXRγ is a coactivator bound to the immunoprecipitated PPARγ protein complex from white and beige human adipocytes. Discussion There is a need for obesity treatments that can be administered long-term without side effects. NRBC increases the abundance and lipolytic response of multiple receptors for hormones released after exercise and cold exposure. Lipolysis provides the fuel for thermogenesis, and these observations suggest that NRBC has therapeutic potential.
Collapse
Affiliation(s)
- Ann A. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Frank L. Greenway
- Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Dachuan Zhang
- Biostatistics, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Adjunct Faculty, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Cathryn R. Coulter
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sarah L. James
- Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Yanlin He
- Brain Glycemic and Metabolism Control, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Luke A. Cusimano
- Cusimano Plastic and Reconstructive Surgery, Baton Rouge, LA, United States
| | - Candida J. Rebello
- Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
19
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
20
|
Straat ME, Hoekx CA, van Velden FHP, Pereira Arias-Bouda LM, Dumont L, Blondin DP, Boon MR, Martinez-Tellez B, Rensen PCN. Stimulation of the beta-2-adrenergic receptor with salbutamol activates human brown adipose tissue. Cell Rep Med 2023; 4:100942. [PMID: 36812890 PMCID: PMC9975328 DOI: 10.1016/j.xcrm.2023.100942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023]
Abstract
While brown adipose tissue (BAT) is activated by the beta-3-adrenergic receptor (ADRB3) in rodents, in human brown adipocytes, the ADRB2 is dominantly present and responsible for noradrenergic activation. Therefore, we performed a randomized double-blinded crossover trial in young lean men to compare the effects of single intravenous bolus of the ADRB2 agonist salbutamol without and with the ADRB1/2 antagonist propranolol on glucose uptake by BAT, assessed by dynamic 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography scan (i.e., primary outcome). Salbutamol, compared with salbutamol with propranolol, increases glucose uptake by BAT, without affecting the glucose uptake by skeletal muscle and white adipose tissue. The salbutamol-induced glucose uptake by BAT positively associates with the increase in energy expenditure. Notably, participants with high salbutamol-induced glucose uptake by BAT have lower body fat mass, waist-hip ratio, and serum LDL-cholesterol concentration. In conclusion, specific ADRB2 agonism activates human BAT, which warrants investigation of ADRB2 activation in long-term studies (EudraCT: 2020-004059-34).
Collapse
Affiliation(s)
- Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carlijn A Hoekx
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Floris H P van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lenka M Pereira Arias-Bouda
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lauralyne Dumont
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Physiology-Pharmacology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Medicine, Division of Neurology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
21
|
Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int J Obes (Lond) 2023; 47:338-347. [PMID: 36774412 DOI: 10.1038/s41366-023-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
Exposure to low ambient temperatures has previously been demonstrated to markedly improve glucose homeostasis in both rodents and humans. Although the brown adipose tissue is key in mediating these beneficial effects in rodents, its contribution appears more limited in humans. Hence, the exact tissues and underlying mechanisms that mediate cold-induced improvements in glucose homeostasis in humans remain to be fully established. In this review, we evaluated the response of the main organs involved in glucose metabolism (i.e. pancreas, liver, (white) adipose tissue, and skeletal muscle) to cold exposure and discuss their potential contribution to cold-induced improvements in glucose homeostasis in humans. We here show that cold exposure has widespread effects on metabolic organs involved in glucose regulation. Nevertheless, cold-induced improvements in glucose homeostasis appear primarily mediated via adaptations within the skeletal muscle and (presumably) white adipose tissue. Since the underlying mechanisms remain elusive, future studies should be aimed at pinpointing the exact physiological and molecular mechanisms involved in humans. Nonetheless, cold exposure holds great promise as a novel, additive lifestyle approach to improve glucose homeostasis in insulin resistant individuals. Parts of this graphical abstract were created using (modified) images from Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License. TG = thermogenesis, TAG = triacylglycerol, FFA = free fatty acid, SLN = sarcolipin, UCP3 = uncoupling protein 3, β2-AR = beta-2 adrenergic receptor, SNS = sympathetic nervous system.
Collapse
|
22
|
Williams AG, Long M, Kavanagh K. Brief Communication: Histological Assessment of Nonhuman Primate Brown Adipose Tissue Highlights the Importance of Sympathetic Innervation. J Obes 2023; 2023:5651084. [PMID: 36714241 PMCID: PMC9879676 DOI: 10.1155/2023/5651084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE The objective of this study was to functionally analyze the correlation of key histological features in brown adipose tissue (BAT) with clinical metabolic traits in nonhuman primates. METHODS Axillary adipose tissue biopsies were collected from a metabolically diverse nonhuman primate cohort with clinical metabolism-related data. Expression of tyrosine hydroxylase (TH), uncoupling protein 1 (UCP1), cluster of differentiation 31 (CD31), cytochrome c oxidase subunit 4 (COX IV), beta-3 adrenergic receptor (β3-AR), and adipose cell size were quantified by immunohistochemical analysis. Computed tomography scans were performed to assess body composition. RESULTS Tyrosine hydroxylase was negatively correlated with whole body fat mass as a percentage of body weight (p = 0.004) and was positively correlated with the density of UCP1 (p = 0.02), COX IV (p = 0.006), CD31 (p = 0.007), and cell density (p = 0.02) of the BAT samples. Beta-3 adrenergic receptor abundance had a weak positive correlation with COX IV (p = 0.04) in BAT but did not significantly correlate to UCP1 or TH expression in BAT. CONCLUSIONS Our findings highlight that there is a disparity in innervation provided to BAT based on body composition, as seen with the negative association between TH, a marker for innervation, and adiposity. These findings also support the importance of innervation in the functionality of BAT, as TH abundance not only supports leaner body composition but is also positively correlated with known structural elements in BAT (UCP1, COX IV, CD31, and cell density). Based on our observations, β3-AR abundance does not strongly drive these structural elements or TH, all of which are known to be important in the function of brown adipose tissue. In effect, while the role of other receptors, such as β2-AR, should be reviewed in BAT function, these results support the development of safe sympathetic nervous system stimulants to activate brown adipose tissue for obesity treatment.
Collapse
Affiliation(s)
- Abigail G. Williams
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Masha Long
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Solivan-Rivera J, Yang Loureiro Z, DeSouza T, Desai A, Pallat S, Yang Q, Rojas-Rodriguez R, Ziegler R, Skritakis P, Joyce S, Zhong D, Nguyen T, Corvera S. A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. eLife 2022; 11:e78945. [PMID: 36107478 PMCID: PMC9519151 DOI: 10.7554/elife.78945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3, and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.
Collapse
Affiliation(s)
- Javier Solivan-Rivera
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Zinger Yang Loureiro
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sabine Pallat
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Qin Yang
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pantos Skritakis
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shannon Joyce
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Denise Zhong
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tammy Nguyen
- Department of Surgery, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| |
Collapse
|
24
|
Pileggi C, Hooks B, McPherson R, Dent R, Harper ME. Targeting skeletal muscle mitochondrial health in obesity. Clin Sci (Lond) 2022; 136:1081-1110. [PMID: 35892309 PMCID: PMC9334731 DOI: 10.1042/cs20210506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
Metabolic demands of skeletal muscle are substantial and are characterized normally as highly flexible and with a large dynamic range. Skeletal muscle composition (e.g., fiber type and mitochondrial content) and metabolism (e.g., capacity to switch between fatty acid and glucose substrates) are altered in obesity, with some changes proceeding and some following the development of the disease. Nonetheless, there are marked interindividual differences in skeletal muscle composition and metabolism in obesity, some of which have been associated with obesity risk and weight loss capacity. In this review, we discuss related molecular mechanisms and how current and novel treatment strategies may enhance weight loss capacity, particularly in diet-resistant obesity.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Breana G. Hooks
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| | - Ruth McPherson
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert R.M. Dent
- Division of Endocrinology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
- Ottawa Institute of Systems Biology, University of Ottawa, ON, Canada, K1H 8M5
| |
Collapse
|
25
|
Zhao Z, Yang R, Li M, Bao M, Huo D, Cao J, Speakman JR. Effects of ambient temperatures between 5 and 35 oC on energy balance, body mass and body composition in mice. Mol Metab 2022; 64:101551. [PMID: 35870706 PMCID: PMC9382332 DOI: 10.1016/j.molmet.2022.101551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background Considerable attention is currently focused on the potential to switch on brown adipose tissue (BAT), or promote browning of white adipose tissue, to elevate energy expenditure and thereby reduce obesity levels. These processes are already known to be switched on by cold exposure. Yet humans living in colder regions do not show lower levels of obesity. This could be because humans shield themselves from external temperatures, or because the resultant changes in BAT and thermogenesis are offset by elevated food intake, or reductions in other components of expenditure. Scope of Review We exposed mice to 11 different ambient temperatures between 5 and 35 °C and characterized their energy balance and body weight/composition. As it got colder mice progressively increased their energy expenditure coincident with changes in thyroid hormone levels and increased BAT activity. Simultaneously, these increases in expenditure were matched by elevated food intake, and body mass remained stable. Nevertheless, within this envelope of unchanged body mass there were significant changes in body composition – with increases in the sizes of the liver and small intestine, presumably to support the greater food intake, and reductions in the level of stored fat – maximally providing about 10% of the total elevated energy demands. Major Conclusions Elevating activity of BAT may be a valid strategy to reduce fat storage even if overall body mass is unchanged but if it is mostly offset by elevated food intake, as found here, then the impacts may be small. Male and female mice were exposed to 11 different ambient temperatures between 5 and 35 °C. As it got colder mice increased both energy expenditure and food intake. Increased energy expenditure was coincident with increased THs and BAT activity. Stored fat was considerably reduced in colder conditions, providing about 10% of the elevated energy requirements. Elevating activity of BAT may be a valid strategy to reduce fat storage.
Collapse
Affiliation(s)
- Zhijun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Rui Yang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Min Li
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Menghuan Bao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Daliang Huo
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jing Cao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - John R Speakman
- Shenzhen key laboratory of metabolic health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China.
| |
Collapse
|
26
|
Luze H, Hecker A, Nischwitz SP, Schellnegger M, Kohlhauser M, Draschl A, Müllegger C, Kamolz LP, Kotzbeck P. Non-invasive cooling wear as an effective means of reducing subcutaneous adipose tissue mass: an in-vivo study. J Int Med Res 2022; 50:3000605221109391. [PMID: 35899690 PMCID: PMC9340944 DOI: 10.1177/03000605221109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective The increasing prevalence of obesity is a major health problem worldwide. Several non-surgical treatments are now available that reduce body and subcutaneous fat mass. We aimed to determine the efficacy of mild cold for body mass reduction. Methods Novel cooling wear, which induces mild cooling via evaporation, was worn by 29 women with overweight for 4 weeks. Specifically, the participants wore a cooling waist belt and chaps for 1 hour per day. Non-invasive lipometry was used to determine their subcutaneous adipose tissue thicknesses, and the total weight loss, abdominal circumference, and body mass index (BMI) of the participants were measured. Results The participants achieved a significant total weight loss of 0.7 kg (0.9%), and significant reductions in BMI (0.2 kg/m2) and abdominal circumference (1.9 cm, 1.7%). Furthermore, there was a trend towards a reduction in abdominal subcutaneous fat thickness and a significant reduction in thickness of the anterior thigh was noted. A questionnaire-based evaluation indicated high usability and comfort of the cooling wear. Conclusion There is a high and growing demand for non-invasive treatment strategies for obesity. Cooling wear represents a novel and promising approach that may be of particular use for individuals who do not require bariatric surgery.
Collapse
Affiliation(s)
- Hanna Luze
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Andrzej Hecker
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Sebastian Philipp Nischwitz
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Michael Kohlhauser
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | | | | | - Lars-Peter Kamolz
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED - Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
27
|
Onogi Y, Ussar S. Regulatory networks determining substrate utilization in brown adipocytes. Trends Endocrinol Metab 2022; 33:493-506. [PMID: 35491296 DOI: 10.1016/j.tem.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT) is often considered as a sink for nutrients to generate heat. However, when the complex hormonal and nervous inputs and intracellular signaling networks regulating substrate utilization are considered, BAT appears much more as a tightly controlled rheostat, regulating body temperature and balancing circulating nutrient levels. Here we provide an overview of key regulatory circuits, including the diurnal rhythm, determining glucose, fatty acid, and amino acid utilization and the interdependency of these nutrients in thermogenesis. Moreover, we discuss additional factors mediating sympathetic BAT activation beyond β-adrenergic signaling and the limitations of glucose-based BAT activity measurements to foster a better understanding and interpretation of BAT activity data.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Siegfried Ussar
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Department of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
28
|
Tews D, Wabitsch M. Brown Adipose Tissue in Children and Its Metabolic Function. Horm Res Paediatr 2022; 95:104-111. [PMID: 34348306 DOI: 10.1159/000518353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To regulate body temperature, mammals possess brown adipose tissue (BAT), which converts significant amounts of chemical energy into heat. Due to its remarkable energy demand, BAT is currently discussed as a target organ to treat obesity and obesity-related disorders. SUMMARY Although BAT is predominantly present in infants and its relative mass declines with age, new findings suggest that BAT has a relevant role in the regulation of energy homeostasis as well as in the regulation of the energy substrates glucose and lipids in older children, adolescents, and adults. In this overview, we will outline basic mechanisms of BAT thermogenesis and the recently described physiological relevance of BAT in metabolism in children and adolescents. KEY MESSAGE The connection of BAT activity with glucose metabolism and insulin sensitivity seems to be evident from recent studies, implicating BAT as an important influencing factor in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
29
|
Activated Brown Adipose Tissue Releases Exosomes Containing Mitochondrial Methylene Tetrahydrofolate Dehydrogenase (NADP-dependent) 1-Like Protein (MTHFD1L). Biosci Rep 2022; 42:231255. [PMID: 35502767 PMCID: PMC9142831 DOI: 10.1042/bsr20212543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Brown adipose tissue (BAT) is a promising weapon to combat obesity and metabolic disease. BAT is thermogenic and consumes substantial amounts of glucose and fatty acids as fuel for thermogenesis and energy expenditure. To study BAT function in large human longitudinal cohorts, safe and precise detection methodologies are needed. Although regarded a gold standard, the foray of PET-CT into BAT research and clinical applications is limited by its high ionizing radiation doses. Here, we show that brown adipocytes release exosomes in blood plasma that can be utilized to assess BAT activity. In the present study, we investigated circulating protein biomarkers that can accurately and reliably reflect BAT activation triggered by cold exposure, capsinoids ingestion and thyroid hormone excess in humans. We discovered an exosomal protein, methylene tetrahydrofolate dehydrogenase (NADP+ dependent) 1-like (MTHFD1L), to be overexpressed and detectable in plasma for all three modes of BAT activation in human subjects. This mitochondrial protein is packaged as a cargo within multivesicular bodies of the endosomal compartment and secreted as exosomes via exocytosis from activated brown adipocytes into the circulation. To support MTHFD1L as a conserved BAT activation response in other vertebrates, we examined a rodent model and also proved its presence in blood of rats following BAT activation by cold exposure. Plasma concentration of exosomal MTHFD1L correlated with human BAT activity as confirmed by PET-MR in humans and supported by data from rats. Thus, we deduce that MTHFD1L appears to be overexpressed in activated BAT compared to BAT in the basal nonstimulated state.
Collapse
|
30
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
31
|
Sanders KJC, Wierts R, van Marken Lichtenbelt WD, de Vos-Geelen J, Plasqui G, Kelders MCJM, Schrauwen-Hinderling VB, Bucerius J, Dingemans AMC, Mottaghy FM, Schols AMWJ. Brown adipose tissue activation is not related to hypermetabolism in emphysematous chronic obstructive pulmonary disease patients. J Cachexia Sarcopenia Muscle 2022; 13:1329-1338. [PMID: 35166050 PMCID: PMC8978002 DOI: 10.1002/jcsm.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been primarily researched as a potential target for mitigating obesity. However, the physiological significance of BAT in relation to cachexia remains poorly understood. The objective of this study was to investigate the putative contribution of BAT on different components of energy metabolism in emphysematous chronic obstructive pulmonary disease (COPD) patients. METHODS Twenty COPD patients (mean ± SD age 62 ± 6, 50% female, median [range] BMI 22.4 [15.1-32.5] kg/m2 and 85% low FFMI) were studied. Basal metabolic rate (BMR) was assessed by ventilated hood, total daily energy expenditure (TDEE) by doubly labelled water and physical activity by triaxial accelerometry. BMR was adjusted for fat-free mass (FFM) as assessed by deuterium dilution. Analysis of BAT and WAT was conducted in a subset of ten patients and six age-matched, gender-matched and BMI-matched healthy controls. BAT glucose uptake was assessed by means of cold-stimulated integrated [18F]FDG positron-emission tomography and magnetic resonance imaging. WAT was collected from subcutaneous abdominal biopsies to analyse metabolic and inflammatory gene expression levels. Lung function was assessed by spirometry and body plethysmography and systemic inflammation by high sensitivity C-reactive protein. RESULTS Mean TDEE was 2209 ± 394 kcal/day, and mean BMR was 1449 ± 214 kcal/day corresponding to 120% of predicted. FFM-adjusted BMR did not correlate with lung function or C-reactive protein. Upon cooling, energy expenditure increased, resulting in a non-shivering thermogenesis of (median [range]) 20.1% [3.3-41.3] in patients and controls. Mean BAT glucose uptake was comparable between COPD and controls (1.5 [0.1-6.2] vs. 1.1 [0.7-3.9]). In addition, no correlation was found between BMR adjusted for FFM and BAT activity or between cold-induced non-shivering energy expenditure and BAT activity. Gene expression levels of the brown adipocyte or beige markers were also comparable between the groups. No (serious) adverse events were reported. CONCLUSIONS Although COPD patients were hypermetabolic at rest, no correlation was found between BMR or TDEE and BAT activity. Furthermore, both BAT activity and gene expression levels of the brown adipocyte or beige markers were comparable between COPD patients and controls.
Collapse
Affiliation(s)
- Karin J C Sanders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guy Plasqui
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marco C J M Kelders
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, NUTRIM School for Nutrition and Translational Research in Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine and CARIM School for Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Nuclear Medicine and CIO ABCD, University Hospital RWTH Aachen University, Aachen, Germany
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
32
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
33
|
PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep 2022; 12:4112. [PMID: 35260768 PMCID: PMC8904502 DOI: 10.1038/s41598-022-08125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
Collapse
|
34
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
35
|
McKie GL, Medak KD, Shamshoum H, Wright DC. Topical application of the pharmacological cold mimetic menthol stimulates brown adipose tissue thermogenesis through a TRPM8, UCP1, and norepinephrine dependent mechanism in mice housed at thermoneutrality. FASEB J 2022; 36:e22205. [PMID: 35157333 DOI: 10.1096/fj.202101905rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
Increasing whole-body energy expenditure via the pharmacological activation of uncoupling protein 1 (UCP1)-dependent brown adipose tissue (BAT) thermogenesis is a promising weight management strategy, yet most therapeutics studied in rodents to date either induce compensatory increases in energy intake, have thermogenic effects that are confounded by sub-thermoneutral housing temperatures or are not well tolerated in humans. Here, we sought to determine whether the non-invasive topical application of the pharmacological cold mimetic and transient receptor potential (TRP) cation channel subfamily M member 8 (TRPM8) agonist L-menthol (MNTH), could be used to stimulate BAT thermogenesis and attenuate weight gain in mice housed at thermoneutrality. Using three different strains of mice and multiple complimentary approaches to quantify thermogenesis in vivo, coupled with ex vivo models to quantify direct thermogenic effects, we were able to convincingly demonstrate the following: (1) acute topical MNTH application induces BAT thermogenesis in a TRPM8- and UCP1-dependent manner; (2) MNTH-induced BAT thermogenesis is sufficient to attenuate weight gain over time without affecting energy intake in lean and obese mice; (3) the ability of topical MNTH application to stimulate BAT thermogenesis is mediated, in part, by a central mechanism involving the release of norepinephrine. These data collectively suggest that topical application of MNTH may be a promising weight management strategy.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
36
|
Abstract
The role of β-adrenergic receptors (βARs) in adipose tissue to promote lipolysis and the release of fatty acids and nonshivering thermogenesis in brown fat has been studied for so many decades that one would think there is nothing left to discover. With the rediscovery of brown fat in humans and renewed interest in UCP1 and uncoupled mitochondrial respiration, it seems that a review of adipose tissue as an organ, pivotal observations, and the investigators who made them would be instructive to understanding where the field stands now. The discovery of the β3-adrenergic receptor was important for accurately defining the pharmacology of the adipocyte, while the clinical targeting of this receptor for obesity and metabolic disease has had its highs and lows. Many questions still remain about how βARs regulate adipocyte metabolism and the signaling molecules through which they do it.
Collapse
Affiliation(s)
- Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| |
Collapse
|
37
|
Liu X, Zhang Z, Song Y, Xie H, Dong M. An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Front Endocrinol (Lausanne) 2022; 13:1065263. [PMID: 36714578 PMCID: PMC9874101 DOI: 10.3389/fendo.2022.1065263] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Overweight and obesity have become a world-wide problem. However, effective intervention approaches are limited. Brown adipose tissue, which helps maintain body temperature and contributes to thermogenesis, is dependent on uncoupling protein1. Over the last decade, an in-creasing number of studies have found that activating brown adipose tissue and browning of white adipose tissue can protect against obesity and obesity-related metabolic disease. Brown adipose tissue has gradually become an appealing therapeutic target for the prevention and re-versal of obesity. However, some important issues remain unresolved. It is not certain whether increasing brown adipose tissue activity is the cause or effect of body weight loss or what the risks might be for sympathetic nervous system-dependent non-shivering thermogenesis. In this review, we comprehensively summarize approaches to activating brown adipose tissue and/or browning white adipose tissue, such as cold exposure, exercise, and small-molecule treatment. We highlight the functional mechanisms of small-molecule treatment and brown adipose tissue transplantation using batokine, sympathetic nervous system and/or gut microbiome. Finally, we discuss the causality between body weight loss induced by bariatric surgery, exercise, and brown adipose tissue activity.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi Zhang
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yajie Song
- Institute of Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Hengchang Xie
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| | - Meng Dong
- Department of Nutrition and Food Hygiene, College of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Meng Dong, ; Hengchang Xie,
| |
Collapse
|
38
|
Thibonnier M, Ghosh S, Blanchard A. Effects of a short-term cold exposure on circulating microRNAs and metabolic parameters in healthy adult subjects. J Cell Mol Med 2021; 26:548-562. [PMID: 34921497 PMCID: PMC8743656 DOI: 10.1111/jcmm.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022] Open
Abstract
This discovery study investigated in healthy subjects whether a short‐term cold exposure may alter circulating microRNAs and metabolic parameters and if co‐expression networks between these factors could be identified. This open randomized crossover (cold vs no cold exposure) study with blind end‐ point evaluation was conducted at 1 center with 10 healthy adult male volunteers. Wearing a cooling vest perfused at 14°C for 2 h reduced the local skin temperature without triggering shivering, increased norepinephrine and blood pressure while decreasing copeptin, C‐peptide and heart rate. Circulating microRNAs measured before and after wearing the cooling vest twice (4 time points) identified 196 mature microRNAs with excellent reproducibility over 72 h. Significant correlations of microRNA expression with copeptin, norepinephrine and C‐peptide were found. A co‐expression‐based microRNA‐microRNA network, as well as microRNA pairs displaying differential correlation as a function of temperature were also detected. This study demonstrates that circulating miRNAs are differentially expressed and coregulated upon cold exposure in humans, supporting their use as predictive and dynamic biomarkers of cardio‐metabolic disorders.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore City, Singapore.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Anne Blanchard
- Clinical Investigation Center, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
39
|
Han S, Yang Y, Lu Y, Guo J, Han X, Gao Y, Huang W, You Y, Zhan J. Cyanidin-3- O-glucoside Regulates the Expression of Ucp1 in Brown Adipose Tissue by Activating Prdm16 Gene. Antioxidants (Basel) 2021; 10:1986. [PMID: 34943089 PMCID: PMC8750179 DOI: 10.3390/antiox10121986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Brown adipose tissue (BAT) burns energy to produce heat. Cyanidin-3-O-glucoside (C3G) can then enhance the thermogenic ability of BAT in vivo. However, the mechanism by which C3G regulates Ucp1 protein expression remains unclear. (2) Methods: In this study, C3H10T12 brown adipose cells and db/db mice and mice with high-fat, high-fructose, diet-induced obesity were used as the model to explore the effect of C3G on the expression of the Ucp1 gene. Furthermore, the 293T cell line was used for an in vitro cell transgene, a double luciferase reporting system, and yeast single hybridization to explore the mechanism of C3G in regulating Ucp1 protein. (3) Results: we identified that, under the influence of C3G, Prdm16 directly binds to the -500 to -150 bp promoter region of Ucp1 to activate its transcription and, thus, facilitate BAT programming. (4) Conclusions: This study clarified the mechanism by which C3G regulates the expression of the Ucp1 gene of brown fat to a certain extent.
Collapse
Affiliation(s)
- Suping Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yafan Yang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yanan Lu
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
- School of Biomedicine, Beijing City University, Beijing 100094, China
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Xue Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yunxiao Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| |
Collapse
|
40
|
Greenfield AM, Charkoudian N, Alba BK. Influences of ovarian hormones on physiological responses to cold in women. Temperature (Austin) 2021; 9:23-45. [DOI: 10.1080/23328940.2021.1953688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andrew Martin Greenfield
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Oak Ridge Institute of Science and Education, Belcamp, MD, USA
| | - Nisha Charkoudian
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Billie Katherine Alba
- Thermal & Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
41
|
Sun L, Goh HJ, Verma S, Govindharajulu P, Sadananthan SA, Michael N, Jadegoud Y, Henry CJ, Velan SS, Yeo PS, Lee Y, Lim BSP, Liew H, Chew CK, Quek TPL, Abdul Shakoor SAKK, Hoi WH, Chan SP, Chew DE, Dalan R, Leow MKS. Metabolic effects of brown fat in transitioning from hyperthyroidism to euthyroidism. Eur J Endocrinol 2021; 185:553-563. [PMID: 34342595 PMCID: PMC8428075 DOI: 10.1530/eje-21-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) controls metabolic rate through thermogenesis. As its regulatory factors during the transition from hyperthyroidism to euthyroidism are not well established, our study investigated the relationships between supraclavicular brown adipose tissue (sBAT) activity and physiological/metabolic changes with changes in thyroid status. DESIGN Participants with newly diagnosed Graves' disease were recruited. A thionamide antithyroid drug (ATD) such as carbimazole (CMZ) or thiamazole (TMZ) was prescribed in every case. All underwent energy expenditure (EE) measurement and supraclavicular infrared thermography (IRT) within a chamber calorimeter, as well as 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging scanning, with clinical and biochemical parameters measured during hyperthyroidism and repeated in early euthyroidism. PET sBAT mean/maximum standardized uptake value (SUV mean/max), MR supraclavicular fat fraction (sFF) and mean temperature (Tscv) quantified sBAT activity. RESULTS Twenty-one (16 female/5 male) participants aged 39.5 ± 2.5 years completed the study. The average duration to attain euthyroidism was 28.6 ± 2.3 weeks. Eight participants were BAT-positive while 13 were BAT-negative. sFF increased with euthyroidism (72.3 ± 1.4% to 76.8 ± 1.4%; P < 0.01), but no changes were observed in PET SUV mean and Tscv. Significant changes in serum-free triiodothyronine (FT3) levels were related to BAT status (interaction P value = 0.04). FT3 concentration at hyperthyroid state was positively associated with sBAT PET SUV mean (r = 0.58, P = 0.01) and resting metabolic rate (RMR) (P < 0.01). CONCLUSION Hyperthyroidism does not consistently lead to a detectable increase in BAT activity. FT3 reduction during the transition to euthyroidism correlated with BAT activity.
Collapse
Affiliation(s)
- Lijuan Sun
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Jen Goh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sanjay Verma
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Priya Govindharajulu
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yaligar Jadegoud
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), Singapore
- Departments of Physiology & Medicine, National University of Singapore (NUS), Singapore
| | - Pei Shan Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Yingshan Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Brenda Su Ping Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Huiling Liew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Chee Kian Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Timothy Peng Lim Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Shaikh A K K Abdul Shakoor
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Wai Han Hoi
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Siew Pang Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel Ek Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
| | - Melvin Khee Shing Leow
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital (TTSH), Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Correspondence should be addressed to M K Leow Email
| |
Collapse
|
42
|
McKie GL, Shamshoum H, Hunt KL, Thorpe HHA, Dibe HA, Khokhar JY, Doucette CA, Wright DC. Intermittent cold exposure improves glucose homeostasis despite exacerbating diet-induced obesity in mice housed at thermoneutrality. J Physiol 2021; 600:829-845. [PMID: 34192813 DOI: 10.1113/jp281774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ambient cold exposure is often regarded as a promising anti-obesity treatment in mice. However, most preclinical studies aimed at treating obesity via cold-induced thermogenesis have been confounded by subthermoneutral housing temperatures. Therefore, the ability of ambient cold to combat diet-induced obesity in mice housed under humanized thermoneutral conditions is currently unknown. Moreover, mammals such as mice are rarely exposed to chronic ambient cold without reprieve, yet mice are often subjected to experimental conditions of chronic rather than intermittent cold exposure (ICE), despite ICE being more physiologically relevant. In the present study, we provide novel evidence that thermoneutral housing uncouples the effects of ICE on glucose and energy homeostasis suggesting that ICE, despite improving glucose tolerance, is not an effective obesity treatment when mice are housed under humanized thermoneutral conditions. ABSTRACT The present study examines whether a physiologically relevant model of ambient cold exposure, intermittent cold exposure (ICE), could ameliorate the metabolic impairments of diet-induced obesity in male and female mice housed under humanized thermoneutral conditions. Male and female C57BL/6J mice housed at thermoneutrality (29°C) were fed a low-fat diet or high-fat diet for 6 weeks before being weight matched into groups that remained unperturbed or underwent ICE for 4 weeks (4°C for 60 min day-1 ; 5 days week-1 ) when being maintained on their respective diets. ICE induced rapid and persistent hyperphagia exacerbating rather than attenuating high-fat diet-induced obesity over time. These ICE-induced increases in adiposity were found to be energy intake-dependent via pair-feeding. Despite exacerbating high-fat diet-induced obesity, ICE improved glucose tolerance, independent of diet, in a sex-specific manner. The effects of ICE on glucose tolerance were not attributed to improvements in whole-body insulin tolerance, tissue specific insulin action, nor differences in markers of hepatic insulin clearance or pancreatic beta cell proliferation. Instead, ICE increased serum concentrations of insulin and C-peptide in response to glucose, suggesting that ICE may improve glucose tolerance by potentiating pancreatic glucose-stimulated insulin secretion. These data suggest that ICE, despite improving glucose tolerance, is not an effective obesity treatment in mice housed under humanized conditions.
Collapse
Affiliation(s)
- Greg L McKie
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Hesham Shamshoum
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kristin L Hunt
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Hana A Dibe
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Christine A Doucette
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - David C Wright
- Department of Human Health & Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
43
|
Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, Narain NR, Tolstikov V, Smith KL, Emanuelli B, Chang YT, Hagen S, Danial NN, Kiebish MA, Tseng YH. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 2021; 12:12/558/eaaz8664. [PMID: 32848096 DOI: 10.1126/scitranslmed.aaz8664] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Brown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression. Obese mice that received HUMBLE cell transplants showed a sustained improvement in glucose tolerance and insulin sensitivity, as well as increased energy expenditure. Mechanistically, increased arginine/nitric oxide (NO) metabolism in HUMBLE adipocytes promoted the production of NO that was carried by S-nitrosothiols and nitrite in red blood cells to activate endogenous brown fat and improved glucose homeostasis in recipient animals. Together, these data demonstrate the utility of using CRISPR-Cas9 technology to engineer human white adipocytes to display brown fat-like phenotypes and may open up cell-based therapeutic opportunities to combat obesity and diabetes.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Morten Lundh
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark.,Gubra Aps, Hørsholm, DK-2970, Denmark
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Rókus Kriszt
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583.,Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Luiz O Leiria
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Kyle L Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 34126, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Susan Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
44
|
Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 2021; 22:393-409. [PMID: 33758402 PMCID: PMC8159882 DOI: 10.1038/s41580-021-00350-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Brown and beige adipocytes are mitochondria-enriched cells capable of dissipating energy in the form of heat. These thermogenic fat cells were originally considered to function solely in heat generation through the action of the mitochondrial protein uncoupling protein 1 (UCP1). In recent years, significant advances have been made in our understanding of the ontogeny, bioenergetics and physiological functions of thermogenic fat. Distinct subtypes of thermogenic adipocytes have been identified with unique developmental origins, which have been increasingly dissected in cellular and molecular detail. Moreover, several UCP1-independent thermogenic mechanisms have been described, expanding the role of these cells in energy homeostasis. Recent studies have also delineated roles for these cells beyond the regulation of thermogenesis, including as dynamic secretory cells and as a metabolic sink. This Review presents our current understanding of thermogenic adipocytes with an emphasis on their development, biological functions and roles in systemic physiology.
Collapse
Affiliation(s)
- Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Cell and Tissue Biology, UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
McNeill BT, Suchacki KJ, Stimson RH. MECHANISMS IN ENDOCRINOLOGY: Human brown adipose tissue as a therapeutic target: warming up or cooling down? Eur J Endocrinol 2021; 184:R243-R259. [PMID: 33729178 PMCID: PMC8111330 DOI: 10.1530/eje-20-1439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Excessive accumulation of white adipose tissue leads to obesity and its associated metabolic health consequences such as type 2 diabetes and cardiovascular disease. Several approaches to treat or prevent obesity including public health interventions, surgical weight loss, and pharmacological approaches to reduce caloric intake have failed to substantially modify the increasing prevalence of obesity. The (re-)discovery of active brown adipose tissue (BAT) in adult humans approximately 15 years ago led to a resurgence in research into whether BAT activation could be a novel therapy for the treatment of obesity. Upon cold stimulus, BAT activates and generates heat to maintain body temperature, thus increasing energy expenditure. Activation of BAT may provide a unique opportunity to increase energy expenditure without the need for exercise. However, much of the underlying mechanisms surrounding BAT activation are still being elucidated and the effectiveness of BAT as a therapeutic target has not been realised. Research is ongoing to determine how best to expand BAT mass and activate existing BAT; approaches include cold exposure, pharmacological stimulation using sympathomimetics, browning agents that induce formation of thermogenic beige adipocytes in white adipose depots, and the identification of factors secreted by BAT with therapeutic potential. In this review, we discuss the caloric capacity and other metabolic benefits from BAT activation in humans and the role of metabolic tissues such as skeletal muscle in increasing energy expenditure. We discuss the potential of current approaches and the challenges of BAT activation as a novel strategy to treat obesity and metabolic disorders.
Collapse
Affiliation(s)
- Ben T McNeill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Karla J Suchacki
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
| | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK
- Correspondence should be addressed to R H Stimson Email
| |
Collapse
|
46
|
Li Y, Ping X, Zhang Y, Li G, Zhang T, Chen G, Ma X, Wang D, Xu L. Comparative Transcriptome Profiling of Cold Exposure and β3-AR Agonist CL316,243-Induced Browning of White Fat. Front Physiol 2021; 12:667698. [PMID: 34017267 PMCID: PMC8129586 DOI: 10.3389/fphys.2021.667698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Beige adipocytes are newly identified thermogenic-poised adipocytes that could be activated by cold or β3-adrenergic receptor (β3-AR) signaling and offer therapeutic potential for treating obesity and metabolic diseases. Here we applied RNA-sequencing analysis in the beige fat of mice under cold exposure or β3-AR agonist CL316,243 (CL) treatment to provide a comparative and comprehensive analysis for the similarity and heterogeneity of these two stimulants. Importantly, via KEGG analysis, we found that cold and CL commonly induced oxidative phosphorylation. Meanwhile, cold increased glycerolipid and amino acids metabolism while CL treatment triggered a broader spectrum of metabolic responses including carbohydrate metabolism. Besides, cold or CL treatment featured greater heterogeneity in downregulated gene programs. Of note, the top changed genes in each category were confirmed by qPCR analysis. Overall, our analysis provided a better understanding of the heterogeneity of differential models for beige adipocytes activation and a possible clue for optimizing β3-AR agonists in the future.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Geng Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
47
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H, Danial NN, Gygi SP, Lynch L, Chouchani ET. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat Metab 2021; 3:604-617. [PMID: 34002097 PMCID: PMC8207988 DOI: 10.1038/s42255-021-00389-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nhien V Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Hollstein T, Vinales K, Chen KY, Cypess AM, Basolo A, Schlögl M, Krakoff J, Piaggi P. Reduced brown adipose tissue activity during cold exposure is a metabolic feature of the human thrifty phenotype. Metabolism 2021; 117:154709. [PMID: 33476636 PMCID: PMC7956243 DOI: 10.1016/j.metabol.2021.154709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND We recently demonstrated that thrifty subjects, characterized by a greater decrease in 24 h energy expenditure (24hEE) during short-term fasting, have less capacity for cold-induced thermogenesis (CIT) during 24 h of mild cold exposure. OBJECTIVE As cold-induced brown adipose tissue activation (CIBA) is a determinant of CIT, we sought to investigate whether thrifty individuals also have reduced CIBA. METHODS Twenty-four healthy subjects (age: 29.8 ± 9.5y, body fat: 27.3 ± 12.4%, 63% male) were admitted to our clinical research unit and underwent two 24hEE assessments in a whole-room indirect calorimeter during energy balance and fasting conditions at thermoneutrality to quantify their degree of thriftiness. Positron emission tomography/computed tomography scans were performed after exposure to 16 °C for 2 h to quantify peak CIBA. RESULTS A greater decrease in 24hEE during fasting was associated with lower peak CIBA (r = 0.50, p = 0.01), such that a 100 kcal/day greater reduction in 24hEE related to an average 3.2 g/mL lower peak CIBA. CONCLUSION Our results indicate that reduced CIBA is a metabolic trait of the thrifty phenotype which might explain reduced CIT capacity and greater predisposition towards weight gain in individuals with a thrifty metabolism.
Collapse
Affiliation(s)
- Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Division of Endocrinology, Diabetology and Clinical Nutrition, Department of Internal Medicine 1, University of Kiel, Arnold Heller Straße 3, Kiel 24105, Germany
| | - Karyne Vinales
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Endocrinology Division, Medicine Department, Phoenix VA Health Care System, Phoenix, AZ 85012, USA
| | - Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Mathias Schlögl
- Department of Geriatrics and Aging Research, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 4212 N 16th Street, Phoenix, AZ 85016, USA; Department of Information Engineering, University of Pisa, Pisa 56122, Italy.
| |
Collapse
|
49
|
Van Schaik L, Kettle C, Green R, Irving HR, Rathner JA. Effects of Caffeine on Brown Adipose Tissue Thermogenesis and Metabolic Homeostasis: A Review. Front Neurosci 2021; 15:621356. [PMID: 33613184 PMCID: PMC7889509 DOI: 10.3389/fnins.2021.621356] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
The impact of brown adipose tissue (BAT) metabolism on understanding energy balance in humans is a relatively new and exciting field of research. The pathogenesis of obesity can be largely explained by an imbalance between caloric intake and energy expenditure, but the underlying mechanisms are far more complex. Traditional non-selective sympathetic activators have been used to artificially elevate energy utilization, or suppress appetite, however undesirable side effects are apparent with the use of these pharmacological interventions. Understanding the role of BAT, in relation to human energy homeostasis has the potential to dramatically offset the energy imbalance associated with obesity. This review discusses paradoxical effects of caffeine on peripheral adenosine receptors and the possible role of adenosine in increasing metabolism is highlighted, with consideration to the potential of central rather than peripheral mechanisms for caffeine mediated BAT thermogenesis and energy expenditure. Research on the complex physiology of adipose tissue, the embryonic lineage and function of the different types of adipocytes is summarized. In addition, the effect of BAT on overall human metabolism and the extent of the associated increase in energy expenditure are discussed. The controversy surrounding the primary β-adrenoceptor involved in human BAT activation is examined, and suggestions as to the lack of translational findings from animal to human physiology and human in vitro to in vivo models are provided. This review compares and distinguishes human and rodent BAT effects, thus developing an understanding of human BAT thermogenesis to aid lifestyle interventions targeting obesity and metabolic syndrome. The focus of this review is on the effect of BAT thermogenesis on overall metabolism, and the potential therapeutic effects of caffeine in increasing metabolism via its effects on BAT.
Collapse
Affiliation(s)
- Lachlan Van Schaik
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Rodney Green
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Joseph A. Rathner
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021; 184:26-39. [PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, 94300, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia.
| |
Collapse
|