1
|
Wu X, Elsaid S, Levet F, Li W, Tee SS. Establishing Immortalized Brown and White Preadipocyte Cell Lines from Young and Aged Mice. Curr Protoc 2024; 4:e70072. [PMID: 39670655 DOI: 10.1002/cpz1.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Studying adipogenesis and adipocyte biology requires the isolation of primary preadipocytes from adipose tissues. However, primary preadipocytes have a limited lifespan, can only undergo a finite number of divisions, and often lose their original biological characteristics before becoming senescent. The repeated isolation of fresh preadipocytes, particularly from young pups or aged animals, is costly and time consuming. Immortalization of these cells offers a solution by overcoming cellular senescence and maintaining proliferative capacity, allowing for long-term studies without the continuous need to isolate new cells from animals. Immortalized cell lines thus provide a consistent and reproducible experimental model, significantly reducing variability across different animals. However, successfully establishing immortalized preadipocyte cell lines presents challenges, including selecting appropriate adipose tissue depots, isolating primary preadipocytes, and choosing an effective immortalization strategy. In this article, we present optimized protocols and share first-hand experiences establishing immortalized brown and white preadipocyte cell lines from young and aging mice. These protocols offer a valuable resource for researchers studying adipogenesis and metabolism. © 2024 Wiley Periodicals LLC. Support Protocol 1: Retrovirus production Basic Protocol 1: Isolation and culture of primary brown and white preadipocytes from mouse interscapular brown adipose tissue (iBAT) and subcutaneous white adipose tissue (sWAT) in the same region Basic Protocol 2: Immortalization of mouse brown and white preadipocytes Basic Protocol 3: Selection of immortalized preadipocytes Basic Protocol 4: Selection of single-cell clones of immortalized mouse preadipocytes Basic Protocol 5: Single-cell sorting in a 96-well plate using a flow cytometer for the selection of single-cell clones of immortalized preadipocytes Support Protocol 2: Cryopreservation of immortalized mouse preadipocytes Support Protocol 3: Thawing and culture of cryopreserved immortalized mouse preadipocytes Support Protocol 4: Subculture and expansion of immortalized mouse preadipocytes Basic Protocol 6: Differentiation of immortalized mouse brown and white preadipocytes Support Protocol 5: Identification of differentiated white and brown adipocytes.
Collapse
Affiliation(s)
- Xiangdong Wu
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Salaheldeen Elsaid
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
| | - Winson Li
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sui Seng Tee
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Wang X, Jing Y, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li J, Xie Q, Li X, Wang H. Using integrated transcriptomics and metabolomics to explore the effects of infant formula on the growth and development of small intestinal organoids. Food Funct 2024; 15:9191-9209. [PMID: 39158038 DOI: 10.1039/d4fo01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Infant formulas are designed to provide sufficient energy and the necessary nutrients to support the growth and development of newborns. Currently, research on the functions of formula milk powder focuses on clinical research and cell experiments, and there were many cell experiments that investigated the effect of infant formulas on cellular growth. However, most of the cells used are tumor cell lines, which are unable to simulate the real digestion process of an infant. In this study, we innovatively proposed a method that integrates human small intestinal organoids (SIOs) with transcriptomics and metabolomics analysis. We induced directed differentiation of human embryonic stem cells into SIOs and simulated the intestinal environment of newborns with them. Then, three kinds of 1-stage infant formulas from the same brand were introduced to simulate the digestion, absorption, and metabolism of the infant intestine. The nutritional value of each formula milk powder was examined by multi-omics sequencing methods, including transcriptomics and metabolomics analysis. Results showed that there were significant alterations in gene expression and metabolites in the three groups of SIOs after absorbing different infant formulas. By analyzing transcriptome and metabolome data, combined with GO, KEGG, and GSEA analysis, we demonstrated the ability of SIOs to model the different aspects of the developing process of the intestine and discovered the correlation between formula components and their effects, including Lactobacillus lactis and lactoferrin. The study reveals the effect and mechanisms of formula milk powder on the growth and development of infant intestines and the formation of immune function. Furthermore, our method can help to construct a multi-level assessment model, detect the effects of nutrients, and evaluate the interactions between nutrients, which is helpful for future research and development of infant powders.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxin Jing
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Zhengyang Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd, C-16, 10A Jiuxianqiao Rd, Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
3
|
Patritti-Cram J, Rahrmann EP, Rizvi TA, Scheffer KC, Phoenix TN, Largaespada DA, Ratner N. NF1-dependent disruption of the blood-nerve-barrier is improved by blockade of P2RY14. iScience 2024; 27:110294. [PMID: 39100928 PMCID: PMC11294707 DOI: 10.1016/j.isci.2024.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/17/2023] [Accepted: 06/14/2024] [Indexed: 08/06/2024] Open
Abstract
The blood-nerve-barrier (BNB) that regulates peripheral nerve homeostasis is formed by endoneurial capillaries and perineurial cells surrounding the Schwann cell (SC)-rich endoneurium. Barrier dysfunction is common in human tumorigenesis, including in some nerve tumors. We identify barrier disruption in human NF1 deficient neurofibromas, which were characterized by reduced perineurial cell glucose transporter 1 (GLUT1) expression and increased endoneurial fibrin(ogen) deposition. Conditional Nf1 loss in murine SCs recapitulated these alterations and revealed decreased tight junctions and decreased caveolin-1 (Cav1) expression in mutant nerves and in tumors, implicating reduced Cav1-mediated transcytosis in barrier disruption and tumorigenesis. Additionally, elevated receptor tyrosine kinase activity and genetic deletion of Cav1 increased endoneurial fibrin(ogen), and promoted SC tumor formation. Finally, when SC lacked Nf1, genetic loss or pharmacological inhibition of P2RY14 rescued Cav1 expression and barrier function. Thus, loss of Nf1 in SC causes dysfunction of the BNB via P2RY14-mediated G-protein coupled receptor (GPCR) signaling.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0713, USA
| | - Eric P. Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine C. Scheffer
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Wrinkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
von Kügelgen I. Pharmacological characterization of P2Y receptor subtypes - an update. Purinergic Signal 2024; 20:99-108. [PMID: 37697211 PMCID: PMC10997570 DOI: 10.1007/s11302-023-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
5
|
Chen J, Zhou Y, Liu Z, Lu Y, Jiang Y, Cao K, Zhou N, Wang D, Zhang C, Zhou N, Shi K, Zhang L, Zhou L, Wang Z, Zhang H, Tang K, Ma J, Lv J, Huang B. Hepatic glycogenesis antagonizes lipogenesis by blocking S1P via UDPG. Science 2024; 383:eadi3332. [PMID: 38359126 DOI: 10.1126/science.adi3332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.
Collapse
Affiliation(s)
- Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhuohang Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yishen Jiang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kexin Cao
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dianheng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chaoqi Zhang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Zhou
- Department of Pathology, Sichuan Mianyang 404 Hospital, Sichuan 621000, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Li Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhenfeng Wang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Röthe J, Kraft R, Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D. The adhesion GPCR GPR116/ADGRF5 has a dual function in pancreatic islets regulating somatostatin release and islet development. Commun Biol 2024; 7:104. [PMID: 38228886 PMCID: PMC10791652 DOI: 10.1038/s42003-024-05783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Glucose homeostasis is maintained by hormones secreted from different cell types of the pancreatic islets and controlled by manifold input including signals mediated through G protein-coupled receptors (GPCRs). RNA-seq analyses revealed expression of numerous GPCRs in mouse and human pancreatic islets, among them Gpr116/Adgrf5. GPR116 is an adhesion GPCR mainly found in lung and required for surfactant secretion. Here, we demonstrate that GPR116 is involved in the somatostatin release from pancreatic delta cells using a whole-body as well as a cell-specific knock-out mouse model. Interestingly, the whole-body GPR116 deficiency causes further changes such as decreased beta-cell mass, lower number of small islets, and reduced pancreatic insulin content. Glucose homeostasis in global GPR116-deficient mice is maintained by counter-acting mechanisms modulating insulin degradation. Our data highlight an important function of GPR116 in controlling glucose homeostasis.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Robert Kraft
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Madlen Matz-Soja
- Medical Department II - Gastroenterology, Hepatology, Infectious Diseases, Pneumology, University Medical Center, Leipzig, Germany
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Infectious Diseases, and Pneumology, University Hospital, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Medical Faculty, Leipzig University, Leipzig, Germany
| | - André Nguyen Dietzsch
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Buchold
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
7
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
8
|
Baalmann F, Brendler J, Butthof A, Popkova Y, Engel KM, Schiller J, Winter K, Lede V, Ricken A, Schöneberg T, Schulz A. Reduced urine volume and changed renal sphingolipid metabolism in P2ry14-deficient mice. Front Cell Dev Biol 2023; 11:1128456. [PMID: 37250906 PMCID: PMC10213973 DOI: 10.3389/fcell.2023.1128456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The UDP-glucose receptor P2RY14, a rhodopsin-like G protein-coupled receptor (GPCR), was previously described as receptor expressed in A-intercalated cells of the mouse kidney. Additionally, we found P2RY14 is abundantly expressed in mouse renal collecting duct principal cells of the papilla and epithelial cells lining the renal papilla. To better understand its physiological function in kidney, we took advantage of a P2ry14 reporter and gene-deficient (KO) mouse strain. Morphometric studies showed that the receptor function contributes to kidney morphology. KO mice had a broader cortex relative to the total kidney area than wild-type (WT) mice. In contrast, the area of the outer stripe of the outer medulla was larger in WT compared to KO mice. Transcriptome comparison of the papilla region of WT and KO mice revealed differences in the gene expression of extracellular matrix proteins (e.g., decorin, fibulin-1, fibulin-7) and proteins involved in sphingolipid metabolism (e.g., small subunit b of the serine palmitoyltransferase) and other related GPCRs (e.g., GPR171). Using mass spectrometry, changes in the sphingolipid composition (e.g., chain length) were detected in the renal papilla of KO mice. At the functional level, we found that KO mice had a reduced urine volume but an unchanged glomerular filtration rate under normal chow and salt diets. Our study revealed P2ry14 as a functionally important GPCR in collecting duct principal cells and cells lining the renal papilla and the possible involvement of P2ry14 in nephroprotection by regulation of decorin.
Collapse
Affiliation(s)
- Fabian Baalmann
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jana Brendler
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Anne Butthof
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Yulia Popkova
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Kathrin M. Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Albert Ricken
- Institute of Anatomy, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Korb VG, Schultz IC, Beckenkamp LR, Wink MR. A Systematic Review of the Role of Purinergic Signalling Pathway in the Treatment of COVID-19. Int J Mol Sci 2023; 24:ijms24097865. [PMID: 37175571 PMCID: PMC10178215 DOI: 10.3390/ijms24097865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health concern. Three years since its origin, despite the approval of vaccines and specific treatments against this new coronavirus, there are still high rates of infection, hospitalization, and mortality in some countries. COVID-19 is characterised by a high inflammatory state and coagulation disturbances that may be linked to purinergic signalling molecules such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine (ADO), and purinergic receptors (P1 and P2). These nucleotides/nucleosides play important roles in cellular processes, such as immunomodulation, blood clot formation, and vasodilation, which are affected during SARS-CoV-2 infection. Therefore, drugs targeting this purinergic pathway, currently used for other pathologies, are being evaluated in preclinical and clinical trials for COVID-19. In this review, we focus on the potential of these drugs to control the release, degradation, and reuptake of these extracellular nucleotides and nucleosides to treat COVID-19. Drugs targeting the P1 receptors could have therapeutic efficacy due to their capacity to modulate the cytokine storm and the immune response. Those acting in P2X7, which is linked to NLRP3 inflammasome activation, are also valuable candidates as they can reduce the release of pro-inflammatory cytokines. However, according to the available preclinical and clinical data, the most promising medications to be used for COVID-19 treatment are those that modulate platelets behaviour and blood coagulation factors, mainly through the P2Y12 receptor.
Collapse
Affiliation(s)
- Vitoria Guero Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Iago Carvalho Schultz
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Sala 304 Centro, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
10
|
Janssen E, Alosaimi MF, Alazami AM, Alsuliman A, Alaiya A, Al-Saud B, Al-Mousa H, Al-Zaid TJ, Smith E, Platt CD, Alruwaili H, Albanyan S, Al-Mayouf SM, Geha RS. A homozygous truncating mutation of FGL2 is associated with immune dysregulation. J Allergy Clin Immunol 2023; 151:572-578.e1. [PMID: 36243222 DOI: 10.1016/j.jaci.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The type II transmembrane protein fibrinogen-like protein 2 (FGL2) plays critical roles in hemostasis and immune regulation. The C-terminal immunoregulatory domain of FGL2 can be secreted and is a mediator of regulatory T (Treg) cell suppression. Fgl2-/- mice develop autoantibodies and glomerulonephritis and have impaired Treg cell function. OBJECTIVE Our aim was to identify the genetic underpinning and immune function in a patient with childhood onset of leukocytoclastic vasculitis, systemic inflammation, and autoantibodies. METHODS Whole-exome sequencing was performed on patient genomic DNA. FGL2 protein expression was examined in HEK293 transfected cells by immunoblotting and in PBMCs by flow cytometry. T follicular helper cells and Treg cells were examined by flow cytometry. Treg cell suppression of T-cell proliferation was assessed in vitro. RESULTS The patient had a homozygous mutation in FGL2 (c.614_617del:p.V205fs), which led to the expression of a truncated FGL2 protein that preserves the N-terminal domain but lacks the C-terminal immunoregulatory domain. The patient had an increased percentage of circulating T follicular helper and Treg cells. The patient's Treg cells had impaired in vitro suppressive ability that was rescued by the addition of full-length FGL2. Unlike full-length FGL2, the truncated FGL2V205fs mutant failed to suppress T-cell proliferation. CONCLUSIONS We identified a homozygous mutation in FGL2 in a patient with immune dysregulation and impaired Treg cell function. Soluble FGL2 rescued the Treg cell defect, suggesting that it may provide a useful therapy for the patient.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass.
| | - Mohammad F Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah Alsuliman
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bandar Al-Saud
- Department of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Department of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Jassim Al-Zaid
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Emma Smith
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Hibah Alruwaili
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah Albanyan
- Department of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sulaiman M Al-Mayouf
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
11
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
12
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
13
|
Thor D. G protein-coupled receptors as regulators of pancreatic islet functionality. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119235. [PMID: 35151663 DOI: 10.1016/j.bbamcr.2022.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
Abstract
Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.
Collapse
Affiliation(s)
- Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
14
|
Mederacke I, Filliol A, Affo S, Nair A, Hernandez C, Sun Q, Hamberger F, Brundu F, Chen Y, Ravichandra A, Huebener P, Anke H, Shi H, de la Torre RAMG, Smith JR, Henderson NC, Vondran FWR, Rothlin CV, Baehre H, Tabas I, Sancho-Bru P, Schwabe RF. The purinergic P2Y14 receptor links hepatocyte death to hepatic stellate cell activation and fibrogenesis in the liver. Sci Transl Med 2022; 14:eabe5795. [PMID: 35385339 PMCID: PMC9436006 DOI: 10.1126/scitranslmed.abe5795] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrosis contributes to ~45% of deaths in western countries. In chronic liver disease, fibrosis is a major factor determining outcomes, but efficient antifibrotic therapies are lacking. Although platelet-derived growth factor and transforming growth factor-β constitute key fibrogenic mediators, they do not account for the well-established link between cell death and fibrosis in the liver. Here, we hypothesized that damage-associated molecular patterns (DAMPs) may link epithelial cell death to fibrogenesis in the injured liver. DAMP receptor screening identified purinergic receptor P2Y14 among several candidates as highly enriched in hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Conversely, P2Y14 ligands uridine 5'-diphosphate (UDP)-glucose and UDP-galactose were enriched in hepatocytes and were released upon different modes of cell death. Accordingly, ligand-receptor interaction analysis that combined proteomic and single-cell RNA sequencing data revealed P2Y14 ligands and P2Y14 receptor as a link between dying cells and HSCs, respectively. Treatment with P2Y14 ligands or coculture with dying hepatocytes promoted HSC activation in a P2Y14-dependent manner. P2Y14 ligands activated extracellular signal-regulated kinase (ERK) and Yes-associated protein (YAP) signaling in HSCs, resulting in ERK-dependent HSC activation. Global and HSC-selective P2Y14 deficiency attenuated liver fibrosis in multiple mouse models of liver injury. Functional expression of P2Y14 was confirmed in healthy and diseased human liver and human HSCs. In conclusion, P2Y14 ligands and their receptor constitute a profibrogenic DAMP pathway that directly links cell death to fibrogenesis.
Collapse
Affiliation(s)
- Ingmar Mederacke
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Silvia Affo
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Ajay Nair
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Celine Hernandez
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Current affiliation: Centre for Liver and Gastrointestinal Research, University of Birmingham, B15 2TT Birmingham, UK
| | - Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Florian Hamberger
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Francesco Brundu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yu Chen
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Aashreya Ravichandra
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Current affiliation: Klinikum Rechts der Isar, TUM, 81675 Munich, Germany
| | - Peter Huebener
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Current affiliation: First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helena Anke
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Current affiliation: Department of General, Visceral and Transplant Surgery, 30625 Hannover Medical School, Hannover, Germany
| | - Hongxue Shi
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Raquel A. Martínez García de la Torre
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - James R. Smith
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Carla V. Rothlin
- Department of Immunobiology and Pharmacology, Yale University, New Haven, CT 06519, USA
| | - Heike Baehre
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Ira Tabas
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Physiology; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, New York, NY 10032, USA
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, New York, NY 10032, USA
- Department of Hepatology & Gastroenterology, Charité, 10117 Berlin, Germany
| |
Collapse
|
15
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
16
|
Kaczmarek I, Suchý T, Prömel S, Schöneberg T, Liebscher I, Thor D. The relevance of adhesion G protein-coupled receptors in metabolic functions. Biol Chem 2021; 403:195-209. [PMID: 34218541 DOI: 10.1515/hsz-2021-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
- Institute of Cell Biology, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
17
|
Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2021; 19:1536012120927609. [PMID: 32539522 PMCID: PMC7297484 DOI: 10.1177/1536012120927609] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.
Collapse
Affiliation(s)
- Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
19
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The clinical impact of maternal weight on offspring health: lights and shadows in breast milk metabolome. Expert Rev Proteomics 2021; 18:571-606. [PMID: 34107825 DOI: 10.1080/14789450.2021.1940143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pre-pregnancy overweight and obesity, depending on maternal nutrition and metabolic state, can influence fetal, neonatal and long-term offspring health, regarding cardio-metabolic, respiratory, immunological and cognitive outcomes. Thus, maternal weight can act, through mechanisms that are not full understood, on the physiology and metabolism of some fetal organs and tissues, to adapt themselves to the intrauterine environment and nutritional reserves. These effects could occur by modulating gene expression, neonatal microbiome, and through breastfeeding. AREAS COVERED In this paper, we investigated the potential effects of metabolites found altered in breast milk (BM) of overweight/obese mothers, through an extensive review of metabolomics studies, and the potential short- and long-term clinical effects in the offspring, especially regarding overweight, glucose homeostasis, insulin resistance, oxidative stress, infections, immune processes, and neurodevelopment. EXPERT OPINION Metabolomics seems the ideal tool to investigate BM variation depending on maternal or fetal/neonatal factors. In particular, BM metabolome alterations according to maternal conditions were recently pointed out in cases of gestational diabetes, preeclampsia, intrauterine growth restriction and maternal overweight/obesity. In our opinion, even if BM is the food of choice in neonatal nutrition, the deepest comprehension of its composition in overweight/obese mothers could allow targeted supplementation, to improve offspring health and metabolic homeostasis.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, section of Pediatrics, University of Pisa, Italy. Via Roma, 55, 56126 Pisa PI, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari. SS 554 km 4,500, 09042 Monserrato. Italy
| |
Collapse
|
20
|
Lu R, Wang Y, Liu C, Zhang Z, Li B, Meng Z, Jiang C, Hu Q. Design, synthesis and evaluation of 3-amide-5-aryl benzoic acid derivatives as novel P2Y 14R antagonists with potential high efficiency against acute gouty arthritis. Eur J Med Chem 2021; 216:113313. [PMID: 33667846 DOI: 10.1016/j.ejmech.2021.113313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 01/26/2023]
Abstract
P2Y14 nucleotide receptor plays important roles in series of physiological and pathologic events especially associated with immune and inflammation. Based on the 3-amide benzoic acid scaffold reported by our group previously, a series of 5-aryl-3-amide benzoic acid derivatives were designed as novel P2Y14 antagonists with improved pharmacokinetic properties. Among which compound 11m showed most potent P2Y14 antagonizing activity with an IC50 value of 2.18 nM, furnishing greatly improved water solubility and bioavailability compared with PPTN. In MSU-induced acute gouty arthritis model in mice, 11m exerted promising in vivo efficacy in alleviating mice paw swelling and inflammatory infiltration. Mechanistically, compound 11m notably blocked pyroptosis of macrophages through inhibiting NLRP3 inflammasome activation. This work may contribute to the identification of potential therapeutic agents to intervene in acute gouty arthritis.
Collapse
Affiliation(s)
- Ran Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yilin Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Baiyang Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zibo Meng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
21
|
New small molecule fluorescent probes for G protein-coupled receptors: valuable tools for drug discovery. Future Med Chem 2020; 13:63-90. [PMID: 33319586 DOI: 10.4155/fmc-2019-0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are essential signaling proteins and tractable therapeutic targets. To develop new drug candidates, GPCR drug discovery programs require versatile, sensitive pharmacological tools for ligand binding and compound screening. With the availability of new imaging modalities and proximity-based ligand binding technologies, fluorescent ligands offer many advantages and are increasingly being used, yet labeling small molecules remains considerably more challenging relative to peptides. Focusing on recent fluorescent small molecule studies for family A GPCRs, this review addresses some of the key challenges, synthesis approaches and structure-activity relationship considerations, and discusses advantages of using high-resolution GPCR structures to inform conjugation strategies. While no single approach guarantees successful labeling without loss of affinity or selectivity, the choice of fluorophore, linker type and site of attachment have proved to be critical factors that can significantly affect their utility in drug discovery programs, and as discussed, can sometimes lead to very unexpected results.
Collapse
|
22
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
23
|
Parandeh F, Amisten S, Verma G, Mohammed Al-Amily I, Dunér P, Salehi A. Inhibitory effect of UDP-glucose on cAMP generation and insulin secretion. J Biol Chem 2020; 295:15245-15252. [PMID: 32855238 DOI: 10.1074/jbc.ra120.012929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
Type-2 diabetes (T2D) is a global disease caused by the inability of pancreatic β-cells to secrete adequate insulin. However, the molecular mechanisms underlying the failure of β-cells to respond to glucose in T2D remains unknown. Here, we investigated the relative contribution of UDP-glucose (UDP-G), a P2Y14-specific agonist, in the regulation of insulin release using human isolated pancreatic islets and INS-1 cells. P2Y14 was expressed in both human and rodent pancreatic β-cells. Dose-dependent activation of P2Y14 by UDP-G suppressed glucose-stimulated insulin secretion (GSIS) and knockdown of P2Y14 abolished the UDP-G effect. 12-h pretreatment of human islets with pertussis-toxin (PTX) improved GSIS and prevented the inhibitory effect of UDP-G on GSIS. UDP-G on GSIS suppression was associated with suppression of cAMP in INS-1 cells. UDP-G decreased the reductive capacity of nondiabetic human islets cultured at 5 mm glucose for 72 h and exacerbated the negative effect of 20 mm glucose on the cell viability during culture period. T2D donor islets displayed a lower reductive capacity when cultured at 5 mm glucose for 72 h that was further decreased in the presence of 20 mm glucose and UDP-G. Presence of a nonmetabolizable cAMP analog during culture period counteracted the effect of glucose and UDP-G. Islet cultures at 20 mm glucose increased apoptosis, which was further amplified when UDP-G was present. UDP-G modulated glucose-induced proliferation of INS-1 cells. The data provide intriguing evidence for P2Y14 and UDP-G's role in the regulation of pancreatic β-cell function.
Collapse
Affiliation(s)
- Fariborz Parandeh
- Department of Clinical Science, Division of Islet Cell Physiology, UMAS University of Lund, Malmö, Sweden
| | - Stefan Amisten
- Department of Clinical Science, Division of Islet Cell Physiology, UMAS University of Lund, Malmö, Sweden
| | - Gaurav Verma
- Department of Clinical Science, Division of Islet Cell Physiology, UMAS University of Lund, Malmö, Sweden
| | - Israa Mohammed Al-Amily
- Department of Clinical Science, Division of Islet Cell Physiology, UMAS University of Lund, Malmö, Sweden
| | - Pontus Dunér
- Experimental Cardiovascular Research Unit Clinical Research Centre, UMAS University of Lund, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Science, Division of Islet Cell Physiology, UMAS University of Lund, Malmö, Sweden.
| |
Collapse
|
24
|
Jung YH, Yu J, Wen Z, Salmaso V, Karcz TP, Phung NB, Chen Z, Duca S, Bennett JM, Dudas S, Salvemini D, Gao ZG, Cook DN, Jacobson KA. Exploration of Alternative Scaffolds for P2Y 14 Receptor Antagonists Containing a Biaryl Core. J Med Chem 2020; 63:9563-9589. [PMID: 32787142 DOI: 10.1021/acs.jmedchem.0c00745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various heteroaryl and bicyclo-aliphatic analogues of zwitterionic biaryl P2Y14 receptor (P2Y14R) antagonists were synthesized, and affinity was measured in P2Y14R-expressing Chinese hamster ovary cells by flow cytometry. Given this series' low water solubility, various polyethylene glycol derivatives of the distally binding piperidin-4-yl moiety of moderate affinity were synthesized. Rotation of previously identified 1,2,3-triazole attached to the central m-benzoic acid core (25) provided moderate affinity but not indole and benzimidazole substitution of the aryl-triazole. The corresponding P2Y14R region is predicted by homology modeling as a deep, sterically limited hydrophobic pocket, with the outward pointing piperidine moiety being the most flexible. Bicyclic-substituted piperidine ring derivatives of naphthalene antagonist 1, e.g., quinuclidine 17 (MRS4608, IC50 ≈ 20 nM at hP2Y14R/mP2Y14R), or of triazole 2, preserved affinity. Potent antagonists 1, 7a, 17, and 23 (10 mg/kg) protected in an ovalbumin/Aspergillus mouse asthma model, and PEG conjugate 12 reduced chronic pain. Thus, we expanded P2Y14R antagonist structure-activity relationship, introducing diverse physical-chemical properties.
Collapse
Affiliation(s)
- Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jinha Yu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tadeusz P Karcz
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina 27709, United States.,Jagiellonian University, Kraków31-007, Poland
| | - Ngan B Phung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Sierra Duca
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John M Bennett
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Steven Dudas
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, Saint Louis, Missouri 63104, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Donald N Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
25
|
Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol 2020; 11:1533. [PMID: 32793208 PMCID: PMC7385070 DOI: 10.3389/fimmu.2020.01533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pre-pregnancy body mass index (BMI) is a major relevance factor, since maternal overweight and obesity can impair the pregnancy outcome and represent risk factors for several neonatal, childhood, and adult conditions, including excessive weight gain, cardiovascular disease, diabetes mellitus, and even behavioral disorders. Currently, breast milk (BM) composition in such category of mothers was not completely defined. In this field, metabolomics represents the ideal technology, able to detect the whole profile of low molecular weight molecules in BM. Limited information is available on human BM metabolites differences in overweight or obese compared to lean mothers. Analyzing all the metabolomics studies published on Medline in English language, this review evaluated the effects that 8 specific types of metabolites found altered by maternal overweight and obesity (nucleotide derivatives, 5-methylthioadenosine, sugar-alcohols, acylcarnitine and amino acids, polyamines, mono-and oligosaccharides, lipids) can exert on the risk of offspring obesity development and other potentially associated health outcomes and complications. However, metabolites variations in samples collected from overweight and obese mothers and the potentially correlated effects highlighted below still need further investigations and should be confirmed in future metabolomics studies on larger samples. Finally, the positive or negative influence of maternal overweight and obesity on the offspring, potentially exerted by breastfeeding, should be analyzed in close correlation with maternal age, genetic and environmental factors, including diet, and taking into account the interactions occurring between BM metabolites and lactobiome. The evaluation of all the factors affecting BM metabolites in overweight and obese mothers can lead to the comprehensive description of such biofluid and the related effects on breastfed subjects, potentially highlighting personalized needs of BM supplementation or short- and long-term prevention strategies to optimize offspring health.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Melania Puddu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, Monserrato, Italy
| |
Collapse
|
26
|
Mufti F, Jung YH, Giancotti LA, Yu J, Chen Z, Phung NB, Jacobson KA, Salvemini D. P2Y 14 Receptor Antagonists Reverse Chronic Neuropathic Pain in a Mouse Model. ACS Med Chem Lett 2020; 11:1281-1286. [PMID: 32551012 DOI: 10.1021/acsmedchemlett.0c00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Eight P2Y14R antagonists, including three newly synthesized analogues, containing a naphthalene or phenyl-triazolyl scaffold were compared in a mouse model of chronic neuropathic pain (sciatic constriction). P2Y14R antagonists rapidly (≤30 min) reversed mechano-allodynia, with maximal effects typically within 1 h after injection. Two analogues (4-[4-(4-piperidinyl)phenyl]-7-[4-(trifluoromethyl)phenyl]-2-naphthalenecarboxylic acid 1 and N-acetyl analogue 4, 10 μmol/kg, i.p.) achieved complete pain reversal (100%) at 1 to 2 h, with relief evident up to 5 h for 4 (41%). A reversed triazole analogue 7 reached 87% maximal protection. Receptor affinity was determined using a fluorescent antagonist binding assay, indicating similar mouse and human P2Y14R affinity. The mP2Y14R affinity was only partially predictive of in vivo efficacy, suggesting the influence of pharmacokinetic factors. Thus P2Y14R is a potential therapeutic target for treating chronic pain.
Collapse
Affiliation(s)
- Fatma Mufti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Jinha Yu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, United States
| | - Ngan B. Phung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, United States
| |
Collapse
|
27
|
Ma J, Wei K, Liu J, Tang K, Zhang H, Zhu L, Chen J, Li F, Xu P, Chen J, Liu J, Fang H, Tang L, Wang D, Zeng L, Sun W, Xie J, Liu Y, Huang B. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses. Nat Commun 2020; 11:1769. [PMID: 32286295 PMCID: PMC7156451 DOI: 10.1038/s41467-020-15636-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Our current understanding of how sugar metabolism affects inflammatory pathways in macrophages is incomplete. Here, we show that glycogen metabolism is an important event that controls macrophage-mediated inflammatory responses. IFN-γ/LPS treatment stimulates macrophages to synthesize glycogen, which is then channeled through glycogenolysis to generate G6P and further through the pentose phosphate pathway to yield abundant NADPH, ensuring high levels of reduced glutathione for inflammatory macrophage survival. Meanwhile, glycogen metabolism also increases UDPG levels and the receptor P2Y14 in macrophages. The UDPG/P2Y14 signaling pathway not only upregulates the expression of STAT1 via activating RARβ but also promotes STAT1 phosphorylation by downregulating phosphatase TC45. Blockade of this glycogen metabolic pathway disrupts acute inflammatory responses in multiple mouse models. Glycogen metabolism also regulates inflammatory responses in patients with sepsis. These findings show that glycogen metabolism in macrophages is an important regulator and indicate strategies that might be used to treat acute inflammatory diseases.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Keke Wei
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Junwei Liu
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liyan Zhu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jie Chen
- Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071, China
| | - Fei Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Pingwei Xu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jie Chen
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jincheng Liu
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Haiqing Fang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liang Tang
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Dianheng Wang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Liping Zeng
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Weiwei Sun
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jing Xie
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.,Clinical Immunology Center, CAMS, Beijing, 100005, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.,Clinical Immunology Center, CAMS, Beijing, 100005, China
| | - Bo Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China. .,Clinical Immunology Center, CAMS, Beijing, 100005, China.
| |
Collapse
|
28
|
Röthe J, Thor D, Winkler J, Knierim AB, Binder C, Huth S, Kraft R, Rothemund S, Schöneberg T, Prömel S. Involvement of the Adhesion GPCRs Latrophilins in the Regulation of Insulin Release. Cell Rep 2020; 26:1573-1584.e5. [PMID: 30726739 DOI: 10.1016/j.celrep.2019.01.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Insulin secretion from pancreatic β cells is a highly complex and tightly regulated process. Its dysregulation is one characteristic of type 2 diabetes, and thus, an in-depth understanding of the mechanisms controlling insulin secretion is essential for rational therapeutic intervention. G-protein-coupled receptors (GPCRs) have been established as major regulators of insulin exocytosis. Recent studies also suggest the involvement of adhesion GPCRs, a non-prototypical class of GPCRs. Here, we identify latrophilins, which belong to the class of adhesion GPCRs, to be highly expressed in different cell types of pancreatic islets. In vitro and ex vivo analyses show that distinct splice variants of the latrophilin LPHN3/ADGRL3 decrease insulin secretion from pancreatic β cells by reducing intracellular cyclic AMP levels via the Gi-mediated pathway. Our data highlight the key role of LPHN3 in modulating insulin secretion and its potential as therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Juliane Röthe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| | - Jana Winkler
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Alexander B Knierim
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Claudia Binder
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Sandra Huth
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide Technologies, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Germany.
| |
Collapse
|
29
|
Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biol Proced Online 2020; 22:4. [PMID: 32082084 PMCID: PMC7023723 DOI: 10.1186/s12575-019-0116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Targeting G protein-coupled receptors (GPCRs) in pancreatic cells is feasible to modulate glucose-induced insulin secretion. Because pancreatic islets consist of several cell types and GPCRs can couple to more than one G-protein family, results obtained in pancreatic cell lines do not always match the response in primary cells or intact islets. Therefore, we set out to establish a protocol to analyze second messenger activation in mouse pancreatic islets. Results Activation of Gq/11-coupled receptor expressed in primary β cells increased the second messenger IP1 in an accumulation assay. Applying a Gq/11 protein inhibitor completely abolished this signal. Activation of the V1 vasopressin and ghrelin receptors, predominantly expressed in the less abundant alpha and delta cells, was not sufficient to induce a significant IP1 increase in this assay. However, fura-2-based fluorescence imaging showed calcium signals upon application of arginine vasopressin or ghrelin within intact pancreatic islets. Using the here established protocol we were also able to determine changes in intracellular cAMP levels induced by receptors coupling to Gs and Gi/o proteins. Conclusions Detection of the second messengers IP1, cAMP, and calcium, can be used to reliably analyze GPCR activation in intact islets.
Collapse
|
30
|
Abstract
Purinergic signaling involves extracellular purines and pyrimidines acting upon specific cell surface purinoceptors classified into the P1, P2X, and P2Y families for nucleosides and nucleotides. This widespread signaling mechanism is active in all major tissues and influences a range of functions in health and disease. Orthologs to all but one of the human purinoceptors have been found in mouse, making this laboratory animal a useful model to study their function. Indeed, analyses of purinoceptors via knock-in or knockout approaches to produce gain or loss of function phenotypes have revealed several important therapeutic targets. None of the homozygous purinoceptor knockouts proved to be developmentally lethal, which suggest that either these receptors are not involved in key developmental processes or that the large number of receptors in each family allowed for functional compensation. Different models for the same purinoceptor often show compatible phenotypes but there have been examples of significant discrepancies. These revealed unexpected differences in the structure of human and mouse genes and emphasized the importance of the genetic background of different mouse strains. In this chapter, we provide an overview of the current knowledge and new trends in the modifications of purinoceptor genes in vivo. We discuss the resulting phenotypes, their applications and relative merits and limitations of mouse models available to study purinoceptor subtypes.
Collapse
Affiliation(s)
- Robin M H Rumney
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Dariusz C Górecki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
- Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| |
Collapse
|
31
|
Morgan RK, Anderson GR, Araç D, Aust G, Balenga N, Boucard A, Bridges JP, Engel FB, Formstone CJ, Glitsch MD, Gray RS, Hall RA, Hsiao CC, Kim HY, Knierim AB, Kusuluri DK, Leon K, Liebscher I, Piao X, Prömel S, Scholz N, Srivastava S, Thor D, Tolias KF, Ushkaryov YA, Vallon M, Van Meir EG, Vanhollebeke B, Wolfrum U, Wright KM, Monk KR, Mogha A. The expanding functional roles and signaling mechanisms of adhesion G protein-coupled receptors. Ann N Y Acad Sci 2019; 1456:5-25. [PMID: 31168816 PMCID: PMC7891679 DOI: 10.1111/nyas.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022]
Abstract
The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.
Collapse
Affiliation(s)
- Rory K. Morgan
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Garret R. Anderson
- Department of Molecular, Cell and Systems Biology, University of California – Riverside, Riverside, California
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Gabriela Aust
- Research Laboratories, Department of Surgery, Leipzig University, Leipzig, Germany
| | - Nariman Balenga
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Program in Molecular and Structural Biology, Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, Baltimore, Maryland
| | - Antony Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, México
| | - James P. Bridges
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Caroline J. Formstone
- Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, UK
- Department of Biological and Environmental Sciences, College Lane Campus, University of Hertfordshire, Hatfield, UK
| | - Maike D. Glitsch
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ryan S. Gray
- Department of Pediatrics, University of Texas at Austin, Dell Medical School, Austin, Texas
| | - Randy A. Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Alexander B. Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Xianhua Piao
- Newborn Brain Research Institute, Department of Pediatrics, University of California – San Francisco, San Francisco, California
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Leipzig University, Leipzig, Germany
| | - Swati Srivastava
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Mario Vallon
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Erwin G. Van Meir
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Benoit Vanhollebeke
- Laboratory of Neurovascular Signaling, Department of Molecular Biology, ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Gosselies, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kevin M. Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Kelly R. Monk
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Amit Mogha
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
32
|
Zhang Z, Hao K, Li H, Lu R, Liu C, Zhou M, Li B, Meng Z, Hu Q, Jiang C. Design, synthesis and anti-inflammatory evaluation of 3-amide benzoic acid derivatives as novel P2Y14 receptor antagonists. Eur J Med Chem 2019; 181:111564. [DOI: 10.1016/j.ejmech.2019.111564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 01/10/2023]
|
33
|
Lu R, Zhang Z, Jiang C. Recent progress on the discovery of P2Y 14 receptor antagonists. Eur J Med Chem 2019; 175:34-39. [PMID: 31071548 DOI: 10.1016/j.ejmech.2019.04.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/16/2022]
Abstract
The P2Y14 receptor (P2Y14R), a G protein-coupled receptor (GPCR), is activated by extracellular nucleotides. P2Y14R is involved in inflammatory, diabetes, immune processes and other related complications, and is therefore an attractive therapeutic target. As the three-dimensional structure of the P2Y14R has not yet been elucidated, homology modeling based on the crystallography of the closely related P2Y12R have been used in the structure-based design of P2Y14R ligands. Several P2Y14R antagonists with excellent potency and high subtype-selectivity have been discovered in recent years. In this review, development of novel small molecules as antagonists of P2Y14R was described.
Collapse
Affiliation(s)
- Ran Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenguo Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
34
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
35
|
Bauer C, Kaiser J, Sikimic J, Krippeit-Drews P, Düfer M, Drews G. ATP mediates a negative autocrine signal on stimulus-secretion coupling in mouse pancreatic β-cells. Endocrine 2019; 63:270-283. [PMID: 30229397 DOI: 10.1007/s12020-018-1731-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE The role of ATP, which is secreted by pancreatic β-cells, is still a matter of debate. It has been postulated that extracellular ATP acts as a positive auto- or paracrine signal in β-cells amplifying insulin secretion. However, there is rising evidence that extracellular ATP may also mediate a negative signal. METHODS We evaluated whether extracellular ATP interferes with the Ca2+-mediated negative feedback mechanism that regulates oscillatory activity of β-cells. RESULTS To experimentally uncover the Ca2+-induced feedback we applied a high extracellular Ca2+ concentration. Under this condition ATP (100 µM) inhibited glucose-evoked oscillations of electrical activity and hyperpolarized the membrane potential. Furthermore, ATP acutely increased the interburst phase of Ca2+ oscillations and reduced the current through L-type Ca2+ channels. Accordingly, ATP (500 µM) decreased glucose-induced insulin secretion. The ATP effect was not mimicked by AMP, ADP, or adenosine. The use of specific agonists and antagonists and mice deficient of large conductance Ca2+-dependent K+ channels revealed that P2X, but not P2Y receptors, and Ca2+-dependent K+ channels are involved in the underlying signaling cascade induced by ATP. The effectiveness of ATP to interfere with parameters of stimulus-secretion coupling is markedly reduced at low extracellular Ca2+ concentration. CONCLUSION It is suggested that extracellular ATP which is co-secreted with insulin in a pulsatile manner during glucose-stimulated exocytosis provides a negative feedback signal driving β-cell oscillations in co-operation with Ca2+ and other signals.
Collapse
Affiliation(s)
- Cita Bauer
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany
| | - Julia Kaiser
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany
| | - Jelena Sikimic
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany
| | - Peter Krippeit-Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany
| | - Martina Düfer
- Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, Münster, D-48149, Germany
| | - Gisela Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, Tübingen, D-72076, Germany.
| |
Collapse
|
36
|
Boerman EM, Sen S, Shaw RL, Joshi T, Segal SS. Gene expression profiles of ion channels and receptors in mouse resistance arteries: Effects of cell type, vascular bed, and age. Microcirculation 2018; 25:e12452. [PMID: 29577514 PMCID: PMC5949082 DOI: 10.1111/micc.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/19/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Receptors and ion channels of smooth muscle cells (SMCs) and endothelial cells (ECs) are integral to the regulation of vessel diameter and tissue blood flow. Physiological roles of ion channels and receptors in skeletal muscle and mesenteric arteries have been identified; however, their gene expression profiles are undefined. We tested the hypothesis that expression profiles for ion channels and receptors governing vascular reactivity vary with cell type, vascular bed, and age. METHODS Mesenteric and superior epigastric arteries were dissected from Old (24-26 months) and Young (3-6 months) C57BL/6J mice. ECs and SMCs were collected for analysis with custom qRT-PCR arrays to determine expression profiles of 80 ion channel and receptor genes. Bioinformatics analyses were applied to gain insight into functional interactions. RESULTS We identified 68 differences in gene expression with respect to cell type, vessel type, and age. Heat maps illustrate differential expression, and distance matrices predict patterns of coexpression. Gene networks based upon protein-protein interaction datasets and KEGG pathways illustrate biological processes affected by specific differences in gene expression. CONCLUSIONS Differences in gene expression profiles are most pronounced between microvascular ECs and SMCs with subtle variations between vascular beds and age groups.
Collapse
Affiliation(s)
- Erika M. Boerman
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Rebecca L. Shaw
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, MO 65211
- Health Management and Informatics and Office of Research, School of Medicine, University of Missouri, Columbia, MO 65212
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Steven S. Segal
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65211
| |
Collapse
|
37
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
38
|
UDP-sugars activate P2Y 14 receptors to mediate vasoconstriction of the porcine coronary artery. Vascul Pharmacol 2017; 103-105:36-46. [PMID: 29253618 PMCID: PMC5906693 DOI: 10.1016/j.vph.2017.12.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
Abstract
Aims UDP-sugars can act as extracellular signalling molecules, but relatively little is known about their cardiovascular actions. The P2Y14 receptor is a Gi/o-coupled receptor which is activated by UDP-glucose and related sugar nucleotides. In this study we sought to investigate whether P2Y14 receptors are functionally expressed in the porcine coronary artery using a selective P2Y14 receptor agonist, MRS2690, and a novel selective P2Y14 receptor antagonist, PPTN (4,7-disubstituted naphthoic acid derivative). Methods and results Isometric tension recordings were used to evaluate the effects of UDP-sugars in porcine isolated coronary artery segments. The effects of the P2 receptor antagonists suramin and PPADS, the P2Y14 receptor antagonist PPTN, and the P2Y6 receptor antagonist MRS2578, were investigated. Measurement of vasodilator-stimulated phosphoprotein (VASP) phosphorylation using flow cytometry was used to assess changes in cAMP levels. UDP-glucose, UDP-glucuronic acid UDP-N-acetylglucosamine (P2Y14 receptor agonists), elicited concentration-dependent contractions of the porcine coronary artery. MRS2690 was a more potent vasoconstrictor than the UDP-sugars. Concentration dependent contractile responses to MRS2690 and UDP-sugars were enhanced in the presence of forskolin (activator of cAMP), where the level of basal tone was maintained by addition of U46619, a thromboxane A2 mimetic. Contractile responses to MRS2690 were blocked by PPTN, but not by MRS2578. Contractile responses to UDP-glucose were also attenuated by PPTN and suramin, but not by MRS2578. Forskolin-induced VASP-phosphorylation was reduced in porcine coronary arteries exposed to UDP-glucose and MRS2690, consistent with P2Y14 receptor coupling to Gi/o proteins and inhibition of adenylyl cyclase activity. Conclusions Our data support a role of UDP-sugars as extracellular signalling molecules and show for the first time that they mediate contraction of porcine coronary arteries via P2Y14 receptors.
Collapse
|
39
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
40
|
Merkwitz C, Blaschuk O, Schulz A, Ricken AM. Comments on Methods to Suppress Endogenous β-Galactosidase Activity in Mouse Tissues Expressing the LacZ Reporter Gene. J Histochem Cytochem 2016; 64:579-86. [PMID: 27555495 DOI: 10.1369/0022155416665337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
The Escherichia coli LacZ gene (encoding β-galactosidase) is a widely used reporter for gene regulation analysis in transgenic mice. Determination of β-galactosidase activity is classically performed using 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside/ferri-/ferrocyanide (X-Gal/FeCN) histochemistry. Uncertainty about the origin of the β-galactosidase signal is encountered in tissues containing high levels of endogenous β-galactosidase. Here, we show that reliable results can nevertheless be obtained in these tissues by performing the histochemical reaction under slightly basic pH conditions (pH 8-9). We further demonstrate that in this context, analysis of tissue sections may be advantageous over that of conventional whole-mount tissues because poor dye penetration and remaining tissue acidity are avoided in tissue sections. We also recommend that bacterial debris should always be carefully removed from the luminal surface of gastrointestinal tract specimens unless staining of resident microflora is deliberately used as an internal positive control in the assay. Finally, we show that 6-chloro-3-indolyl-β-d-galactopyranoside with nitrotetrazolium blue chloride works well as an alternative chromogenic substrate for visualizing LacZ reporter gene expression in cryostat sections. Its use in high endogenous β-galactosidase-expressing organs is superior over the use of X-Gal/FeCN at slightly basic pH conditions.
Collapse
Affiliation(s)
- Claudia Merkwitz
- Institute of Anatomy ,Faculty of Medicine, University of Leipzig, Leipzig, Germany(CM, AMR)
| | - Orest Blaschuk
- Faculty of Medicine, University of Leipzig, Leipzig, Germany, and Division of Urology, Department of Surgery, McGill University, Montreal, Québec, Canada (OB).,Division of Urology, Department of Surgery, McGill University, Montreal, Québec, Canada (OB)
| | - Angela Schulz
- Institute of Biochemistry ,Faculty of Medicine, University of Leipzig, Leipzig, Germany(AS),IFB AdiposityDiseases ,Faculty of Medicine, University of Leipzig, Leipzig, Germany(AS)
| | - Albert Markus Ricken
- Institute of Anatomy ,Faculty of Medicine, University of Leipzig, Leipzig, Germany(CM, AMR)
| |
Collapse
|
41
|
Junker A, Balasubramanian R, Ciancetta A, Uliassi E, Kiselev E, Martiriggiano C, Trujillo K, Mtchedlidze G, Birdwell L, Brown KA, Harden TK, Jacobson KA. Structure-Based Design of 3-(4-Aryl-1H-1,2,3-triazol-1-yl)-Biphenyl Derivatives as P2Y14 Receptor Antagonists. J Med Chem 2016; 59:6149-68. [PMID: 27331270 PMCID: PMC4947982 DOI: 10.1021/acs.jmedchem.6b00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UDP and UDP-glucose activate the P2Y14 receptor (P2Y14R) to modulate processes related to inflammation, diabetes, and asthma. A computational pipeline suggested alternatives to naphthalene of a previously reported P2Y14R antagonist (3, PPTN) using docking and molecular dynamics simulations on a hP2Y14R homology model based on P2Y12R structures. By reevaluating the binding of 3 to P2Y14R computationally, two alternatives, i.e., alkynyl and triazolyl derivatives, were identified. Improved synthesis of fluorescent antagonist 4 enabled affinity quantification (IC50s, nM) using flow cytometry of P2Y14R-expressing CHO cells. p-F3C-phenyl-triazole 65 (32) was more potent than a corresponding alkyne 11. Thus, additional triazolyl derivatives were prepared, as guided by docking simulations, with nonpolar aryl substituents favored. Although triazoles were less potent than 3 (6), simpler synthesis facilitated further structural optimization. Additionally, relative P2Y14R affinities agreed with predicted binding of alkynyl and triazole analogues. These triazoles, designed through a structure-based approach, can be assessed in disease models.
Collapse
Affiliation(s)
- Anna Junker
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Elisa Uliassi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Chiara Martiriggiano
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Kevin Trujillo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Giorgi Mtchedlidze
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Leah Birdwell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina, School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0810, United States
| |
Collapse
|
42
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
43
|
Kiselev E, Balasubramanian R, Uliassi E, Brown KA, Trujillo K, Katritch V, Hammes E, Stevens RC, Harden TK, Jacobson KA. Design, synthesis, pharmacological characterization of a fluorescent agonist of the P2Y₁₄ receptor. Bioorg Med Chem Lett 2015; 25:4733-4739. [PMID: 26303895 DOI: 10.1016/j.bmcl.2015.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
Abstract
The P2Y14R is a G(i/o)-coupled receptor of the P2Y family of purinergic receptors that is activated by extracellular UDP and UDP-glucose (UDPG). In an earlier report we described a P2Y14R fluorescent probe, MRS4174, based on the potent and selective antagonist PPTN, a naphthoic acid derivative. Here, we report the design, preparation, and activity of an agonist-based fluorescent probe MRS4183 (11) and a shorter P2Y14R agonist congener, which contain a UDP-glucuronic acid pharmacophore and BODIPY fluorophores conjugated through diaminoalkyl linkers. The design relied on both docking in a P2Y14R homology model and established structure activity relationship (SAR) of nucleotide analogs. 11 retained P2Y14R potency with EC50 value of 0.96 nM (inhibition of adenylyl cyclase), compared to parent UDPG (EC50 47 nM) and served as a tracer for microscopy and flow cytometry, displaying minimal nonspecific binding. Binding saturation analysis gave an apparent binding constant for 11 in whole cells of 21.4±1.1 nM, with a t1/2 of association at 50 nM 11 of 23.9 min. Known P2Y14R agonists and PPTN inhibited cell binding of 11 with the expected rank order of potency. The success in the identification of a new P2Y14R fluorescent agonist with low nonspecific binding illustrates the advantages of rational design based on recently determined GPCR X-ray structures. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands.
Collapse
Affiliation(s)
- Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisa Uliassi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyle A Brown
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
| | - Kevin Trujillo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vsevolod Katritch
- The Bridge Institute, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Eva Hammes
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raymond C Stevens
- The Bridge Institute, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; The Bridge Institute, Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - T Kendall Harden
- Department of Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J, Hoefig CS, Müller A, Köhrle J, Grüters A, Krude H, Mittag J, Schöneberg T, Kleinau G, Biebermann H. 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 2015; 54:205-16. [PMID: 25878061 DOI: 10.1530/jme-15-0003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 11/08/2022]
Abstract
Most in vivo effects of 3-iodothyronamine (3-T1AM) have been thus far thought to be mediated by binding at the trace amine-associated receptor 1 (TAAR1). Inconsistently, the 3-T1AM-induced hypothermic effect still persists in Taar1 knockout mice, which suggests additional receptor targets. In support of this general assumption, it has previously been reported that 3-T1AM also binds to the α-2A-adrenergic receptor (ADRA2A), which modulates insulin secretion. However, the mechanism of this effect remains unclear. We tested two different scenarios that may explain the effect: the sole action of 3-T1AM at ADRA2A and a combined action of 3-T1AM at ADRA2A and TAAR1, which is also expressed in pancreatic islets. We first investigated a potential general signaling modification using the label-free EPIC technology and then specified changes in signaling by cAMP inhibition and MAPKs (ERK1/2) determination. We found that 3-T1AM induced Gi/o activation at ADRA2A and reduced the norepinephrine (NorEpi)-induced MAPK activation. Interestingly, in ADRA2A/TAAR1 hetero-oligomers, application of NorEpi resulted in uncoupling of the Gi/o signaling pathway, but it did not affect MAPK activation. However, 3-T1AM application in mice over a period of 6 days at a daily dose of 5 mg/kg had no significant effects on glucose homeostasis. In summary, we report an agonistic effect of 3-T1AM on the ADRA2A-mediated Gi/o pathway but an antagonistic effect on MAPK induced by NorEpi. Moreover, in ADRA2A/TAAR1 hetero-oligomers, the capacity of NorEpi to stimulate Gi/o signaling is reduced by co-stimulation with 3-T1AM. The present study therefore points to a complex spectrum of signaling modification mediated by 3-T1AM at different G protein-coupled receptors.
Collapse
Affiliation(s)
- Juliane Dinter
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Simon Friedrich Jacobi
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carolin Leonie Wienchol
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maxi Cöster
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaroslawna Meister
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carolin Stephanie Hoefig
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anne Müller
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Annette Grüters
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heiko Krude
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jens Mittag
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Torsten Schöneberg
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, GermanyDepartment of Cell and Molecular BiologyKarolinska Institutet, Stockholm, SwedenInstitut für BiochemieMolekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, GermanyInstitut für Experimentelle EndokrinologieCharité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
45
|
Lazarowski ER, Harden TK. UDP-Sugars as Extracellular Signaling Molecules: Cellular and Physiologic Consequences of P2Y14 Receptor Activation. Mol Pharmacol 2015; 88:151-60. [PMID: 25829059 DOI: 10.1124/mol.115.098756] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/31/2015] [Indexed: 12/15/2022] Open
Abstract
UDP-sugars, which are indispensable for protein glycosylation reactions in cellular secretory pathways, also act as important extracellular signaling molecules. We discuss here the broadly expressed P2Y14 receptor, a G-protein-coupled receptor targeted by UDP sugars, and the increasingly diverse set of physiologic responses discovered recently functioning downstream of this receptor in many epithelia as well as in immune, inflammatory, and other cells.
Collapse
Affiliation(s)
- Eduardo R Lazarowski
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - T Kendall Harden
- Departments of Medicine (E.R.L.) and Pharmacology (T.K.H.), University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
46
|
Abstract
The short chain fatty acid (SCFA) receptor (free fatty acid receptor-3; FFAR3) is expressed in pancreatic β cells; however, its role in insulin secretion is not clearly defined. Here, we examined the role of FFAR3 in insulin secretion. Using islets from global knockout FFAR3 (Ffar3(-/-)) mice, we explored the role of FFAR3 and ligand-induced FFAR3 signaling on glucose stimulated insulin secretion. RNA sequencing was also performed to gain greater insight into the impact of FFAR3 deletion on the islet transcriptome. First exploring insulin secretion, it was determined that Ffar3(-/-) islets secrete more insulin in a glucose-dependent manner as compared to wildtype (WT) islets. Next, exploring its primary endogenous ligand, propionate, and a specific agonist for FFAR3, signaling by FFAR3 inhibited glucose-dependent insulin secretion, which occurred through a Gαi/o pathway. To help understand these results, transcriptome analyses by RNA-sequencing of Ffar3(-/-) and WT islets observed multiple genes with well-known roles in islet biology to be altered by genetic knockout of FFAR3. Our data shows that FFAR3 signaling mediates glucose stimulated insulin secretion through Gαi/o sensitive pathway. Future studies are needed to more rigorously define the role of FFAR3 by in vivo approaches.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Metabolism and Molecular Medicine; Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine; Northwestern University Feinberg School of Medicine; Chicago, IL USA
- Jesse Brown Veterans Affairs Medical Center; Chicago, IL USA
- Correspondence to: Brian T Layden;
| |
Collapse
|