1
|
Wofford KL, Browne KD, Loane DJ, Meaney DF, Cullen DK. Peripheral immune cell dysregulation following diffuse traumatic brain injury in pigs. J Neuroinflammation 2024; 21:324. [PMID: 39696519 DOI: 10.1186/s12974-024-03317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health problem affecting millions of individuals annually, potentially resulting in persistent neuropathology, chronic neurological deficits, and death. However, TBI not only affects neural tissue, but also affects the peripheral immune system's homeostasis and physiology. TBI disrupts the balanced signaling between the brain and the peripheral organs, resulting in immunodysregulation and increasing infection susceptibility. Indeed, secondary infections following TBI worsen neurological outcomes and are a major source of mortality and morbidity. Despite the compelling link between the damaged brain and peripheral immune functionality, little is known about how injury severity affects the peripheral immune system in closed-head diffuse TBI, the most common clinical presentation including all concussions. Therefore, we characterized peripheral blood mononuclear cells (PBMCs) and plasma changes over time and across injury severity using an established large-animal TBI model of closed-head, non-impact diffuse rotational acceleration in pigs. Across all timepoints and injury levels, we did not detect any changes to plasma cytokine concentrations. However, changes to the PBMCs were detectable and much more robust. We observed the concentration and physiology of circulating PBMCs changed in an injury severity-dependent manner, with most cellular changes occurring within the first 10 days following a high rotational velocity injury. Here, we report changes in the concentrations of myeloid and T cells, changes in PBMC composition, and changes in phagocytic clearance over time. Together, these data suggest that following a diffuse brain injury in a clinically relevant large-animal TBI model, the immune system exhibits perturbations that are detectable into the subacute timeframe. These findings invite future investigations into therapeutic interventions targeting peripheral immunity and the potential for peripheral blood cellular characterization as a diagnostic tool.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - David J Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA, 19104, USA.
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Ding H, Hou X, Zhang X, Yu J, He J, Tang J, Chen M, Tang M, Ren Q, Liu Z. Incidence and associated in-hospital mortality of myocardial injury in patients with traumatic brain injury: A systematic review and meta-analysis. Clin Neurol Neurosurg 2024; 249:108693. [PMID: 39709747 DOI: 10.1016/j.clineuro.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVE Myocardial injury has not been well characterized in traumatic brain injury (TBI). We aimed to assess the pooled incidence of myocardial injury defined by elevated cardiac troponin (cTn) after TBI and explore its association with in-hospital mortality. METHODS We searched Medline, Embase, Cochrane Library, Scopus, and Web of Science from inception to 1 January 2024, for observational studies that assessed the incidence and/or associated in-hospital mortality of elevated cTn in adult TBI patients. The incidence data was reported with proportion with 95 % confidence intervals (CIs) and 95 % prediction intervals (PIs). In-hospital mortality data was synthesized with odds ratios (ORs) with 95 % CIs and 95 % PIs. Subgroup analyses and meta-regression analyses were performed to identify the potential sources of heterogeneity, and the leave-one-out method was performed for sensitivity analysis. RESULTS We included 16 studies involving 4263 participants in the meta-analysis. The overall pooled incidence of myocardial injury after TBI was 33.3 % (95 % CI, 25.2 %-42.1 %; 95 % PI, 7.3 %-66.7 %; I2 = 95.3 %). Incidence of myocardial injury was 43.4 % (95 % CI, 31.7 %-55.4 %; 95 % PI 7.3 %-84.1 %; I2 = 94.8 %) for moderate to severe TBI. Myocardial injury was associated with higher in-hospital mortality (OR, 5.62; 95 % CI, 3.59-8.78; 95 % PI, 1.35-23.38; I2 = 79.0 %) after TBI. CONCLUSION Early myocardial injury was common in adult patients with acute TBI. Furthermore, myocardial injury was associated with increased in-hospital mortality after TBI. High-quality studies are needed to elucidate the true incidence of myocardial injury and its relationship between clinical outcomes in this populations.
Collapse
Affiliation(s)
- Huaqiang Ding
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China.
| | - Xiaofeng Hou
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Xinhai Zhang
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Jinhui Yu
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Jun He
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Jiuning Tang
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Minruo Chen
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Maoyuan Tang
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Qifu Ren
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery, People's Hospital of Yubei District of Chongqing City, Chongqing, China
| |
Collapse
|
3
|
Dobson GP, Morris JL, Letson HL. Traumatic brain injury: Symptoms to systems in the 21st century. Brain Res 2024; 1845:149271. [PMID: 39395646 DOI: 10.1016/j.brainres.2024.149271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Severe traumatic brain injury (TBI) is a devastating injury with a mortality of ∼ 25-30 %. Despite decades of high-quality research, no drug therapy has reduced mortality. Why is this so? We argue two contributing factors for the lack of effective drug therapies include the use of specific-pathogen free (SPF) animals for translational research and the flawed practice of single-nodal targeting for drug design. A revolution is required to better understand how the whole body responds to TBI, identify new markers of its progression, and discover new system-acting drugs to treat it. In this review, we present a brief history of TBI, discuss its system's pathophysiology and propose a new research strategy for the 21st century. TBI progression develops from injury signals radiating from the primary impact, which can cause local ischemia, hemorrhage, excitotoxicity, cellular depolarization, immune dysfunction, sympathetic hyperactivity, blood-brain barrier breach, coagulopathy and whole-body dysfunction. Metabolic reprograming of immune cells drives neuroinflammation and secondary injury processes. We propose if sympathetic hyperactivity and immune cell activation can be corrected early, cardiovascular function and endothelial-glycocalyx-mitochondrial coupling can be restored, and secondary injury minimized with improved patient outcomes. The therapeutic goal is to switch the injury phenotype to a healing phenotype by restoring homeostasis and maintaining sufficient tissue O2 delivery. We have been developing a small-volume fluid therapy comprising adenosine, lidocaine and magnesium (ALM) to treat TBI and have shown that it blunts the CNS-stress response, supports cardiovascular function and reduces secondary injury. Future research will investigate its suitability for human translation.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| | - Jodie L Morris
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| | - Hayley L Letson
- Heart, Sepsis and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Queensland 4811, Australia.
| |
Collapse
|
4
|
Townsend KL. One Nervous System: Critical Links Between Central and Peripheral Nervous System Health and Implications for Obesity and Diabetes. Diabetes 2024; 73:1967-1975. [PMID: 39401394 DOI: 10.2337/dbi24-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/09/2024] [Indexed: 11/22/2024]
Abstract
There are key differences between the central nervous system (CNS) (brain and spinal cord) and peripheral nervous system (PNS), such as glial cell types, whether there is protection by the blood-brain barrier, modes of synaptic connections, etc. However, there are many more similarities between these two arms of the nervous system, including neuronal structure and function, neuroimmune and neurovascular interactions, and, perhaps most essentially, the balance between neural plasticity (including processes like neuron survival, neurite outgrowth, synapse formation, gliogenesis) and neurodegeneration (neuronal death, peripheral neuropathies like axonopathy and demyelination). This article brings together current research evidence on shared mechanisms of nervous system health and disease between the CNS and PNS, particularly with metabolic diseases like obesity and diabetes. This evidence supports the claim that the two arms of the nervous system are critically linked and that previously understudied conditions of central neurodegeneration or peripheral neurodegeneration may actually be manifesting across the entire nervous system at the same time, through shared genetic and cellular mechanisms. This topic has been critically underexplored due to the research silos between studies of the brain and studies of peripheral nerves and an overemphasis on the brain in neuroscience as a field of study. There are likely shared and linked mechanisms for how neurons stay healthy versus undergo damage and disease among this one nervous system in the body-providing new opportunities for understanding neurological disease etiology and future development of neuroprotective therapeutics. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
5
|
Ahmad M, Qurneh A. Self-Efficacy of Nurses and Physicians in the Emergency Department and Its Influence on the Outcomes of Trauma Patients. Hosp Top 2024:1-9. [PMID: 39543786 DOI: 10.1080/00185868.2024.2427640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The purpose of this study was to examine the effect of self-efficacy on the implementation of the adult trauma clinical practice guidelines (ATCPGs) on improving trauma patient outcomes, including missed injuries, and ED LOS. Nurses' and physicians' self-efficacy in performing ATCPGs skills were evaluated three months prior to and three months after the intervention's implementation. Multiple strategies of ATCPGs implementation improved the length of stay (LOS) in the ED for multiple trauma patients. The quasi-experimental design has been implemented in this interventional study. Post-intervention, the self-efficacy of ED healthcare providers in performing ATCPGs skills has increased. Implementation of the ATCPGs has improved the outcomes of patients with multiple traumas. There were 66 patients in this study, and 53 (80.3%) of them were male. The ATCPGs intervention resulted in a statistically significant decrease in the amount of time spent in the ED, as shown by a comparison of the ED LOS in minutes between the two groups (t = 2.56; p = 0.013). Implementing the ATCPGs has improved multiple trauma patients' outcomes. The results will help decision-makers at hospitals to facilitate interdisciplinary ATCPGs training sessions and establish policies and procedures to introduce adult trauma sheet in the ED to improve multiple trauma patients' outcomes.
Collapse
Affiliation(s)
- Muayyad Ahmad
- Clinical Nursing Department, School of Nursing, University of Jordan, Amman, Jordan
| | - Ali Qurneh
- School of Nursing, University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Hu J, Guo J, Wu C, He X, Jing J, Tao M. Annexin A5 derived from lung alleviates brain damage after ischemic stroke. Brain Res 2024; 1846:149303. [PMID: 39481746 DOI: 10.1016/j.brainres.2024.149303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide. It is now accepted that brain interacts bidirectionally with other organs after brain diseases. However, factors that might mediate crosstalk between brain and other organs are still less reported. Here we reported that plasma level of Annexin A5, not Annexin A1 or A2, was upregulated in stroke patients when compared to controls. In normal mice, the highest level of Annexin A5 were detected in lung tissues compared with other major organs and lowest level in brain. Moreover, Annexin A5 was increased in brain and decreased in lung after stroke in mice when compared to sham group. Fluorescence in situ hybridization (FISH) assay indicated that Annexin A5 could penetrate the blood-brain barrier (BBB). Treatment with Annexin A5 recombinant protein reduced the infarct volumes and improved neurological function after stroke in mice, while administration of anti-Annexin A5 increased the infarct sizes and aggravated neurological function. In a proof-of-concept analysis, patients with both ischemic stroke and lung diseases had a lower plasma Annexin A5 level than those with only ischemic stroke. Furthermore, Annexin A5 level in bronchoalveolar lavage fluid (BALF) was lower in patients with severe chronic obstructive pulmonary disease (COPD) when compared with those at a less severe grade of COPD, and level of Annexin A5 was positively correlated with forced expiratory volume in 1 s/prediction (FEV1pred) and PaO2. Our results suggest that Annexin A5 could alleviate infarct area and improve general neurological performance post cerebral ischemia. Increased Annexin A5 may derive from lung tissue and permeate across BBB to provide a neuroprotective function. Therefore, Annexin A5 may potentially serve as a therapeutic candidate for defending against IS-induced brain injury.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, China
| | - Xiaoduo He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, China
| | - Jian Jing
- Beijing Key Lab of Biotechnology and Genetic Engineering, College of Life Sciences, Beijing Normal University, China.
| | - Meimei Tao
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, China.
| |
Collapse
|
7
|
Al-Khateeb ZF, Henson SM, Tremoleda JL, Michael-Titus AT. The Immune Response in Two Models of Traumatic Injury of the Immature Brain. Cells 2024; 13:1612. [PMID: 39404376 PMCID: PMC11475908 DOI: 10.3390/cells13191612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury. In the two models, we detected the brain infiltration of immune cells (e.g., neutrophils, monocytes, dendritic cells, CD4+ T cells, and NK cells). There were increases in macrophages, neutrophils, and dendritic cells in the spleen, increases in dendritic cells in blood, and increases in CD8+ T cells and B cells in lymph nodes. These results indicate a complex peripheral immune response post-TBI in the immature brain, with differences between an invasive injury and a repetitive mild injury.
Collapse
Affiliation(s)
- Zahra F. Al-Khateeb
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jordi L. Tremoleda
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
8
|
Kawai C, Miyao M, Kotani H, Minami H, Abiru H, Tamaki K, Nishitani Y. Roles of HMGB1 on life-threatening traumatic brain injury and sequential peripheral organ damage. Sci Rep 2024; 14:21421. [PMID: 39271757 PMCID: PMC11399384 DOI: 10.1038/s41598-024-72318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic brain injury (TBI) has been found to be associated with certain peripheral organ injuries; however, a few studies have explored the chronological influences of TBI on multiple organs and the systemic effects of therapeutic interventions. Particularly, high-mobility group box 1 (HMGB1) is a potential therapeutic target for TBI; however, its effects on peripheral organs remain unclear. Therefore, this study aimed to determine whether severe TBI can lead to multiple organ injury and how HMGB1 inhibition affects peripheral organs. This study used a weight drop-induced TBI mouse model and found that severe TBI can trigger short-lived systemic inflammation, in the lungs and liver, but not in the kidneys, regardless of the severity of the injury. TBI led to an increase in circulating HMGB1 and enhanced gene expressions of its receptors in every organ. Anti-HMGB1 antibody treatment reduced neuroinflammation but increased inflammation in peripheral organs. This study also found that HMGB1 inhibition appears to have a beneficial role in early neuroinflammation but could lead to detrimental effects on peripheral organs through decreased peripheral immune suppression. This study provides novel insights into the chronological changes in multiple organs due to TBI and the unique roles of HMGB1 between the brain and other organs.
Collapse
Affiliation(s)
- Chihiro Kawai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Masashi Miyao
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan.
| | - Hirokazu Kotani
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirozo Minami
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Hitoshi Abiru
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| | - Yoko Nishitani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyoku, Kyoto, 606-8501, Japan
| |
Collapse
|
9
|
Baghel R, Maan K, Dhariwal S, Kumari M, Sharma A, Manda K, Trivedi R, Rana P. Mild Blast Exposure Dysregulates Metabolic Pathways and Correlation Networking as Evident from LC-MS-Based Plasma Profiling. Mol Neurobiol 2024:10.1007/s12035-024-04429-5. [PMID: 39235645 DOI: 10.1007/s12035-024-04429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Blast-induced trauma is emerging as a serious threat due to its wide pathophysiology where not only the brain but also a spectrum of organs is being affected. In the present study, we aim to identify the plasma-based metabolic dysregulations along with the associated temporal changes at 5-6 h, day 1 and day 7 post-injury in a preclinical animal model for blast exposure, through liquid chromatography-mass spectrometry (LC-MS). Using significantly advanced metabolomic and statistical bioinformatic platforms, we were able to elucidate better and unravel the complex networks of blast-induced neurotrauma (BINT) and its interlinked systemic effects. Significant changes were evident at 5-6 h with maximal changes at day 1. Temporal analysis also depicted progressive changes which continued till day 7. Significant associations of metabolic markers belonging to the class of amino acids, energy-related molecules, lipids, vitamin, hormone, phenolic acid, keto and histidine derivatives, nucleic acid molecules, uremic toxins, and uronic acids were observed. Also, the present study is the first of its kind where comprehensive, detailed pathway dysregulations of amino acid metabolism and biosynthesis, perturbed nucleotides, lipid peroxidation, and nucleic acid damage followed by correlation networking and multiomics networking were explored on preclinical animal models exposed to mild blast trauma. In addition, markers for systemic changes (renal dysfunction) were also observed. Global pathway predictions of unannotated peaks also presented important insights into BINT pathophysiology. Conclusively, the present study depicts important findings that might help underpin the biological mechanisms of blast-induced brain or systemic trauma.
Collapse
Grants
- (DHR)-YSF/DHR/12014/54/2020 Department of Health Research, India
- UGC Grant University Grants Commission
- UGC Grant University Grants Commission
- CSIR-Grant Council of Scientific and Industrial Research, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
- INM3 24 Defence R&D Organization (DRDO), Ministry of Defence, India
Collapse
Affiliation(s)
- Ruchi Baghel
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Department of Health Research (DHR), IRCS Building, 2 FloorRed Cross Road, New Delhi, 110001, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kiran Maan
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Seema Dhariwal
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Apoorva Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India
| | - Kailash Manda
- Department of Neurobehavioral Sciences, Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, New Delhi, 110054, India.
| |
Collapse
|
10
|
Nessel I, Whiley L, Dyall SC, Michael-Titus AT. A plasma lipid signature in acute human traumatic brain injury: Link with neuronal injury and inflammation markers. J Cereb Blood Flow Metab 2024:271678X241276951. [PMID: 39188133 PMCID: PMC11572080 DOI: 10.1177/0271678x241276951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
Traumatic brain injury (TBI) leads to major membrane lipid breakdown. We investigated plasma lipids over 3 days post-TBI, to identify a signature of acute human TBI and assess its correlation with neuronal injury and inflammation. Plasma from patients with TBI (Abbreviated Injury Scale (AIS)3 - serious injury, n = 5; AIS4 - severe injury, n = 8), and controls (n = 13) was analysed for lipidomic profile, neurofilament light (NFL) and cytokines, and the omega-3 index was measured in red blood cells. A lipid signature separated TBI from controls, at 24 and 72 h. Major species driving the separation were: lysophosphatidylcholine (LPC), phosphatidylcholine (PC) and hexosylceramide (HexCer). Docosahexaenoic acid (DHA, 22:6) and LPC (0:0/22:6) decreased post-injury. NFL levels were increased at 24 and 72 h post-injury in AIS4 TBI vs. controls. Interleukin (IL-)6, IL-2 and IL-13 were elevated at 24 h in AIS4 patients vs. controls. NFL and IL-6 were negatively correlated with several lipids. The omega-3 index at admission was low in all patients (controls: 4.3 ± 1.1% and TBI: 4.0 ± 1.1%) and did not change significantly over 3 days post-injury. We have identified specific lipid changes, correlated with markers of injury and inflammation in acute TBI. These observations could inform future lipid-based therapeutic approaches.
Collapse
Affiliation(s)
- Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Luke Whiley
- Health Futures Institute, Murdoch University, Murdoch, Australia
| | - Simon C Dyall
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Guangliang H, Tao W, Danxin W, Lei L, Ye M. Critical Knowledge Gaps and Future Priorities Regarding the Intestinal Barrier Damage After Traumatic Brain Injury. World Neurosurg 2024; 188:136-149. [PMID: 38789030 DOI: 10.1016/j.wneu.2024.05.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
The analysis aims to provide a comprehensive understanding of the current landscape of research on the Intestinal barrier damage after traumatic brain injury (TBI), elucidate specific mechanisms, and address knowledge gaps to help guide the development of targeted therapeutic interventions and improve outcomes for individuals with TBI. A total of 2756 relevant publications by 13,778 authors affiliated within 3198 institutions in 79 countries were retrieved from the Web of Science. These publications have been indexed by 1139 journals and cited 158, 525 references. The most productive author in this field was Sikiric P, and the University of Pittsburgh was identified as the most influential institution. The United States was found to be the leading country in terms of article output and held a dominant position in this field. The International Journal of Molecular Sciences was identified as a major source of publications in this area. In terms of collaboration, the cooperation between the United States and China was found to be the most extensive among countries, institutions, and authors, indicating a high level of influence in this field. Keyword co-occurrence network analysis revealed several hotspots in this field, including the microbiome-gut-brain axis, endoplasmic reticulum stress, cellular autophagy, ischemia-reperfusion, tight junctions, and intestinal permeability. The analysis of keyword citation bursts suggested that ecological imbalance and gut microbiota may be the forefront of future research. The findings of this study can serve as a reference and guiding perspective for future research in this field.
Collapse
Affiliation(s)
- He Guangliang
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; HeJiang Affiliated Hospital of Southwest Medical University, Department of Respiratory and Critical Care Medicine, Luzhou, China
| | - Wang Tao
- Hainan Medical University, International School of Nursing, Haikou, China; Foshan University, Medical College, Guangdong, China
| | - Wang Danxin
- The First Affiliated Hospital of Hainan Medical University, Nursing Department, Haikou, China
| | - Liu Lei
- The First Affiliated Hospital of Hainan Medical University, Respiratory Medicine Department, Haikou, China
| | - Min Ye
- Hainan Vocational of Science and Technology, International School of Nursing, Haikou, China; Hainan Medical University, International School of Nursing, Haikou, China.
| |
Collapse
|
12
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
13
|
Hein RD, Blancke JA, Schaller SJ. [Anaesthesiological Management of Traumatic Brain Injury]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:420-437. [PMID: 39074788 DOI: 10.1055/a-2075-9299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Traumatic brain injury (TBI) is the main cause of death in people < 45 years in industrial countries. Minimising secondary injury to the injured brain is the primary goal throughout the entire treatment. Anaesthesiologic procedures aim at the reconstitution of cerebral perfusion and homeostasis. Both TBI itself as well as accompanying injuries show effects on cardiac and pulmonary function. Time management plays a crucial role in ensuring a safe anaesthesiologic environment while minimizing unnecessary procedures. Furthermore, growing medical drug pre-treatment demands for further knowledge e.g., in antagonization of anticoagulation.
Collapse
|
14
|
Hagedorn A, Haberl H, Adamzik M, Wolf A, Unterberg M. [Current Aspects of Intensive Medical Care for Traumatic Brain Injury - Part 2 - Secondary Treatment Strategies, Long-term Outcome, Neuroprognostics and Chronification]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:466-478. [PMID: 39074791 DOI: 10.1055/a-2332-1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
This two-part article deals with the intensive medical care of traumatic brain injury. Part 1 addresses the primary treatment strategy, haemodynamic management and multimodal monitoring, Part 2 secondary treatment strategies, long-term outcome, neuroprognostics and chronification. Traumatic brain injury is a complex clinical entity with a high mortality rate. The primary aim is to maintain homeostasis based on physiological targeted values. In addition, further therapy must be geared towards intracranial pressure. In addition to this, there are other monitoring options that appear sensible from a pathophysiological point of view with appropriate therapy adjustment. However, there is still a lack of data on their effectiveness. A further aspect is the inflammation of the cerebrum with the "cross-talk" of the organs, which has a significant influence on further intensive medical care.
Collapse
|
15
|
Ritter K, Baalmann M, Dolderer C, Ritz U, Schäfer MKE. Brain-Bone Crosstalk in a Murine Polytrauma Model Promotes Bone Remodeling but Impairs Neuromotor Recovery and Anxiety-Related Behavior. Biomedicines 2024; 12:1399. [PMID: 39061973 PMCID: PMC11274630 DOI: 10.3390/biomedicines12071399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Traumatic brain injury (TBI) and long bone fractures are a common injury pattern in polytrauma patients and modulate each other's healing process. As only a limited number of studies have investigated both traumatic sites, we tested the hypothesis that brain-bone polytrauma mutually impacts neuro- and osteopathological outcomes. Adult female C57BL/6N mice were subjected to controlled cortical impact (CCI), and/or osteosynthetic stabilized femoral fracture (FF), or sham surgery. Neuromotor and behavioral impairments were assessed by neurological severity score, open field test, rotarod test, and elevated plus maze test. Brain and bone tissues were processed 42 days after trauma. CCI+FF polytrauma mice had increased bone formation as compared to FF mice and increased mRNA expression of bone sialoprotein (BSP). Bone fractures did not aggravate neuropathology or neuroinflammation assessed by cerebral lesion size, hippocampal integrity, astrocyte and microglia activation, and gene expression. Behavioral assessments demonstrated an overall impaired recovery of neuromotor function and persistent abnormalities in anxiety-related behavior in polytrauma mice. This study shows enhanced bone healing, impaired neuromotor recovery and anxiety-like behavior in a brain-bone polytrauma model. However, bone fractures did not aggravate TBI-evoked neuropathology, suggesting the existence of outcome-relevant mechanisms independent of the extent of brain structural damage and neuroinflammation.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Markus Baalmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| | - Christopher Dolderer
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (C.D.); (U.R.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (K.R.); (M.B.)
| |
Collapse
|
16
|
Sun Y, Liu Y, Liu P, Zhang M, Liu M, Wang Y. Anesthesia strategies for elderly patients with craniocerebral injury due to foreign-body penetration in the plateau region: a case report. Front Med (Lausanne) 2024; 11:1385603. [PMID: 38803347 PMCID: PMC11128547 DOI: 10.3389/fmed.2024.1385603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
Background The administration of anesthesia for elderly individuals who are critically ill, suffering from severe craniocerebral injuries, and living in plateau regions presents a rare, intricate, and high-risk challenge. This case study outlines the specific anesthesia management protocols necessary for plateau-dwelling patients with significant craniocerebral damage undergoing prolonged invasive procedures. Case report A 76-year-old male patient had a 26-year history of foreign-body penetration of the skull and had experienced local purulent discharge and pain for the previous 20 days. The diagnoses included right hypoplasia, a foreign body in the skull with an infection, hypokalemia, hypoproteinemia, pulmonary fibrous foci, and bilateral pleural effusion. For almost 6 months, the patient suffered from recurring headaches, blurred vision, and sluggish bodily movement. The patient had a poor diet, poor sleep quality, normal urination, and no noticeable weight loss since the onset of the illness. The right anterior ear had a 2 cm skin abscess with yellow pus and a black metal foreign body tip. The left eyelid was red and swollen, and the left conjunctiva was hyperemic; the right eyelid showed no abnormalities, and both pupils were wide and round, with light and adjustment reflexes and no cyanosis on the lips. Skull development was normal. No dry or moist rales were audible in either lung. The heart rhythm was regular, and the heart rate was 50 bpm. Chest CT revealed left lung calcification foci, bilateral pleural effusion, and fiber foci in the lower lobes of both lungs. Conclusion Furthermore, the patient in question was of advanced age and had a complex medical history, including prolonged exposure to high altitudes and previous instances of severe craniocerebral trauma, among other uncommon pathophysiological characteristics. In particular, the patient also underwent surgical interventions at both high and low altitudes, adding to the complexity of their case. To ensure patient safety, close multidisciplinary collaboration, the development of a precise surgical plan, and the implementation of a suitable perioperative anesthetic management strategy are imperative.
Collapse
Affiliation(s)
- Yongtao Sun
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yang Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Peng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Min Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Mengjie Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
| | - Yuelan Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), Jinan, China
| |
Collapse
|
17
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
18
|
Menni AE, Tzikos G, Fyntanidou B, Ioannidis A, Loukipoudi L, Grosomanidis V, Chorti A, Shrewsbury A, Stavrou G, Kotzampassi K. The Effect of Probiotics on the Prognostication of the Neutrophil-to-Lymphocyte Ratio in Severe Multi-Trauma Patients. J Pers Med 2024; 14:419. [PMID: 38673046 PMCID: PMC11051514 DOI: 10.3390/jpm14040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The ratio of neutrophils to lymphocytes [NLR] is one of the most accepted prognostic indices and demonstrates a positive correlation with the severity of a disease. Given that probiotics exerted immunomodulatory properties and thus positively affected lymphocytopenia induction in severely ill patients, we performed a post hoc analysis in the ProVAP protocol to investigate whether probiotics affected the prognostication of NLR in respect to ventilator-associated pneumonia in multi-trauma patients. This cohort mandatorily involved severe traumatic brain injury patients. METHODS The white blood cell data of all patients, after being retrieved for the days 0 and 7, were statistically assessed in respect to neutrophils, lymphocytes and NLR among the 4 sub-groups of the study: placebo/no-VAP, placebo/VAP, probiotics/no-VAP, and probiotics/VAP. RESULTS Lymphopenia was dominant in placebo sub-groups, while an increased level of lymphocytes was prominent in probiotics sub-groups. This resulted in an increase [p = 0.018] in the NLR value in the probiotics/VAP group in relation to the probiotics/no-VAP cohort; this was an increase of half the value of the placebo/VAP [p < 0.001], while the NLR value in placebo/no-VAP group increased almost four-fold in relation to probiotics/no-VAP [p < 0.001]. Additionally, the ROC curve for probiotic-treated patients revealed a NLR7 cut-off value of 7.20 as a prognostic factor of VAP (AUC: 78.6%, p = 0.015, 95% CI: 62.6-94.5%), having a high specificity of 90.2% and a sensitivity of 42.9%. CONCLUSIONS NLR may considered a credible prognostic biomarker in multi-trauma patients since it can evaluate the immunomodulatory benefits of probiotic treatment. However, the results of the present post hoc analysis should be interpreted meticulously until further evaluation, since they may be basically species- or strain-specific.
Collapse
Affiliation(s)
- Alexandra-Eleftheria Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Barbara Fyntanidou
- Department of Emergency Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Aristeidis Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Lamprini Loukipoudi
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (L.L.); (V.G.)
| | - Vasilis Grosomanidis
- Department of Anesthesia & Intensive Care, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (L.L.); (V.G.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - Anne Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| | - George Stavrou
- Department of General Surgery, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (G.T.); (A.I.); (A.C.); (A.S.)
| |
Collapse
|
19
|
Ritzel RM, Li Y, Jiao Y, Doran SJ, Khan N, Henry RJ, Brunner K, Loane DJ, Faden AI, Szeto GL, Wu J. Bi-directional neuro-immune dysfunction after chronic experimental brain injury. J Neuroinflammation 2024; 21:83. [PMID: 38581043 PMCID: PMC10996305 DOI: 10.1186/s12974-024-03082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Yun Li
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yun Jiao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Sarah J Doran
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Niaz Khan
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kavitha Brunner
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gregory L Szeto
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | - Junfang Wu
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
20
|
Dismuke-Greer C, Esmaeili A, Ozieh MN, Gujral K, Garcia C, Del Negro A, Davis B, Egede L. Racial/Ethnic and Geographic Disparities in Comorbid Traumatic Brain Injury-Renal Failure in US Veterans and Associated Veterans Affairs Resource Costs, 2000-2020. J Racial Ethn Health Disparities 2024; 11:652-668. [PMID: 36864369 PMCID: PMC10474245 DOI: 10.1007/s40615-023-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Studies have identified disparities by race/ethnicity and geographic status among veterans with traumatic brain injury (TBI) and renal failure (RF). We examined the association of race/ethnicity and geographic status with RF onset in veterans with and without TBI, and the impact of disparities on Veterans Health Administration resource costs. METHODS Demographics by TBI and RF status were assessed. We estimated Cox proportional hazards models for progression to RF and generalized estimating equations for inpatient, outpatient, and pharmacy cost annually and time since TBI + RF diagnosis, stratified by age. RESULTS Among 596,189 veterans, veterans with TBI progressed faster to RF than those without TBI (HR 1.96). Non-Hispanic Black veterans (HR 1.41) and those in US territories (HR 1.71) progressed faster to RF relative to non-Hispanic Whites and those in urban mainland areas. Non-Hispanic Blacks (-$5,180), Hispanic/Latinos ($-4,984), and veterans in US territories (-$3,740) received fewer annual total VA resources. This was true for all Hispanic/Latinos, while only significant for non-Hispanic Black and US territory veterans < 65 years. For veterans with TBI + RF, higher total resource costs only occurred ≥ 10 years after TBI + RF diagnosis ($32,361), independent of age. Hispanic/Latino veterans ≥ 65 years received $8,248 less than non-Hispanic Whites and veterans living in US territories < 65 years received $37,514 less relative to urban veterans. CONCLUSION Concerted efforts to address RF progression in veterans with TBI, especially in non-Hispanic Blacks and those in US territories, are needed. Importantly, culturally appropriate interventions to improve access to care for these groups should be a priority of the Department of Veterans Affairs priority for these groups.
Collapse
Affiliation(s)
- Clara Dismuke-Greer
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA.
| | - Aryan Esmaeili
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | - Mukoso N Ozieh
- Center for Advancing Population Science (CAPS), Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Nephrology, Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Kritee Gujral
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | - Carla Garcia
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | | | - Boyd Davis
- Department of English Emerita, College of Liberal Arts & Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Leonard Egede
- Center for Advancing Population Science (CAPS), Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Division of General Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
21
|
Li F, Li L, Peng R, Liu C, Liu X, Liu Y, Wang C, Xu J, Zhang Q, Yang G, Li Y, Chen F, Li S, Cui W, Liu L, Xu X, Zhang S, Zhao Z, Zhang J. Brain-derived extracellular vesicles mediate systemic coagulopathy and inflammation after traumatic brain injury. Int Immunopharmacol 2024; 130:111674. [PMID: 38387190 DOI: 10.1016/j.intimp.2024.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Traumatic brain injury (TBI) can induce systemic coagulopathy and inflammation, thereby increasing the risk of mortality and disability. However, the mechanism causing systemic coagulopathy and inflammation following TBI remains unclear. In prior research, we discovered that brain-derived extracellular vesicles (BDEVs), originating from the injured brain, can activate the coagulation cascade and inflammatory cells. In this study, we primarily investigated how BDEVs affect systemic coagulopathy and inflammation in peripheral circulation. The results of cytokines and coagulation function indicated that BDEVs can lead to systemic coagulopathy and inflammation by influencing inflammatory factors and chemokines within 24 h. Furthermore, according to flow cytometry and blood cell counter results, we found that BDEVs induced changes in the blood count such as a reduced number of platelets and leukocytes and an increased percentage of neutrophils, macrophages, activated platelets, circulating platelet-EVs, and leukocyte-derived EVs. We also discovered that eliminating circulating BDEVs with lactadherin helped improve coagulopathy and inflammation, relieved blood cell dysfunction, and decreased the circulating platelet-EVs and leukocyte-derived EVs. Our research provides a novel viewpoint and potential mechanism of TBI-associated secondary damage.
Collapse
Affiliation(s)
- Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chuan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianye Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiaoling Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Guili Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ying Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - FangLian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Shenghui Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Weiyun Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Shu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
22
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Ritter K, Somnuke P, Hu L, Griemert EV, Schäfer MKE. Current state of neuroprotective therapy using antibiotics in human traumatic brain injury and animal models. BMC Neurosci 2024; 25:10. [PMID: 38424488 PMCID: PMC10905838 DOI: 10.1186/s12868-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.
Collapse
Affiliation(s)
- Katharina Ritter
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Lingjiao Hu
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), Mainz, 55131, Germany.
- Focus Program Translational Neurosciences (FTN, Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg- University Mainz, Mainz, Germany.
| |
Collapse
|
24
|
de Cássia Almeida Vieira R, de Barros GL, Paiva WS, de Oliveira DV, de Souza CPE, Santana-Santos E, de Sousa RMC. Severe traumatic brain injury and acute kidney injury patients: factors associated with in-hospital mortality and unfavorable outcomes. Brain Inj 2024; 38:108-118. [PMID: 38247393 DOI: 10.1080/02699052.2024.2304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The purpose of this study was to identify the occurrence of AKI, and factors associated with in-hospital mortality and unfavorable outcomes in patients with severe traumatic brain injury (TBI) and acute kidney injury (AKI) severity. METHOD A retrospective cohort study which analyzed data with severe TBI between 2013 and 2017. We examined demographic and clinical information, and outcome by in-hospital mortality, and the Glasgow Outcome Scale six months after TBI. We associated factors to in-hospital mortality and unfavorable outcome in severe TBI and AKI with an association test. RESULTS A total of 219 patients were selected, 39.3% had an AKI, and several factors associated with AKI occurrence after severe TBI. Stage 2 or 3 of AKI (OR 12.489; 95% CI = 4.45-37.94) were independent risk for both outcomes in multivariable models, severity injury by the New Trauma Injury Severity Score (OR 0.97; 95% CI = 0.96-0.99) for mortality, and the New Injury Severity Score (OR1.07; 95% CI = 1.04-1.10) and Trauma and Injury Severity Score (OR = 0.98; 95% CI = 0.965-0.997) for unfavorable outcome. CONCLUSION The findings of our study confirmed that AKI severity and severity of injury was also related to increased mortality and unfavorable outcome after severe TBI.
Collapse
|
25
|
Chikh K, Tonon D, Triglia T, Lagier D, Buisson A, Alessi MC, Defoort C, Benatia S, Velly LJ, Bruder N, Martin JC. Early Metabolic Disruption and Predictive Biomarkers of Delayed-Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage. J Proteome Res 2024; 23:316-328. [PMID: 38148664 DOI: 10.1021/acs.jproteome.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH) is a major cause of complications and death. Here, we set out to identify high-performance predictive biomarkers of DCI and its underlying metabolic disruptions using metabolomics and lipidomics approaches. This single-center prospective observational study enrolled 61 consecutive patients with severe aSAH; among them, 22 experienced a DCI. Nine patients without aSAH were included as validation controls. Blood and cerebrospinal fluid (CSF) were sampled within the first 24 h after admission. We identified a panel of 20 metabolites that, together, showed high predictive performance for DCI. This panel of metabolites included lactate, cotinine, salicylate, 6 phosphatidylcholines, and 4 sphingomyelins. The interplay of the metabolome and the lipidome found between CSF and plasma in our patients underscores that aSAH and its associated DCI complications can extend beyond cerebral implications, with a peripheral dimension as well. As an illustration, early biological disruptions that might explain the subsequent DCI found systemic hypoxia driven mainly by higher blood lactate, arginine, and proline metabolism likely associated with vascular NO and disrupted ceramide/sphingolipid metabolism. We conclude that targeting early peripheral hypoxia preceding DCI could provide an interesting strategy for the prevention of vascular dysfunction.
Collapse
Affiliation(s)
- Karim Chikh
- Service de Biochimie et Biologie Moléculaire, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite 69310, France
- Laboratoire CarMeN, Inserm U1060, INRAE U1397, Université de Lyon, Université Claude-Bernard Lyon1, Pierre-Bénite 69310, France
| | - David Tonon
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Thibaut Triglia
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - David Lagier
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Anouk Buisson
- Service de Biochimie et Biologie Moléculaire, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite 69310, France
| | - Marie-Christine Alessi
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Catherine Defoort
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Sherazade Benatia
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| | - Lionel J Velly
- Service d'Anesthésie et Réanimation, INT (Institut de Neurosciences de La Timone), Hôpital de La Timone, Aix Marseille Université, Marseille 13005, France
| | - Nicolas Bruder
- Service d'Anesthésie et Réanimation, Hôpital de La Timone, Marseille 13005, France
| | - Jean-Charles Martin
- Centre Cardiovasculaire et Nutrition (C2VN), INRAE, INSERM, Aix Marseille Université, Marseille 13005, France
| |
Collapse
|
26
|
Oshima K, Siddiqui N, Orfila JE, Carter D, Laing J, Han X, Zakharevich I, Iozzo RV, Ghasabyan A, Moore H, Zhang F, Linhardt RJ, Moore EE, Quillinan N, Schmidt EP, Herson PS, Hippensteel JA. A role for decorin in improving motor deficits after traumatic brain injury. Matrix Biol 2024; 125:88-99. [PMID: 38135163 PMCID: PMC10922985 DOI: 10.1016/j.matbio.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability due to injury worldwide. Extracellular matrix (ECM) remodeling is known to significantly contribute to TBI pathophysiology. Glycosaminoglycans, which are long-chain, variably sulfated polysaccharides abundant within the ECM, have previously been shown to be substantially altered after TBI. In this study, we sought to delineate the dynamics of glycosaminoglycan alterations after TBI and discover the precise biologic processes responsible for observed glycosaminoglycan changes after injury. We performed state-of-the art mass spectrometry on brain tissues isolated from mice after TBI or craniotomy-alone. We observed dynamic changes in glycosaminoglycans at Day 1 and 7 post-TBI, with heparan sulfate, chondroitin sulfate, and hyaluronan remaining significantly increased after a week vis-à-vis craniotomy-alone tissues. We did not observe appreciable changes in circulating glycosaminoglycans in mice after experimental TBI compared to craniotomy-alone nor in patients with TBI and severe polytrauma compared to control patients with mild injuries, suggesting increases in injury site glycosaminoglycans are driven by local synthesis. We subsequently performed an unbiased whole genome transcriptomics analysis on mouse brain tissues 7 days post-TBI and discovered a significant induction of hyaluronan synthase 2, glypican-3, and decorin. The functional role of decorin after injury was further examined through multimodal behavioral testing comparing wild-type and Dcn-/- mice. We discovered that genetic ablation of Dcn led to an overall negative effect of TBI on function, exacerbating motor impairments after TBI. Collectively, our results provide a spatiotemporal characterization of post-TBI glycosaminoglycan alterations in the brain ECM and support an important adaptive role for decorin upregulation after TBI.
Collapse
Affiliation(s)
- Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah Siddiqui
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E Orfila
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Danelle Carter
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin Laing
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Igor Zakharevich
- Department of Biochemistry, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Arsen Ghasabyan
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Hunter Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, Colorado, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University, College of Medicine, Columbus, Ohio, USA
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
27
|
Chen X, Wang X, Liu Y, Guo X, Wu F, Yang Y, Hu W, Zheng F, He H. Plasma D-dimer levels are a biomarker for in-hospital complications and long-term mortality in patients with traumatic brain injury. Front Mol Neurosci 2023; 16:1276726. [PMID: 37965038 PMCID: PMC10641409 DOI: 10.3389/fnmol.2023.1276726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is a major health concern worldwide. D-dimer levels, commonly used in the diagnosis and treatment of neurological diseases, may be associated with adverse events in patients with TBI. However, the relationship between D-dimer levels, TBI-related in-hospital complications, and long-term mortality in patients with TBI has not been investigated. Here, examined whether elevated D-dimer levels facilitate the prediction of in-hospital complications and mortality in patients with TBI. Methods Overall, 1,338 patients with TBI admitted to our institute between January 2016 and June 2022 were retrospectively examined. D-dimer levels were assessed within 24 h of admission, and propensity score matching was used to adjust for baseline characteristics. Results Among the in-hospital complications, high D-dimer levels were associated with electrolyte metabolism disorders, pulmonary infections, and intensive care unit admission (p < 0.05). Compared with patients with low (0.00-1.54 mg/L) D-dimer levels, the odds of long-term mortality were significantly higher in all other patients, including those with D-dimer levels between 1.55 mg/L and 6.35 mg/L (adjusted hazard ratio [aHR] 1.655, 95% CI 0.9632.843), 6.36 mg/L and 19.99 mg/L (aHR 2.38, 95% CI 1.416-4.000), and >20 mg/L (aHR 3.635, 95% CI 2.195-6.018; p < 0.001). D-dimer levels were positively correlated with the risk of death when the D-dimer level reached 6.82 mg/L. Conclusion Overall, elevated D-dimer levels at admission were associated with adverse outcomes and may predict poor prognosis in patients with TBI. Our findings will aid in the acute diagnosis, classification, and management of TBI.
Collapse
Affiliation(s)
- Xinli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaohua Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yingchao Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiumei Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Fan Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yushen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
28
|
Sharkey JM, Quarrington RD, Krieg JL, Kaukas L, Turner RJ, Leonard A, Jones CF, Corrigan F. Evaluating the effect of post-traumatic hypoxia on the development of axonal injury following traumatic brain injury in sheep. Brain Res 2023; 1817:148475. [PMID: 37400012 DOI: 10.1016/j.brainres.2023.148475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Damage to the axonal white matter tracts within the brain is a key cause of neurological impairment and long-term disability following traumatic brain injury (TBI). Understanding how axonal injury develops following TBI requires gyrencephalic models that undergo shear strain and tissue deformation similar to the clinical situation and investigation of the effects of post-injury insults like hypoxia. The aim of this study was to determine the effect of post-traumatic hypoxia on axonal injury and inflammation in a sheep model of TBI. Fourteen male Merino sheep were allocated to receive a single TBI via a modified humane captive bolt animal stunner, or sham surgery, followed by either a 15 min period of hypoxia or maintenance of normoxia. Head kinematics were measured in injured animals. Brains were assessed for axonal damage, microglia and astrocyte accumulation and inflammatory cytokine expression at 4 hrs following injury. Early axonal injury was characterised by calpain activation, with significantly increased SNTF immunoreactivity, a proteolytic fragment of alpha-II spectrin, but not with impaired axonal transport, as measured by amyloid precursor protein (APP) immunoreactivity. Early axonal injury was associated with an increase in GFAP levels within the CSF, but not with increases in IBA1 or GFAP+ve cells, nor in levels of TNFα, IL1β or IL6 within the cerebrospinal fluid or white matter. No additive effect of post-injury hypoxia was noted on axonal injury or inflammation. This study provides further support that axonal injury post-TBI is driven by different pathophysiological mechanisms, and detection requires specific markers targeting multiple injury mechanisms. Treatment may also need to be tailored for injury severity and timing post-injury to target the correct injury pathway.
Collapse
Affiliation(s)
- Jessica M Sharkey
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Justin L Krieg
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Lola Kaukas
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Renee J Turner
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Anna Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia; School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia; Department of Orthopaedics & Trauma, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Australia.
| |
Collapse
|
29
|
Keane RW, Hadad R, Scott XO, Cabrera Ranaldi EDLRM, Pérez-Bárcena J, de Rivero Vaccari JP. Neural-Cardiac Inflammasome Axis after Traumatic Brain Injury. Pharmaceuticals (Basel) 2023; 16:1382. [PMID: 37895853 PMCID: PMC10610322 DOI: 10.3390/ph16101382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Traumatic brain injury (TBI) affects not only the brain but also peripheral organs like the heart and the lungs, which influences long-term outcomes. A heightened systemic inflammatory response is often induced after TBI, but the underlying pathomechanisms that contribute to co-morbidities remain poorly understood. Here, we investigated whether extracellular vehicles (EVs) containing inflammasome proteins are released after severe controlled cortical impact (CCI) in C57BL/6 mice and cause activation of inflammasomes in the heart that result in tissue damage. The atrium of injured mice at 3 days after TBI showed a significant increase in the levels of the inflammasome proteins AIM2, ASC, caspases-1, -8 and -11, whereas IL-1β was increased in the ventricles. Additionally, the injured cortex showed a significant increase in IL-1β, ASC, caspases-1, -8 and -11 and pyrin at 3 days after injury when compared to the sham. Serum-derived extracellular vesicles (EVs) from injured patients were characterized with nanoparticle tracking analysis and Ella Simple Plex and showed elevated levels of the inflammasome proteins caspase-1, ASC and IL-18. Mass spectrometry of serum-derived EVs from mice after TBI revealed a variety of complement- and cardiovascular-related signaling proteins. Moreover, adoptive transfer of serum-derived EVs from TBI patients resulted in inflammasome activation in cardiac cells in culture. Thus, TBI elicits inflammasome activation, primarily in the atrium, that is mediated, in part, by EVs that contain inflammasome- and complement-related signaling proteins that are released into serum and contribute to peripheral organ systemic inflammation, which increases inflammasome activation in the heart.
Collapse
Affiliation(s)
- Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Xavier O. Scott
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Erika d. l. R. M. Cabrera Ranaldi
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.W.K.); (E.d.l.R.M.C.R.)
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
30
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
31
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
32
|
Ong PL, Rosiana A, Chua KSG. Characteristics and Functional Impact of Unplanned Acute Care Unit Readmissions during Inpatient Traumatic Brain Injury Rehabilitation: A Retrospective Cohort Study. Life (Basel) 2023; 13:1720. [PMID: 37629577 PMCID: PMC10455652 DOI: 10.3390/life13081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND This study investigated the incidence, characteristics and functional outcomes associated with unplanned Acute Care Unit Readmissions (ACUR) during inpatient traumatic brain injury (TBI) rehabilitation in an Asian cohort. METHODS A retrospective review of electronic medical records from a single rehabilitation unit was conducted from 1 January 2012 to 31 December 2014. Inclusion criteria were first TBI, aged >18 years, admitted <6 months of TBI. ACUR were characterized into neurological, medical or neurosurgical subtypes. The main outcome measure was discharge and Functional Independence Measure (FIM™). Secondary outcomes included rehabilitation length of stay (RLOS). RESULTS Of 121 eligible TBI records, the incidence of ACUR was 14% (n = 17), comprising neurologic (76.5%) and medical (23.5%) subtypes occurring at median of 13 days (IQR 6, 28.5) after rehabilitation admission. Patients without ACUR had a significantly higher admission mean (SD) FIM score compared to those with ACUR (FIM ACUR-negative 63.4 (21.1) vs. FIM ACUR-positive 50.53(25.4), p = 0.026). Significantly lower discharge FIM was noted in those with ACUR compared to those without. (FIM ACUR-positive 65.8(31.4) vs. FIM ACUR-negative 85.4 (21.1), p = 0.023) Furthermore, a significant near-doubling of RLOS was noted in ACUR patients compared to non-ACUR counterparts (ACUR-positive median 55 days (IQR 34.50, 87.50) vs. ACUR-negative median 28 days (IQR 16.25, 40.00), p = 0.002). CONCLUSIONS This study highlights the significant negative functional impact and lengthening of rehabilitation duration of ACUR on inpatient rehabilitation outcome for TBI.
Collapse
Affiliation(s)
- Poo Lee Ong
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore 569766, Singapore; (A.R.); (K.S.G.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | - Anna Rosiana
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore 569766, Singapore; (A.R.); (K.S.G.C.)
| | - Karen Sui Geok Chua
- Institute of Rehabilitation Excellence (IREx), Tan Tock Seng Hospital Rehabilitation Centre, Singapore 569766, Singapore; (A.R.); (K.S.G.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
33
|
Wong KR, Wright DK, Sgro M, Salberg S, Bain J, Li C, Sun M, McDonald SJ, Mychasiuk R, Brady RD, Shultz SR. Persistent Changes in Mechanical Nociception in Rats With Traumatic Brain Injury Involving Polytrauma. THE JOURNAL OF PAIN 2023; 24:1383-1395. [PMID: 36958460 DOI: 10.1016/j.jpain.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Traumatic brain injury (TBI) survivors often experience debilitating consequences. Due to the high impact nature of TBI, patients often experience concomitant peripheral injuries (ie, polytrauma). A common, yet often overlooked, comorbidity of TBI is chronic pain. Therefore, this study investigated how common concomitant peripheral injuries (ie, femoral fracture and muscle crush) can affect long-term behavioral and structural TBI outcomes with a particular focus on nociception. Rats were randomly assigned to 1 of 4 groups: polytrauma (POLY; ie, fracture + muscle crush + TBI), peripheral injury (PERI; ie, fracture + muscle crush + sham TBI), TBI (ie, sham fracture + sham muscle crush + TBI), and sham-injured (SHAM; ie, sham fracture + sham muscle crush + sham TBI). Rats underwent behavioral testing at 3-, 6-, and 11-weeks postinjury, and were then euthanized for postmortem magnetic resonance imaging (MRI). POLY rats had a persisting increase in pain sensitivity compared to all groups on the von Frey test. MRI revealed that POLY rats also had abnormalities in the cortical and subcortical brain structures involved in nociceptive processing. These findings have important implications and provide a foundation for future studies to determine the underlying mechanisms and potential treatment strategies for chronic pain in TBI survivors. PERSPECTIVE: Rats with TBI and concomitant peripheral trauma displayed chronic nociceptive pain and MRI images also revealed damaged brain structures/pathways that are involved in chronic pain development. This study highlights the importance of polytrauma and the affected brain regions for developing chronic pain.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Marissa Sgro
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Parkville, VIC, Australia; Department of Nursing, Health and Human Services, Vancouver Island University, Nanaimo, BC, Canada.
| |
Collapse
|
34
|
Toro C, Jain S, Sun S, Temkin N, Barber J, Manley G, Komisarow JM, Ohnuma T, Foreman B, Korley F, James ML, Laskowitz D, Vavilala MS, Hernandez A, Mathew JP, Markowitz AJ, Krishnamoorthy V. Association of Brain Injury Biomarkers and Circulatory Shock Following Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study. J Neurosurg Anesthesiol 2023; 35:284-291. [PMID: 34967764 PMCID: PMC9243189 DOI: 10.1097/ana.0000000000000828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Early circulatory shock following traumatic brain injury (TBI) is a multifactorial process; however, the impact of brain injury biomarkers on the risk of shock has not been evaluated. We examined the association between neuronal injury biomarker levels and the development of circulatory shock following moderate-severe TBI. METHODS In this retrospective cohort study, we examined adults with moderate-severe TBI (Glasgow Coma Scale score <13) enrolled in the TRACK-TBI study, an 18-center prospective TBI cohort study. The exposures were day-1 levels of neuronal injury biomarkers (glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1 [UCH-L1], S100 calcium-binding protein B [S100B], neuron-specific enolase), and of an inflammatory biomarker (high-sensitivity C-reactive protein). The primary outcome was the development of circulatory shock, defined as cardiovascular Sequential Organ Failure Assessment Score ≥2 within 72 hours of admission. Association between day-1 biomarker levels and the development of circulatory shock was assessed with regression analysis. RESULTS The study included 392 subjects, with a mean age of 40 years; 314 (80%) were male and 165 (42%) developed circulatory shock. Median (interquartile range) day-1 levels of UCH-L1 (994.8 [518.7 to 1988.2] pg/mL vs. 548.1 [280.2 to 1151.9] pg/mL; P <0.0001) and S100B (0.47 μg/mL [0.25 to 0.88] vs. 0.27 [0.16 to 0.46] μg/mL; P <0.0001) were elevated in those who developed early circulatory shock compared with those who did not. In multivariable regression, there were associations between levels of both UCH-L1 (odds ratio, 1.63 [95% confidence interval, 1.25-2.12]; P <0.0005) and S100B (odds ratio, 1.73 [95% confidence interval 1.27-2.36]; P <0.0005) with the development of circulatory shock. CONCLUSION Neuronal injury biomarkers may provide the improved mechanistic understanding and possibly early identification of patients at risk for early circulatory shock following moderate-severe TBI.
Collapse
Affiliation(s)
- Camilo Toro
- Duke University School of Medicine. Durham, NC
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. San Diego, CA
| | - Shelly Sun
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego. San Diego, CA
| | - Nancy Temkin
- Department of Biostatistics, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
- Department of Neurosurgery, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Jason Barber
- Department of Neurosurgery, Anesthesiology and Pain Medicine, University of Washington. Seattle, WA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco. San Francisco, CA
| | | | - Tetsu Ohnuma
- Department of Anesthesiology, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati. Cincinnati, OH
| | - Frederick Korley
- Department of Emergency Medicine, University of Michigan. Ann Arbor, MI
| | - Michael L. James
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | - Daniel Laskowitz
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University. Durham, NC
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, and Harborview Injury Prevention and Research Center, University of Washington, Seattle, WA
| | | | | | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco. San Francisco, CA
| | - Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University. Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
| | | |
Collapse
|
35
|
Dai Y, Dong J, Wu Y, Zhu M, Xiong W, Li H, Zhao Y, Hammock BD, Zhu X. Enhancement of the liver's neuroprotective role ameliorates traumatic brain injury pathology. Proc Natl Acad Sci U S A 2023; 120:e2301360120. [PMID: 37339206 PMCID: PMC10293829 DOI: 10.1073/pnas.2301360120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) is a pervasive problem worldwide for which no effective treatment is currently available. Although most studies have focused on the pathology of the injured brain, we have noted that the liver plays an important role in TBI. Using two mouse models of TBI, we found that the enzymatic activity of hepatic soluble epoxide hydrolase (sEH) was rapidly decreased and then returned to normal levels following TBI, whereas such changes were not observed in the kidney, heart, spleen, or lung. Interestingly, genetic downregulation of hepatic Ephx2 (which encodes sEH) ameliorates TBI-induced neurological deficits and promotes neurological function recovery, whereas overexpression of hepatic sEH exacerbates TBI-associated neurological impairments. Furthermore, hepatic sEH ablation was found to promote the generation of A2 phenotype astrocytes and facilitate the production of various neuroprotective factors associated with astrocytes following TBI. We also observed an inverted V-shaped alteration in the plasma levels of four EET (epoxyeicosatrienoic acid) isoforms (5,6-, 8,9-,11,12-, and 14,15-EET) following TBI which were negatively correlated with hepatic sEH activity. However, hepatic sEH manipulation bidirectionally regulates the plasma levels of 14,15-EET, which rapidly crosses the blood-brain barrier. Additionally, we found that the application of 14,15-EET mimicked the neuroprotective effect of hepatic sEH ablation, while 14,15-epoxyeicosa-5(Z)-enoic acid blocked this effect, indicating that the increased plasma levels of 14,15-EET mediated the neuroprotective effect observed after hepatic sEH ablation. These results highlight the neuroprotective role of the liver in TBI and suggest that targeting hepatic EET signaling could represent a promising therapeutic strategy for treating TBI.
Collapse
Affiliation(s)
- Yongfeng Dai
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Jinghua Dong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yu Wu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
| | - Minzhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Wenchao Xiong
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
| | - Huanyu Li
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Yulu Zhao
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, University of California, Davis, CA95616
- University of California Davis Comprehensive Cancer Center, University of California, Davis, CA95616
| | - Xinhong Zhu
- School of Basic Medical Science, Southern Medical University, Guangzhou510515, China
- Research Center for Brain Health, Pazhou Lab, Guangzhou510330, China
- School of Psychology, Shenzhen University, Shenzhen518060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
36
|
Butler T. Letter to the Editor: Intense Exercise and Associated Blood-Brain Barrier Leakiness and Systemic Inflammation at the Time of Brain Injury May Be Relevant to Understanding Why Only Sports-Related Concussions Are Associated With Chronic Traumatic Encephalopathy. J Neurotrauma 2023; 40:1255-1256. [PMID: 36534765 PMCID: PMC10259602 DOI: 10.1089/neu.2022.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
37
|
Brand J, McDonald SJ, Gawryluk JR, Christie BR, Shultz SR. Stress and traumatic brain injury: An inherent bi-directional relationship with temporal and synergistic complexities. Neurosci Biobehav Rev 2023; 151:105242. [PMID: 37225064 DOI: 10.1016/j.neubiorev.2023.105242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Traumatic brain injury (TBI) and stress are prevalent worldwide and can both result in life-altering health problems. While stress often occurs in the absence of TBI, TBI inherently involves some element of stress. Furthermore, because there is pathophysiological overlap between stress and TBI, it is likely that stress influences TBI outcomes. However, there are temporal complexities in this relationship (e.g., when the stress occurs) that have been understudied despite their potential importance. This paper begins by introducing TBI and stress and highlighting some of their possible synergistic mechanisms including inflammation, excitotoxicity, oxidative stress, hypothalamic-pituitary-adrenal axis dysregulation, and autonomic nervous system dysfunction. We next describe different temporal scenarios involving TBI and stress and review the available literature on this topic. In doing so we find initial evidence that in some contexts stress is a highly influential factor in TBI pathophysiology and recovery, and vice versa. We also identify important knowledge gaps and suggest future research avenues that will increase our understanding of this inherent bidirectional relationship and could one day result in improved patient care.
Collapse
Affiliation(s)
- Justin Brand
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Neuroscience, Monash University, Melbourne, Victoria, Australia; Faculty of Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada.
| |
Collapse
|
38
|
Sgro M, Ellens S, Kodila ZN, Christensen J, Li C, Mychasiuk R, Yamakawa GR. Repetitive mild traumatic brain injury alters central and peripheral clock gene expression in the adolescent rat. Neurobiol Sleep Circadian Rhythms 2023; 14:100090. [PMID: 36942266 PMCID: PMC10024151 DOI: 10.1016/j.nbscr.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion is a common injury worldwide leading to substantial medical costs and a high burden on society. In adolescents, falls and sports related trauma are often the causes of mTBI. Importantly, critical brain growth and development occurs during this sensitive period making the prospect of a brain injury a worrying phenomenon. Upwards of 70% of patients report circadian disruption following these injuries and this has been shown to impede recovery. Therefore, we sought to determine if core circadian clock gene expression was disrupted in rat model of repetitive mTBI (RmTBI). Male and female adolescent rats (n = 129) received sham or RmTBI. The animals were then euthanized at different times throughout the day and night. Tissue from the hypothalamus, cerebellum, hippocampus, liver, and small intestine were evaluated for the expression of per1, per2, cry1, clock, bmal1 and rev-erb-α. We found most clock genes varied across the day/night indicating circadian expression patterns. In the hypothalamus we found RmTBI altered the expression of cry1 and bmal1 in addition to sex differences in per2, cry1, clock, bmal1 and rev-erb- α. In the cerebellum, per1, per2, cry1, clock, bmal1 and rev-erb-α rhythms were all knocked out by RmTBI in addition to sex differences in cry1, clock and bmal1 expression. We also detected a significant decrease in overall expression of all clock genes in males in the middle of the night. In the hippocampus we found that RmTBI changed the rhythm of rev-erb-α expression in addition to sex differences in bmal1 expression. In the liver we detected strong rhythms in all genes examined, however only per2 expression was knocked out by RmTBI, in addition we also detected sex differences in per2 and cry1. We also detected an overall decrease in female clock gene expression in the early night. In the small intestine, RmTBI altered cry1 expression and there were sex differences in rev-erb-α. These results indicate that RmTBI alters core circadian clock gene expression in the central and peripheral nervous system in a time, tissue and sex dependent manner. This may be disrupting important phase relationships between the brain and peripheral nervous system and contributing to post-injury symptomology and also highlights the importance for time and sex dependent assessment of injury outcomes.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Susanne Ellens
- Sport and Exercise Science, School of Allied Health, Human Services & Sport, La Trobe University, Melbourne, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Crystal Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Corresponding author. Department of Neuroscience, Central Clinical School, Monash University, 6th Floor, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
39
|
Li F, Liu Y, Li L, Peng R, Wang C, Liu C, Shi M, Cao Y, Gao Y, Zhang H, Liu X, Li T, Jia H, Li X, Zhang Q, Zhao Z, Zhang J. Brain-derived extracellular vesicles mediate traumatic brain injury associated multi-organ damage. Biochem Biophys Res Commun 2023; 665:141-151. [PMID: 37163934 DOI: 10.1016/j.bbrc.2023.04.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
Traumatic brain injury (TBI) can negatively impact systemic organs, which can lead to more death and disability. However, the mechanism underlying the effect of TBI on systemic organs remains unclear. In previous work, we found that brain-derived extracellular vesicles (BDEVs) released from the injured brain can induce systemic coagulation with a widespread fibrin deposition in the microvasculature of the lungs, kidney, and heart in a mouse model of TBI. In this study, we investigated whether BDEVs can induce heart, lung, liver, and kidney injury in TBI mice. The results of pathological staining and related biomarkers indicated that BDEVs can induce histological damage and systematic dysfunction. In vivo imaging system demonstrated that BDEVs can gather in systemic organs. We also found that BDEVs could induce cell apoptosis in the lung, liver, heart, and kidney. Furthermore, we discovered that BDEVs could cause multi-organ endothelial cell damage. Finally, this secondary multi-organ damage could be relieved by removing circulating BDEVs. Our research provides a novel perspective and potential mechanism of TBI-associated multi-organ damage.
Collapse
Affiliation(s)
- Fanjian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yafan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Lei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ruilong Peng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Cong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Chuan Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yiyao Cao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Hejun Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xilei Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Tuo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Haoran Jia
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiaotian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Graduate School, Tianjin Medical University, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Qiaoling Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Neurological Institute, Tianjin, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
40
|
Giordano KR, Saber M, Green TR, Rojas-Valencia LM, Ortiz JB, Murphy SM, Lifshitz J, Rowe RK. Colony-Stimulating Factor-1 Receptor Inhibition Transiently Attenuated the Peripheral Immune Response to Experimental Traumatic Brain Injury. Neurotrauma Rep 2023; 4:284-296. [PMID: 37139183 PMCID: PMC10150725 DOI: 10.1089/neur.2022.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
To investigate microglial mechanisms in central and peripheral inflammation after experimental traumatic brain injury (TBI), we inhibited the colony-stimulating factor-1 receptor (CSF-1R) with PLX5622 (PLX). We hypothesized that microglia depletion would attenuate central inflammation acutely with no effect on peripheral inflammation. After randomization, male mice (n = 105) were fed PLX or control diets (21 days) and then received midline fluid percussion injury or sham injury. Brain and blood were collected at 1, 3, or 7 days post-injury (DPI). Immune cell populations were quantified in the brain and blood by flow cytometry. Cytokines (interleukin [IL]-6, IL-1β, tumor necrosis factor-α, interferon-γ, IL-17A, and IL-10) were quantified in the blood using a multi-plex enzyme-linked immunosorbent assay. Data were analyzed using Bayesian multi-variate, multi-level models. PLX depleted microglia at all time points and reduced neutrophils in the brain at 7 DPI. PLX also depleted CD115+ monocytes, reduced myeloid cells, neutrophils, and Ly6Clow monocytes in blood, and elevated IL-6. TBI induced a central and peripheral immune response. TBI elevated leukocytes, microglia, and macrophages in the brain and elevated peripheral myeloid cells, neutrophils, Ly6Cint monocytes, and IL-1β in the blood. TBI lowered peripheral CD115+ and Ly6Clow monocytes in the blood. TBI PLX mice had fewer leukocytes and microglia in the brain at 1 DPI, with elevated neutrophils at 7 DPI compared to TBI mice on a control diet. TBI PLX mice also had fewer peripheral myeloid cells, CD115+, and Ly6Clow monocytes in the blood at 3 DPI, but elevated Ly6Chigh, Ly6Cint, and CD115+ monocyte populations at 7 DPI, compared to TBI mice on a control diet. TBI PLX mice had elevated proinflammatory cytokines and lower anti-inflammatory cytokines in the blood at 7 DPI compared to TBI mice on a control diet. CSF-1R inhibition reduced the immune response to TBI at 1 and 3 DPI, but elevated peripheral inflammation at 7 DPI.
Collapse
Affiliation(s)
- Katherine R. Giordano
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - Maha Saber
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
| | - Tabitha R.F. Green
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Luisa M. Rojas-Valencia
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - J. Bryce Ortiz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
41
|
De Vlieger G, Meyfroidt G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocrit Care 2023; 38:504-516. [PMID: 36324003 PMCID: PMC9629888 DOI: 10.1007/s12028-022-01630-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and morbidity, and almost half of these patients are admitted to the intensive care unit. Of those, 10% develop acute kidney injury (AKI) and 2% even need kidney replacement therapy (KRT). Although clinical trials in patients with TBI who have AKI are lacking, some general principles in this population may apply. The present review is an overview on the epidemiology and pathophysiology of AKI in patients with TBI admitted to the intensive care unit who are at risk for or who have developed AKI. A cornerstone in severe TBI management is preventing secondary brain damage, in which reducing the intracranial pressure (ICP) and optimizing the cerebral perfusion pressure (CPP) remain important therapeutic targets. To treat episodes of elevated ICP, osmolar agents such as mannitol and hypertonic saline are frequently administered. Although we are currently awaiting the results of a prospective randomized controlled trial that compares both agents, it is important to realize that both agents have been associated with an increased risk of developing AKI which is probably higher for mannitol compared with hypertonic saline. For the brain, as well as for the kidney, targeting an adequate perfusion pressure is important. Hemodynamic management based on the combined use of intravascular fluids and vasopressors is ideally guided by hemodynamic monitoring. Hypotonic albumin or crystalloid resuscitation solutions may increase the risk of brain edema, and saline-based solutions are frequently used but have a risk of hyperchloremia, which might jeopardize kidney function. In patients at risk, frequent assessment of serum chloride might be advised. Maintenance of an adequate CPP involves the optimization of circulating blood volume, often combined with vasopressor agents. Whether individualized CPP targets based on cerebrovascular autoregulation monitoring are beneficial need to be further investigated. Interestingly, such individualized perfusion targets are also under investigation in patients as a strategy to mitigate the risk for AKI in patients with chronic hypertension. In the small proportion of patients with TBI who need KRT, continuous techniques are advised based on pathophysiology and expert opinion. The need for KRT is associated with a higher risk of intracranial hypertension, especially if osmolar clearance occurs fast, which can even occur in continuous techniques. Precise ICP and CPP monitoring is mandatory, especially at the initiation of KRT.
Collapse
Affiliation(s)
- Greet De Vlieger
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Geert Meyfroidt
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Peng J, Gao C, Chen X, Wang T, Luo C, Zhang M, Chen X, Tao L. Ruxolitinib, a promising therapeutic candidate for traumatic brain injury through maintaining the homeostasis of cathepsin B. Exp Neurol 2023; 363:114347. [PMID: 36813222 DOI: 10.1016/j.expneurol.2023.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death and disability in the world. Owing to the heterogeneity and complexity of TBI pathogenesis, there is still no specific drug. Our previous studies have proved the neuroprotective effect of Ruxolitinib (Ruxo) on TBI, but further are needed to explore the potent mechanisms and potential translational application. Compelling evidence indicates that Cathepsin B (CTSB) plays an important role in TBI. However, the relationships between Ruxo and CTSB upon TBI remain non-elucidated. In this study, we established a mouse model of moderate TBI to clarify it. The neurological deficit in the behavioral test was alleviated when Ruxo administrated at 6 h post-TBI. Additionally, Ruxo significantly reduced the lesion volume. As for the pathological process of acute phase, Ruxo remarkably reduced the expression of proteins associated with cell demise, neuroinflammation, and neurodegeneration. Then the expression and location of CTSB were detected respectively. We found that the expression of CTSB exhibits a transient decrease and then persistent increase following TBI. The distribution of CTSB, mainly located at NeuN-positive neurons was unchanged. Importantly, the dysregulation of CTSB expression was reversed with the treatment of Ruxo. The timepoint was chosen when CTSB decreased, to further analyze its change in the extracted organelles; and Ruxo maintained the homeostasis of it in sub-cellular. In summary, our results demonstrate that Ruxo plays neuroprotection through maintaining the homeostasis of CTSB, and will be a promising therapeutic candidate for TBI in clinic.
Collapse
Affiliation(s)
- Jianhang Peng
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Xueshi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Xiping Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China.
| |
Collapse
|
43
|
Leyba K, Paiyabhroma N, Salvas JP, Damen FW, Janvier A, Zub E, Bernis C, Rouland R, Dubois CJ, Badaut J, Richard S, Marchi N, Goergen CJ, Sicard P. Neurovascular hypoxia after mild traumatic brain injury in juvenile mice correlates with heart-brain dysfunctions in adulthood. Acta Physiol (Oxf) 2023; 238:e13933. [PMID: 36625322 DOI: 10.1111/apha.13933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
AIM Retrospective studies suggest that mild traumatic brain injury (mTBI) in pediatric patients may lead to an increased risk of cardiac events. However, the exact functional and temporal dynamics and the associations between heart and brain pathophysiological trajectories are not understood. METHODS A single impact to the left somatosensory cortical area of the intact skull was performed on juvenile mice (17 days postnatal). Cerebral 3D photoacoustic imaging was used to measure the oxygen saturation (sO2 ) in the impacted area 4 h after mTBI followed by 2D and 4D echocardiography at days 7, 30, 90, and 190 post-impact. At 8 months, we performed a dobutamine stress test to evaluate cardiac function. Lastly, behavioral analyses were conducted 1 year after initial injury. RESULTS We report a rapid and transient decrease in cerebrovascular sO2 and increased hemoglobin in the impacted left brain cortex. Cardiac analyses showed long-term diastolic dysfunction and a diminished systolic strain response under stress in the mTBI group. At the molecular level, cardiac T-p38MAPK and troponin I expression was pathologic modified post-mTBI. We found linear correlations between brain sO2 measured immediately post-mTBI and long-term cardiac strain after 8 months. We report that initial cerebrovascular hypoxia and chronic cardiac dysfunction correlated with long-term behavioral changes hinting at anxiety-like and memory maladaptation. CONCLUSION Experimental juvenile mTBI induces time-dependent cardiac dysfunction that corresponds to the initial neurovascular sO2 dip and is associated with long-term behavioral modifications. These imaging biomarkers of the heart-brain axis could be applied to improve clinical pediatric mTBI management.
Collapse
Affiliation(s)
- Katherine Leyba
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Nitchawat Paiyabhroma
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| | - John P Salvas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alicia Janvier
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emma Zub
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Corinne Bernis
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Inserm/Université Paul Sabatier UMR1048, Toulouse, France
| | | | | | - Jerome Badaut
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, Bordeaux, France
| | - Sylvain Richard
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| | - Nicola Marchi
- Institute de Genomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Pierre Sicard
- PhyMedExp, INSERM/CNRS/Université de Montpellier, IPAM/Biocampus, Montpellier, France
| |
Collapse
|
44
|
Chiu LS, Anderton RS. The role of the microbiota-gut-brain axis in long-term neurodegenerative processes following traumatic brain injury. Eur J Neurosci 2023; 57:400-418. [PMID: 36494087 PMCID: PMC10107147 DOI: 10.1111/ejn.15892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) can be a devastating and debilitating disease to endure. Due to improvements in clinical practice, declining mortality rates have led to research into the long-term consequences of TBI. For example, the incidence and severity of TBI have been associated with an increased susceptibility of developing neurodegenerative disorders, such as Parkinson's or Alzheimer's disease. However, the mechanisms linking this alarming association are yet to be fully understood. Recently, there has been a groundswell of evidence implicating the microbiota-gut-brain axis in the pathogenesis of these diseases. Interestingly, survivors of TBI often report gastrointestinal complaints and animal studies have demonstrated gastrointestinal dysfunction and dysbiosis following injury. Autonomic dysregulation and chronic inflammation appear to be the main driver of these pathologies. Consequently, this review will explore the potential role of the microbiota-gut-brain axis in the development of neurodegenerative diseases following TBI.
Collapse
Affiliation(s)
- Li Shan Chiu
- School of Medicine, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Ear Science Institute Australia, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
45
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
46
|
Mercado NM, Zhang G, Ying Z, Gómez-Pinilla F. Traumatic brain injury alters the gut-derived serotonergic system and associated peripheral organs. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166491. [PMID: 35902006 PMCID: PMC9839318 DOI: 10.1016/j.bbadis.2022.166491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
Most efforts to understand the pathology of traumatic brain injury (TBI) have been centered on the brain, ignoring the role played by systemic physiology. Gut-derived serotonin is emerging as a major regulator of systemic homeostasis involving various organs and tissues throughout the body. Here, we shed light on the roles occupied by gut-derived serotonin and its downstream metabolic targets in the systemic pathogenesis of TBI. Male C57BL/6J mice were subjected to a fluid percussion injury (FPI) and RT-qPCR was used to examine mRNA levels in intestine, liver, and adipose tissue. In the intestinal tract, TBI transiently downregulated enteric neuronal markers Chat and Nos1 in the duodenum and colon, and altered colonic genes related to synthesis and degradation of serotonin, favoring an overall serotonin downregulation. There also was a decrease in serotonin fluorescence intensity in the colonic mucosa and reduced circulating blood serotonin levels, with concurrent alterations in serotonin-associated gene expression in downstream tissues after TBI (i.e., upregulation of serotonin receptor Htr2a and dysregulation of genes associated with lipid metabolism in liver and adipose). Levels of commensal bacterial species were also altered in the gut and were associated with TBI-mediated changes in the colonic serotonin system. Our findings suggest that TBI alters peripheral serotonin homeostasis, which in turn may impact gastrointestinal function, gut microbiota, and systemic energy balance. These data highlight the importance of building an integrative view of the role of systemic physiology in TBI pathogenesis to assist in the development of effective TBI treatments.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Fernando Gómez-Pinilla
- Department of Integrative Biology & Physiology, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
48
|
Okuya Y, Gohil K, Moussa ID. Impact of Left Ventricular Systolic Function After Moderate-to-Severe Isolated Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Cardiol Rev 2022; 30:293-298. [PMID: 34224451 DOI: 10.1097/crd.0000000000000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) can result in left ventricular dysfunction, which can lead to hypotension and secondary brain injuries. However, the association between left ventricular systolic dysfunction (LVSD) and in-hospital mortality in patients with moderate-to-severe isolated TBI is controversial. Therefore, we conducted a systematic review and meta-analysis to identify the prevalence of LVSD and evaluate whether LVSD following moderate-to-severe isolated TBI increases the in-hospital mortality. We searched PubMed, EMBASE, and the Cochrane Library database from January 1, 2010, through June 30, 2020. Meta-analysis was performed to determine the incidence of LVSD and related mortality in patients with moderate-to-severe isolated TBI. A systematic review identified 5 articles appropriate for meta-analysis. The total number of patients pooled was 256. LVSD was reported in 4 studies, of which the estimated incidence of patients with LVSD was 18.7% (95% confidence interval, 11.9-26.6). Five studies reported on in-hospital mortality, and the estimated in-hospital mortality was 14.1% (95% confidence interval, 5.3-25.6). Finally, 3 studies were eligible for analyzing the association of LVSD and in-hospital mortality. On meta-analysis, in-hospital mortality was significantly higher in patients with LVSD (risk ratio, 6.57; 95% confidence interval, 3.71-11.65; P < 0.001). In conclusion, LVSD after moderate-to-severe TBI is common and may be associated with worse in-hospital outcomes.
Collapse
Affiliation(s)
- Yoshiyuki Okuya
- From the Heart and Vascular Institute, Carle Health, Urbana, IL
- Carle Illinois College of Medicine, University of Illinois, Urbana Champaign, IL
| | - Kavita Gohil
- Stephens Family Clinical Research Institute, Carle Health, Urbana, IL
| | - Issam D Moussa
- From the Heart and Vascular Institute, Carle Health, Urbana, IL
- Carle Illinois College of Medicine, University of Illinois, Urbana Champaign, IL
| |
Collapse
|
49
|
Tsymbalyuk O, Gerzanich V, Simard JM, Rathinam CV. Traumatic brain injury alters dendritic cell differentiation and distribution in lymphoid and non-lymphoid organs. J Neuroinflammation 2022; 19:238. [PMID: 36183126 PMCID: PMC9526328 DOI: 10.1186/s12974-022-02609-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI. Methods Long bones, spleen, peripheral lymph nodes (pLNs), mesenteric lymph nodes (mLNs), liver, lungs, skin and blood were collected from mice with either moderate-level cortical impact (CCI) or sham on day 1, day 3 or day 7 after TBI. Bone marrow cells were isolated from the tibias and femurs of hind limb through flushing. Tissues were digested with Collagenase-D and DNase I. Skin biopsies were digested in the presence of liberase + DNase I. Single cell suspensions were made, red blood cells were lysed with Ammonium chloride (Stem Cell Technology) and subsequently filtered using a 70 μM nylon mesh. DC subsets of the tissues and DC progenitors of the BM were identified through 10-color flow cytometry-based immunophenotyping studies. Intracellular reactive oxygen species (ROS) were identified through H2DCFDA staining. Results Our studies identify that; (1) frequencies and absolute numbers of DCs in the spleen and BM are altered on day 3 and day 7 after TBI; (2) surface expression of key molecules involved in antigen presentation of DCs were affected on day 3 and day 7 after TBI; (3) distribution and functions of tissue-specific DC subsets of both circulatory and lymphatic systems were imbalanced following TBI; (4) early differentiation program of DCs, especially the commitment of hematopoietic stem cells to common DC progenitors (CDPs), were deregulated after TBI; and (5) intracellular ROS levels were reduced in DC progenitors and differentiated DCs on day 3 and day 7 after TBI. Conclusions Our data demonstrate, for the first time, that TBI affects the distribution pattern of DCs and induces an imbalance among DC subsets in both lymphoid and non-lymphoid organs. In addition, the current study demonstrates that TBI results in reduced levels of ROS in DCs on day 3 and day 7 after TBI, which may explain altered DC differentiation paradigm following TBI. A deeper understanding on the molecular mechanisms that contribute to DC defects following TBI would be essential and beneficial in treating infections in patients with acute central nervous system (CNS) injuries, such as TBI, stroke and spinal cord injury.
Collapse
Affiliation(s)
- Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, MD, Baltimore, USA.,Research Service, Veterans Affairs Maryland Health Care System, MD, Baltimore, USA.,Department of Pathology, University of Maryland School of Medicine, MD, Baltimore, USA.,Department of Physiology, University of Maryland School of Medicine, MD, Baltimore, USA
| | - Chozha Vendan Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA. .,Center for Stem Cell and Regenerative Medicine, University of Maryland School of Medicine, MD, 21201, Baltimore, USA.
| |
Collapse
|
50
|
The Brain–Gut Axis in Traumatic Brain Injury: Implications for Nutrition Support. CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract
Purpose of Review
Early enteral nutrition improves outcomes following traumatic brain injury (TBI). This can prove difficult due to TBI-induced feeding intolerance secondary to disruption of the brain-gut axis, a network composed of central nervous system (CNS) input, autonomic signaling, and immunologic regulation that controls gut and CNS homeostasis. Here, we discuss the pathophysiology of brain–gut axis dysregulation and outline nutrition strategies in patients with TBI.
Recent Findings
Feeding intolerance following TBI is multifactorial; complex signaling between the CNS, sympathetic nervous system, parasympathetic nervous system, and enteric nervous system that controls gut homeostasis is disrupted within hours post-injury. This has profound effects on the immune system and gut microbiome, further complicating post-TBI recovery. Despite this disruption, calorie and protein requirements increase considerably following TBI, and early nutritional supplementation improves survival following TBI. Enteral nutrition has proven more efficacious than parenteral nutrition in TBI patients and should be initiated within 48 hours following admission. Immune-fortified nutrition reduces CNS and gut inflammation and may improve outcomes in TBI patients.
Summary
Although autonomic dysregulation of the brain–gut axis results in feeding intolerance following TBI, early enteral nutrition is of paramount importance. Enteral nutrition reduces post-TBI inflammation and enhances immunologic and gut function. When feasible, enteral nutrition should be initiated within 48 hours following injury.
Collapse
|