1
|
Li J, Hu L, Huang X. Causal relationship between leukocyte telomere length and two cardiomyopathies based on a bidirectional Mendelian randomization approach. Medicine (Baltimore) 2024; 103:e40308. [PMID: 39533571 PMCID: PMC11556983 DOI: 10.1097/md.0000000000040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
This study aims to employ the Mendelian randomization (MR) approach to investigate the relationship between leukocyte telomere length (TL) and 2 prevalent forms of cardiomyopathies. Using R software (4.3.1) for MR study, independent genetic variants associated with leukocyte TL were extracted from the Integrative Epidemiology Unit database, while cardiomyopathies data were pooled from FinnGen and European Bioinformatics Institute databases. Analytical methodologies included inverse-variance weighting, MR-Egger regression, and weighted median methods. Further analyses involved MR-Egger intercept and MR-PRESSO for handling horizontal pleiotropy and Cochran Q test for study heterogeneity. Our forward Mendelian randomization study indicates a positive correlation between longer leukocyte TL and the risk of 2 forms of cardiomyopathies: the longer the leukocyte telomere, the higher is the risk of cardiomyopathies. Specifically, for hypertrophic obstructive cardiomyopathy the OR is 2.23 (95% CI: 1.19-4.14, P = .01), for hypertrophic cardiomyopathy the OR is 1.80 (95% CI: 1.14-2.85, P = .01), and for dilated cardiomyopathy the OR is 1.32 (95% CI: 1.01-1.71, P = .04). In contrast, our reverse Mendelian randomization showed that cardiomyopathies were not directly associated with TL, and the inverse-variance-weighted test was not statistically significant for any of the 3 (P > .05). The reliability tests for the forward Mendelian randomization, including both MR-Egger intercept and MR-PRESSO tests, show no evidence of horizontal pleiotropy, and Cochran Q test indicates no heterogeneity. The "leave-one-out" sensitivity analysis revealed no outlier genes. The reliability tests for the reverse Mendelian randomization, including both MR-Egger intercept and MR-PRESSO tests, also indicate no genetic pleiotropy. Despite the heterogeneity shown in our study between hypertrophic cardiomyopathy and leukocyte TL, the sensitivity analysis did not identify any anomalies. Our Mendelian randomization study suggests that longer leukocyte TL is associated with an increased risk of hypertrophic obstructive cardiomyopathy, hypertrophic cardiomyopathy, and dilated cardiomyopathy. However, the onset of these 2 kinds of disease does not directly lead to changes in leukocyte TL.
Collapse
Affiliation(s)
- Jun Li
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Lanshuo Hu
- Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Xuanchun Huang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
McLester-Davis LWY, Norton D, Papale LA, James TT, Salazar H, Asthana S, Johnson SC, Gooding DC, Roy TR, Alisch RS, Hogan KJ, Drury SS, Gleason CE, Zuelsdorff M. Telomere length and cognitive function among middle-aged and older participants from communities underrepresented in aging research: A preliminary study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618331. [PMID: 39464117 PMCID: PMC11507781 DOI: 10.1101/2024.10.14.618331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective Accelerated biological aging is a plausible and modifiable determinant of dementia burden facing minoritized communities, but is not well-studied in these historically underrepresented populations. Our objective was to preliminarily characterize relationships between telomere length and cognitive health among American Indian/Alaska Native (AI/AN) and Black/African American (B/AA) middle-aged and older adults. Methods This study included data on telomere length and cognitive test performance from 187 participants, enrolled in one of two community-based cognitive aging cohorts and who identified their primary race as AI/AN or B/AA. Results Nested multivariable regression models revealed preliminary evidence for associations between telomere length and cognitive performance, and these associations were partially independent of chronological age. Discussion Small sample size limited estimate precision, however, findings suggest future work on telomere length and cognitive health in underrepresented populations at high risk for dementia is feasible and valuable as a foundation for social and behavioral intervention research.
Collapse
Affiliation(s)
- Lauren W Y McLester-Davis
- University of Wisconsin Native American Center for Health Professions, Department of Biochemistry, Department of Medicine
| | - Derek Norton
- University of Wisconsin Biostatistics and Medical Informatics
| | - Ligia A Papale
- University of Wisconsin Department of Neurological Surgery
| | | | | | | | | | - Diane C Gooding
- University of Wisconsin Department of Psychology, Department of Medicine, Department of Psychiatry
| | | | - Reid S Alisch
- University of Wisconsin Department of Neurological Surgery
| | - Kirk J Hogan
- University of Wisconsin Department of Anesthesiology
| | - Stacy S Drury
- Boston Children's Hospital Department of Psychiatry and Behavioral Sciences
| | - Carey E Gleason
- University of Wisconsin Department of Medicine, William S. Middleton Memorial Veterans Hospital Geriatric Research Education and Clinical Center
| | | |
Collapse
|
3
|
Strauss JD, Brown DW, Zhou W, Dagnall C, Yuan JM, Im A, Savage SA, Wang Y, Rafati M, Spellman SR, Gadalla SM. Telomere length and clonal chromosomal alterations in peripheral blood of patients with severe aplastic anaemia. Br J Haematol 2024; 205:1180-1187. [PMID: 39103182 PMCID: PMC11499016 DOI: 10.1111/bjh.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Severe aplastic anaemia (SAA) is a rare and life-threatening bone marrow failure disorder. We used data from the transplant outcomes in aplastic anaemia study to characterize mosaic chromosomal alterations (mCAs) in the peripheral blood of 738 patients with acquired SAA and evaluate their associations with telomere length (TL) and survival post-haematopoietic cell transplant (HCT). The median age at HCT was 20.4 years (range = 0.2-77.4). Patients with SAA had shorter TL than expected for their age (median TL percentile for age: 35.7th; range <1-99.99). mCAs were detected in 211 patients (28.6%), with chr6p copy-neutral loss of heterozygosity (6p-CNLOH) in 15.9% and chr7 loss in 3.0% of the patients; chrX loss was detected in 4.1% of female patients. Negative correlations between mCA cell fraction and measured TL (r = -0.14, p = 0.0002), and possibly genetically predicted TL (r = -0.07, p = 0.06) were noted. The post-HCT 3-year survival probability was low in patients with chr7 loss (39% vs. 72% in patients with chr6-CNLOH, 60% in patients with other mCAs and 70% in patients with no mCAs; p-log rank = 0.001). In multivariable analysis, short TL (p = 0.01), but not chr7 loss (p = 0.29), was associated with worse post-HCT survival. TL may guide clinical decisions in patients with SAA.
Collapse
Affiliation(s)
- Joshua D Strauss
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Derek W Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Cancer Epidemiology and Prevention Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Annie Im
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Youjin Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Maryam Rafati
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, Minnesota, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Dratwa-Kuzmin M, Hadra BA, Oguz F, Ogret Y, Constantinescu I, Apostol D, Talangescu A, Constantinescu AE, Maruntelu I, Kościńska K, Lukanov T, Naumova E, Bogunia-Kubik K. Telomere Length, HLA, and Longevity-Results from a Multicenter Study. Int J Mol Sci 2024; 25:9457. [PMID: 39273401 PMCID: PMC11395078 DOI: 10.3390/ijms25179457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is an exceptionally complex process that depends on genetic, environmental, and lifestyle factors. Previous studies within the International HLA and Immunogenetics Workshop (IHIWS) component "Immunogenetics of Ageing" showed that longevity is associated with positive selection of HLA-DRB1*11- and DRB1*16-associated haplotypes, shown to be protective against diseases. Within the 18th IHIWS, we aimed to investigate the relevance of telomere length for successful aging and its association with classical HLAs. In total 957 individuals from Bulgaria, Turkey, Romania, and Poland in two age groups, elderly individuals (age 65-99 years) and ethnically matched young group (age 18-64 years), were investigated. The obtained results confirmed interpopulation differences in the distribution of HLA alleles, documented the lengths of telomeres in analyzed populations, and demonstrated significant associations of telomere length with aging as well as with the presence of some HLA class I or class II alleles. They suggest that telomere length assessment combined with HLA genotyping may help identify immunogenetic profiles associated with longevity. The associations between HLA and telomeres support the theory that HLA genes influence the aging process. However, further research is needed to clarify the biological basis of the observed relationships.
Collapse
Affiliation(s)
- Marta Dratwa-Kuzmin
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfled Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Bushra Al Hadra
- Clinic of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, 1431 Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, 1431 Sofia, Bulgaria
| | - Fatma Oguz
- Department of Medical Biology, Istanbul Medical Faculty, Istanbul University, 34098 Istanbul, Turkey
| | - Yeliz Ogret
- Department of Medical Biology, Istanbul Medical Faculty, Istanbul University, 34098 Istanbul, Turkey
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Dimitri Apostol
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Adriana Talangescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Alexandra-Elena Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Ion Maruntelu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| | - Katarzyna Kościńska
- HLA Laboratory, Lower Silesian Oncology, Pulmonology and Hematology Center, 54-049 Wroclaw, Poland
| | - Tsvetelin Lukanov
- Clinic of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, 1431 Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, 1431 Sofia, Bulgaria
| | - Elissaveta Naumova
- Clinic of Clinical Immunology and Stem Cell Bank, University Hospital Alexandrovska, 1431 Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, 1431 Sofia, Bulgaria
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfled Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
5
|
Hastings WJ, Ye Q, Wolf SE, Ryan CP, Das SK, Huffman KM, Kobor MS, Kraus WE, MacIsaac JL, Martin CK, Racette SB, Redman LM, Belsky DW, Shalev I. Effect of long-term caloric restriction on telomere length in healthy adults: CALERIE™ 2 trial analysis. Aging Cell 2024; 23:e14149. [PMID: 38504468 PMCID: PMC11296136 DOI: 10.1111/acel.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Caloric restriction (CR) modifies lifespan and aging biology in animal models. The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) 2 trial tested translation of these findings to humans. CALERIE™ randomized healthy, nonobese men and premenopausal women (age 21-50y; BMI 22.0-27.9 kg/m2), to 25% CR or ad-libitum (AL) control (2:1) for 2 years. Prior analyses of CALERIE™ participants' blood chemistries, immunology, and epigenetic data suggest the 2-year CR intervention slowed biological aging. Here, we extend these analyses to test effects of CR on telomere length (TL) attrition. TL was quantified in blood samples collected at baseline, 12-, and 24-months by quantitative PCR (absolute TL; aTL) and a published DNA-methylation algorithm (DNAmTL). Intent-to-treat analysis found no significant differences in TL attrition across the first year, although there were trends toward increased attrition in the CR group for both aTL and DNAmTL measurements. When accounting for adherence heterogeneity with an Effect-of-Treatment-on-the-Treated analysis, greater CR dose was associated with increased DNAmTL attrition during the baseline to 12-month weight-loss period. By contrast, both CR group status and increased CR were associated with reduced aTL attrition over the month 12 to month 24 weight maintenance period. No differences were observed when considering TL change across the study duration from baseline to 24-months, leaving it unclear whether CR-related effects reflect long-term detriments to telomere fidelity, a hormesis-like adaptation to decreased energy availability, or measurement error and insufficient statistical power. Unraveling these trends will be a focus of future CALERIE™ analyses and trials.
Collapse
Affiliation(s)
- Waylon J. Hastings
- Department of Psychiatry and Behavioral SciencesTulane University School of MedicineNew OrleansLouisianaUSA
| | - Qiaofeng Ye
- Department of Biobehavioral HealthPennsylvania State University, University ParkState CollegePennsylvaniaUSA
| | - Sarah E. Wolf
- Department of Biobehavioral HealthPennsylvania State University, University ParkState CollegePennsylvaniaUSA
- Institute for Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Calen P. Ryan
- Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
| | - Sai Krupa Das
- Jean MayerUSDA Human Nutrition Research Center on Aging at Tufts UniversityBostonMassachusettsUSA
| | - Kim M. Huffman
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - William E. Kraus
- Duke Molecular Physiology Institute and Department of MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Julia L. MacIsaac
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical GeneticsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Corby K. Martin
- Pennington Biomedical Research CenterBaton RougeLouisianaUSA
| | - Susan B. Racette
- College of Health SolutionsArizona State UniversityPhoenixArizonaUSA
| | | | - Daniel W. Belsky
- Butler Columbia Aging CenterColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
- Department of EpidemiologyColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
| | - Idan Shalev
- Department of Biobehavioral HealthPennsylvania State University, University ParkState CollegePennsylvaniaUSA
| |
Collapse
|
6
|
McQuillan MA, Verhulst S, Hansen MEB, Beggs W, Meskel DW, Belay G, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Njamnshi AK, Chanock SJ, Aviv A, Tishkoff SA. Association between telomere length and Plasmodium falciparum malaria endemicity in sub-Saharan Africans. Am J Hum Genet 2024; 111:927-938. [PMID: 38701745 PMCID: PMC11080607 DOI: 10.1016/j.ajhg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.
Collapse
Affiliation(s)
- Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania (KIUT), Dares Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Brown LM, Elbon MC, Bharadwaj A, Damle G, Lachance J. Does Effective Population Size Govern Evolutionary Differences in Telomere Length? Genome Biol Evol 2024; 16:evae111. [PMID: 38771124 PMCID: PMC11140418 DOI: 10.1093/gbe/evae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.
Collapse
Affiliation(s)
- Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mia C Elbon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajay Bharadwaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gargi Damle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Savage SA. Telomere length and cancer risk: finding Goldilocks. Biogerontology 2024; 25:265-278. [PMID: 38109000 DOI: 10.1007/s10522-023-10080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, 6E456, Bethesda, MD, 20892-6772, USA.
| |
Collapse
|
9
|
Enlow MB, De Vivo I, Petty CR, Nelson CA. Temperament and sex as moderating factors of the effects of exposure to maternal depression on telomere length in early childhood. Dev Psychopathol 2024:1-14. [PMID: 38426330 PMCID: PMC11366042 DOI: 10.1017/s0954579424000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Individual differences in sensitivity to context are posited to emerge early in development and to influence the effects of environmental exposures on a range of developmental outcomes. The goal of the current study was to examine the hypothesis that temperament characteristics and biological sex confer differential vulnerability to the effects of exposure to maternal depression on telomere length in early childhood. Telomere length has emerged as a potentially important biomarker of current and future health, with possible mechanistic involvement in the onset of various disease states. Participants comprised a community sample of children followed from infancy to age 3 years. Relative telomere length was assessed from DNA in saliva samples collected at infancy, 2 years, and 3 years. Maternal depressive symptoms and the child temperament traits of negative affectivity, surgency/extraversion, and regulation/effortful control were assessed via maternal report at each timepoint. Analyses revealed a 3-way interaction among surgency/extraversion, sex, and maternal depressive symptoms, such that higher surgency/extraversion was associated with shorter telomere length specifically among males exposed to elevated maternal depressive symptoms. These findings suggest that temperament and sex influence children's susceptibility to the effects of maternal depression on telomere dynamics in early life.
Collapse
Affiliation(s)
- Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Immaculata De Vivo
- Department of Medicine, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Epidemiology, Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA
| | - Carter R. Petty
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Charles A. Nelson
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Harvard Graduate School of Education, Boston, MA
| |
Collapse
|
10
|
Hou X, Li R, Wang J, Wei D, Yang X, Liao W, Yuchi Y, Liu X, Huo W, Mao Z, Liu J, Wang C, Hou J. Gender-specific associations between mixture of polycyclic aromatic hydrocarbons and telomere length. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9583-9598. [PMID: 37773482 DOI: 10.1007/s10653-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Evidence shows the relationships of individual environmental PAHs by their urinary metabolites with relative telomere length (RTL), which may be affected by biological gender differences. Since plasma parent PAHs are not metabolized, it may reflect human exposure to PAHs more realistically in daily life. Thus, exploring joint associations between plasma parent PAHs and RTL is urgent, which may identify the major contributor to its adverse effect. In this study, 2577 participants were obtained from the Henan Rural Cohort. The level of PAHs in blood samples was detected by gas chromatography coupled with tandem mass spectrometry. RTL in blood samples was detected by quantitative polymerase chain reaction. Generalized linear models or quantile g-computation were performed to evaluate the associations between the individual or a mixture of PAHs and RTL. Results from generalized linear models showed that each unit increment in BghiP value corresponded to a 0.098 (95%CI: 0.067, 0.129) increment in RTL for men; each unit increment in BaP, BghiP and Flu value corresponded to a 0.041 (95%CI: 0.014, 0.068), 0.081 (95%CI: 0.055, 0.107) and 0.016 (95%CI: 0.005, 0.027) increment in RTL for women. Results from quantile-g computation revealed that each one-quantile increment in the mixture of 10 PAHs corresponded to a 0.057 (95%CI: 0.021, 0.094) and 0.047 (95%CI: 0.003, 0.091) increment in RTL values of women and men, but these associations were mainly ascribed to three PAHs for women (BaP, Flu and BghiP) and men (BaP, BghiP and Pyr), respectively. Similar results were found in smoking men and cooking women without smoking. Our study found that exposure to 10 PAHs mixture was positively associated with RTL across gender, mainly attributed to Flu, BaP and BghiP, implicating that gender-specific associations may be ascribed to tobacco and cooking smoke pollution. The findings provided clues for effective measures to control PAHs pollutants-related aging disease.Clinical trial registration The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375 .
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaohuan Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junlin Liu
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
11
|
Prasad A, Lin J, Jelliffe-Pawlowski L, Coleman-Phox K, Rand L, Wojcicki JM. Sub-optimal maternal gestational gain is associated with shorter leukocyte telomere length at birth in a predominantly Latinx cohort of newborns. Matern Health Neonatol Perinatol 2023; 9:14. [PMID: 37919818 PMCID: PMC10623801 DOI: 10.1186/s40748-023-00167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE To assess in utero exposures associated with leukocyte telomere length (LTL) at birth and maternal LTL in a primarily Latinx birth cohort. STUDY DESIGN Mothers and newborns were recruited postnatally before 24 h of life. Newborn LTL was collected via heelstick at birth and maternal LTL was collected postnatally. LTL was determined by quantitative PCR. Using a longitudinal design, we evaluated associations between neonatal and maternal LTL and appropriate maternal gestational gain as indicated by the American College of Obstetrics and Gynecology (ACOG). RESULT Mean infant LTL was 2.02 ± 0.30 T/S (n = 386) and maternal LTL was 1.54 ± 0.26 T/S (n = 58). Independent risk factors for shorter LTL at birth included longer gestational duration (Coeff:-0.03, 95%CI: -0.05-0.01;p < 0.01) and maternal gestational weight gain below ACOG recommendations (Coeff:-0.10, 95%CI: -0.18 - -0.02; p = 0.01). CONCLUSION Gestational weight gain below ACOG recommendations may adversely impact neonatal health in Latinx infants as indicated by shorter LTL at birth.
Collapse
Affiliation(s)
- Apurva Prasad
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Francisco, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Laura Jelliffe-Pawlowski
- Preterm Birth Initiative, University of California, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Kimberley Coleman-Phox
- Department of Obstetrics, Gynecology and Reproductive Health Sciences, University of California, San Francisco, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology and Reproductive Health Sciences, University of California, San Francisco, USA
| | - Janet M Wojcicki
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California, San Francisco, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.
| |
Collapse
|
12
|
Rouan A, Pousse M, Djerbi N, Porro B, Bourdin G, Carradec Q, Hume BC, Poulain J, Lê-Hoang J, Armstrong E, Agostini S, Salazar G, Ruscheweyh HJ, Aury JM, Paz-García DA, McMinds R, Giraud-Panis MJ, Deshuraud R, Ottaviani A, Morini LD, Leone C, Wurzer L, Tran J, Zoccola D, Pey A, Moulin C, Boissin E, Iwankow G, Romac S, de Vargas C, Banaigs B, Boss E, Bowler C, Douville E, Flores M, Reynaud S, Thomas OP, Troublé R, Thurber RV, Planes S, Allemand D, Pesant S, Galand PE, Wincker P, Sunagawa S, Röttinger E, Furla P, Voolstra CR, Forcioli D, Lombard F, Gilson E. Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals. Nat Commun 2023; 14:3038. [PMID: 37263999 DOI: 10.1038/s41467-023-38499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
| | - Melanie Pousse
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Barbara Porro
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Benjamin Cc Hume
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur, 23096, La Paz, México
| | - Ryan McMinds
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- University of South Florida Center for Global Health and Infectious Diseases Research, Tampa, FL, USA
- Maison de la Modélisation, de la Simulation et des Interactions (MSI),, Université Côte d'Azur, Nice, France
| | - Marie-Josèphe Giraud-Panis
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Romane Deshuraud
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Alexandre Ottaviani
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Lycia Die Morini
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Camille Leone
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Lia Wurzer
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Jessica Tran
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Alexis Pey
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth, and Planetary Sciences, 76100, Rehovot, Israel
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Stephane Pesant
- European Bioinformatics Institute, Wellcome Genome Campus, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK, UK
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Eric Röttinger
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Didier Forcioli
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Ministère chargé de l'enseignement supérieur, Paris, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
- Department of Medical Genetics, CHU, Nice, France.
| |
Collapse
|
13
|
D’Angiolo M, Yue JX, De Chiara M, Barré BP, Giraud Panis MJ, Gilson E, Liti G. Telomeres are shorter in wild Saccharomyces cerevisiae isolates than in domesticated ones. Genetics 2023; 223:iyac186. [PMID: 36563016 PMCID: PMC9991508 DOI: 10.1093/genetics/iyac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.
Collapse
Affiliation(s)
- Melania D’Angiolo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dongfeng Road East, China
| | - Matteo De Chiara
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Benjamin P Barré
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Marie-Josèphe Giraud Panis
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- Department of Genetics, CHU, 06107 Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
14
|
Rouan A, Pousse M, Tambutté E, Djerbi N, Zozaya W, Capasso L, Zoccola D, Tambutté S, Gilson E. Telomere dysfunction is associated with dark-induced bleaching in the reef coral Stylophora pistillata. Mol Ecol 2022; 31:6087-6099. [PMID: 34587336 DOI: 10.1111/mec.16199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 01/31/2023]
Abstract
Telomere DNA length is a complex trait controlled by both multiple loci and environmental factors. A growing number of studies are focusing on the impact of stress and stress accumulation on telomere length and the link with survival and fitness in ecological contexts. Here, we investigated the telomere changes occurring in a symbiotic coral, Stylophora pistillata, that has experienced continuous darkness over 6 months. This stress condition led to the loss of its symbionts in a similar manner to that observed during large-scale bleaching events due to climate changes and anthropogenic activities, threatening reef ecosystems worldwide. We found that continuous darkness was associated with telomere length shortening. This result, together with a phylogenetic analysis of the telomere coral proteins and a transcriptome survey of the continuous darkness condition, paves the way for future studies on the role of telomeres in the coral stress response and the importance of environmentally induced telomere shortening in endangered coral species.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France
| | | | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France
| | | | - Laura Capasso
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Zoccola
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm, IRCAN, Nice, France.,Department of Medical Genetics, CHU, Nice, France
| |
Collapse
|
15
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
16
|
Roberts EK, Boss J, Mukherjee B, Salerno S, Zota A, Needham BL. Persistent organic pollutant exposure contributes to Black/White differences in leukocyte telomere length in the National Health and Nutrition Examination Survey. Sci Rep 2022; 12:19960. [PMID: 36402910 PMCID: PMC9675834 DOI: 10.1038/s41598-022-24316-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Despite racial disparities in diseases of aging and premature mortality, non-Hispanic Black Americans tend to have longer leukocyte telomere length (LTL), a biomarker of cellular aging, than non-Hispanic White Americans. Previous findings suggest that exposure to certain persistent organic pollutants (POPs) is both racially-patterned and associated with longer LTL. We examine whether Black/White differences in LTL are explained by differences in exposure to 15 POPs by estimating the indirect effect (IE) of self-reported race on LTL that is mediated through nine polychlorinated biphenyls (PCBs), three furans, and three dioxins, as well as their mixtures. Our study population includes 1,251 adults from the 1999-2000 and 2001-2002 cycles of the cross-sectional National Health and Nutrition Examination Survey. We characterized single-pollutant mediation effects by constructing survey-weighted linear regression models. We also implemented various approaches to quantify a global mediation effect of all POPs, including unpenalized linear regression, ridge regression, and examination of three summary exposure scores. We found support for the hypothesis that exposure to PCBs partially mediates Black/White differences in LTL. In single-pollutant models, there were significant IEs of race on LTL through six individual PCBs (118, 138, 153, 170, 180, and 187). Ridge regression (0.013, CI 0.001, 0.023; 26.0% mediated) and models examining summative exposure scores with linear combinations derived from principal components analysis (0.019, CI 0.009, 0.029; 34.8% mediated) and Toxic Equivalency Quotient (TEQ) scores (0.016, CI 0.005, 0.026; 28.8% mediated) showed significant IEs when incorporating survey weights. Exposures to individual POPs and their mixtures, which may arise from residential and occupational segregation, may help explain why Black Americans have longer LTL than their White counterparts, providing an environmental explanation for counterintuitive race differences in cellular aging.
Collapse
Affiliation(s)
- Emily K Roberts
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA
| | - Stephen Salerno
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| | - Ami Zota
- Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Belinda L Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan, 1415 Washington Heights, 4659 SPH Tower, Ann Arbor, MI, 48109-2029, USA.
| |
Collapse
|
17
|
Kahrizi MS, Patra I, Jalil AT, Achmad H, Alesaeidi S, Al-Gazally ME, Alesaeidi S. Leukocyte telomere length and obesity in children and adolescents: A systematic review and meta-analysis. Front Genet 2022; 13:861101. [PMID: 36160016 PMCID: PMC9490371 DOI: 10.3389/fgene.2022.861101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Several studies have revealed the negative effects of adiposity on telomere length shortening. However, the results of the studies assessing the negative relationship between obesity and leukocyte telomere length (LTL) are not consistent. This systematic review and meta-analysis are aimed to pool the results of articles assessing the relationship between obesity and LTL among children and adolescents. Methods: To retrieve the related studies, four online databases including PubMed, Embase, ProQuest, and Scopus were searched until May 2022. Observational studies evaluating the relationship between obesity and LTL among apparently healthy children and adolescents (aged ≤18 years) were included in the study. We considered the studies that had reported a mean ± standard deviation of LTL. The random-effects model was used to assess the pooled weighted mean difference (WMD) and a 95% confidence interval (CI). Results: The search yielded seven studies from an initial 3,403 records identified. According to the results of seven articles with 4,546 participants, obesity was associated with LTL shortening among children and adolescents (WMD = -0.081; 95% CI: -0.137 to -0.026; p = 0.004; I2 = 99.9%). Also, no publication bias was observed. According to the results of subgrouping, significant results were only attributed to the studies conducted in Europe, with high quality scores, among overweight and obese adolescents, with a baseline LTL lower than 1, and performed in community-based school settings. Also, according to the subgrouping and meta-regression results, the obesity definition criteria and baseline LTL were the possible sources of between-study heterogeneity. Conclusion: We observed shorter LTL among overweight and obese children and adolescents. To obtain more reliable results, further longitudinal prospective studies with large sample sizes and more consistent and accurate definitions of obesity are required.
Collapse
Affiliation(s)
| | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sogol Alesaeidi
- Department of Pediatric Medicine, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Raftopoulou C, Paltoglou G, Charmandari E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022; 14:nu14061244. [PMID: 35334902 PMCID: PMC8949519 DOI: 10.3390/nu14061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Objective: Telomere length (TL) is a robust marker of biological aging, and increased telomere attrition is noted in adults with obesity. The primary objective of this systematic review was to summarize current knowledge on the effects of childhood obesity in TL. The secondary objective was to assess the effect of weight management interventions in TL. Methods: The following databases were searched: PubMed, Scopus, Web of Science and Heal-link.gr from inception to September 2021. The search was performed using the following combinations of terms: “telomer*” [All Fields] AND (“length” [All Fields] OR “lengths” [All Fields]) AND “obes*” [All Fields] AND (“child*” [All Fields] OR “adolescen*” [All Fields]). Results: A total of 16 original articles were included in this systematic review. Eleven of them were cross-sectional and five were lifestyle interventions. Conclusions: There was a tendency towards a negative association between childhood obesity and TL. Life-style interventions in children have been associated with increased TL peripherally, indicating a possible association of the redistribution of younger cells in the periphery with the favorable effect of these interventions. Further prospective studies with larger sample sizes that employ other markers of cell aging would potentially elucidate this important mechanistic relation.
Collapse
Affiliation(s)
- Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
19
|
He J, Ge X, Cheng H, Bao Y, Feng X, Zan G, Wang F, Zou Y, Yang X. Sex-specific associations of exposure to metal mixtures with telomere length change: Results from an 8-year longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151327. [PMID: 34717997 DOI: 10.1016/j.scitotenv.2021.151327] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Studies on the relationships between exposure to metal mixtures and telomere length (TL) are limited, particularly longitudinal studies. Few studies are available on the potential sex-specific associations between metal exposures and TL change. We examined blood metal concentrations and TL at baseline (August 2012) and follow-up (June 2020) among 316 participants in a ferro-manganese refinery. The least absolute shrinkage and selection operator (LASSO) followed by the generalized linear model (GLM) was applied to evaluate the associations between multiple-metal exposures and TL change (TL in 2012 minus TL in 2020). Bayesian kernel machine regression (BKMR) was applied to cope with metal mixtures and evaluate their joint effects on TL change. Among men, three statistical methods consistently showed rubidium was negatively associated with TL change (β [95% CI] = -2.755 [-5.119, -0.391] in the GLM) and dominated the negative overall effects of 10 metal mixtures (magnesium, manganese, iron, cobalt, copper, zinc, selenium, rubidium, cadmium, and lead) on TL change (posterior inclusion probabilities = 0.816). Among women, the GLM (β [95% CI] = 4.463 [0.943, 7.983]) and LASSO (β = 4.289) showed rubidium was positively associated with TL change. Interestingly, no significant association was observed between exposure to metal mixtures and TL change in overall participants (P > 0.05). Furthermore, stratified analysis showed significant relationships between rubidium and TL change in men (β = -2.744), women (β = 3.624), and current smokers (β = -3.266) (both P interaction <0.05). In summary, our findings underlined the steady and negative association between rubidium and TL change among men with potential sex-dependent heterogeneities. Further experimental studies are required to expound the underlying mechanisms.
Collapse
Affiliation(s)
- Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China.
| |
Collapse
|
20
|
Ngwa NE, Matsha TE, Lombard C, Levitt N, Sobngwi E, Kengne AP, Peer N. Cardiometabolic profile and leukocyte telomere length in a Black South African population. Sci Rep 2022; 12:3323. [PMID: 35228641 PMCID: PMC8885820 DOI: 10.1038/s41598-022-07328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSeveral studies have reported a possible association between leucocyte telomere length (LTL) and cardio-metabolic diseases (CMDs). However, studies investigating such association are lacking in South Africa despite having a very high prevalence of CMDs. We investigated the association between LTL and CMD risk profile in a black South African population. This was a cross-sectional study with participants > 21 years of age and residing in five townships in Cape Town. CMD markers were compared between men and women and across quartiles of LTL. Linear and logistic regressions relate increasing quartile and Log10LTL with CMD risk profile, with appropriate adjustment. Among 676-participants, diabetes, obesity and hypertension prevalence were 11.5%, 23.1% and 47.5%. Waist-circumference, hip-circumference and highly sensitive c-reactive protein values were significantly higher in women (all p < 0.001), while HDL-C (p = 0.023), creatinine (p = 0.005) and gamma glutamyl transferase (p < 0.001) values were higher in men. In age, sex and BMI adjusted linear regression model, Log10 of LTL was associated with low HDL-C (beta = 0.221; p = 0.041) while logistic regression showed a significant association between Log10LTL and prevalent dyslipidaemia characterised by high LDL-C. In this population, the relationship between LTL and CMD is weak given its association with only HDL-C and LDL-C.
Collapse
|
21
|
Codd V, Denniff M, Swinfield C, Warner SC, Papakonstantinou M, Sheth S, Nanus DE, Budgeon CA, Musicha C, Bountziouka V, Wang Q, Bramley R, Allara E, Kaptoge S, Stoma S, Jiang T, Butterworth AS, Wood AM, Di Angelantonio E, Thompson JR, Danesh JN, Nelson CP, Samani NJ. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. NATURE AGING 2022; 2:170-179. [PMID: 37117760 DOI: 10.1038/s43587-021-00166-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 12/21/2021] [Indexed: 04/30/2023]
Abstract
Leukocyte telomere length (LTL) is a proposed marker of biological age. Here we report the measurement and initial characterization of LTL in 474,074 participants in UK Biobank. We confirm that older age and male sex associate with shorter LTL, with women on average ~7 years younger in 'biological age' than men. Compared to white Europeans, LTL is markedly longer in African and Chinese ancestries. Older paternal age at birth is associated with longer individual LTL. Higher white cell count is associated with shorter LTL, but proportions of white cell subtypes show weaker associations. Age, ethnicity, sex and white cell count explain ~5.5% of LTL variance. Using paired samples from 1,351 participants taken ~5 years apart, we estimate the within-individual variability in LTL and provide a correction factor for this. This resource provides opportunities to investigate determinants and biomedical consequences of variation in LTL.
Collapse
Affiliation(s)
- V Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - M Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - C Swinfield
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - S C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - M Papakonstantinou
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - S Sheth
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - D E Nanus
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - C A Budgeon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
- School of Population and Global Health, University of Western Australia, Crawley, Western Australia, Australia
| | - C Musicha
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - V Bountziouka
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Q Wang
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - R Bramley
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - E Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - S Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - S Stoma
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - T Jiang
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - A S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - A M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - E Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Health Data Science Centre, Human Technopole, Milan, Italy
| | - J R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - J N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - C P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - N J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
22
|
Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. Int J Mol Sci 2022; 23:ijms23020628. [PMID: 35054814 PMCID: PMC8776204 DOI: 10.3390/ijms23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Precision oncology can be defined as molecular profiling of tumors to identify targetable alterations. Emerging research reports the high mortality rates associated with type II endometrial cancer in black women and with prostate cancer in men of African ancestry. The lack of adequate genetic reference information from the African genome is one of the major obstacles in exploring the benefits of precision oncology in the African context. Whilst external factors such as the geography, environment, health-care access and socio-economic status may contribute greatly towards the disparities observed in type II endometrial and prostate cancers in black populations compared to Caucasians, the contribution of African ancestry to the contribution of genetics to the etiology of these cancers cannot be ignored. Non-coding RNAs (ncRNAs) continue to emerge as important regulators of gene expression and the key molecular pathways involved in tumorigenesis. Particular attention is focused on activated/repressed genes and associated pathways, while the redundant pathways (pathways that have the same outcome or activate the same downstream effectors) are often ignored. However, comprehensive evidence to understand the relationship between type II endometrial cancer, prostate cancer and African ancestry remains poorly understood. The sub-Saharan African (SSA) region has both the highest incidence and mortality of both type II endometrial and prostate cancers. Understanding how the entire transcriptomic landscape of these two reproductive cancers is regulated by ncRNAs in an African cohort may help elucidate the relationship between race and pathological disparities of these two diseases. This review focuses on global disparities in medicine, PCa and ECa. The role of precision oncology in PCa and ECa in the African population will also be discussed.
Collapse
|
23
|
Hecker M, Bühring J, Fitzner B, Rommer PS, Zettl UK. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021; 11:1510. [PMID: 34680143 PMCID: PMC8533505 DOI: 10.3390/biom11101510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Jan Bühring
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| | - Paulus Stefan Rommer
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany; (J.B.); (B.F.); (P.S.R.); (U.K.Z.)
| |
Collapse
|
24
|
Lin L, Qin K, Chen D, Lu C, Chen W, Guo VY. Systematic review and meta-analysis of the association between paediatric obesity and telomere length. Acta Paediatr 2021; 110:2695-2703. [PMID: 34101251 DOI: 10.1111/apa.15971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
AIM This systematic review and meta-analysis aimed to assess the association between paediatric obesity and telomere length. METHODS We conducted a comprehensive literature search for original studies assessing the associations between obesity and telomere length in children. Fixed or random effects with inverse-variance meta-analysis were used to estimate the standardised mean difference (SMD) and its 95% confidence interval (95% CI) between overweight or obese and normal-weight children. Heterogeneity was assessed using the I2 statistic, and meta-regression analyses were used to evaluate the potential source of heterogeneity. Subgroup analysis was further conducted by sex. RESULTS A total of 11 studies were included. The meta-analysis showed that children who were overweight or obese had shorter telomere length than normal-weight children (SMD: -0.85; 95% CI: -1.42 to -0.28; p < 0.01). However, significant heterogeneity was present (I2 = 97%; p < 0.01). Study design, methods used for measuring telomere length, tissue types, mean age, and percentage of boys were not the source of heterogeneity revealed by meta-regression analysis. The inverse trend was significant only in boys, but not in girls. CONCLUSION There was a negative association between paediatric obesity and telomere length. Weight control in children might have beneficial effect on telomere length.
Collapse
Affiliation(s)
- Li Lin
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| | - Kang Qin
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| | - Dezhong Chen
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| | - Ciyong Lu
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| | - Weiqing Chen
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| | - Vivian Yawei Guo
- Department of Epidemiology School of Public Health Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
25
|
Monnin A, Vizeneux A, Nagot N, Eymard-Duvernay S, Meda N, Singata-Madliki M, Ndeezi G, Tumwine JK, Kankasa C, Goga A, Tylleskär T, Van de Perre P, Molès JP. Longitudinal Follow-Up of Blood Telomere Length in HIV-Exposed Uninfected Children Having Received One Year of Lopinavir/Ritonavir or Lamivudine as Prophylaxis. CHILDREN (BASEL, SWITZERLAND) 2021; 8:796. [PMID: 34572228 PMCID: PMC8468502 DOI: 10.3390/children8090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Telomere shortening can be enhanced upon human immunodeficiency virus (HIV) infection and by antiretroviral (ARV) exposures. The aim of this study was to evaluate the acute and long-term effect on telomere shortening of two ARV prophylaxes, lopinavir/ritonavir (LPV/r) and lamivudine (3TC), administered to children who are HIV-exposed uninfected (CHEU) to prevent HIV acquisition through breastfeeding during the first year of life, and to investigate the relationship between telomere shortening and health outcomes at six years of age. We included 198 CHEU and measured telomere length at seven days of life, at week-50 and at six years (year-6) using quantitative polymerase chain reaction. At week-50, telomere shortening was observed among 44.3% of CHEU, irrespective of the prophylactic treatment. Furthermore, this telomere shortening was neither associated with poor growth indicators nor neuropsychological outcomes at year-6, except for motor abilities (MABC test n = 127, β = -3.61, 95%CI: -7.08, -0.14; p = 0.04). Safety data on telomere shortening for infant HIV prophylaxis are scarce. Its association with reduced motor abilities deserves further attention among CHEU but also HIV-infected children receiving ARV treatment.
Collapse
Affiliation(s)
- Audrey Monnin
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| | - Amélie Vizeneux
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| | - Nicolas Nagot
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| | - Sabrina Eymard-Duvernay
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| | - Nicolas Meda
- Centre Muraz, Bobo-Dioulasso 01 P.O. Box 390, Burkina Faso;
| | - Mandisa Singata-Madliki
- Effective Care Research Unit, Cecilia Makiwane Hospital, University of Fort Hare, East London 5207, South Africa;
| | - Grace Ndeezi
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala P.O. Box 317, Uganda; (G.N.); (J.K.T.)
| | - James Kashugyera Tumwine
- Department of Paediatrics and Child Health, School of Medicine, College of Health Sciences, Makerere University, Kampala P.O. Box 317, Uganda; (G.N.); (J.K.T.)
- School of Medicine, Kabale University, Kabale P.O. Box 317, Uganda
| | - Chipepo Kankasa
- Department of Paediatric and Child Health, University Teaching Hospital, University of Zambia School of Medicine, Lusaka P.O. Box 50110, Zambia;
| | - Ameena Goga
- HIV Prevention Research Unit, South African Medical Research Council, Private Bag x385, Pretoria 0001, South Africa;
| | - Thorkild Tylleskär
- Centre for International Health, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Philippe Van de Perre
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| | - Jean-Pierre Molès
- Pathogenèse et Contrôle des Infections Chroniques, INSERM U1058, Université Montpellier, Etablissement Français du Sang, University of Antilles, 34093 Montpellier, France; (A.M.); (A.V.); (N.N.); (S.E.-D.); (P.V.d.P.)
| |
Collapse
|
26
|
The Power of Stress: The Telo-Hormesis Hypothesis. Cells 2021; 10:cells10051156. [PMID: 34064566 PMCID: PMC8151059 DOI: 10.3390/cells10051156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.
Collapse
|
27
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Visvikis-Siest S. Telomere length determinants in childhood. Clin Chem Lab Med 2021; 58:162-177. [PMID: 31465289 DOI: 10.1515/cclm-2019-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
Telomere length (TL) is a dynamic marker that reflects genetic predispositions together with the environmental conditions of an individual. It is closely related to longevity and a number of pathological conditions. Even though the extent of telomere research in children is limited compared to that of adults, there have been a substantial number of studies providing first insights into child telomere biology and determinants. Recent discoveries revealed evidence that TL is, to a great extent, determined already in childhood and that environmental conditions in adulthood have less impact than first believed. Studies have demonstrated that large inter-individual differences in TL are present among newborns and are determined by diverse factors that influence intrauterine development. The first years of child growth are associated with high cellular turnover, which results in fast shortening of telomeres. The rate of telomere loss becomes stable in early adulthood. In this review article we summarise the existing knowledge on telomere dynamics during the first years of childhood, highlighting the conditions that affect newborn TL. We also warn about the knowledge gaps that should be filled to fully understand the regulation of telomeres, in order to implement them as biomarkers for use in diagnostics or treatment.
Collapse
Affiliation(s)
| | | | | | - Sophie Visvikis-Siest
- University of Lorraine, Inserm, IGE-PCV, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
28
|
Lee HH, Okuzono SS, Kim ES, De Vivo I, Raffield LM, Glover L, Sims M, Grodstein F, Kubzansky LD. Optimism and telomere length among African American adults in the Jackson Heart Study. Psychoneuroendocrinology 2021; 125:105124. [PMID: 33434830 PMCID: PMC8052931 DOI: 10.1016/j.psyneuen.2020.105124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Optimism is linked with greater longevity in both White and African American populations. Optimism may enhance longevity by slowing cellular aging, for which leukocyte telomere shortening is a biomarker. However, limited studies have examined the association of optimism with leukocyte telomere length among African Americans. METHODS Data are from 723 men and 1244 women participating in the Jackson Heart Study (age = 21-93 years). We used multivariable linear regression models to conduct cross-sectional analyses examining whether higher optimism was associated with longer mean absolute leukocyte telomere length (assayed with Southern blot analysis). Models adjusted for sociodemographic characteristics, depressive symptomatology, health conditions, and health behavior-related factors. We also considered potential effect modification by key factors. RESULTS In the age-adjusted model, optimism, measured as a continuous variable, was not associated with leukocyte telomere length (β = 0.01, 95%CI: -0.02, 0.04). This association remained null in the fully-adjusted model (β = 0.02, 95%CI: -0.02, 0.05) and was also null when considering optimism as a binary measure (higher vs. lower optimism). We found no evidence of effect modification by sex, age, body mass index, income, or chronic conditions. CONCLUSIONS Optimism was not associated with leukocyte telomere length among African American adults. Future studies should investigate alternate biological and behavioral mechanisms that may explain the optimism-health association.
Collapse
Affiliation(s)
- Harold H. Lee
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health (Address: 677 Huntington Ave, Boston, MA 02115)
| | - Sakurako S. Okuzono
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health (Address: 677 Huntington Ave, Boston, MA 02115)
| | - Eric S. Kim
- Department of Psychology, University of British Columbia (Address: 2136 West Mall, Vancouver, BC V6T 1Z4, Canada)
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, (Address: 677 Huntington Ave, Boston, MA 02115)
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill (Address: Genetic Medicine Building, 120 Mason Farm Rd, Chapel Hill, NC 27514)
| | - LáShauntá Glover
- Department of Epidemiology, University of North Carolina at Chapel Hill (Address: 135 Dauer Dr, Chapel Hill, NC 27599)
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center (Address: 2500 N State St, Jackson, MS 39216)
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center (Address: 600 South Paulina Street, Suite 1028, Chicago, IL 60612)
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health (Address: 677 Huntington Ave, Boston, MA 02115)
| |
Collapse
|
29
|
Howard JT, Janak JC, Santos-Lozada AR, McEvilla S, Ansley SD, Walker LE, Spiro A, Stewart IJ. Telomere Shortening and Accelerated Aging in US Military Veterans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041743. [PMID: 33670145 PMCID: PMC7916830 DOI: 10.3390/ijerph18041743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023]
Abstract
A growing body of literature on military personnel and veterans’ health suggests that prior military service may be associated with exposures that increase the risk of cardiovascular disease (CVD), which may differ by race/ethnicity. This study examined the hypothesis that differential telomere shortening, a measure of cellular aging, by race/ethnicity may explain prior findings of differential CVD risk in racial/ethnic groups with military service. Data from the first two continuous waves of the National Health and Nutrition Examination Survey (NHANES), administered from 1999–2002 were analyzed. Mean telomere length in base pairs was analyzed with multivariable adjusted linear regression with complex sample design, stratified by sex. The unadjusted mean telomere length was 225.8 base shorter for individuals with prior military service. The mean telomere length for men was 47.2 (95% CI: −92.9, −1.5; p < 0.05) base pairs shorter for men with military service after adjustment for demographic, socioeconomic, and behavioral variables, but did not differ significantly in women with and without prior military service. The interaction between military service and race/ethnicity was not significant for men or women. The results suggest that military service may contribute to accelerated aging as a result of health damaging exposures, such as combat, injury, and environmental contaminants, though other unmeasured confounders could also potentially explain the results.
Collapse
Affiliation(s)
- Jeffrey T. Howard
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
- Correspondence: ; Tel.: +1-210-458-2987
| | | | - Alexis R. Santos-Lozada
- Department of Human Development and Family Studies, Pennsylvania State University, 119 Health and Human Development Building, University Park, PA 16802, USA;
| | - Sarah McEvilla
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
| | - Stephanie D. Ansley
- Department of Public Health, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; (S.M.); (S.D.A.)
- Consequences of Trauma Working Group, the Center for Community-Based and Applied Health Research, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lauren E. Walker
- David Grant USAF Medical Center, Travis Air Force Base, Fairfield, CA 94535, USA;
| | - Avron Spiro
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA 02130, USA;
- Departments of Epidemiology and Psychiatry, Boston University Schools of Public Health and Medicine, Boston, MA 02118, USA
| | - Ian J. Stewart
- Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA;
| |
Collapse
|
30
|
Augereau A, Mariotti M, Pousse M, Filipponi D, Libert F, Beck B, Gorbunova V, Gilson E, Gladyshev VN. Naked mole rat TRF1 safeguards glycolytic capacity and telomere replication under low oxygen. SCIENCE ADVANCES 2021; 7:eabe0174. [PMID: 33608273 PMCID: PMC7895426 DOI: 10.1126/sciadv.abe0174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/06/2021] [Indexed: 05/31/2023]
Abstract
The naked mole rat (NMR), a long-lived and cancer-resistant rodent, is highly resistant to hypoxia. Here, using robust cellular models wherein the mouse telomeric protein TRF1 is substituted by NMR TRF1 or its mutant forms, we show that TRF1 supports maximal glycolytic capacity under low oxygen, shows increased nuclear localization and association with telomeres, and protects telomeres from replicative stress. We pinpoint this evolutionary gain of metabolic function to specific amino acid changes in the homodimerization domain of this protein. We further find that NMR TRF1 accelerates telomere shortening. These findings reveal an evolutionary strategy to adapt telomere biology for metabolic control under an extreme environment.
Collapse
Affiliation(s)
- Adeline Augereau
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Doria Filipponi
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | | | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), 06107 Nice, France
- Department of Medical Genetics, Archet 2 Hospital, CHU of Nice, FHU Oncoage, 06107 Nice, France
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Dynamics of leukocyte telomere length in adults aged 50 and older: a longitudinal population-based cohort study. GeroScience 2021; 43:645-654. [PMID: 33469834 PMCID: PMC8110630 DOI: 10.1007/s11357-020-00320-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022] Open
Abstract
It is well established from previous cross-sectional studies that telomeres shorten with age. However, due to a considerable inter-individual variation in telomere length (TL), its relationship with biological aging is difficult to unpick. Longitudinal repeated assessments of TL changes within individuals should augment our understanding of TL dynamics in aging. This study disentangles within- and inter-individual effects of age on leukocyte telomere length (LTL) dynamics in a large population-based cohort of older adults. A total of 4053 subjects aged 50 and older from the WHO Study on global AGEing and adult health (SAGE) in Shanghai were studied. Relative LTL (T/S ratio) was measured at baseline (2009-2010) and follow-up (2017-2018) by quantitative real-time polymerase chain reaction. We used linear random slope models to analyze LTL dynamics in relation to age and sex and within-subject centering method to distinguish within- versus between-subject effects. We observed LTL shortening in 66.32%, maintenance in 11.23%, and elongation in 22.45% of the study participants. LTL declined significantly with age both cross-sectionally and longitudinally. More importantly, the longitudinal decline in LTL was much greater than the cross-sectional decline (- 0.017 (p < 0.001) versus - 0.002 (p < 0.001) per year). Furthermore, women had a lower within-subject LTL shortening rate than men (- 0.014 versus - 0.020 per year, p < 0.001). The within-individual longitudinal decline in LTL was much greater than the inter-individual cross-sectional decline, indicating that chronological age might impose a greater impact on LTL shortening than other influencing factors combined. Moreover, women showed a lower within-individual LTL shortening rate than men.
Collapse
|
32
|
Nsereko E, Uwase A, Muvunyi CM, Rulisa S, Ntirushwa D, Moreland P, Corwin EJ, Santos N, Lin J, Chen JL, Nzayirambaho M, Wojcicki JM. Association between micronutrients and maternal leukocyte telomere length in early pregnancy in Rwanda. BMC Pregnancy Childbirth 2020; 20:692. [PMID: 33187486 PMCID: PMC7664098 DOI: 10.1186/s12884-020-03330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exposure to environmental stressors can lead to shorter leukocyte telomere length and increase the risk of chronic diseases. Preservation of leukocyte telomere length by reducing oxidative stress exposure and reinforcing immunity may be a mechanism by which nutritional factors delay or prevent chronic disease development. METHODS Healthy pregnant women (aged 18-45 years) at 9-15 weeks of gestation living in Gasabo District, Kigali, Rwanda, were recruited from 10 health centers for a prospective, longitudinal study from September to October 2017 to determine possible associations between nutrition health, infectious disease and leukocyte telomere length. Anthropometric and laboratory measurements were performed using standard procedures; sociodemographic parameters and health histories were assessed via surveys, and leukocyte telomere length was assessed using quantitative PCR expressed as the ratio of a telomeric product to a single-copy gene product (T/S). RESULTS Mean gestational age of participants (n = 297) at enrollment was 13.04 ± 3.50 weeks, age was 28.16 ± 6.10 years and leukocyte telomere length was 1.16 ± 0.22 (T/S). Younger age; no schooling vs. primary schooling; and lower levels of ferritin, soluble transferrin receptors and retinol-binding protein were independent predictors of longer telomere length in multivariable models. CONCLUSIONS Leukocyte telomere length is an indicator of biological aging in pregnant Rwandan women. Maternal micronutrient status, specifically lower ferritin, soluble transferrin receptor levels, and retinol-binding protein levels were associated with longer maternal telomere length in contrast with some studies from North America and Europe. There were no associations between inflammation and infectious disease status and maternal leukocyte telomere length. Further studies are needed to enhance our understanding of the interplay between maternal nutritional status and infectious disease in relation to leukocyte telomere length in developing countries.
Collapse
Affiliation(s)
- Etienne Nsereko
- College of Medicine and Health Sciences School of Health Sciences, University of Rwanda, P.O. Box: 3538, Kigali, Rwanda.
| | - Aline Uwase
- College of Medicine and Health Sciences School of Health Sciences, University of Rwanda, P.O. Box: 3538, Kigali, Rwanda
| | - Claude Mambo Muvunyi
- College of Medicine and Health Sciences School of Medicine and Pharmacy, University of Rwanda, P.O. Box: 3538, Kigali, Rwanda
| | - Stephen Rulisa
- College of Medicine and Health Sciences School of Medicine and Pharmacy, University of Rwanda, P.O. Box: 3538, Kigali, Rwanda
| | - David Ntirushwa
- College of Medicine and Health Sciences School of Medicine and Pharmacy, University of Rwanda, P.O. Box: 3538, Kigali, Rwanda
| | - Patricia Moreland
- Emory University, Nell Hodgson Woodruff School of Nursing, Atlanta, Georgia, USA
| | | | - Nicole Santos
- University of California San Francisco, Institute for Global Health Sciences, San Francisco, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, USA
| | - Jyu-Lin Chen
- Departmentof Family Health Care Nursing, University of California San Francisco, San Francisco, USA
| | - Manasse Nzayirambaho
- University of Rwanda College of Medicine and Health Sciences School of Public Health, P.O. Box: 3538, Kigali, Rwanda
| | - Janet M Wojcicki
- Department of Pediatrics, University of California San Francisco, San Francisco, USA.
- Department of Epidemiology and Biostatistics, University of California, 550 16th Street, San Francisco, CA, 941558, USA.
| |
Collapse
|
33
|
Hunt SC, Hansen MEB, Verhulst S, McQuillan MA, Beggs W, Lai TP, Mokone GG, Mpoloka SW, Meskel DW, Belay G, Nyambo TB, Abnet CC, Yeager M, Chanock SJ, Province MA, Williams SM, Aviv A, Tishkoff SA. Genetics and geography of leukocyte telomere length in sub-Saharan Africans. Hum Mol Genet 2020; 29:3014-3020. [PMID: 32821950 PMCID: PMC7645709 DOI: 10.1093/hmg/ddaa187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Leukocyte telomere length (LTL) might be causal in cardiovascular disease and major cancers. To elucidate the roles of genetics and geography in LTL variability across humans, we compared LTL measured in 1295 sub-Saharan Africans (SSAs) with 559 African-Americans (AAms) and 2464 European-Americans (EAms). LTL differed significantly across SSAs (P = 0.003), with the San from Botswana (with the oldest genomic ancestry) having the longest LTL and populations from Ethiopia having the shortest LTL. SSAs had significantly longer LTL than AAms [P = 6.5(e-16)] whose LTL was significantly longer than EAms [P = 2.5(e-7)]. Genetic variation in SSAs explained 52% of LTL variance versus 27% in AAms and 34% in EAms. Adjustment for genetic variation removed the LTL differences among SSAs. LTL genetic variation among SSAs, with the longest LTL in the San, supports the hypothesis that longer LTL was ancestral in humans. Identifying factors driving LTL variation in Africa may have important ramifications for LTL-associated diseases.
Collapse
Affiliation(s)
- Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Gaonyadiwe G Mokone
- Faculty of Medicine, Department of Biomedical Sciences, University of Botswana, Gaborone, Botswana
| | | | | | - Gurja Belay
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University, Tanzania
| | - Christian C Abnet
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Stephen J Chanock
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892,USA
| | - Michael A Province
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63108, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
34
|
Having a Usual Source of Care Is Associated with Longer Telomere Length in a National Sample of Older Adults. J Am Board Fam Med 2020; 33:832-841. [PMID: 33219062 PMCID: PMC7758079 DOI: 10.3122/jabfm.2020.06.200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To provide a potential biological, mechanistic link for the well-established association between primary care access and reduced mortality, this study sought to measure the impact of having a usual source of health care on leukocyte telomere length (LTL). DATA SOURCES Our study population included 3202 participants aged 50 to 84 years from National Health and Nutrition Examination Survey 1999 to 2001. STUDY DESIGN Cross-sectional Study. LTLs between people with and without a usual source of care were compared using unadjusted and adjusted linear regression models. Fully adjusted models accounted for demographic characteristics, health conditions, and health behaviors. PRINCIPAL FINDINGS After controlling for individual factors, health conditions, and health behaviors, people who had a usual source of health care had significantly longer LTL (β = 89.8 base pairs, P-value = .005) compared with those without a usual source of care; corresponding to approximately 7 years of life. CONCLUSIONS Having a usual source of health care is associated with longer LTL among older adults. This study provides a potential biologic link for the noted association between primary care access and reduced mortality that has been observed at the individual and population level.
Collapse
|
35
|
Warner ET, Zhang Y, Gu Y, Taporoski TP, Pereira A, DeVivo I, Spence ND, Cozier Y, Palmer JR, Kanaya AM, Kandula NR, Cole SA, Tworoger S, Shields A. Physical and sexual abuse in childhood and adolescence and leukocyte telomere length: A pooled analysis of the study on psychosocial stress, spirituality, and health. PLoS One 2020; 15:e0241363. [PMID: 33125425 PMCID: PMC7598522 DOI: 10.1371/journal.pone.0241363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction We examined whether abuse in childhood and/or adolescence was associated with shorter telomere length in a pooled analysis of 3,232 participants from five diverse cohorts. We also assessed whether religion or spirituality (R/S) could buffer deleterious effects of abuse. Methods Physical and sexual abuse in childhood (age <12) and adolescence (age 12–18) was assessed using the Revised Conflict Tactics Scale and questions from a 1995 Gallup survey. We measured relative leukocyte telomere lengths (RTL) using quantitative real time polymerase chain reaction. We used generalized estimating equations to assess associations of physical and sexual abuse with log-transformed RTL z-scores. Analyses were conducted in each cohort, overall, and stratified by extent of religiosity or spirituality and religious coping in adulthood. We pooled study‐specific estimates using random‐effects models and assessed between-study heterogeneity. Results Compared to no abuse, severe sexual abuse was associated with lower RTL z-scores, in childhood: -15.6%, 95% CI: -25.9, -4.9; p-trend = 0.04; p-heterogeneity = 0.58 and in adolescence: -16.5%, 95% CI: -28.1, -3.0; p-trend = 0.08; p-heterogeneity = 0.68. Sexual abuse experienced in both childhood and adolescence was associated with 11.3% lower RTL z-scores after adjustment for childhood and demographic covariates (95% CI: -20.5%, -2.0%; p-trend = 0.03; p-heterogeneity = 0.62). There was no evidence of effect modification by R/S. Physical abuse was not associated with telomere length. Conclusions Sexual abuse in childhood or adolescence was associated with a marker of accelerated biological aging, decreased telomere length. The lack of moderation by R/S may be due to inability to capture the appropriate time period for those beliefs and practices.
Collapse
Affiliation(s)
- Erica T. Warner
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medicine, Clinical Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ying Zhang
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yue Gu
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tâmara P. Taporoski
- Department of Neurology (Sleep Medicine), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Alexandre Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (Incor), University of São Paulo Medical School, São Paulo, São Paulo, Brazil
| | - Immaculata DeVivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas D. Spence
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Sociology, University of Toronto, Toronto, Ontario, Canada
| | - Yvette Cozier
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America
| | - Julie R. Palmer
- Slone Epidemiology Center, Boston University, Boston, Massachusetts, United States of America
| | - Alka M. Kanaya
- Division of General Internal Medicine, University of California San Francisco, San Francisco, Califonia, United States of America
| | - Namratha R. Kandula
- Department of Medicine, Northwestern University, Evanston, Illinois, United States of America
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Shelley Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Alexandra Shields
- MGH/Harvard Center on Genomics, Vulnerable Populations, and Health Disparities, Mongan Institute, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
Demanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, Delgado D, Zhang C, Shinkle J, Sabarinathan M, Lin H, Ramirez E, Oliva M, Kim-Hellmuth S, Stranger BE, Lai TP, Aviv A, Ardlie KG, Aguet F, Ahsan H, Doherty JA, Kibriya MG, Pierce BL. Determinants of telomere length across human tissues. Science 2020; 369:eaaz6876. [PMID: 32913074 PMCID: PMC8108546 DOI: 10.1126/science.aaz6876] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Telomere shortening is a hallmark of aging. Telomere length (TL) in blood cells has been studied extensively as a biomarker of human aging and disease; however, little is known regarding variability in TL in nonblood, disease-relevant tissue types. Here, we characterize variability in TLs from 6391 tissue samples, representing >20 tissue types and 952 individuals from the Genotype-Tissue Expression (GTEx) project. We describe differences across tissue types, positive correlation among tissue types, and associations with age and ancestry. We show that genetic variation affects TL in multiple tissue types and that TL may mediate the effect of age on gene expression. Our results provide the foundational knowledge regarding TL in healthy tissues that is needed to interpret epidemiological studies of TL and human health.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Hannah Lin
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Eduardo Ramirez
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
| | - Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, USA
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, Institute for Genomics and Systems Biology, Center for Data Intensive Science, University of Chicago, Chicago, IL, USA
- Center for Genetic Medicine, Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | | | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
37
|
Wang C, Wolters PJ, Calfee CS, Liu S, Balmes JR, Zhao Z, Koyama T, Ware LB. Long-term ozone exposure is positively associated with telomere length in critically ill patients. ENVIRONMENT INTERNATIONAL 2020; 141:105780. [PMID: 32417614 PMCID: PMC7535086 DOI: 10.1016/j.envint.2020.105780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 05/14/2023]
Abstract
RATIONALE Chronic air pollutant exposure has been associated with development of Acute Respiratory Distress Syndrome (ARDS) in patients at risk, particularly from severe trauma. We recently reported that shorter peripheral blood leukocyte (PBL) telomere length (TL) was associated with worse outcomes and higher severity of ARDS in critically ill patients. Since most major air pollutants are potent oxidants that can induce cellular oxidative stress, and oxidative stress can accelerate telomere shortening, we hypothesized that higher levels of chronic air pollutant exposure would be associated with shorter telomere length in critically ill patients including patients with ARDS. METHODS PBL-TL was measured in genomic DNA collected on the morning of ICU day 2 in 772 critically ill patients enrolled in a prospective observational study. Exposures to air pollutants including ozone (warm-season only), particulate matter < 2.5 µm (PM2.5), particulate matter < 10 µm (PM10), CO, NO2 and SO2, were estimated by weighted average of daily levels from all monitors within 50 km of each patient's residential address for the 3 years prior to admission. Associations of each air pollutant exposure and PBL-TL were investigated by multivariable linear regression models adjusting for age, ethnicity, sex, smoking history, alcohol abuse, insurance status, median household income, history of malignancy and APACHE II. RESULTS Contrary to our hypothesis, TL increased across exposure quartiles in both ozone and PM2.5 analyses (p < 0.05). In a regression model controlling for potential confounders, long term ozone exposure was significantly associated with an increase in TL in the entire cohort (0.31 kb per 10 ppb), as well as in subgroups with sepsis, trauma and ARDS (all p < 0.05). In multivariable models, entire-year exposure to PM2.5, PM10, CO, NO2 and SO2 was not associated with TL after adjustment for potential confounders. In an analysis restricted to warm-season levels to assess the effect of seasonality, higher warm-season PM2.5 and CO exposures were independently associated with longer TL. CONCLUSIONS Long-term exposure to ozone is associated with longer peripheral blood TL in critically ill patients. Further studies are needed to investigate the potential underlying mechanisms for this unexpected positive association between telomere length and air pollution exposure in critical illness.
Collapse
Affiliation(s)
- Chunxue Wang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Davis SK, Xu R, Khan RJ, Gaye A. Adiposity and Leukocyte Telomere Length in US Adults by Sex-Specific Race/Ethnicity: National Health and Nutrition Examination Survey. Ethn Dis 2020; 30:441-450. [PMID: 32742149 PMCID: PMC7360178 DOI: 10.18865/ed.30.3.441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Objective Little is known about the relationship between adiposity and telomere length in the United States population. The objective of our research was to examine this relationship in a representative, socioeconomically and sex-specific, diverse racial/ethnic population in the United States. Methods Body mass index (BMI), % total body fat (TBF) and waist circumference (WC) with leukocyte telomere length (LTL) were examined according to sex-specific race/ethnicity using separate adjusted multivariate linear regressions on a sample of 4,919 respondents aged 20-84 years from the National Health and Nutrition Examination Survey's 1999-2002 data. Results LTL was shortened .41%, .44%, and .16% in African American (AA) women and was associated with increasing BMI, %TBF, and WC, (β:-.0041, 95%CI: -.0070, -.0012; P=.007; β:-.0044, 95% CI: -.0081, -.0007; P=.02; β:-.0016, 95%CI: -.0031, -.0001; P=.04, respectively). LTL was shortened .29% in White women and was associated with increasing %TBF (β:-.0029, 95%CI: -.0048, -.0009; P=.006). There were no associations among AA men, White men or Mexican American men and women. Conclusions LTL is associated with an obesity phenotype in AA women. Tailored intervention is needed to ameliorate the burden of excess adiposity and subsequent cellular aging.
Collapse
Affiliation(s)
- Sharon K. Davis
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Ruihua Xu
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Rumana J. Khan
- National Institutes of Health, National Human Genome Research Institute, Social Epidemiology Research Unit, Bethesda, MD
| | - Amadou Gaye
- National Institutes of Health, National Human Genome Research Institute, Cardiovascular Section, Bethesda, MD
| |
Collapse
|
39
|
Abstract
The medical, public health, and scientific communities are grappling with monumental imperatives to contain COVID-19, develop effective vaccines, identify efficacious treatments for the infection and its complications, and find biomarkers that detect patients at risk of severe disease. The focus of this communication is on a potential biomarker, short telomere length (TL), that might serve to identify patients more likely to die from the SARS-CoV-2 infection, regardless of age. The common thread linking these patients is lymphopenia, which largely reflects a decline in the numbers of CD4/CD8 T cells but not B cells. These findings are consistent with data that lymphocyte TL dynamics impose a limit on T-cell proliferation. They suggest that T-cell lymphopoiesis might stall in individuals with short TL who are infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Abraham Aviv
- Center of Human Development and AgingRutgers, The State University of New JerseyNew Jersey Medical SchoolNewarkNJUSA
| |
Collapse
|
40
|
Patterns of change in telomere length over the first three years of life in healthy children. Psychoneuroendocrinology 2020; 115:104602. [PMID: 32120019 PMCID: PMC7183438 DOI: 10.1016/j.psyneuen.2020.104602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
Abstract
There is growing interest in the use of telomere length as a biomarker of health and a predictor of later morbidity and mortality. However, little is known about developmentally expected telomere erosion over the first years of life. This gap hinders our ability to interpret the meaning of relative telomere length and rate of attrition in relation to risk factors and health outcomes. The overall goal of this study was to examine the rate of relative telomere length attrition in a large, normative sample of healthy children (N = 630) followed from infancy to three years of age. A secondary goal was to explore associations between sociodemographic characteristics and telomere erosion over this time period. Relative telomere length was assessed from DNA in saliva samples collected in infancy (M = 8.6 months), age 2 years (M = 25.2 months), and age 3 years (M = 38.3 months). In the sample as a whole, relative telomere length decreased from infancy to 2 years but remained stable from 2 years to 3 years. Notably, increases in relative telomere length were observed in 29 % of children between infancy and 2 years of age and in 46 % of children between 2 and 3 years of age; 62 % of children showed both increases and decreases in relative telomere length across the study period. Females showed longer relative telomere length than males, regardless of timepoint. There was some evidence that parental age and family finances were associated with changes in child relative telomere length across time. Overall, the findings suggest that telomere length attrition is not uniform across the early years of life, with the most rapid attrition occurring during the first two years, and that increases as well as decreases in telomere length during this period are commonly observed.
Collapse
|
41
|
Nelson CP, Codd V. Genetic determinants of telomere length and cancer risk. Curr Opin Genet Dev 2020; 60:63-68. [PMID: 32171108 DOI: 10.1016/j.gde.2020.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship of telomere length with cancer risk has been the source of much debate within epidemiological studies, which have produced inconsistent finding both between and within different cancer types. Over recent years, genome-wide association studies of increasing size have identified variants that determine human telomere length. These variants have subsequently been utilised as instrumental variables in Mendelian randomisation based studies, allowing the investigation of potential causal relationships between telomere length and cancer. Here we discuss recent advances in both genomic discovery, studies that give increasing evidence towards a causal role for telomere length in cancer risk and considerations for future studies.
Collapse
Affiliation(s)
- Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, UK; NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
42
|
Zhang C, Hansen HM, Semmes EC, Gonzalez-Maya J, Morimoto L, Wei Q, Eward WC, DeWitt SB, Hurst JH, Metayer C, de Smith AJ, Wiemels JL, Walsh KM. Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and adolescent population. Bone 2020; 130:115070. [PMID: 31525475 PMCID: PMC6885126 DOI: 10.1016/j.bone.2019.115070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023]
Abstract
Osteosarcoma, a malignant primary bone tumor most commonly diagnosed in children and adolescents, has a poorly understood genetic etiology. Genome-wide association studies (GWAS) and candidate-gene analyses have identified putative risk variants in subjects of European ancestry. However, despite higher incidence among African-American and Hispanic children, little is known regarding common heritable variation that contributes to osteosarcoma incidence and clinical presentation across racial/ethnic groups. In a multi-ethnic sample of non-Hispanic white, Hispanic, African-American and Asian/Pacific Islander children (537 cases, 2165 controls), we performed association analyses assessing previously-reported loci for osteosarcoma risk and metastasis, including meta-analysis across racial/ethnic groups. We also assessed a previously described association between genetic predisposition to longer leukocyte telomere length (LTL) and osteosarcoma risk in this independent multi-ethnic dataset. In our sample, we were unable to replicate previously-reported loci for osteosarcoma risk or metastasis detected in GWAS of European-ancestry individuals in either ethnicity-stratified analyses or meta-analysis across ethnic groups. Our analyses did confirm that genetic predisposition to longer LTL is a risk factor for osteosarcoma (ORmeta: 1.22; 95% CI: 1.09-1.36; P = 3.8 × 10-4), and the strongest effect was seen in Hispanic subjects (OR: 1.32; 95% CI: 1.12-1.54, P = 6.2 × 10-4). Our findings shed light on the replicability of osteosarcoma risk loci across ethnicities and motivate further characterization of these genetic factors in diverse clinical cohorts.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States
| | - Helen M Hansen
- Department of Neurological Surgery, University of California, San Francisco, United States
| | - Eleanor C Semmes
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, United States
| | - Julio Gonzalez-Maya
- Department of Neurological Surgery, University of California, San Francisco, United States
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, United States
| | - Qingyi Wei
- Department of Population Health Sciences, Duke University, United States; Duke Cancer Institute, Duke University, United States
| | - William C Eward
- Duke Cancer Institute, Duke University, United States; Department of Orthopaedic Surgery, Duke University, United States
| | | | - Jillian H Hurst
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, United States
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, United States
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California, United States
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States; Department of Neurosurgery, Duke University, United States
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States; Duke Cancer Institute, Duke University, United States; Department of Neurosurgery, Duke University, United States.
| |
Collapse
|
43
|
Shen G, Huang JY, Huang YQ, Feng YQ. The Relationship between Telomere Length and Cancer Mortality: Data from the 1999-2002 National Healthy and Nutrition Examination Survey (NHANES). J Nutr Health Aging 2020; 24:9-15. [PMID: 31886802 DOI: 10.1007/s12603-019-1265-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The association between telomeres length (TL) and cancer mortality is uncertain. We tested the hypotheses that long TL are associated with reduced cancer mortality. DESIGN Prospective cohort study. SETTING the National Health and Nutrition Survey (NHANES, 1999-2002). PARTICIPANTS The analytic sample included adults (n = 7183) who had TL measurements. MEASUREMENTS DNA was obtained via blood samples. Telomere length was assessed using the quantitative polymerase chain reaction method. RESULTS During follow-up (0.08-12.7 person-years, median = 9.5 years), we observed 195 participants had cancer as causes of death. TL was negatively corelated with age, body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), race, diabetes, hypertension, cardiovascular diseases (CVD) and cancer mortality, conversely, positively corelated with alcohol use, but not related to diastolic blood pressure (DBP) and smoking. Kaplan-Meier analysis revealed that TL was significantly associated with cancer mortality (log-rank, P <0.001). CONCLUSIONS Our study expands upon previous evidence of a relationship between TL and cancer mortality. TL may be a useful tool for evaluating risk of cancer mortality in American adults.
Collapse
Affiliation(s)
- G Shen
- YingQing Feng, Department of Cardiology, Guangdong Cardiovascular Institute, Hypertension Research Laboratory, Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, 510080 Guangzhou, China,
| | | | | | | |
Collapse
|
44
|
Todendi PF, Martínez JA, Reuter CP, Matos WL, Franke SIR, Razquin C, Milagro FI, Kahl VFS, Fiegenbaum M, Valim ARDM. Biochemical profile, eating habits, and telomere length among Brazilian children and adolescents. Nutrition 2019; 71:110645. [PMID: 31896063 DOI: 10.1016/j.nut.2019.110645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/03/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Lifestyle, obesity, and eating habits are emerging as determinants for the instability of telomeres. The increase in childhood and adolescent obesity and the association of biochemical profiles and dietary components with telomere length (TL) makes it an important issue in nutritional research. The aim of the present study was to investigate TL and its association with ethnic background, adiposity, clinical and biochemical parameters, and dietary patterns among Brazilian children and adolescents. METHODS A cross-sectional study encompassing 981 children and adolescents between 7 and 17 y of age was performed. Dietary intake habits, anthropometry, and clinical data were collected. TL analysis was performed by quantitative polymerase chain reaction. RESULTS Children presented significantly longer TL than adolescents (P = 0.046). Participants who self-declared as black, mulatto, or brown (P < 0.001) also showed longer TL than those who were white. Regarding biochemical parameters, individuals with altered glucose levels had shorter TL than normoglycemic participants in the total sample (P = 0.014). Such difference remained statistically significant in adolescents (P = 0.019). Participants who reported eating fruits and vegetables regularly had longer TL than those who did not (P < 0.001). CONCLUSION The results suggested that both biochemical parameters and the intake of antioxidant-rich food, such as fruits and vegetables, are associated with the stability of telomere biology among young Brazilians.
Collapse
Affiliation(s)
- Pâmela Ferreira Todendi
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, Brazil
| | - J Alfredo Martínez
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - William Latosinski Matos
- Undergraduate student, Pharmacy Program, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | | | - Cristina Razquin
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | - Fermín Ignacio Milagro
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Madrid, Spain
| | | | - Marilu Fiegenbaum
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre/RS, Brazil
| | | |
Collapse
|
45
|
Masterson EE, Hayes MG, Kuzawa CW, Lee NR, Eisenberg DT. Early life growth and adult telomere length in a Filipino cohort study. Am J Hum Biol 2019; 31:e23299. [PMID: 31380592 PMCID: PMC6872908 DOI: 10.1002/ajhb.23299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE We investigated the relationship between early life growth patterns and blood telomere length (TL) in adulthood using conditional measures of lean and fat mass growth to evaluate potentially sensitive periods of early life growth. METHODS This study included data from 1562 individuals (53% male; age 20-22 years) participating in the Cebu Longitudinal Health and Nutrition Survey, located in metropolitan Cebu, Philippines. Primary exposures included length-for-age z-score (HAZ) and weight-for-age z-score (WAZ) at birth and conditional measures of linear growth and weight gain during four postnatal periods: 0-6, 6-12, and 12-24 months, and 24 months to 8.5 years. TL was measured at ~21 years of age. We estimated associations using linear regression. RESULTS The study sample had an average gestational age (38.5 ± 2 weeks) and birth size (HAZ = -0.2 ± 1.1, WAZ = -0.7 ± 1.0), but by age 8.5 years had stunted linear growth (HAZ = -2.1 ± 0.9) and borderline low weight (WAZ = -1.9 ± 1.0) relative to World Health Organization references. Heavier birth weight was associated with longer TL in early adulthood (P = .03), but this association was attenuated when maternal age at birth was included in the model (P = .07). Accelerated linear growth between 6 and 12 months was associated with longer TL in adulthood (P = .006), whereas weight gain between 12 and 24 months was associated with shorter TL in adulthood (P = .047). CONCLUSIONS In Cebu, individuals who were born heavier have longer TL in early adulthood, but that birthweight itself may not explain the association. Findings suggest that childhood growth is associated with the cellular senescence process in adulthood, implying early life well-being may be linked to adult health.
Collapse
Affiliation(s)
- Erin E. Masterson
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington
| | - M. Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine
- Department of Anthropology, Northwestern University
| | - Christopher W. Kuzawa
- Department of Anthropology, Northwestern University
- Institute for Policy Research, Northwestern University
| | - Nanette R. Lee
- USC-Office of Population Studies Foundation, Inc, University of San Carlos, Cebu, Philippines
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu, Philippines
| | - Dan T.A. Eisenberg
- Department of Anthropology, University of Washington
- Center for Studies in Demography and Ecology, University of Washington
| |
Collapse
|
46
|
Needham BL, Salerno S, Roberts E, Boss J, Allgood KL, Mukherjee B. Do black/white differences in telomere length depend on socioeconomic status? BIODEMOGRAPHY AND SOCIAL BIOLOGY 2019; 65:287-312. [PMID: 33243026 PMCID: PMC7703670 DOI: 10.1080/19485565.2020.1765734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Social and economic disadvantage are hypothesized to increase the risk of disease and death via accelerated biological aging. Given that US blacks are socially and economically disadvantaged relative to whites, health disparities scholars expected that blacks would have shorter telomere length-a biomarker of cell aging-than whites. Yet the majority of studies have found that blacks have longer telomere length than whites. Using data from the National Health and Nutrition Examination Survey (n = 3,761; 28.3% non-Hispanic black, 71.7% non-Hispanic white), we found that leukocyte telomere length was 4.00% (95% CI: 1.12%, 6.87%) longer among blacks compared to whites in the full sample, but differences were greatest among those with lower SES (5.66%; 95% CI: 0.10%, 10.32%), intermediate among those with middle SES (4.14%; 95% CI: 0.05%, 8.24%), and smallest among those with higher SES (2.33%; 95% CI: -3.02%, 7.67%). These results challenge purely genetic explanations for race differences in telomere length and point to a potential social-environmental cause of longer telomere length in US blacks.
Collapse
Affiliation(s)
- Belinda L. Needham
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan
| | | | | | | | - Kristi L. Allgood
- Department of Epidemiology and Center for Social Epidemiology and Population Health, University of Michigan
| | - Bhramar Mukherjee
- Department of Biostatistics, Department of Epidemiology, University of Michigan
| |
Collapse
|
47
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Wang S, Chang E, Byanyima P, Huang P, Sanyu I, Musisi E, Sessolo A, Davis JL, Worodria W, Huang L, Lin J. Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB. J Hum Genet 2019; 64:1033-1040. [PMID: 31388112 DOI: 10.1038/s10038-019-0646-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/29/2023]
Abstract
Prior studies in predominantly European (Caucasian) populations have discovered common genetic variants (single nucleotide polymorphisms, SNPs) associated with leukocyte telomere length (LTL), but whether these same variants affect LTL in non-Caucasian populations are largely unknown. We investigated whether six genetic variants previously associated with LTL (TERC (rs10936599), TERT (rs2736100), NAF1 (7675998), OBFC1 (rs9420907), ZNF208 (rs8105767), and RTEL1 (rs755017)) are correlated with telomere length (TL) in peripheral blood mononuclear cells (PBMCs) in a cohort of Africans living with and without HIV and undergoing evaluation for tuberculosis (TB). We found OBFC1 and the genetic sum score of the effect alleles across all six loci to be associated with shorter TL (adjusted for age, gender, HIV status, and smoking pack-years (p < 0.02 for both OBFC1 and the genetic sum score). In an analysis stratified by HIV status, the genetic sum score is associated with LTL in both groups with and without HIV. On the contrary, a stratified analysis according to TB status revealed that in the TB-positive subgroup, the genetic sum score is not associated with LTL, whereas the relationship remains in the TB-negative subgroup. The different impacts of HIV and TB on the association between the genetic sum score and LTL indicate different modes of modification and suggest that the results found in this cohort with HIV and TB participants may not be applied to the African general population. Future studies need to carefully consider these confounding factors.
Collapse
Affiliation(s)
- Stephanie Wang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Emily Chang
- HIV, Infectious Diseases, and Global Medicine Division, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Peter Huang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ingvar Sanyu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Emmanuel Musisi
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Biochemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Abdul Sessolo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - J Lucian Davis
- Epidemiology of Microbial Diseases, Yale School of Public Health and Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - William Worodria
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Makerere University-University of California San Francisco (MU-UCSF) Research Collaboration, Kampala, Uganda
| | - Laurence Huang
- HIV, Infectious Diseases, and Global Medicine Division, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,Makerere University-University of California San Francisco (MU-UCSF) Research Collaboration, Kampala, Uganda.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| | | |
Collapse
|
49
|
Muhsen K, Sinnreich R, Merom D, Nassar H, Cohen D, Kark JD. Helicobacter pylori infection, serum pepsinogens as markers of atrophic gastritis, and leukocyte telomere length: a population-based study. Hum Genomics 2019; 13:32. [PMID: 31331390 PMCID: PMC6647065 DOI: 10.1186/s40246-019-0217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Background Persistent infections that induce prolonged inflammation might negatively affect the leukocyte telomere length (LTL); however, the role in LTL of Helicobacter pylori (H. pylori) infection, which persistently colonizes the stomach, remains unknown. The study objective was to examine associations of sero-prevalence of H. pylori immunoglobulin G (IgG) antibody and serum pepsinogens (PGs), as markers of atrophic gastritis, with LTL. A cross-sectional study was performed among 934 Arab residents of East Jerusalem, aged 27–78 years, randomly selected from Israel’s national population registry. Sera were tested for H. pylori IgG and PG levels by ELISA. LTL was measured by southern blots. Multiple linear regression models were fitted to adjust for sociodemographic and lifestyle factors. Results LTL decreased significantly with age (p < 0.001) and was shorter in men than women (p = 0.032). The mean LTL was longer in H. pylori sero-positive persons than negative ones: mean difference 0.13 kb (95% CI 0.02, 0.24), p = 0.016. Participants with atrophic gastritis (PGI < 30 μg/L or a PGI: PGII < 3.0) had shorter LTL than did those without: mean difference − 0.18 (95% CI − 0.32, − 0.04). The difference was of larger magnitude between persons who had past H. pylori infection (sero-negative to H. pylori IgG antibody) and atrophic gastritis, compared to those who were H. pylori sero-negative and did not have atrophic gastritis: mean difference − 0.32 kb (95% CI − 0.55, − 0.10). This association remained significant after adjustment for age, sex, and religiosity: beta coefficient − 0.21 kb (95% CI − 0.41, − 0.001), p = 0.049. The results were similar after further adjustment for lifestyle factors. In bivariate analysis, mean LTL was longer in physically active persons than non-active ones, and shorter in persons with than without obesity; however, these differences were diminished and were not significant in the multivariable model. Conclusions H. pylori IgG sero-positivity per se was not related to reduced LTL. However, persons with past H. pylori infection (i.e., lacking H. pylori IgG serum antibody) and with serological evidence of atrophic gastritis, had a significantly shorter LTL than did those without atrophic gastritis. Electronic supplementary material The online version of this article (10.1186/s40246-019-0217-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University Ramat Aviv, Ramat Aviv, 6139001, Tel Aviv, Israel.
| | - Ronit Sinnreich
- Hadassah School of Public Health and Community Medicine, Hebrew University, Jerusalem, Israel
| | - Dafna Merom
- Western Sydney University, Sydney, Australia
| | - Hisham Nassar
- St. Joseph Hospital, East Jerusalem and Department of Cardiology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University Ramat Aviv, Ramat Aviv, 6139001, Tel Aviv, Israel
| | - Jeremy D Kark
- Hadassah School of Public Health and Community Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
50
|
Benetos A, Aviv A. Ancestry, Telomere Length, and Atherosclerosis Risk. ACTA ACUST UNITED AC 2019; 10:CIRCGENETICS.117.001718. [PMID: 28615296 DOI: 10.1161/circgenetics.117.001718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Athanase Benetos
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.).
| | - Abraham Aviv
- From the Département de Médecine Gériatrique, CHRU de Nancy, The Institut national de la santé et de la recherche médicale, Université de Lorraine, France (A.B.); and Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark (A.A.)
| |
Collapse
|