1
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
2
|
Huang CC, Sung HH, Li HC, Miaw SC, Kung JT, Chou MY, Wu-Hsieh BA. A novel trivalent non-Fc anti-CD3 Collabody preferentially induces Th1 cell apoptosis in vitro and long-lasting remission in recent-onset diabetic NOD mice. Front Immunol 2023; 14:1201853. [PMID: 37600814 PMCID: PMC10435756 DOI: 10.3389/fimmu.2023.1201853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Specific anti-CD3 treatment is deemed to be a promising therapy for allograft rejection and type 1 diabetes (T1D). Fc receptor (FcR) reduced-binding antibodies, by avoiding adverse effects of Fc and FcR interaction, have good therapeutic potential. We generated a trivalent anti-mouse-CD3 Collabody, h145CSA, by using a triplex-forming collagen-like peptide (Gly-Pro-Pro)10 to drive the trimerization of the Fab fragments. Exposure to h145CSA, but not its bivalent counterparts 145-2C11 and h145chIgGAA (FcR reduced-binding format), upregulates FasL expression on Th1 cells and causes Th1 cell apoptosis. Administration of h145CSA invokes minimal mitogenic effects in mice. The ability of multiple dosing of h145CSA to induce splenic CD4+ T-cell depletion is comparable to bivalent antibodies but is characterized by more rapid CD4+ T-cell recovery kinetics. h145CSA is more potent than h145chIgGAA in inducing long-lasting remission in recent-onset diabetic NOD mice. Its therapeutic effect is accompanied by a significantly lower percentage of CD4+IFNγ+ T cells and a higher Treg/Th1 ratio in pancreatic and mesenteric lymph nodes. The results of our study demonstrate that trivalent non-Fc anti-CD3 Collabody has the potential to be used in the treatment of T1D.
Collapse
Affiliation(s)
- Chuan-Chuan Huang
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Hsiu-Chuan Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - John T. Kung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Betty A. Wu-Hsieh
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
3
|
Li MY, Liu LZ, Xin Q, Zhou J, Zhang X, Zhang R, Wu Z, Yi J, Dong M. Downregulation of mTORC1 and Mcl-1 by lipid-oversupply contributes to islet β-cell apoptosis and dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159332. [PMID: 37196823 DOI: 10.1016/j.bbalip.2023.159332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
Pancreatic β-cell apoptosis is a key feature of diabetes and can be induced by chronic exposure to saturated fatty acids (FAs). However, the underlying mechanisms remain poorly understood. We presently evaluated the role of Mcl-1 and mTOR in mice fed with high-fat-diet (HFD) and β-cells exposed to the overloaded palmitic acid (PA). Compared with normal-chow-diet (NCD)-fed mice, HFD group showed impaired glucose tolerance after two months. Along with the diabetes progression, pancreatic islets first became hypertrophic and then atrophic, the ratio of β-cell:α-cell increased in the islets of four months HFD-fed mice while decreased after six months. This process was accompanied by significantly increased β-cell apoptosis and AMPK activity, and decreased Mcl-1 expression and mTOR activity. Consistently, glucose-induced insulin secretion dropped. In terms of mechanism, PA with lipotoxic dose could activate AMPK, which in turn inhibited ERK-stimulated Mcl-1Thr163 phosphorylation. Meanwhile, AMPK blocked Akt activity to release Akt inhibition on GSK3β, followed by GSK3β-initiated Mcl-1Ser159 phosphorylation. The context of Mcl-1 phosphorylation finally led to its degradation by ubiquitination. Also, AMPK inhibited the activity of mTORC1, resulting in a lower level of Mcl-1. Suppression of mTORC1 activity and Mcl-1 expression positively related to β-cell failure. Alteration of Mcl-1 or mTOR expression rendered different tolerance of β-cell to different dose of PA. In conclusion, lipid oversupply-induced dual modulation of mTORC1 and Mcl-1 finally led to β-cell apoptosis and impaired insulin secretion. The study may help further understand the pathogenesis of β-cell dysfunction in case of dyslipidemia, and provide promising therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China; GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Qihang Xin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Rui Zhang
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Zangshu Wu
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ming Dong
- GuangZhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China.
| |
Collapse
|
4
|
Tang Y, Chen YG, Huang HY, Li SF, Zuo HL, Chen JH, Li LP, Mao RB, Lin YCD, Huang HD. Panax notoginseng alleviates oxidative stress through miRNA regulations based on systems biology approach. Chin Med 2023; 18:74. [PMID: 37337262 DOI: 10.1186/s13020-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Herbal medicine Sanqi (SQ), the dried root or stem of Panax notoginseng (PNS), has been reported to have anti-diabetic and anti-obesity effects and is usually administered as a decoction for Chinese medicine. Alternative to utilizing PNS pure compound for treatment, we are motivated to propose an unconventional scheme to investigate the functions of PNS mixture. However, studies providing a detailed overview of the transcriptomics-based signaling network in response to PNS are seldom available. METHODS To explore the reasoning of PNS in treating metabolic disorders such as insulin resistance, we implemented a systems biology-based approach with RNA sequencing (RNA-seq) and miRNA sequencing data to elucidate key pathways, genes and miRNAs involved. RESULTS Functional enrichment analysis revealed PNS up-regulating oxidative stress-related pathways and down-regulating insulin and fatty acid metabolism. Superoxide dismutase 1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxygenase-1 (Hmox1) and glutamate cysteine ligase (GCLc) mRNA and protein levels, as well as related miRNA levels, were measured in PNS treated rat pancreatic β cells (INS-1). PNS treatment up-regulated Hmox1, SOD1 and GCLc expression while down-regulating miR-24-3p and miR-139-5p to suppress oxidative stress. Furthermore, we verified the novel interactions between miR-139-5p and miR-24-3p with GCLc and SOD1. CONCLUSION This work has demonstrated the mechanism of how PNS regulates cellular molecules in metabolic disorders. Therefore, combining omics data with a systems biology strategy could be a practical means to explore the potential function and molecular mechanisms of Chinese herbal medicine in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yun Tang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Shang-Fu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ji-Hang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Li-Ping Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Run-Bo Mao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
5
|
Perez-Serna AA, Dos Santos RS, Ripoll C, Nadal A, Eizirik DL, Marroqui L. BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis. Int J Mol Sci 2023; 24:5657. [PMID: 36982731 PMCID: PMC10056015 DOI: 10.3390/ijms24065657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines-namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells-using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults.
Collapse
Affiliation(s)
- Atenea A. Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Reinaldo S. Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Cristina Ripoll
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| |
Collapse
|
6
|
Pancreatic Islet Cells Response to IFNγ Relies on Their Spatial Location within an Islet. Cells 2022; 12:cells12010113. [PMID: 36611907 PMCID: PMC9818682 DOI: 10.3390/cells12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disease characterized by the progressive destruction of insulin-producing pancreatic beta cells. While beta cells are the target of the immune attack, the other islet endocrine cells, namely the alpha and delta cells, can also be affected by the inflammatory milieu. Here, using a flow cytometry-based strategy, we compared the impact of IFNγ, one of the main cytokines involved in T1D, on the three endocrine cell subsets isolated from C57BL/6 mouse islets. RNA-seq analyses revealed that alpha and delta cells exposed in vitro to IFNγ display a transcriptomic profile very similar to that of beta cells, with an increased expression of inflammation key genes such as MHC class I molecules, the CXCL10 chemokine and the programmed death-ligand 1 (PD-L1), three hallmarks of IFNγ signaling. Interestingly, at low IFNγ concentration, we observed two beta cell populations (responders and non-responders) based on PD-L1 protein expression. Our data indicate that this differential sensitivity relies on the location of the cells within the islet rather than on the existence of two different beta cells subsets. The same findings were corroborated by the in vivo analysis of pancreatic islets from the non-obese diabetic mouse model of T1D, showing more intense PD-L1 staining on endocrine cells close to immune infiltrate. Collectively, our work demonstrates that alpha and delta cells are as sensitive as beta cells to IFNγ, and suggests a gradual diffusion of the cytokine into an islet. These observations provide novel insights into the in situ inflammatory processes occurring in T1D progression.
Collapse
|
7
|
Pedersen SS, Prause M, Williams K, Barrès R, Billestrup N. Butyrate inhibits IL-1β-induced inflammatory gene expression by suppression of NF-κB activity in pancreatic beta cells. J Biol Chem 2022; 298:102312. [PMID: 35921894 PMCID: PMC9428856 DOI: 10.1016/j.jbc.2022.102312] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022] Open
Abstract
Cytokine-induced beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Chronic exposure of beta cells to inflammatory cytokines affects gene expression and impairs insulin secretion. Thus, identification of anti-inflammatory factors that preserve beta cell function represents an opportunity to prevent or treat T2D. Butyrate is a gut microbial metabolite with anti-inflammatory properties for which we recently showed a role in preventing interleukin-1β (IL-1β)-induced beta cell dysfunction, but how prevention is accomplished is unclear. Here, we investigated the mechanisms by which butyrate exerts anti-inflammatory activity in beta cells. We exposed mouse islets and INS-1E cells to a low dose of IL-1β and/or butyrate and measured expression of inflammatory genes and nitric oxide (NO) production. Additionally, we explored the molecular mechanisms underlying butyrate activity by dissecting the activation of the nuclear factor-κB (NF-κB) pathway. We found that butyrate suppressed IL-1β-induced expression of inflammatory genes, such as Nos2, Cxcl1, and Ptgs2, and reduced NO production. Butyrate did not inhibit IκBα degradation nor NF-κB p65 nuclear translocation. Furthermore, butyrate did not affect binding of NF-κB p65 to target sequences in synthetic DNA but inhibited NF-κB p65 binding and RNA polymerase II recruitment to inflammatory gene promoters in the context of native DNA. We found this was concurrent with increased acetylation of NF-κB p65 and histone H4, suggesting butyrate affects NF-κB activity via inhibition of histone deacetylases. Together, our results show butyrate inhibits IL-1β-induced inflammatory gene expression and NO production through suppression of NF-κB activation and thereby possibly preserves beta cell function.
Collapse
|
8
|
Dos Santos RS, Medina-Gali RM, Babiloni-Chust I, Marroqui L, Nadal A. In Vitro Assays to Identify Metabolism-Disrupting Chemicals with Diabetogenic Activity in a Human Pancreatic β-Cell Model. Int J Mol Sci 2022; 23:ijms23095040. [PMID: 35563431 PMCID: PMC9102687 DOI: 10.3390/ijms23095040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-βH1 β-cell line, the rat β-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as “unknowns”. Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a “new” diabetogenic agent. Our results indicate that the EndoC-βH1 cell line is a suitable human β-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.
Collapse
Affiliation(s)
- Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (R.S.D.S.); (R.M.M.-G.); (I.B.-C.); (L.M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
10
|
Wang Z, Huang K, Xu J, Liu J, Zheng Y. Insights from Dysregulated mRNA Expression Profile of β-Cells in Response to Proinflammatory Cytokines. J Immunol Res 2022; 2022:4542487. [PMID: 35103245 PMCID: PMC8800623 DOI: 10.1155/2022/4542487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that is characterized by autoimmunity and its mediated β-cell damage. Chronic exposure of β-cells to proinflammatory cytokines is known to regulate the expression of many genes, subsequently resulting in the impairment of some signaling pathways involved with insulin production and secretion and/or β-cell apoptosis. In our study, RNA sequencing technology was applied to identify differentially expressed mRNAs in MIN6 cells treated with a mix of cytokines, including IL-1β, TNF-α, and IFN-γ. The results showed 809 upregulated and 946 downregulated protein-coding mRNAs in MIN6 cells upon the stimulation of cytokines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses were performed to predict the functions of dysregulated genes. The networks of circRNA-mRNA were constructed between differentially mRNAs and dysregulated expressed circRNAs in our previous study. In addition, we selected 8 dysregulated mRNAs for further validation by quantitative real-time PCR. The RNA sequencing data showed 809 upregulated and 946 downregulated protein-coding mRNAs. GO analysis showed that the top 10 significant "biological processes," "cellular components," and "molecular functions" for upregulated mRNAs include "immune system process," "inflammatory response," and "innate immune response" and the top 10 for downregulated mRNAs include "cell cycle," "mitotic cytokinesis," and "cytoplasm." KEGG analysis showed that these differentially expressed genes were involved with "antigen processing and presentation," "TNF signaling pathway" and "type 1 diabetes," "cell cycle," "necroptosis," and "Rap1 signaling pathway." We also constructed the networks of differentially expressed circRNAs and mRNAs. We observed that upregulated circRNA 006029 and downregulated circRNA 000286 and 017277 were associated with the vast majority of selected dysregulated mRNAs, while circRNA 013053 was only related to the protein-coding gene, Slc7a2. To the summary, these data indicated that differentially expressed mRNAs may play key or partial roles in cytokine-mediated β-cell dysfunction and gave us the hint that circRNAs might regulate mRNAs, thereby contributing to the development of T1DM. The current study provided a systematic perspective on the potential functions and possible regulatory mechanisms of mRNAs in proinflammatory cytokine-induced β-cell destruction.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China
| | - Kunlin Huang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Xu
- Department of Metabolism and Endocrinology, The First People's Hospital of Pingjiang, Pingjiang, Hunan 414500, China
| | - Jia Liu
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ying Zheng
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
11
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Callebaut A, Bruggeman Y, Zamit C, Sodré FMC, Irla M, Mathieu C, Buitinga M, Overbergh L. Aberrant expression of transglutaminase 2 in pancreas and thymus of NOD mice underscores the importance of deamidation in neoantigen generation. Front Endocrinol (Lausanne) 2022; 13:908248. [PMID: 35966081 PMCID: PMC9367685 DOI: 10.3389/fendo.2022.908248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Post-translational modifications can lead to a break in immune tolerance in autoimmune diseases such as type 1 diabetes (T1D). Deamidation, the conversion of glutamine to glutamic acid by transglutaminase (TGM) enzymes, is a post-translational modification of interest, with deamidated peptides being reported as autoantigens in T1D. However, little is known about how Tgm2, the most ubiquitously expressed Tgm isoform, is regulated and how tolerance against deamidated peptides is lost. Here, we report on the aberrant expression and regulation of Tgm2 in the pancreas and thymus of NOD mice. We demonstrate that Tgm2 expression is induced by the inflammatory cytokines IL1β and IFNγ in a synergistic manner and that murine pancreatic islets of NOD mice have higher Tgm2 levels, while Tgm2 levels in medullary thymic epithelial cells are reduced. We thus provide the first direct evidence to our knowledge that central tolerance establishment against deamidated peptides might be impaired due to lower Tgm2 expression in NOD medullary thymic epithelial cells, which together with the aberrantly high levels of deamidated peptides in NOD β-cells underscores the role of deamidation in amplifying T-cell reactivity.
Collapse
Affiliation(s)
- Aїsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ylke Bruggeman
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Cloé Zamit
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Fernanda Marques Câmara Sodré
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Microbiology, University of Sao Paulo, Sao Paulo, Brazil
| | - Magali Irla
- CNRS, INSERM, Centre d’Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- *Correspondence: Lut Overbergh,
| |
Collapse
|
13
|
Park OJ, Kim AR, So YJ, Im J, Ji HJ, Ahn KB, Seo HS, Yun CH, Han SH. Induction of Apoptotic Cell Death by Oral Streptococci in Human Periodontal Ligament Cells. Front Microbiol 2021; 12:738047. [PMID: 34721337 PMCID: PMC8551966 DOI: 10.3389/fmicb.2021.738047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Initiation and progression of oral infectious diseases are associated with streptococcal species. Bacterial infection induces inflammatory responses together with reactive oxygen species (ROS), often causing cell death and tissue damage in the host. In the present study, we investigated the effects of oral streptococci on cytotoxicity and ROS production in human periodontal ligament (PDL) cells. Streptococcus gordonii showed cell cytotoxicity in a dose- and time-dependent manner. The cytotoxicity might be due to apoptosis since S. gordonii increased annexin V-positive cells, and the cytotoxicity was reduced by an apoptosis inhibitor, Z-VAD-FMK. Other oral streptococci such as Streptococcus mitis, Streptococcus sanguinis, and Streptococcus sobrinus also induced apoptosis, whereas Streptococcus mutans did not. All streptococci tested except S. mutans triggered ROS production in human PDL cells. Interestingly, however, streptococci-induced apoptosis appears to be ROS-independent, as the cell death induced by S. gordonii was not recovered by the ROS inhibitor, resveratrol or n-acetylcysteine. Instead, hydrogen peroxide (H2O2) appears to be important for the cytotoxic effects of streptococci since most oral streptococci except S. mutans generated H2O2, and the cytotoxicity was dramatically reduced by catalase. Furthermore, streptococcal lipoproteins are involved in cytotoxicity, as we observed that cytotoxicity induced by the lipoprotein-deficient S. gordonii mutant was less potent than that by the wild-type and was attenuated by anti-TLR2-neutralizing antibody. Indeed, lipoproteins purified from S. gordonii alone were sufficient to induce cytotoxicity. Notably, S. gordonii lipoproteins did not induce H2O2 or ROS but cooperatively induced cell death when co-treated with H2O2. Taken together, these results suggest that most oral streptococci except S. mutans efficiently induce damage to human PDL cells by inducing apoptotic cell death with bacterial H2O2 and lipoproteins, which might contribute to the progression of oral infectious diseases such as apical periodontitis.
Collapse
Affiliation(s)
- Ok-Jin Park
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - A Reum Kim
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction. Int J Mol Sci 2021; 22:ijms221910427. [PMID: 34638768 PMCID: PMC8508700 DOI: 10.3390/ijms221910427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta cell dysfunction caused by metabolic and inflammatory stress contributes to the development of type 2 diabetes (T2D). Butyrate, produced by the gut microbiota, has shown beneficial effects on glucose metabolism in animals and humans and may directly affect beta cell function, but the mechanisms are poorly described. The aim of this study was to investigate the effect of butyrate on cytokine-induced beta cell dysfunction in vitro. Mouse islets, rat INS-1E, and human EndoC-βH1 beta cells were exposed long-term to non-cytotoxic concentrations of cytokines and/or butyrate to resemble the slow onset of inflammation in T2D. Beta cell function was assessed by glucose-stimulated insulin secretion (GSIS), gene expression by qPCR and RNA-sequencing, and proliferation by incorporation of EdU into newly synthesized DNA. Butyrate protected beta cells from cytokine-induced impairment of GSIS and insulin content in the three beta cell models. Beta cell proliferation was reduced by both cytokines and butyrate. Expressions of the beta cell specific genes Ins, MafA, and Ucn3 reduced by the cytokine IL-1β were not affected by butyrate. In contrast, butyrate upregulated the expression of secretion/transport-related genes and downregulated inflammatory genes induced by IL-1β in mouse islets. In summary, butyrate prevents pro-inflammatory cytokine-induced beta cell dysfunction.
Collapse
|
15
|
Alvelos MI, Brüggemann M, Sutandy FXR, Juan-Mateu J, Colli ML, Busch A, Lopes M, Castela Â, Aartsma-Rus A, König J, Zarnack K, Eizirik DL. The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Sci Alliance 2021; 4:e202000825. [PMID: 33376132 PMCID: PMC7772782 DOI: 10.26508/lsa.202000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Brüggemann
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maikel Luis Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anke Busch
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ângela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Julian König
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | - Kathi Zarnack
- Buchman Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
16
|
Sever D, Hershko-Moshe A, Srivastava R, Eldor R, Hibsher D, Keren-Shaul H, Amit I, Bertuzzi F, Krogvold L, Dahl-Jørgensen K, Ben-Dov IZ, Landsman L, Melloul D. NF-κB activity during pancreas development regulates adult β-cell mass by modulating neonatal β-cell proliferation and apoptosis. Cell Death Discov 2021; 7:2. [PMID: 33414444 PMCID: PMC7790827 DOI: 10.1038/s41420-020-00386-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.
Collapse
Affiliation(s)
- Dror Sever
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.,University of Copenhagen, Novo Nordisk Foundation Center for Stem Cell Biology, DanStem. Faculty for Health and Medical Sciences, Blegdamsvej 3B. DK-2200, Copenhagen, Denmark
| | - Anat Hershko-Moshe
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Rohit Srivastava
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Roy Eldor
- Diabetes Unit, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel Hibsher
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute, Rehovot, 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot, 76100, Israel
| | - Federico Bertuzzi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital HF, P. O. Box, 4950, Nydalen, 0424, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Paediatric Department, Oslo University Hospital HF, P. O. Box, 4950, Nydalen, 0424, Oslo, Norway
| | - Iddo Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Limor Landsman
- The Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Melloul
- Department of Endocrinology, Laboratory of Medical Transcriptomics, Nephrology Services, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
17
|
Neuroplastin Modulates Anti-inflammatory Effects of MANF. iScience 2020; 23:101810. [PMID: 33299977 PMCID: PMC7702011 DOI: 10.1016/j.isci.2020.101810] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to induce pro-inflammatory response and ultimately leads to cell death. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER-localized protein whose expression and secretion is induced by ER stress and a crucial survival factor. However, the underlying mechanism of how MANF exerts its cytoprotective activity remains unclear due to the lack of knowledge of its receptor. Here we show that Neuroplastin (NPTN) is such a receptor for MANF. Biochemical analysis shows the physiological interaction between MANF and NPTN on the cell surface. Binding of MANF to NPTN mitigates the inflammatory response and apoptosis via suppression of NF-kβ signaling. Our results demonstrate that NPTN is a cell surface receptor for MANF, which modulates inflammatory responses and cell death, and that the MANF-NPTN survival signaling described here provides potential therapeutic targets for the treatment of ER stress-related disorders, including diabetes mellitus, neurodegeneration, retinal degeneration, and Wolfram syndrome. Neuroplastin (NPTN) is a plasma membrane receptor for MANF NPTN regulates MANF-mediated suppression of inflammation NPTN regulates cell survival mediated by MANF under ER stress MANF-NPTN survival pathway provides potential therapeutic targets for ER stress-related disorders
Collapse
|
18
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
19
|
Zhang Q, Li J, Luo M, Xie GY, Zeng W, Wu Y, Zhu Y, Yang X, Guo AY. Systematic Transcriptome and Regulatory Network Analyses Reveal the Hypoglycemic Mechanism of Dendrobium fimbriatum. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1-14. [PMID: 31790971 PMCID: PMC6909217 DOI: 10.1016/j.omtn.2019.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/21/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2D) is a long-term metabolic disorder disease characterized by high blood sugar and relative lack of insulin. Previous studies have demonstrated that Dendrobium has potent glucose-lowing effects and may serve as add-ons or alternatives to classic medications for T2D prevention and treatment, but the underlying molecular mechanisms were still unclear. We performed biochemical and transcriptional profiling (RNA sequencing [RNA-seq] and microRNA sequencing [miRNA-seq]) analyses on the pancreas and liver of Dendrobium fimbriatum extract (DFE)-fed diabetic rats and control animals. Our sequencing and experimental data indicated that DFE significantly alleviated diabetes symptoms through inhibiting inflammation and preventing islet cell apoptosis in diabetic pancreas. Transcription factors in Stat/nuclear factor κB (NF-κB)/Irf families combined with miR-148a/375/9a served as key regulators in the inflammation and apoptosis pathways under DFE administration. Meanwhile, DFE improved the energy metabolism, lipid transport, and oxidoreductase activity in the liver, and thus decreased lipid accumulation and lipotoxicity-induced hepatocyte apoptosis. Our findings revealed that DFE may serve as a potential therapeutic agent to prevent T2D, and also showed the combination of transcriptome profiling and regulatory network analysis could act as an effective approach for investigating potential molecular mechanisms of traditional Chinese medicine on diseases.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Gui-Yan Xie
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zeng
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Wu
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Liang S, Wang ZG, Zhang ZZ, Chen K, Lv ZT, Wang YT, Cheng P, Sun K, Yang Q, Chen AM. Decreased RIPK1 expression in chondrocytes alleviates osteoarthritis via the TRIF/MyD88-RIPK1-TRAF2 negative feedback loop. Aging (Albany NY) 2019; 11:8664-8680. [PMID: 31606726 PMCID: PMC6814603 DOI: 10.18632/aging.102354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and involves the loss of articular cartilage integrity, formation of articular osteophytes, remodeling of subchondral bone, and synovitis. Knockdown of receptor interacting serine/threonine kinase (RIPK) 1 leads to anti-inflammatory and anti-apoptotic effects. However, the involvement of RIPK1 in the pathogenesis of OA is unclear. Here, we evaluated the effect of RIPK1 on chondrocytes and elaborated the underlying molecular mechanism. Knockdown of RIPK1 protected chondrocytes against inflammation and apoptosis induced by interleukin (IL)-1β in vitro and in vivo. RIPK1 was required for myeloid differentiation primary response 88 (MyD88)- and TIR-domain-containing adapter-inducing interferon b (TRIF)-mediated production of matrix metalloproteinases (MMPs) in OA. Moreover, overexpression of RIPK1 promoted the expression of tumor necrosis factor receptor-associated factor 2 (TRAF2), which blocked the expression and phosphorylation of RIPK1. Upregulation of TRAF2 decreased the expression of TRIF, MyD88, and MMPs in chondrocytes. Furthermore, knockdown of RIPK1 blocked activation of the nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) signaling pathways. In summary, knockdown of RIPK1 alleviated OA in a manner mediated by the TRIF/MyD88-RIPK1-TRAF2 negative feedback loop and activation of the NF-κB and JNK signaling pathways.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng-Gang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen-Zhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Zheng-Tao Lv
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Yu-Ting Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Al-Romaiyan A, Liu B, Persaud S, Jones P. A novel Gymnema sylvestre extract protects pancreatic beta-cells from cytokine-induced apoptosis. Phytother Res 2019; 34:161-172. [PMID: 31515869 DOI: 10.1002/ptr.6512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/04/2019] [Accepted: 08/29/2019] [Indexed: 01/17/2023]
Abstract
Inflammatory cytokines such as interleukin-1β, TNF-α, and interferon-γ are known to be involved in mediating β-cells death in diabetes mellitus (DM). Thus, protecting from β-cells death in patients with DM may be a useful target in alleviating symptoms of hyperglycemia. Traditional plant-based remedies have been used to treat DM for many centuries and may play a role in protecting β-cell from death. An example of these remedies is Gymnema sylvestre (GS) extract. In this study, we investigated the effect of this plant extract on β-cells apoptosis. Om Santal Adivasi (OSA®) maintained cell membrane integrity in MIN6 cells and mouse islets. Om Santal Adivasi significantly protected MIN6 cells and mouse islets from cytokine-induced apoptosis. In the presence of cytokines, OSA® significantly reduced the expression and activity of caspase-3. The antiapoptotic effect of OSA® as shown by microarray analysis is largely mediated by activating pathways involved in cell survival (mainly casein kinase II pathway) and the free radical scavenger system (specifically superoxide dismutase and catalase). This study indicates that the GS isolate OSA® protects against cytokine-induced apoptosis of β-cells by increasing the expression of cell survival pathways and free radical scavenger system.
Collapse
Affiliation(s)
- Altaf Al-Romaiyan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Shanta Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Peter Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
22
|
The Association between Depression and Type 1 Diabetes Mellitus: Inflammatory Cytokines as Ferrymen in between? Mediators Inflamm 2019; 2019:2987901. [PMID: 31049023 PMCID: PMC6458932 DOI: 10.1155/2019/2987901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
The depression incidence is much higher in patients with diabetes mellitus (DM), and the majority of these cases remain under-diagnosed. Type 1 diabetes mellitus (T1D) is now widely thought to be an organ-specific autoimmune disease. As a chronic autoimmune condition, T1D is characterized by T cell-mediated selective loss of insulin-producing β-cells. The age of onset of T1D is earlier than T2D, and T1D patients have an increased vulnerability to depression due to its diagnosis and treatment burden occurring in a period when the individuals are young. The literature has suggested that inflammatory cytokines play a wide role in both diseases. In this review, the mechanisms behind the initiation and propagation of the autoimmune response in T1D and depression are analyzed, and the contribution of cytokines to both conditions is discussed. This review outlines the immunological mechanism of T1D and depression, with a particular emphasis on the role of tumor necrosis factor-α (TNF-α), IL-1β, and interferon-γ (IFN-γ) cytokines and their signaling pathways. The purpose of this review is to highlight the possible pathways of the cytokines shared by these two diseases via deciphering their cytokine cascades. They may provide a basic groundwork for future study of the possible mechanism that links these two diseases and to develop new compounds that target the same pathway but can conquer two diseases.
Collapse
|
23
|
Ghiasi SM, Krogh N, Tyrberg B, Mandrup-Poulsen T. The No-Go and Nonsense-Mediated RNA Decay Pathways Are Regulated by Inflammatory Cytokines in Insulin-Producing Cells and Human Islets and Determine β-Cell Insulin Biosynthesis and Survival. Diabetes 2018; 67:2019-2037. [PMID: 30065031 DOI: 10.2337/db18-0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022]
Abstract
Stress-related changes in β-cell mRNA levels result from a balance between gene transcription and mRNA decay. The regulation of RNA decay pathways has not been investigated in pancreatic β-cells. We found that no-go and nonsense-mediated RNA decay pathway components (RDPCs) and exoribonuclease complexes were expressed in INS-1 cells and human islets. Pelo, Dcp2, Dis3L2, Upf2, and Smg1/5/6/7 were upregulated by inflammatory cytokines in INS-1 cells under conditions where central β-cell mRNAs were downregulated. These changes in RDPC mRNA or corresponding protein levels were largely confirmed in INS-1 cells and rat/human islets. Cytokine-induced upregulation of Pelo, Xrn1, Dis3L2, Upf2, and Smg1/6 was reduced by inducible nitric oxide synthase inhibition, as were endoplasmic reticulum (ER) stress, inhibition of Ins1/2 mRNA, and accumulated insulin secretion. Reactive oxygen species inhibition or iron chelation did not affect RDPC expression. Pelo or Xrn1 knockdown (KD) aggravated, whereas Smg6 KD ameliorated, cytokine-induced INS-1 cell death without affecting ER stress; both increased insulin biosynthesis and medium accumulation but not glucose-stimulated insulin secretion in cytokine-exposed INS-1 cells. In conclusion, RDPCs are regulated by inflammatory stress in β-cells. RDPC KD improved insulin biosynthesis, likely by preventing Ins1/2 mRNA clearance. Pelo/Xrn1 KD aggravated, but Smg6 KD ameliorated, cytokine-mediated β-cell death, possibly through prevention of proapoptotic and antiapoptotic mRNA degradation, respectively.
Collapse
Affiliation(s)
- Seyed Mojtaba Ghiasi
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Björn Tyrberg
- Translational Science; Cardiovascular, Renal and Metabolism; and IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
24
|
Nardelli TR, Vanzela EC, Benedicto KC, Brozzi F, Fujita A, Cardozo AK, Eizirik DL, Boschero AC, Ortis F. Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. J Mol Endocrinol 2018; 61:25-36. [PMID: 29632026 DOI: 10.1530/jme-16-0257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes is caused by an autoimmune assault that induces progressive beta-cell dysfunction and dead. Pro-inflammatory cytokines, such as interleukin 1 beta (IL1B), tumor necrosis factor (TNF) and interferon gamma (IFNG) contribute for beta-cell death, which involves the activation of the nuclear factor kappa B (NFκB) and c- Jun N-terminal kinase (JNK). Prolactin (PRL), a physiological mediator for beta-cell proliferation, was shown to protect beta cells against cytokines pro-apoptotic effects. We presently investigated the mechanisms involved in the protective effects of prolactin against cytokine-induced beta-cell death. The findings obtained indicate that STAT3 activation is involved in the anti-apoptotic role of PRL in rat beta cells. PRL prevents the activation of JNK via AKT and promotes a shift from expression of pro- to anti-apoptotic proteins downstream of the JNK cascade. Furthermore, PRL partially prevents the activation of NFκB and the transcription of its target genes IkBa, Fas, Mcp1, A20 and Cxcl10 and also decreases NO production. On the other hand, the pro-survival effects of PRL do not involve modulation of cytokine-induced endoplasmic reticulum stress. These results suggest that the beneficial effects of PRL in beta cells involve augmentation of anti-apoptotic mechanisms and, at the same time, reduction of pro-apoptotic effectors, rendering beta cells better prepared to deal with inflammatory insults. The better understanding of the pro-survival mechanisms modulated by PRL in beta cells can provide tools to prevent cell demise during an autoimmune attack or following islet transplantation.
Collapse
Affiliation(s)
- Tarlliza R Nardelli
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Keli C Benedicto
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Flora Brozzi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo (USP), São Paulo, Brazil
| | - Alessandra K Cardozo
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Laboratory of Endocrine Pancreas and Metabolism, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Science (ICB), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
25
|
Juan-Mateu J, Alvelos MI, Turatsinze JV, Villate O, Lizarraga-Mollinedo E, Grieco FA, Marroquí L, Bugliani M, Marchetti P, Eizirik DL. SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival. Diabetes 2018; 67:423-436. [PMID: 29246973 PMCID: PMC5828453 DOI: 10.2337/db17-0736] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Progressive failure of insulin-producing β-cells is the central event leading to diabetes, but the signaling networks controlling β-cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining the function and survival of human β-cells. RNA sequencing analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion, and c-Jun N-terminal kinase (JNK) signaling. In particular, SRp55-mediated splicing changes modulate the function of the proapoptotic proteins BIM and BAX, JNK signaling, and endoplasmic reticulum stress, explaining why SRp55 depletion triggers β-cell apoptosis. Furthermore, SRp55 depletion inhibits β-cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human β-cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55, that may cross talk with candidate genes for diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabio Arturo Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Marroquí
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages. Biomed Pharmacother 2018; 99:970-985. [PMID: 29689702 DOI: 10.1016/j.biopha.2018.01.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4+ & CD8+) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions.
Collapse
|
27
|
Khambalia HA, Alexander MY, Nirmalan M, Weston R, Pemberton P, Moinuddin Z, Summers A, van Dellen D, Augustine T. Links between a biomarker profile, cold ischaemic time and clinical outcome following simultaneous pancreas and kidney transplantation. Cytokine 2018; 105:8-16. [PMID: 29428804 DOI: 10.1016/j.cyto.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023]
Abstract
In sepsis, trauma and major surgery, where an explicit physiological insult leads to a significant systemic inflammatory response, the acute evolution of biomarkers have been delineated. In these settings, Interleukin (IL) -6 and TNF-α are often the first pro-inflammatory markers to rise, stimulating production of acute phase proteins followed by peaks in anti-inflammatory markers. Patients undergoing SPKT as a result of diabetic complications already have an inflammatory phenotype as a result of uraemia and glycaemia. How this inflammatory response is affected further by the trauma of major transplant surgery and how this may impact on graft survival is unknown, despite the recognised pro-inflammatory cytokines' detrimental effects on islet cell function. The aim of the study was to determine the evolution of biomarkers in omentum and serum in the peri-operative period following SPKT. The biochemical findings were correlated to clinical outcomes. Two omental biopsies were taken (at the beginning and end of surgery) and measured for CD68+ and CD206+ antibodies (M1 and M2 macrophages respectively). Serum was measured within the first 72 h post-SPKT for pro- and anti-inflammatory cytokines (IL -6, -10 and TNF-α), inflammatory markers (WCC and CRP) and endocrine markers (insulin, C-peptide, glucagon and resistin). 46 patients were recruited to the study. Levels of M1 (CD68+) and M2 (CD206+) macrophages were significantly raised at the end of surgery compared to the beginning (p = 0.003 and p < 0.001 respectively). Levels of C-peptide, insulin and glucagon were significantly raised 30 min post pancreas perfusion compared to baseline and were also significantly negatively related to prolonged cold ischaemic time (CIT) (p < 0.05). CRP levels correlated significantly with the Post-Operative Morbidity Survey (p < 0.05). The temporal inflammatory marker signature after SPKT is comparable to the pattern observed following other physiological insults. Unique to this study, we find that CIT is significantly related to early pancreatic endocrine function. In addition, this study suggests a predictive value of CRP in peri-operative morbidity following SPKT.
Collapse
Affiliation(s)
- Hussein A Khambalia
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom.
| | - M Yvonne Alexander
- Cardiovascular Research Inst, University of Manchester, Manchester Academic Health Science Centre, United Kingdom; Healthcare Science Research Institute, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahesan Nirmalan
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Ria Weston
- Cardiovascular Research Inst, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | - Phillip Pemberton
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Zia Moinuddin
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Angela Summers
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - David van Dellen
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Titus Augustine
- Department of Transplantation, Manchester Foundations Hospitals NHS Foundation Trust, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
28
|
Yoshimatsu G, Kunnathodi F, Saravanan PB, Shahbazov R, Chang C, Darden CM, Zurawski S, Boyuk G, Kanak MA, Levy MF, Naziruddin B, Lawrence MC. Pancreatic β-Cell-Derived IP-10/CXCL10 Isletokine Mediates Early Loss of Graft Function in Islet Cell Transplantation. Diabetes 2017; 66:2857-2867. [PMID: 28855240 PMCID: PMC5652609 DOI: 10.2337/db17-0578] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Pancreatic islets produce and secrete cytokines and chemokines in response to inflammatory and metabolic stress. The physiological role of these "isletokines" in health and disease is largely unknown. We observed that islets release multiple inflammatory mediators in patients undergoing islet transplants within hours of infusion. The proinflammatory cytokine interferon-γ-induced protein 10 (IP-10/CXCL10) was among the highest released, and high levels correlated with poor islet transplant outcomes. Transgenic mouse studies confirmed that donor islet-specific expression of IP-10 contributed to islet inflammation and loss of β-cell function in islet grafts. The effects of islet-derived IP-10 could be blocked by treatment of donor islets and recipient mice with anti-IP-10 neutralizing monoclonal antibody. In vitro studies showed induction of the IP-10 gene was mediated by calcineurin-dependent NFAT signaling in pancreatic β-cells in response to oxidative or inflammatory stress. Sustained association of NFAT and p300 histone acetyltransferase with the IP-10 gene required p38 and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) activity, which differentially regulated IP-10 expression and subsequent protein release. Overall, these findings elucidate an NFAT-MAPK signaling paradigm for induction of isletokine expression in β-cells and reveal IP-10 as a primary therapeutic target to prevent β-cell-induced inflammatory loss of graft function after islet cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Rauf Shahbazov
- Islet Cell Laboratory, Baylor Research Institute, Dallas, TX
| | - Charles Chang
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | - Carly M Darden
- Institute of Biomedical Studies, Baylor University, Waco, TX
| | | | - Gulbahar Boyuk
- Adacell Medical Research Center, Department of Endocrinology and Metabolism, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Mazhar A Kanak
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Marlon F Levy
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Bashoo Naziruddin
- Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX
| | | |
Collapse
|
29
|
Herchuelz A, Pachera N. The Na +/Ca 2+ exchanger and the Plasma Membrane Ca 2+-ATPase in β-cell function and diabetes. Neurosci Lett 2017; 663:72-78. [PMID: 28780165 DOI: 10.1016/j.neulet.2017.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 08/01/2017] [Indexed: 12/20/2022]
Abstract
The rat pancreatic β-cell expresses 6 splice variants of the Plasma Membrane Ca2+-ATPase (PMCA) and two splice variants of the Na+/Ca2+ exchanger 1 (NCX1). In the β-cell Na+/Ca2+ exchange displays a high capacity, contributes to both Ca2+ outflow and influx and participates to the control of insulin release. Gain of function studies show that overexpression of PMCA2 or NCX1 leads to endoplasmic reticulum (ER) Ca2+ depletion with subsequent ER stress, decrease in β-cell proliferation and β-cell death by apoptosis. Loss of function studies show, on the contrary, that heterozygous inactivation of NCX1 (Ncx1+/-) leads to an increase in β-cell function and a 5 fold increase in both β-cell mass and proliferation. The mutation also increases β-cell resistance to hypoxia, and Ncx1+/- islets show a 2-4 times higher rate of diabetes cure than Ncx1+/+ islets when transplanted in diabetic animals. Thus, down-regulation of the Na+/Ca2+ exchanger leads to various changes in β-cell function that are opposite to the major abnormalities seen in diabetes. In addition, the β-cell includes the mutually exclusive exon B in the alternative splicing region of NCX1, which confers a high sensitivity of its NCX splice variants (NCX1.3 & 1.7) to the inhibitory action of compounds like KBR-7943. Heterozygous inactivation of PMCA2 leads to apparented, though not completely similar results.These provide 2 unique models for the prevention and treatment of β-cell dysfunction in diabetes and following islet transplantation.
Collapse
Affiliation(s)
- André Herchuelz
- Laboratoire de Pharmacodynamie et de Thérapeutique, Université Libre de Bruxelles (ULB), Faculté de Médicine, Brussels, Belgium.
| | - Nathalie Pachera
- Laboratoire de Pharmacodynamie et de Thérapeutique, Université Libre de Bruxelles (ULB), Faculté de Médicine, Brussels, Belgium
| |
Collapse
|
30
|
Dos Santos RS, Marroqui L, Grieco FA, Marselli L, Suleiman M, Henz SR, Marchetti P, Wernersson R, Eizirik DL. Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology 2017; 158:2503-2521. [PMID: 28582497 PMCID: PMC5551554 DOI: 10.1210/en.2017-00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by proinflammatory cytokines and other mediators. Based on RNA sequencing and protein-protein interaction analyses of human islets exposed to proinflammatory cytokines, we identified complement C3 as a hub for some of the effects of cytokines. The proinflammatory cytokines interleukin-1β plus interferon-γ increase C3 expression in rodent and human pancreatic β-cells, and C3 is detected by histology in and around the islets of diabetic patients. Surprisingly, C3 silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine-induced β-cell death and partially rescues the deleterious effects of inhibition of endogenous C3. These data suggest that locally produced C3 is an important prosurvival mechanism in pancreatic β-cells under a proinflammatory assault.
Collapse
Affiliation(s)
- Reinaldo S. Dos Santos
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fabio A. Grieco
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rasmus Wernersson
- Intomics A/S, 2800 Lyngby, Denmark
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Decio L. Eizirik
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
31
|
Lundh M, Bugliani M, Dahlby T, Chou DHC, Wagner B, Ghiasi SM, De Tata V, Chen Z, Lund MN, Davies MJ, Marchetti P, Mandrup-Poulsen T. The immunoproteasome is induced by cytokines and regulates apoptosis in human islets. J Endocrinol 2017; 233:369-379. [PMID: 28438776 PMCID: PMC5501413 DOI: 10.1530/joe-17-0110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1β and TNFα with or without addition of small molecules, we assessed the role of the immunoproteasome in pancreatic beta-cell demise. Here, we show that cytokines induce the expression and activity of the immuno-proteasome in INS-1E cells and human islets. Cytokine-induced expression of immuno-proteasome subunits, but not activity, depended upon histone deacetylase 3 activation. Inhibition of JAK1/STAT1 signaling did not affect proteasomal activity. Inhibition of the immuno-proteasome subunit PSMB8 aggravated cytokine-induced human beta-cell apoptosis while reducing intracellular levels of oxidized proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response to IFNγ, likely as a protective response to confine inflammatory signaling.
Collapse
Affiliation(s)
- Morten Lundh
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Marco Bugliani
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | - Tina Dahlby
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Danny Hung-Chieh Chou
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | - Bridget Wagner
- Chemical Biology and Therapeutics ProgramBroad Institute of Harvard and MIT, Boston, Massachusetts, USA
| | | | - Vincenzo De Tata
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Zhifei Chen
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Marianne Nissan Lund
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
- Department of Food ScienceUniversity of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical SciencesUniversity of Copenhagen, Copenhagen, Denmark
| | - Piero Marchetti
- Department of Clinical and Experimental MedicineUniversity of Pisa, Pisa, Italy
| | | |
Collapse
|
32
|
Dos Santos RS, Daures M, Philippi A, Romero S, Marselli L, Marchetti P, Senée V, Bacq D, Besse C, Baz B, Marroquí L, Ivanoff S, Masliah-Planchon J, Nicolino M, Soulier J, Socié G, Eizirik DL, Gautier JF, Julier C. dUTPase ( DUT) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure. Diabetes 2017; 66:1086-1096. [PMID: 28073829 DOI: 10.2337/db16-0839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022]
Abstract
We describe a new syndrome characterized by early-onset diabetes associated with bone marrow failure, affecting mostly the erythrocytic lineage. Using whole-exome sequencing in a remotely consanguineous patient from a family with two affected siblings, we identified a single homozygous missense mutation (chr15.hg19:g.48,626,619A>G) located in the dUTPase (DUT) gene (National Center for Biotechnology Information Gene ID 1854), affecting both the mitochondrial (DUT-M p.Y142C) and the nuclear (DUT-N p.Y54C) isoforms. We found the same homozygous mutation in an unrelated consanguineous patient with diabetes and bone marrow aplasia from a family with two affected siblings, whereas none of the >60,000 subjects from the Exome Aggregation Consortium (ExAC) was homozygous for this mutation. This replicated observation probability was highly significant, thus confirming the role of this DUT mutation in this syndrome. DUT is a key enzyme for maintaining DNA integrity by preventing misincorporation of uracil into DNA, which results in DNA toxicity and cell death. We showed that DUT silencing in human and rat pancreatic β-cells results in apoptosis via the intrinsic cell death pathway. Our findings support the importance of tight control of DNA metabolism for β-cell integrity and warrant close metabolic monitoring of patients treated by drugs affecting dUTP balance.
Collapse
Affiliation(s)
| | - Mathilde Daures
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Anne Philippi
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Sophie Romero
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Valérie Senée
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Delphine Bacq
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Céline Besse
- Centre National de Génotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Baz Baz
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Laura Marroquí
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Ivanoff
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Julien Masliah-Planchon
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Marc Nicolino
- Hôpital Femme-Mère-Enfant, Division of Pediatric Endocrinology, Hospices Civils de Lyon, Université Lyon 1, Lyon, France
| | - Jean Soulier
- Aplastic Anemia Reference Centre, Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, INSERM U944, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Gérard Socié
- Hematology Transplantation, Department of Hematology, Immunology and Oncology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-François Gautier
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Diabetes and Endocrinology, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| | - Cécile Julier
- INSERM UMRS 958, Faculté de Médecine Paris Diderot, Université Paris Diderot-Paris 7, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
33
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
34
|
Bisphenol A Is More Potent than Phthalate Metabolites in Reducing Pancreatic β-Cell Function. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4614379. [PMID: 28286763 PMCID: PMC5327753 DOI: 10.1155/2017/4614379] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/27/2022]
Abstract
Bisphenol A (BPA) and phthalates are common environmental contaminants that have been proposed to influence incidence and development of types 1 and 2 diabetes. Thus, effects of BPA and three phthalate metabolites (monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP)) were studied in the pancreatic β-cell line INS-1E, after 2–72 h of exposure to 5–500 μM. Three endpoints relevant to accelerated development of types 1 or 2 diabetes were investigated: β-cell viability, glucose-induced insulin secretion, and β-cell susceptibility to cytokine-induced cell death. BPA and the phthalate metabolites reduced cellular viability after 72 h of exposure, with BPA as the most potent chemical. Moreover, BPA, MEHP, and MnBP increased insulin secretion after 2 h of simultaneous exposure to chemicals and glucose, with potency BPA > MEHP > MnBP. Longer chemical exposures (24–72 h) showed no consistent effects on glucose-induced insulin secretion, and none of the environmental chemicals affected susceptibility to cytokine-induced cell death. Overall, BPA was more potent than the investigated phthalate metabolites in affecting insulin secretion and viability in the INS-1E pancreatic β-cells. In contrast to recent literature, concentrations with relevance to human exposures (1–500 nM) did not affect the investigated endpoints, suggesting that this experimental model displayed relatively low sensitivity to environmental chemical exposure.
Collapse
|
35
|
St. John’s wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells. Int J Biochem Cell Biol 2016; 81:92-104. [DOI: 10.1016/j.biocel.2016.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 11/20/2022]
|
36
|
Srivastava A, Bhatt NM, Patel TP, Dadheech N, Singh A, Gupta S. Anti-apoptotic and cytoprotective effect of Enicostemma littorale against oxidative stress in Islets of Langerhans. PHARMACEUTICAL BIOLOGY 2016; 54:2061-2072. [PMID: 26974043 DOI: 10.3109/13880209.2016.1141222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Oxidative stress induces apoptosis within Islets of Langerhans in diabetes mellitus (DM). Enicostemma littorale blume, herb of the Gentianaceae family is used as an anti-diabetic agent across rural India. Objective This report demonstrates potent anti-apoptotic and cyto-protective activity of Enicostemma littorale MeOH extract (EL MeOH ext.) against 50 μM H2O2 in isolated rat Islets. Materials and methods In this study, the whole plant methanolic extract of EL with doses 0.25-4 mg/mL each for the preincubation duration of 0.5-4 h against 50 μM H2O2 were tested for optimum protective dose and time by Trypan blue dye exclusion assay. Islet intracellular reactive oxygen species (ROS) was quantified by DCFDA staining and cell death using PS/PI & FDA/PI staining. Further, comet assay, biochemical assessment of caspase-3 and antioxidant enzyme activities along with immunoblotting of PARP-1, caspase-3, TNF-α activation and p-P38 MapK (stress kinase) induction was performed. Results The optimized dose of EL MeOH ext. 2 mg/mL for 2 h was used throughout the study, which significantly decreased total Intracellular ROS and cell death. Further, caspase-3 activity, PARP-1 cleavage, p-P38 MapK (stress kinase) activation and TNF-α levels, which had been significantly elevated, were normalized. Antioxidant enzymes like catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase, along with Comet assay, demonstrated that pretreatment with EL MeOH ext. can augment antioxidant enzyme activities and protect from DNA damage. Discussion and conclusions Significant anti-apoptotic and cyto-protective effects were mediated by EL with Islets of Langerhans subjected to oxidative stress-induced cell death.
Collapse
Affiliation(s)
- Abhay Srivastava
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| | - Niraj M Bhatt
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| | - Tushar P Patel
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| | - Nidheesh Dadheech
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| | - Anubha Singh
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| | - Sarita Gupta
- a Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science , The M. S. University of Baroda , Vadodara , Gujarat , India
| |
Collapse
|
37
|
Chang SY, Kim DB, Ko SH, Jang HJ, Jo YH, Kim MJ. The level of nitric oxide regulates lipocalin-2 expression under inflammatory condition in RINm5F beta-cells. Biochem Biophys Res Commun 2016; 476:7-14. [DOI: 10.1016/j.bbrc.2016.05.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 02/03/2023]
|
38
|
Tennant BR, Vanderkruk B, Dhillon J, Dai D, Verchere CB, Hoffman BG. Myt3 suppression sensitizes islet cells to high glucose-induced cell death via Bim induction. Cell Death Dis 2016; 7:e2233. [PMID: 27195679 PMCID: PMC4917670 DOI: 10.1038/cddis.2016.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic disease that results from the body's inability to properly control circulating blood glucose levels. The loss of glucose homoeostasis can arise from a loss of β-cell mass because of immune-cell-mediated attack, as in type 1 diabetes, and/or from dysfunction of individual β-cells (in conjunction with target organ insulin resistance), as in type 2 diabetes. A better understanding of the transcriptional pathways regulating islet-cell survival is of great importance for the development of therapeutic strategies that target β-cells for diabetes. To this end, we previously identified the transcription factor Myt3 as a pro-survival factor in islets following acute suppression of Myt3 in vitro. To determine the effects of Myt3 suppression on islet-cell survival in vivo, we used an adenovirus to express an shRNA targeting Myt3 in syngeneic optimal and marginal mass islet transplants, and demonstrate that suppression of Myt3 impairs the function of marginal mass grafts. Analysis of grafts 5 weeks post-transplant revealed that grafts transduced with the shMyt3 adenovirus contained ~20% the number of transduced cells as grafts transduced with a control adenovirus. In fact, increased apoptosis and significant cell loss in the shMyt3-transduced grafts was evident after only 5 days, suggesting that Myt3 suppression sensitizes islet cells to stresses present in the early post-transplant period. Specifically, we find that Myt3 suppression sensitizes islet cells to high glucose-induced cell death via upregulation of the pro-apoptotic Bcl2 family member Bim. Taken together these data suggest that Myt3 may be an important link between glucotoxic and immune signalling pathways.
Collapse
Affiliation(s)
- B R Tennant
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - B Vanderkruk
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - J Dhillon
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - D Dai
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - C B Verchere
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - B G Hoffman
- Child and Family Research Institute, British Columbia Children's Hospital, 950 W28th Avenue, Vancouver, British Columbia, Canada V5Z 4H4.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4E3
| |
Collapse
|
39
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
40
|
Brozzi F, Gerlo S, Grieco FA, Juusola M, Balhuizen A, Lievens S, Gysemans C, Bugliani M, Mathieu C, Marchetti P, Tavernier J, Eizirik DL. Ubiquitin D Regulates IRE1α/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells. J Biol Chem 2016; 291:12040-56. [PMID: 27044747 DOI: 10.1074/jbc.m115.704619] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Pro-inflammatory cytokines contribute to pancreatic beta cell apoptosis in type 1 diabetes at least in part by inducing endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). It remains to be determined what causes the transition from "physiological" to "apoptotic" UPR, but accumulating evidence indicates that signaling by the ER transmembrane protein IRE1α is critical for this transition. IRE1α activation is regulated by both intra-ER and cytosolic cues. We evaluated the role for the presently discovered cytokine-induced and IRE1α-interacting protein ubiquitin D (UBD) on the regulation of IRE1α and its downstream targets. UBD was identified by use of a MAPPIT (mammalian protein-protein interaction trap)-based IRE1α interactome screen followed by comparison against functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines. Knockdown of UBD in human and rodent beta cells and detailed signal transduction studies indicated that UBD modulates cytokine-induced UPR/IRE1α activation and apoptosis. UBD expression is induced by the pro-inflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ in rat and human pancreatic beta cells, and it is also up-regulated in beta cells of inflamed islets from non-obese diabetic mice. UBD interacts with IRE1α in human and rodent beta cells, modulating IRE1α-dependent activation of JNK and cytokine-induced apoptosis. Our data suggest that UBD provides a negative feedback on cytokine-induced activation of the IRE1α/JNK pro-apoptotic pathway in cytokine-exposed beta cells.
Collapse
Affiliation(s)
- Flora Brozzi
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sarah Gerlo
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Fabio Arturo Grieco
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Matilda Juusola
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Alexander Balhuizen
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sam Lievens
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Conny Gysemans
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Marco Bugliani
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Chantal Mathieu
- the Laboratory of Clinical and Experimental Endocrinology, KULeuven, 3000 Leuven, Belgium, and
| | - Piero Marchetti
- the Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Jan Tavernier
- the Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), 9000 Ghent, Belgium, the Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Décio L Eizirik
- From the ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium,
| |
Collapse
|
41
|
Prause M, Berchtold LA, Urizar AI, Hyldgaard Trauelsen M, Billestrup N, Mandrup-Poulsen T, Størling J. TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 2016; 420:24-36. [PMID: 26610752 DOI: 10.1016/j.mce.2015.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 12/01/2022]
Abstract
Interleukin-1β (IL-1β) and interferon-γ (IFNγ) contribute to type 1 diabetes (T1D) by inducing β-cell death. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptors that transduce signaling from a variety of membrane receptors including cytokine receptors. We show here that IL-1β and IFNγ upregulate the expression of TRAF2 in insulin-producing INS-1E cells and isolated rat pancreatic islets. siRNA-mediated knockdown (KD) of TRAF2 in INS-1E cells reduced IL-1β-induced phosphorylation of JNK1/2, but not of p38 or ERK1/2 mitogen-activated protein kinases. TRAF2 KD did not modulate NFκB activation by cytokines, but reduced cytokine-induced inducible nitric oxide synthase (iNOS) promotor activity and expression. We further observed that IFNγ-stimulated phosphorylation of STAT3 required TRAF2. KD of TRAF2 or STAT3 reduced cytokine-induced caspase 3/7 activation, but, intriguingly, potentiated cytokine-mediated loss of plasma membrane integrity and augmented the number of propidium iodide-positive cells. Finally, we found that TRAF2 KD increased cytokine-induced production of reactive oxygen species (ROS). In summary, our data suggest that TRAF2 is an important mediator of IL-1β and IFNγ signaling in pancreatic β-cells.
Collapse
Affiliation(s)
- Michala Prause
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lukas Adrian Berchtold
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adriana Ibarra Urizar
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hyldgaard Trauelsen
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Immunoendocrinology Laboratory, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Beta-Cell Biology Group, Copenhagen Diabetes Research Center, Department of Paediatrics E, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
42
|
Santin I, Dos Santos RS, Eizirik DL. Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods Mol Biol 2016; 1433:21-54. [PMID: 26936771 DOI: 10.1007/7651_2015_291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disease in which pancreatic beta cells are specifically destroyed by the immune system. The disease has an important genetic component and more than 50 loci across the genome have been associated with risk of developing T1D. The molecular mechanisms by which these putative T1D candidate genes modulate disease risk, however, remain poorly characterized and little is known about their effects in pancreatic beta cells. Functional studies in in vitro models of pancreatic beta cells, based on techniques to inhibit or overexpress T1D candidate genes, allow the functional characterization of several T1D candidate genes. This requires a multistage procedure comprising two major steps, namely accurate selection of genes of potential interest and then in vitro and/or in vivo mechanistic approaches to characterize their role in pancreatic beta cell dysfunction and death in T1D. This chapter details the methods and settings used by our groups to characterize the role of T1D candidate genes on pancreatic beta cell survival and signaling pathways, with particular focus on potentially relevant pathways in the pathogenesis of T1D, i.e., inflammation and innate immune responses, apoptosis, beta cell metabolism and function.
Collapse
Affiliation(s)
- Izortze Santin
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Endocrinology and Diabetes Research Group, BioCruces Health Research Institute, CIBERDEM, Spain.
| | - Reinaldo S Dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
43
|
Prause M, Mayer CM, Brorsson C, Frederiksen KS, Billestrup N, Størling J, Mandrup-Poulsen T. JNK1 Deficient Insulin-Producing Cells Are Protected against Interleukin-1β-Induced Apoptosis Associated with Abrogated Myc Expression. J Diabetes Res 2016; 2016:1312705. [PMID: 26962537 PMCID: PMC4745310 DOI: 10.1155/2016/1312705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022] Open
Abstract
The relative contributions of the JNK subtypes in inflammatory β-cell failure and apoptosis are unclear. The JNK protein family consists of JNK1, JNK2, and JNK3 subtypes, encompassing many different isoforms. INS-1 cells express JNK1α1, JNK1α2, JNK1β1, JNK1β2, JNK2α1, JNK2α2, JNK3α1, and JNK3α2 mRNA isoform transcripts translating into 46 and 54 kDa isoform JNK proteins. Utilizing Lentiviral mediated expression of shRNAs against JNK1, JNK2, or JNK3 in insulin-producing INS-1 cells, we investigated the role of individual JNK subtypes in IL-1β-induced β-cell apoptosis. JNK1 knockdown prevented IL-1β-induced INS-1 cell apoptosis associated with decreased 46 kDa isoform JNK protein phosphorylation and attenuated Myc expression. Transient knockdown of Myc also prevented IL-1β-induced apoptosis as well as caspase 3 cleavage. JNK2 shRNA potentiated IL-1β-induced apoptosis and caspase 3 cleavage, whereas JNK3 shRNA did not affect IL-1β-induced β-cell death compared to nonsense shRNA expressing INS-1 cells. In conclusion, JNK1 mediates INS-1 cell death associated with increased Myc expression. These findings underline the importance of differentiated targeting of JNK subtypes in the development of inflammatory β-cell failure and destruction.
Collapse
Affiliation(s)
- Michala Prause
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- *Michala Prause:
| | | | - Caroline Brorsson
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | | | - Nils Billestrup
- Section of Cellular and Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center, Herlev University Hospital, 2730 Herlev, Denmark
| | - Thomas Mandrup-Poulsen
- Immuno-Endocrinology Lab, Endocrinology Research Section, Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Abstract
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Collapse
|
45
|
Tennant BR, Hurley P, Dhillon J, Gill A, Whiting C, Hoffman BG. The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets. PLoS One 2015; 10:e0141470. [PMID: 26505193 PMCID: PMC4623983 DOI: 10.1371/journal.pone.0141470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Peter Hurley
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Jasmine Dhillon
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Amol Gill
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Cheryl Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, 950 W28th Avenue, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
46
|
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, Bugliani M, Engin F, Hotamisligil GS, Marchetti P, Eizirik DL. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 2015; 58:2307-16. [PMID: 26099855 DOI: 10.1007/s00125-015-3669-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Proinflammatory cytokines contribute to beta cell damage in type 1 diabetes in part through activation of endoplasmic reticulum (ER) stress. In rat beta cells, cytokine-induced ER stress involves NO production and consequent inhibition of the ER Ca(2+) transporting ATPase sarco/endoplasmic reticulum Ca(2+) pump 2 (SERCA2B). However, the mechanisms by which cytokines induce ER stress and apoptosis in mouse and human pancreatic beta cells remain unclear. The purpose of this study is to elucidate the role of ER stress on cytokine-induced beta cell apoptosis in these three species and thus solve ongoing controversies in the field. METHODS Rat and mouse insulin-producing cells, human pancreatic islets and human EndoC-βH1 cells were exposed to the cytokines IL-1β, TNF-α and IFN-γ, with or without NO inhibition. A global comparison of cytokine-modulated gene expression in human, mouse and rat beta cells was also performed. The chemical chaperone tauroursodeoxycholic acid (TUDCA) and suppression of C/EBP homologous protein (CHOP) were used to assess the role of ER stress in cytokine-induced apoptosis of human beta cells. RESULTS NO plays a key role in cytokine-induced ER stress in rat islets, but not in mouse or human islets. Bioinformatics analysis indicated greater similarity between human and mouse than between human and rat global gene expression after cytokine exposure. The chemical chaperone TUDCA and suppression of CHOP or c-Jun N-terminal kinase (JNK) protected human beta cells against cytokine-induced apoptosis. CONCLUSIONS/INTERPRETATION These observations clarify previous results that were discrepant owing to the use of islets from different species, and confirm that cytokine-induced ER stress contributes to human beta cell death, at least in part via JNK activation.
Collapse
Affiliation(s)
- Flora Brozzi
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Miguel Lopes
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Isabelle Millard
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Jenny Barthson
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Fabio A Grieco
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Olatz Villate
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Joana M Oliveira
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marina Casimir
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases, Sabri Ülker Center, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB-Center for Diabetes Research, Universitè Libre de Bruxelles (ULB), Route de Lennik, 808-CP618, 1070, Brussels, Belgium.
| |
Collapse
|
47
|
Motterle A, Gattesco S, Caille D, Meda P, Regazzi R. Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabetologia 2015; 58:1827-35. [PMID: 26037202 DOI: 10.1007/s00125-015-3641-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS Exposure of pancreatic beta cells to cytokines released by islet-infiltrating immune cells induces alterations in gene expression, leading to impaired insulin secretion and apoptosis in the initial phases of type 1 diabetes. Long non-coding RNAs (lncRNAs) are a new class of transcripts participating in the development of many diseases. As little is known about their role in insulin-secreting cells, this study aimed to evaluate their contribution to beta cell dysfunction. METHODS The expression of lncRNAs was determined by microarray in the MIN6 beta cell line exposed to proinflammatory cytokines. The changes induced by cytokines were further assessed by real-time PCR in islets of control and NOD mice. The involvement of selected lncRNAs modified by cytokines was assessed after their overexpression in MIN6 cells and primary islet cells. RESULTS MIN6 cells were found to express a large number of lncRNAs, many of which were modified by cytokine treatment. The changes in the level of selected lncRNAs were confirmed in mouse islets and an increase in these lncRNAs was also seen in prediabetic NOD mice. Overexpression of these lncRNAs in MIN6 and mouse islet cells, either alone or in combination with cytokines, favoured beta cell apoptosis without affecting insulin production or secretion. Furthermore, overexpression of lncRNA-1 promoted nuclear translocation of nuclear factor of κ light polypeptide gene enhancer in B cells 1 (NF-κB). CONCLUSIONS/INTERPRETATION Our study shows that lncRNAs are modulated during the development of type 1 diabetes in NOD mice, and that their overexpression sensitises beta cells to apoptosis, probably contributing to their failure during the initial phases of the disease.
Collapse
Affiliation(s)
- Anna Motterle
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Lee SJ, Kang HK, Song DK, Eum WS, Park J, Choi SY, Kwon HY. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death. Biochem Biophys Res Commun 2015; 461:549-54. [DOI: 10.1016/j.bbrc.2015.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/07/2015] [Indexed: 11/27/2022]
|
49
|
Rondas D, Gudmundsdottir V, D'Hertog W, Crèvecoeur I, Waelkens E, Brunak S, Mathieu C, Overbergh L. A proteomic study of the regulatory role for STAT-1 in cytokine-induced beta-cell death. Proteomics Clin Appl 2015; 9:938-52. [DOI: 10.1002/prca.201400124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/19/2015] [Accepted: 02/18/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Dieter Rondas
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Valborg Gudmundsdottir
- Department of Systems Biology; Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
| | - Wannes D'Hertog
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Inne Crèvecoeur
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics; KU Leuven Leuven Belgium
- SyBioMa; KU Leuven Leuven Belgium
| | - Soren Brunak
- Department of Systems Biology; Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
- The Novo Nordisk Foundation Center for Protein Research; University of Copenhagen; Copenhagen Denmark
| | - Chantal Mathieu
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| | - Lut Overbergh
- Division of Clinical and Experimental Endocrinology; KU Leuven Leuven Belgium
| |
Collapse
|
50
|
Crèvecoeur I, Rondas D, Mathieu C, Overbergh L. The beta-cell in type 1 diabetes: What have we learned from proteomic studies? Proteomics Clin Appl 2015; 9:755-66. [PMID: 25641783 DOI: 10.1002/prca.201400135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/05/2014] [Accepted: 01/27/2015] [Indexed: 01/03/2023]
Abstract
Pancreatic beta-cells have a crucial role in the regulation of blood glucose homeostasis by the production and secretion of insulin. In type 1 diabetes (T1D), an autoimmune reaction against the beta-cells together with the presence of inflammatory cytokines and ROS in the islets leads to beta-cell dysfunction and death. This review gives an overview of proteomic studies that lead to better understanding of beta-cell functioning in T1D. Protein profiling of isolated islets and beta-cell lines in health and T1D contributed to the unraveling of pathways involved in cytokine-induced cell death. In addition, by studying the serological proteome of T1D patients, new biomarkers and beta-cell autoantigens were discovered, which may improve screening tests and follow-up of T1D development. Interestingly, an important role for PTMs was demonstrated in the generation of beta-cell autoantigens. To conclude, proteomic techniques are of indispensable value to improve the knowledge on beta-cell function in T1D and the search toward therapeutic targets.
Collapse
Affiliation(s)
- Inne Crèvecoeur
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Dieter Rondas
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory for Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|