1
|
Rao MJ, Duan M, Eman M, Yuan H, Sharma A, Zheng B. Comparative Analysis of Citrus Species' Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress. Antioxidants (Basel) 2024; 13:1149. [PMID: 39334808 PMCID: PMC11428974 DOI: 10.3390/antiox13091149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Citrus species are widely cultivated across the globe and frequently encounter drought stress during their growth and development phases. Previous research has indicated that citrus species synthesize flavonoids as a response mechanism to drought stress. This study aimed to comprehensively quantify and analyze the presence of 85 distinct flavonoids in the leaf and root tissues of lemon (drought susceptible) and sour orange (drought tolerant). In drought-stressed sour orange roots, flavonoids, such as isosakuranin, mangiferin, trilobatin, liquiritigenin, avicularin, silibinin, and glabridin, were more elevated than control sour orange roots and drought-stressed lemon roots. Additionally, hydroxysafflor yellow A, cynaroside, tiliroside, and apigenin 7-glucoside were increased in drought-stressed sour orange leaves compared to drought-stressed lemon leaves. Under drought stress, flavonoids such as (-)-epigallocatechin, silibinin, benzylideneacetophenone, trilobatin, isorhamnetin, 3,7,4'-trihydroxyflavone, and liquiritigenin were significantly increased, by 3.01-, 3.01-, 2.59-, 2.43-, 2.07-, 2.05-, and 2.01-fold, in sour orange roots compared to control sour orange roots. Moreover, the total flavonoid content and antioxidant capacity were significantly increased in drought-stressed sour orange leaves and root tissues compared to drought-stressed lemon leaves and root tissues. The expression levels of genes involved in flavonoid biosynthesis were highly expressed in sour orange leaves and roots, compared to lemon leaves and root tissues, post-drought stress. These findings indicate that lemons fail to synthesize protective flavonoids under drought conditions, whereas sour orange leaves and root tissues enhance flavonoid synthesis, with higher antioxidant activities to mitigate the adverse effects of reactive oxygen species generated during drought stress.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Mingzheng Duan
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China
| | - Momina Eman
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Pure & Applied Biology (IP&AB), Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
2
|
Mirsafi SM, Sepaskhah AR, Ahmadi SH. Physiological traits, crop growth, and grain quality of quinoa in response to deficit irrigation and planting methods. BMC PLANT BIOLOGY 2024; 24:809. [PMID: 39198743 PMCID: PMC11351449 DOI: 10.1186/s12870-024-05523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024]
Abstract
Climate change has become a concern, emphasizing the need for the development of crops tolerant to drought. Therefore, this study is designed to explore the physiological characteristics of quinoa that enable it to thrive under drought and other extreme stress conditions by investigating the combined effects of irrigation water levels (100%, 75%, and 50% of quinoa's water requirements, WR as I1, I2 and I3) and different planting methods (basin, on-ridge, and in-furrow as P1, P2 and P3) on quinoa's physiological traits and gas exchange. Results showed that quinoa's yield is lowest with on-ridge planting and highest in the in-furrow planting method. Notably, the seed protein concentrations in I2 and I3 did not significantly differ but they were 25% higher than those obtained in I1, which highlighted the possibility of using a more effective irrigation method without compromising the seed quality. On the other hand, protein yield (PY) was lowest in P2 (mean of I1 and I2 as 257 kg ha-1) and highest in P3 (mean of I1 and I2 as 394 kg ha-1, 53% higher). Interestingly, PY values were not significantly different in I1 and I2, but they were lower significantly in I3 by 28%, 27% and 20% in P1, P2, and P3, respectively. Essential plant characteristics including plant height, stem diameter, and panicle number were 6.1-16.7%, 6.4-24.5%, and 18.4-36.5% lower, respectively, in I2 and I3 than those in I1. The highest Leaf Area Index (LAI) value (5.34) was recorded in the in-furrow planting and I1, while the lowest value was observed in the on-ridge planting method and I3 (3.47). In I3, leaf temperature increased by an average of 2.5-3 oC, particularly during the anthesis stage. The results also showed that at a similar leaf water potential (LWP) higher yield and dry matter were obtained in the in-furrow planting compared to those obtained in the basin and on-ridge planting methods. The highest stomatal conductance (gs) value was observed within the in-furrow planting method and full irrigation (I1P3), while the lowest values were obtained in the on-ridge and 50%WR (I3P2). Finally, photosynthesis rate (An) reduction with diminishing LWP was mild, providing insights into quinoa's adaptability to drought. In conclusion, considering the thorough evaluation of all the measured parameters, the study suggests using the in-furrow planting method with a 75%WR as the best approach for growing quinoa in arid and semi-arid regions to enhance production and resource efficiency.
Collapse
Affiliation(s)
| | - Ali Reza Sepaskhah
- Department of Water Engineering, School of Agriculture, Shiraz University, Shiraz, Iran.
- Drought Research Center, Shiraz University, Shiraz, Iran.
| | - Seyed Hamid Ahmadi
- Department of Water Engineering, School of Agriculture, Shiraz University, Shiraz, Iran
- Drought Research Center, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
4
|
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Proline accumulation and antioxidant response are crucial for citrus tolerance to UV-B light-induced stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:521-531. [PMID: 38568875 DOI: 10.1111/plb.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.
Collapse
Affiliation(s)
- V Vives-Peris
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| | - A Gómez-Cadenas
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| | - R M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| |
Collapse
|
5
|
Su R, Luo J, Wang Y, Xiao Y, Liu X, Deng H, Lu X, Chen Q, Chen G, Tang W, Zhang G. GDSL Lipase Gene HTA1 Negatively Regulates Heat Tolerance in Rice Seedlings by Regulating Reactive Oxygen Species Accumulation. Antioxidants (Basel) 2024; 13:592. [PMID: 38790697 PMCID: PMC11117967 DOI: 10.3390/antiox13050592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
High temperature is a significant environmental stress that limits plant growth and agricultural productivity. GDSL lipase is a hydrolytic enzyme with a conserved GDSL sequence at the N-terminus, which has various biological functions, such as participating in plant growth, development, lipid metabolism, and stress resistance. However, little is known about the function of the GDSL lipase gene in the heat tolerance of rice. Here, we characterized a lipase family protein coding gene HTA1, which was significantly induced by high temperature in rice. Rice seedlings in which the mutant hta1 was knocked out showed enhanced heat tolerance, whereas the overexpressing HTA1 showed more sensitivity to heat stress. Under heat stress, hta1 could reduce plant membrane damage and reactive oxygen species (ROS) levels and elevate the activity of antioxidant enzymes. Moreover, real-time quantitative PCR (RT-qPCR) analysis showed that mutant hta1 significantly activated gene expression in antioxidant enzymes, heat response, and defense. In conclusion, our results suggest that HTA1 negatively regulates heat stress tolerance by modulating the ROS accumulation and the expression of heat-responsive and defense-related genes in rice seedlings. This research will provide a valuable resource for utilizing HTA1 to improve crop heat tolerance.
Collapse
Affiliation(s)
- Rui Su
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Jingkai Luo
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Xuedan Lu
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| | - Guihua Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410000, China
- State Key Laboratory of Hybrid Rice, Changsha 410000, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410000, China; (R.S.); (J.L.); (Y.W.); (Y.X.); (X.L.); (H.D.); (X.L.); (Q.C.); (G.C.)
- Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Changsha 410000, China
| |
Collapse
|
6
|
Martins M, Oliveira L, Sousa B, Valente IM, Rodrigues JA, Azenha M, Soares C, Pereira R, Fidalgo F. Unravelling the combined impacts of drought and Cu in barley plants - double trouble? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108546. [PMID: 38518397 DOI: 10.1016/j.plaphy.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.
Collapse
Affiliation(s)
- Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal.
| | - Licínio Oliveira
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal
| | - Inês Maria Valente
- REQUIMTE, LAQV, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto, 4050-313, Portugal; REQUIMTE, LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre 687, Porto, 4169-007, Portugal
| | - José António Rodrigues
- REQUIMTE, LAQV, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre 687, Porto, 4169-007, Portugal
| | - Manuel Azenha
- CIQ-UP, Chemistry and Biochemistry Department, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal
| | - Ruth Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre & Inov4Agro, Biology Department, Faculty of Sciences of University of Porto, Rua Do Campo Alegre S/n, Porto, Portugal
| |
Collapse
|
7
|
Dai ZC, Kong FL, Li YF, Ullah R, Ali EA, Gul F, Du DL, Zhang YF, Jia H, Qi SS, Uddin N, Khan IU. Strong Invasive Mechanism of Wedelia trilobata via Growth and Physiological Traits under Nitrogen Stress Condition. PLANTS (BASEL, SWITZERLAND) 2024; 13:355. [PMID: 38337888 PMCID: PMC10857574 DOI: 10.3390/plants13030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth. However, a deficiency of N affects plant growth and development. Wedelia trilobata is a notorious invasive plant species that exhibits superior tolerance to adapt to environmental stresses. Yet, research on the growth and antioxidant defensive system of invasive Wedelia under low N stress, which could contribute to understanding invasion mechanisms, is still limited. Therefore, this study aims to investigate and compare the tolerance capability of invasive and native Wedelia under low and normal N conditions. Native and invasive Wedelia species were grown in normal and low-N conditions using a hydroponic nutrient solution for 8 weeks to assess the photosynthetic parameters, antioxidant activity, and localization of reactive oxygen species (ROS). The growth and biomass of W. trilobata were significantly (p < 0.05) higher than W. chinensis under low N. The leaves of W. trilobata resulted in a significant increase in chlorophyll a, chlorophyll b, and total chlorophyll content by 40.2, 56.2, and 46%, respectively, compared with W. chinensis. W. trilobata significantly enhanced antioxidant defense systems through catalase, peroxidase, and superoxide dismutase by 18.6%, 20%, and 36.3%, respectively, providing a positive response to oxidative stress caused by low N. The PCA analysis showed that W. trilobata was 95.3% correlated with physiological traits by Dim1 (79.1%) and Dim2 (16.3%). This study provides positive feedback on W. trilobata with respect to its comprehensive invasion mechanism to improve agricultural systems via eco-friendly approaches in N deficit conditions, thereby contributing to the reclamation of barren land.
Collapse
Affiliation(s)
- Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.-C.D.); (D.-L.D.)
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Jingjiang College, Jiangsu University, Zhenjiang 212018, China
| | - Fang-Li Kong
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Yi-Fan Li
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Farrukh Gul
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Dao-Lin Du
- School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.-C.D.); (D.-L.D.)
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi-Fan Zhang
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Hui Jia
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| |
Collapse
|
8
|
Rodrigues AP, Pais IP, Leitão AE, Dubberstein D, Lidon FC, Marques I, Semedo JN, Rakocevic M, Scotti-Campos P, Campostrini E, Rodrigues WP, Simões-Costa MC, Reboredo FH, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Uncovering the wide protective responses in Coffea spp. leaves to single and superimposed exposure of warming and severe water deficit. FRONTIERS IN PLANT SCIENCE 2024; 14:1320552. [PMID: 38259931 PMCID: PMC10801242 DOI: 10.3389/fpls.2023.1320552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.
Collapse
Affiliation(s)
- Ana P. Rodrigues
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - António E. Leitão
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Danielly Dubberstein
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
- Assistência Técnica e Gerencial em Cafeicultura - Serviço Nacional de Aprendizagem Rural (SENAR), Porto Velho, RO, Brazil
| | - Fernando C. Lidon
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Isabel Marques
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - José N. Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Miroslava Rakocevic
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Weverton P. Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Maranhão, Brazil
| | - Maria Cristina Simões-Costa
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Fernando H. Reboredo
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - José C. Ramalho
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
9
|
Singh P, Arif Y, Mir AR, Alam P, Hayat S. Quercetin-mediated alteration in photosynthetic efficiency, sugar metabolism, elemental status, yield, and redox potential in two varieties of okra. PROTOPLASMA 2024; 261:125-142. [PMID: 37550558 DOI: 10.1007/s00709-023-01885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Quercetin is a bioactive natural compound with an antioxidative property that can potentially modify plant physiology. The current investigation aimed to gauge the effect of different concentrations of foliar spray of quercetin (0, 0.5, 1, 1.5, 2.0 mM) on several morphological and physio-biochemical performances of Abelmoschus esculentus L. (Moench.) plants under normal environmental conditions. The foliar spray on the plant leaves was applied 25 days after sowing (DAS) and continued up to 30 DAS once each day. The plants were sampled at 30 and 45 DAS to monitor several parameters. The foliar treatments of quercetin significantly upgraded all the studied parameters. The results direct that most of the traits such as growth, nutrient uptake, photosynthetic, and enzyme activities were promoted in a dose-dependent way. Quercetin application lowered the reactive oxygen species (ROS) buildup by increasing the antioxidant enzyme activities. Microscopic investigations further revealed a significant enhancement in the stomatal aperture under quercetin application. Out of several doses tested, 1 mM of quercetin proved best and can be used for further investigations.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
10
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
11
|
Hazra S, Moulick D, Mukherjee A, Sahib S, Chowardhara B, Majumdar A, Upadhyay MK, Yadav P, Roy P, Santra SC, Mandal S, Nandy S, Dey A. Evaluation of efficacy of non-coding RNA in abiotic stress management of field crops: Current status and future prospective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107940. [PMID: 37738864 DOI: 10.1016/j.plaphy.2023.107940] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 09/24/2023]
Abstract
Abiotic stresses are responsible for the major losses in crop yield all over the world. Stresses generate harmful ROS which can impair cellular processes in plants. Therefore, plants have evolved antioxidant systems in defence against the stress-induced damages. The frequency of occurrence of abiotic stressors has increased several-fold due to the climate change experienced in recent times and projected for the future. This had particularly aggravated the risk of yield losses and threatened global food security. Non-coding RNAs are the part of eukaryotic genome that does not code for any proteins. However, they have been recently found to have a crucial role in the responses of plants to both abiotic and biotic stresses. There are different types of ncRNAs, for example, miRNAs and lncRNAs, which have the potential to regulate the expression of stress-related genes at the levels of transcription, post-transcription, and translation of proteins. The lncRNAs are also able to impart their epigenetic effects on the target genes through the alteration of the status of histone modification and organization of the chromatins. The current review attempts to deliver a comprehensive account of the role of ncRNAs in the regulation of plants' abiotic stress responses through ROS homeostasis. The potential applications ncRNAs in amelioration of abiotic stresses in field crops also have been evaluated.
Collapse
Affiliation(s)
- Swati Hazra
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | | | - Synudeen Sahib
- S. S. Cottage, Njarackal, P.O.: Perinad, Kollam, 691601, Kerala, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Arunachal Pradesh 792103, India.
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Priyabrata Roy
- Department of Molecular Biology and Biotechnology, University of Kalyani, West Bengal 741235, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Sayanti Mandal
- Department of Biotechnology, Dr. D. Y. Patil Arts, Commerce & Science College (affiliated to Savitribai Phule Pune University), Sant Tukaram Nagar, Pimpri, Pune, Maharashtra-411018, India.
| | - Samapika Nandy
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India; Department of Botany, Vedanta College, 33A Shiv Krishna Daw Lane, Kolkata-700054, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India.
| |
Collapse
|
12
|
Pascual LS, Mittler R, Sinha R, Peláez-Vico MÁ, López-Climent MF, Vives-Peris V, Gómez-Cadenas A, Zandalinas SI. Jasmonic acid is required for tomato acclimation to multifactorial stress combination. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2023; 213:105425. [PMID: 39239530 PMCID: PMC11376225 DOI: 10.1016/j.envexpbot.2023.105425] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
As a result of global warming and climate change, the number and intensity of weather events such as droughts, heat waves, and floods are increasing, resulting in major losses in crop yield worldwide. Combined with the accumulation of different pollutants, this situation is leading to a gradual increase in the complexity of environmental factors affecting plants. We recently used the term 'multifactorial stress combination' (MFSC) to describe the impact of three or more stressors occurring simultaneously or sequentially on plants. Here, we show that a MFSC of six different abiotic stressors (high light, heat, nitrogen deficiency, paraquat, cadmium, and salinity) has a negative impact on the growth, photosystem II function, and photosynthetic activity of mature tomato plants. We further reveal a negative correlation between proline accumulation and the increasing number of stress factors combined, suggesting that proline could have an adverse effect on plants during MFSC. Our findings further indicate that alterations in hormonal levels and stomatal responses are stress/stress combination-dependent, and that a tomato mutant deficient in jasmonic acid accumulation is more sensitive to high light and its combinations with salinity and/or paraquat. Taken together, our study reveals that the effects of MFSC on tomato plants are broad, that photosynthesis and proline accumulation are especially vulnerable to MFSC, and that jasmonic acid is required for tomato acclimation to MFSCs involving high light, salinity and paraquat.
Collapse
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group. University of Missouri, Columbia, MO 65211, USA
| | - María F López-Climent
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Vicente Vives-Peris
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, 12071 Valencia, Castellón, Spain
| |
Collapse
|
13
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
14
|
Rao MJ, Feng B, Ahmad MH, Tahir ul Qamar M, Aslam MZ, Khalid MF, Hussain S, Zhong R, Ali Q, Xu Q, Ma C, Wang L. LC-MS/MS-based metabolomics approach identified novel antioxidant flavonoids associated with drought tolerance in citrus species. FRONTIERS IN PLANT SCIENCE 2023; 14:1150854. [PMID: 37636085 PMCID: PMC10450343 DOI: 10.3389/fpls.2023.1150854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023]
Abstract
Citrus fruits are cultivated around the world, and they face drought stress frequently during their growth and development. Previous studies showed that citrus plants biosynthesized flavonoid compounds in response to abiotic stress. In this study, we have quantified 37 flavonoid compounds from the leaves of three distinct citrus species including sour orange (drought-tolerant), pummelo 'Majia you pummelo' (drought-sensitive), and lemon (drought-sensitive). The 37 flavonoids consisted of 12 flavones, 10 flavonols, 6 flavanones, 5 isoflavanones, and 1 each for chalcone, flavanol, flavanonol, and flavone glycoside. Drought stress differentially altered the flavonoid metabolism in drought-tolerant and drought-sensitive citrus species. The kaempferol 3-neohesperidoside was 17-fold higher in sour orange (124.41 nmol/L) after 18 days of drought stress than lemon (7.33 nmol/L). In sour orange, neohesperidin (69.49 nmol/L) was 1,407- and 37-fold higher than pummelo and lemon, respectively. In sour orange, some flavonoids were significantly increased, such as vitexin, neohesperidin, cynaroside, hyperoside, genistin, kaempferol 3-neohesperidoside, eriocitrin, and luteolin, in response to drought stress, whereas in lemon, these flavonoids were significantly decreased or not altered significantly in response to drought stress. Moreover, the total contents of flavonoids and antioxidant activity were increased in sour orange as compared with pummelo and lemon. The genes associated with flavonoid biosynthesis (PAL, CHI, FLS, GT1, F3H, F3'M, C4H, 4CL, FLS, FG2, FG3, and CYP81E1) were more highly expressed in sour orange leaves than in pummelo and lemon after drought stress. These outcomes showed that pummelo and lemon failed to biosynthesize antioxidant flavonoids to cope with the prolonged drought stress, whereas the sour orange biosynthesized fortified flavonoid compounds with increased antioxidant activity to detoxify the harmful effects of reactive oxygen species produced during drought stress.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bihong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Husnain Ahmad
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Tahir ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Zeshan Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Fasih Khalid
- Southwest Florida Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Immokalee, FL, United States
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ruimin Zhong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chongjian Ma
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
15
|
Balfagón D, Zandalinas SI, dos Reis de Oliveira T, Santa-Catarina C, Gómez-Cadenas A. Omics analyses in citrus reveal a possible role of RNA translation pathways and Unfolded Protein Response regulators in the tolerance to combined drought, high irradiance, and heat stress. HORTICULTURE RESEARCH 2023; 10:uhad107. [PMID: 37577403 PMCID: PMC10419850 DOI: 10.1093/hr/uhad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 08/15/2023]
Abstract
Environmental changes derived from global warming and human activities increase the intensity and frequency of stressful conditions for plants. Multiple abiotic factors acting simultaneously enhance stress pressure and drastically reduce plant growth, yield, and survival. Stress combination causes a specific stress situation that induces a particular plant response different to the sum of responses to the individual stresses. Here, by comparing transcriptomic and proteomic profiles to different abiotic stress combinations in two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni), with contrasting tolerance to different abiotic stresses, we revealed key responses to the triple combination of heat stress, high irradiance and drought. The specific transcriptomic response to this stress combination in Carrizo was directed to regulate RNA metabolic pathways and translation processes, potentially conferring an advantage with respect to Cleopatra. In addition, we found endoplasmic reticulum stress response as common to all individual and combined stress conditions in both genotypes and identified the accumulation of specific groups of heat shock proteins (HSPs), such as small HSPs and HSP70s, and regulators of the unfolded protein response, BiP2 and PDIL2-2, as possible factors involved in citrus tolerance to triple stress combination. Taken together, our findings provide new insights into the acclimation process of citrus plants to multiple stress combination, necessary for increasing crop tolerance to the changing climatic conditions.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| | - Tadeu dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências E Biotecnologia (CBB), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Av. Sos Baynat s/n. Universitat Jaume I, 46520 Castelló de la Plana, Spain
| |
Collapse
|
16
|
Bhardwaj R, Lone JK, Pandey R, Mondal N, Dhandapani R, Meena SK, Khan S. Insights into morphological and physio-biochemical adaptive responses in mungbean ( Vigna radiata L.) under heat stress. Front Genet 2023; 14:1206451. [PMID: 37396038 PMCID: PMC10308031 DOI: 10.3389/fgene.2023.1206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mungbean (Vigna radiata L. Wilczek) is an important food legume crop which contributes significantly to nutritional and food security of South and Southeast Asia. The crop thrives in hot and humid weather conditions, with an optimal temperature range of 28°-35°C, and is mainly cultivated under rainfed environments. However, the rising global temperature has posed a serious threat to mungbean cultivation. Optimal temperature is a vital factor in cellular processes, and every crop species has evolved with its specific temperature tolerance ability. Moreover, variation within a crop species is inevitable, given the diverse environmental conditions under which it has evolved. For instance, various mungbean germplasm can grow and produce seeds in extreme ambient temperatures as low as 20°C or as high as 45°C. This range of variation in mungbean germplasm for heat tolerance plays a crucial role in developing heat tolerant and high yielding mungbean cultivars. However, heat tolerance is a complex mechanism which is extensively discussed in this manuscript; and at the same time individual genotypes have evolved with various ways of heat stress tolerance. Therefore, to enhance understanding towards such variability in mungbean germplasm, we studied morphological, anatomical, physiological, and biochemical traits which are responsive to heat stress in plants with more relevance to mungbean. Understanding heat stress tolerance attributing traits will help in identification of corresponding regulatory networks and associated genes, which will further help in devising suitable strategies to enhance heat tolerance in mungbean. The major pathways responsible for heat stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ragini Bhardwaj
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| | - Jafar K Lone
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nupur Mondal
- Shivaji College, University of Delhi, New Delhi, India
| | - R Dhandapani
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Surendra Kumar Meena
- Division of Crop Improvement, ICAR-Indian Grassland and Research Institute, Jhansi, India
| | - Suphiya Khan
- Department of Bioscience and Biotechnology, Banasthali Vidyapith University, Tonk Rajasthan, India
| |
Collapse
|
17
|
Kong L, Chen P, Chang C. Drought Resistance and Ginsenosides Biosynthesis in Response to Abscisic Acid in Panax ginseng C. A. Meyer. Int J Mol Sci 2023; 24:ijms24119194. [PMID: 37298144 DOI: 10.3390/ijms24119194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drought stress adversely affects the production of the perennial medicinal herb Panax ginseng C.A. Meyer. Phytohormone abscisic acid (ABA) regulates many processes in plant growth, development, and response to environments. However, whether drought resistance is regulated by ABA in Panax ginseng remains unknown. In this study, we characterized the response of drought resistance to ABA in Panax ginseng. The results showed that the growth retardation and root shrinking under drought conditions in Panax ginseng were attenuated by exogenous ABA application. Spraying ABA was shown to protect the photosynthesis system, enhance the root activity, improve the performance of the antioxidant protection system, and alleviate the excessive accumulation of soluble sugar in Panax ginseng under drought stress. In addition, ABA treatment leads to the enhanced accumulation of ginsenosides, the pharmaceutically active components, and causes the up-regulation of 3-hydroxy-3-methylglutaryl CoA reductase (PgHMGR) in Panax ginseng. Therefore, this study supports that drought resistance and ginsenosides biosynthesis in Panax ginseng were positively regulated by ABA, providing a new direction for mitigating drought stress and improving ginsenosides production in the precious medicinal herb.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Pascual LS, López-Climent MF, Segarra-Medina C, Gómez-Cadenas A, Zandalinas SI. Exogenous spermine alleviates the negative effects of combined salinity and paraquat in tomato plants by decreasing stress-induced oxidative damage. FRONTIERS IN PLANT SCIENCE 2023; 14:1193207. [PMID: 37229124 PMCID: PMC10203479 DOI: 10.3389/fpls.2023.1193207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Plants are frequently exposed to different combinations of soil constraints including salinity and different herbicides. These abiotic conditions negatively affect photosynthesis, growth and plant development resulting in limitations in agriculture production. To respond to these conditions, plants accumulate different metabolites that restore cellular homeostasis and are key for stress acclimation processes. In this work, we analyzed the role of exogenous spermine (Spm), a polyamine involved in plant tolerance to abiotic stress, in tomato responses to the combination of salinity (S) and the herbicide paraquat (PQ). Our findings showed that application of Spm reduced leaf damage and enhanced survival, growth, photosystem II function and photosynthetic rate of tomato plants subjected to the combination of S and PQ. In addition, we revealed that exogenous Spm reduced H2O2 and malondialdehyde (MDA) accumulation in plants subjected to S+PQ, suggesting that the role of exogenous Spm in alleviating the negative effects of this stress combination could be attributed to a decrease in stress-induced oxidative damage in tomato plants. Taken together, our results identify a key role for Spm in improving plant tolerance to combined stress.
Collapse
Affiliation(s)
| | | | | | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - Sara I. Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| |
Collapse
|
19
|
Quan J, Li X, Li Z, Wu M, Zhu B, Hong SB, Shi J, Zhu Z, Xu L, Zang Y. Transcriptomic Analysis of Heat Stress Response in Brassica rapa L. ssp. pekinensis with Improved Thermotolerance through Exogenous Glycine Betaine. Int J Mol Sci 2023; 24:ijms24076429. [PMID: 37047402 PMCID: PMC10094913 DOI: 10.3390/ijms24076429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is sensitive to high temperature, which will cause the B. rapa to remain in a semi-dormancy state. Foliar spray of GB prior to heat stress was proven to enhance B. rapa thermotolerance. In order to understand the molecular mechanisms of GB-primed resistance or adaptation towards heat stress, we investigated the transcriptomes of GB-primed and non-primed heat-sensitive B. rapa ‘Beijing No. 3’ variety by RNA-Seq analysis. A total of 582 differentially expressed genes (DEGs) were identified from GB-primed plants exposed to heat stress relative to non-primed plants under heat stress and were assigned to 350 gene ontology (GO) pathways and 69 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. The analysis of the KEGG enrichment pathways revealed that the most abundantly up-regulated pathways were protein processing in endoplasmic reticulum (14 genes), followed by plant hormone signal transduction (12 genes), ribosome (8 genes), MAPK signaling pathway (8 genes), homologous recombination (7 genes), nucleotide excision repair metabolism (5 genes), glutathione metabolism (4 genes), and ascorbate and aldarate metabolism (4 genes). The most abundantly down-regulated pathways were plant-pathogen interaction (14 genes), followed by phenylpropanoid biosynthesis (7 genes); arginine and proline metabolism (6 genes); cutin, suberine, and wax biosynthesis (4 genes); and tryptophan metabolism (4 genes). Several calcium sensing/transducing proteins, as well as transcription factors associated with abscisic acid (ABA), salicylic acid (SA), auxin, and cytokinin hormones were either up- or down-regulated in GB-primed B. rapa plants under heat stress. In particular, expression of the genes for antioxidant defense, heat shock response, and DNA damage repair systems were highly increased by GB priming. On the other hand, many of the genes involved in the calcium sensors and cell surface receptors involved in plant innate immunity and the biosynthesis of secondary metabolites were down-regulated in the absence of pathogen elicitors in GB-primed B. rapa seedlings. Overall GB priming activated ABA and SA signaling pathways but deactivated auxin and cytokinin signaling pathways while suppressing the innate immunity in B. rapa seedlings exposed to heat stress. The present study provides a preliminary understanding of the thermotolerance mechanisms in GB-primed plants and is of great importance in developing thermotolerant B. rapa cultivars by using the identified DEGs through genetic modification.
Collapse
|
20
|
Duan Y, Yang H, Yang H, Wei Z, Che J, Wu W, Lyu L, Li W. Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1480. [PMID: 37050106 PMCID: PMC10097381 DOI: 10.3390/plants12071480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3-)-N, ammonium (NH4+)-N and urea were applied to one-year-old 'Ningzhi 4' blackberry plants at a key growth period (from May to August) to explore the effects of different N forms on the physiological characteristics. Correlation and principal component analysis were used to determine the relationships between various indexes. Ammonium (NH4+) or urea-fed plants had a better growth state, showed a greater plant height, biomass, SPAD values and enhanced antioxidant enzyme activities and photosynthesis. In addition, NH4+ was beneficial to the accumulation of sugars and amino acids in leaves and roots, and promoted the transport of auxin and cytokinin to leaves. NO3- significantly inhibited root growth and increased the contents of active oxygen, malondialdehyde and antioxidants in roots. Correlation and principal component analysis showed that growth and dry matter accumulation were closely related to the antioxidant system, photosynthetic characteristics, amino acids and hormone content. Our study provides a new idea for N regulation mechanism of blackberry and proposes a scientific fertilization strategy.
Collapse
Affiliation(s)
- Yongkang Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Haiyan Yang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Zhiwen Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China; (W.W.); (L.L.)
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.D.); (H.Y.); (Z.W.); (J.C.)
| |
Collapse
|
21
|
Machado J, Vasconcelos MW, Soares C, Fidalgo F, Heuvelink E, Carvalho SMP. Enzymatic and Non-Enzymatic Antioxidant Responses of Young Tomato Plants (cv. Micro-Tom) to Single and Combined Mild Nitrogen and Water Deficit: Not the Sum of the Parts. Antioxidants (Basel) 2023; 12:375. [PMID: 36829934 PMCID: PMC9951916 DOI: 10.3390/antiox12020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
This study aims to perform a broad analysis of the antioxidant (AOX) responses of young tomato plants exposed to single and combined mild nitrogen (N) and water deficits through the evaluation of oxidative biomarkers, non-enzymatic and enzymatic AOX components. 'Micro-Tom' seedlings were subjected to four treatments: control (CTR; 100%N + 100%W), N deficit (N; 50%N), water deficit (W; 50%W), and combined deficits (N + W; 50%N + 50%W). An enhancement of several non-enzymatic and enzymatic components was found in plants subjected to N + W deficit, which presented higher anthocyanins accumulation (up to 103%) as well as higher levels of superoxide dismutase (SOD) transcripts at root level and of ascorbate peroxidase (APX) and catalase (CAT) transcripts at shoot level. This increase in the gene expression was also translated in augmented SOD (up to 202%), APX (up to 155%) and CAT (up to 108%) activity compared to CTR plants and the single deficits. Overall, tomato plants were able to employ defense strategies to cope with this combined deficit, as demonstrated by the higher total AOX capacity (up to 87%) compared to the single deficits, which contributed to the maintenance of their redox homeostasis, with unchanged values of lipid peroxidation and hydrogen peroxide compared with CTR plants.
Collapse
Affiliation(s)
- Joana Machado
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marta W. Vasconcelos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal
| |
Collapse
|
22
|
Bernardi LGP, Boaretto RM, Blain GC, Mattos-Jr D. Particle films improve photosynthesis of citrus trees under excess irradiance by reducing leaf temperature. PHYSIOLOGIA PLANTARUM 2023; 175:e13844. [PMID: 36539940 DOI: 10.1111/ppl.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
High irradiance and increased air temperature during extreme weather conditions affect tree crops and impact the yield and quality of fruits. Moreover, flowering and fruit set of Citrus are likely impaired by UV radiation and/or reduced carbon assimilation, which increase reactive oxygen species production and damage the leaf photosynthetic apparatus. Particle coating films sprayed on leaves have been offered as a way to minimize crop losses due to the climate change scenario, even though the extent of leaf protection is not characterized. We evaluated the use of two protective films on the oxidative stress and leaf photosynthesis of sweet orange trees exposed to varying daylight levels. Trees were maintained under full sun light, sprayed or not (control) with kaolin or calcium carbonate, and under reduced irradiance using either aluminum shade cloth 50% or anti-UV transparent plastic. Kaolin or calcium carbonate reflected 20%-30% of the incident light on the leaf surface compared to leaves not sprayed and under full sunlight. Leaves with coating exhibited improved CO2 assimilation and photosystem II efficiency, and lower leaf temperatures over time. In addition, the coating protected leaves against excess irradiance due to dissipation of excess energy into the photosynthetic apparatus (NPQt). Nonenzymatic mechanisms for UV protection, such as carotenoids, were higher in full sun control plants than in leaf-coated plants. Comparable responses were observed on trees maintained covered either by the cloth or the plastic film. Finally, we conclude that the use of suspension particles mitigates the harmful effects of excess UV irradiance and temperature in sweet orange trees.
Collapse
Affiliation(s)
- Lucas G P Bernardi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | - Rodrigo M Boaretto
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| | | | - Dirceu Mattos-Jr
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico (IAC), Cordeirópolis, SP, Brazil
| |
Collapse
|
23
|
Chao X, Yuqing T, Xincheng L, Huidong Y, Yuting W, Zhongdong H, Xinlong H, Buchun L, Jing S. Exogenous spermidine enhances the photosynthetic and antioxidant capacity of citrus seedlings under high temperature. PLANT SIGNALING & BEHAVIOR 2022; 17:2086372. [PMID: 35703340 PMCID: PMC9225518 DOI: 10.1080/15592324.2022.2086372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Studies have not fully explained the underlying mechanism of spermidine-mediated heat tolerance. This study investigated the possible role of spermidine (Spd) in regulating citrus heat tolerance. The results showed that exogenous Spd effectively alleviated the limitation of high temperature (HT) on photosynthesis. Exogenous Spd increased the chlorophyll content, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance, maximum and effective quantum yield of PSII photochemistry, nonphotochemical quenching coefficient, and electron transport rate in citrus seedlings under HT stress, but declined the stomatal limitation value. In addition, Spd treatment promoted the dynamic balance of the citrus enzymatic and non-enzymatic antioxidants system. Spd application significantly increased the activity of superoxide dismutase, peroxidase, catalase, ascorbic acid, and glutathione and the expression level of corresponding genes at high temperature, while reducing the content of H2O2 and malondialdehyde. Therefore, our findings suggested exogenous Spd significantly ameliorated citrus physiological and photosynthetic adaptation under HT stress, thereby providing helpful guidance for citrus cultivation in HT events.
Collapse
Affiliation(s)
- Xu Chao
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
- Institute of Environment and Sustainable Development in Agriculture, CAAS/National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Tang Yuqing
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Liu Xincheng
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Yang Huidong
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Wang Yuting
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Hu Zhongdong
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Hu Xinlong
- Key Laboratory of Horticultural Plant Genetics and Physiology, Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Liu Buchun
- Institute of Environment and Sustainable Development in Agriculture, CAAS/National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Su Jing
- Nanjing Institute of Environmental Sciences, MEE, Nanjing, P. R. China
| |
Collapse
|
24
|
Balfagón D, Zandalinas SI, dos Reis de Oliveira T, Santa‐Catarina C, Gómez‐Cadenas A. Reduction of heat stress pressure and activation of photosystem II repairing system are crucial for citrus tolerance to multiple abiotic stress combination. PHYSIOLOGIA PLANTARUM 2022; 174:e13809. [PMID: 36309819 PMCID: PMC9828536 DOI: 10.1111/ppl.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 05/24/2023]
Abstract
Drought, heat and high irradiance are abiotic stresses that negatively affect plant development and reduce crop productivity. The confluence of these three factors is common in nature, causing extreme situations for plants that compromise their viability. Drought and heat stresses increase the saturation of the photosystem reaction centers, increasing sensitivity to high irradiance. In addition, these stress conditions affect photosystem II (PSII) integrity, alter redox balance of the electron transport chain and decrease the photosynthetic rate. Here, we studied the effect of the stress combinations on the photosynthetic apparatus of two citrus genotypes, Carrizo citrange (Citrus sinensis × Poncirus trifoliata) and Cleopatra mandarin (Citrus reshni). Results obtained showed that physiological responses, such as modulation of stomatal aperture and transpiration rate, aimed to reduce leaf temperature, are key to diminishing heat impact on photosynthetic apparatus and increasing tolerance to double and triple combinations of drought, high irradiance and high temperatures. By using transcriptomic and proteomic analyses, we have demonstrated that under these abiotic stress combinations, Carrizo plants were able to increase expression of genes and proteins related to the photosystem repairing machinery (which better maintained the integrity of PSII) and other components of the photosynthetic apparatus. Our findings reveal crucial physiological and genetic responses in citrus to increase tolerance to the combination of multiple abiotic stresses that could be the basis for breeding programs that ensure a sustainable citrus production.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Biología, Bioquímica y Ciencias NaturalesUniversitat Jaume ICastelló de la PlanaSpain
| | - Sara I. Zandalinas
- Departamento de Biología, Bioquímica y Ciencias NaturalesUniversitat Jaume ICastelló de la PlanaSpain
| | - Tadeu dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT)Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos Dos GoytacazesBrazil
| | - Claudete Santa‐Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT)Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)Campos Dos GoytacazesBrazil
| | - Aurelio Gómez‐Cadenas
- Departamento de Biología, Bioquímica y Ciencias NaturalesUniversitat Jaume ICastelló de la PlanaSpain
| |
Collapse
|
25
|
Lin Y, Zhang H, Li P, Jin J, Li Z. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC PLANT BIOLOGY 2022; 22:475. [PMID: 36203134 PMCID: PMC9541091 DOI: 10.1186/s12870-022-03859-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.
Collapse
Affiliation(s)
- Yixian Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Peirong Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Jin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhefei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
26
|
Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition. Sci Rep 2022; 12:16467. [PMID: 36183028 PMCID: PMC9526742 DOI: 10.1038/s41598-022-21035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Water deficit (WD) combined with high temperature (HT) is the major factor limiting agriculture worldwide, and it is predicted to become worse according to the current climate change scenario. It is thus important to understand how current cultivated crops respond to these stress conditions. Here we investigated how four soybean cultivars respond to WD and HT isolated or in combination at metabolic, physiological, and anatomical levels. The WD + HT increased the level of stress in soybean plants when compared to plants under well-watered (WW), WD, or HT conditions. WD + HT exacerbates the increases in ascorbate peroxidase activity, which was associated with the greater photosynthetic rate in two cultivars under WD + HT. The metabolic responses to WD + HT diverge substantially from plants under WW, WD, or HT conditions. Myo-inositol and maltose were identified as WD + HT biomarkers and were connected to subnetworks composed of catalase, amino acids, and both root and leaf osmotic potentials. Correlation-based network analyses highlight that the network heterogeneity increased and a higher integration among metabolic, physiological, and morphological nodes is observed under stress conditions. Beyond unveiling biochemical and metabolic WD + HT biomarkers, our results collectively highlight that the mechanisms behind the acclimation to WD + HT cannot be understood by investigating WD or HT stress separately.
Collapse
|
27
|
Nazir F, Ahmad T, Malik SI, Ahmed M, Bashir MA. Wild grapevines as rootstock regulate the oxidative defense system of in vitro grafted scion varieties under drought stress. PLoS One 2022; 17:e0274387. [PMID: 36099319 PMCID: PMC9469993 DOI: 10.1371/journal.pone.0274387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The narrow genetic base of modern cultivars is becoming a key bottleneck for crop improvement and the use of wild relatives is an appropriate approach to improve the genetic diversity of crops to manage the sustainable production under different abiotic and biotic constraints. In Pakistan, wild germplasm of grapevine viz Dakh, Toran, and Zarishk belong to Vitis vinifera subsp. sylvestris and Fatati belong to Vitis vinifera subsp. sativa is naturally present in humid and sub-humid areas of mountainous and sub-mountainous regions and showed varying level of tolerance against drought stress but have not been evaluated as rootstock. In this study, different tolerant behavior of wild grapevines as rootstock in grafted scion varieties were explored under different levels of PEG-6000 mediated drought stress i.e., -4.00, -6.00, and -8.00 bars. In response to drought stress, wild grapevines evoked several non-enzymatic and enzymatic activities. Among non-enzymatic activities, total chlorophyll contents of commercial varieties were sustained at higher level when grafted on wild grapevines Dakh and Fatati which subsequently reduced the damage of cell membrane via MDA. Whereas, to cope the membranous damage due to excessive cellular generation of ROS, wild grapevines triggered the enhanced activities of SOD to dismutase the free oxygen radicals into H2O2, then CAT enzyme convert the H2O2 into water molecules. Higher accumulation of ROS in commercial scion varieties were also coped by wild grapevines Dakh and Fatati through the upregulation of POD and APX enzymes activities. Based on these enzymatic and non-enzymatic indices, biplot and cluster analysis classified the wild grapevines as rootstock into three distinct categories comprises on relatively tolerant i.e., Dakh (Vitis vinifera subsp. sylvestris) and Fatati (Vitis vinifera subsp. sativa), moderate tolerant i.e., Toran (Vitis vinifera subsp. sylvestris) and relatively susceptible category i.e., Zarishk (Vitis vinifera subsp. sylvestris).
Collapse
Affiliation(s)
- Fahad Nazir
- Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- National Center of Industrial Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Touqeer Ahmad
- Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- National Center of Industrial Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- * E-mail:
| | - Saad Imran Malik
- National Center of Industrial Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Ajmal Bashir
- Department of Horticulture, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
28
|
Correia PMP, Cairo Westergaard J, Bernardes da Silva A, Roitsch T, Carmo-Silva E, Marques da Silva J. High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5235-5251. [PMID: 35446418 PMCID: PMC9440435 DOI: 10.1093/jxb/erac160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/20/2022] [Indexed: 05/30/2023]
Abstract
Interannual and local fluctuations in wheat crop yield are mostly explained by abiotic constraints. Heatwaves and drought, which are among the top stressors, commonly co-occur, and their frequency is increasing with global climate change. High-throughput methods were optimized to phenotype wheat plants under controlled water deficit and high temperature, with the aim to identify phenotypic traits conferring adaptative stress responses. Wheat plants of 10 genotypes were grown in a fully automated plant facility under 25/18 °C day/night for 30 d, and then the temperature was increased for 7 d (38/31 °C day/night) while maintaining half of the plants well irrigated and half at 30% field capacity. Thermal and multispectral images and pot weights were registered twice daily. At the end of the experiment, key metabolites and enzyme activities from carbohydrate and antioxidant metabolism were quantified. Regression machine learning models were successfully established to predict plant biomass using image-extracted parameters. Evapotranspiration traits expressed significant genotype-environment interactions (G×E) when acclimatization to stress was continuously monitored. Consequently, transpiration efficiency was essential to maintain the balance between water-saving strategies and biomass production in wheat under water deficit and high temperature. Stress tolerance included changes in carbohydrate metabolism, particularly in the sucrolytic and glycolytic pathways, and in antioxidant metabolism. The observed genetic differences in sensitivity to high temperature and water deficit can be exploited in breeding programmes to improve wheat resilience to climate change.
Collapse
Affiliation(s)
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, Section of Crop Science, Copenhagen University, Højbakkegård Allé 13, 2630 Tåstrup, Denmark
| | - Anabela Bernardes da Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Section of Crop Science, Copenhagen University, Højbakkegård Allé 13, 2630 Tåstrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, 603 00 Brno, Czech Republic
| | | | - Jorge Marques da Silva
- BioISI – Biosystems & Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
29
|
Pascual LS, Segarra-Medina C, Gómez-Cadenas A, López-Climent MF, Vives-Peris V, Zandalinas SI. Climate change-associated multifactorial stress combination: A present challenge for our ecosystems. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153764. [PMID: 35841741 DOI: 10.1016/j.jplph.2022.153764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 05/28/2023]
Abstract
Humans negatively influence Earth ecosystems and biodiversity causing global warming, climate change as well as man-made pollution. Recently, the number of different stress factors have increased, and when impacting simultaneously, the multiple stress conditions cause dramatic declines in plant and ecosystem health. Although much is known about how plants and ecosystems are affected by each individual stress, recent research efforts have diverted into how these biological systems respond to several of these stress conditions applied together. Studies of such "multifactorial stress combination" concept have reported a severe decrease in plant survival and microbiome biodiversity along the increasing number of factors in a consistent directional trend. In addition, these results are in concert with studies about how ecosystems and microbiota are affected by natural conditions imposed by climate change. Therefore, all this evidence should serve as an important warning in order to decrease pollutants, create strategies to deal with global warming, and increase the tolerance of plants to multiple stressful factors in combination. Here we review recent studies focused on the impact of abiotic stresses on plants, agrosystems and different ecosystems including forests and microecosystems. In addition, different strategies to mitigate the impact of climate change in ecosystems are discussed.
Collapse
Affiliation(s)
- Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Clara Segarra-Medina
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - María F López-Climent
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Vicente Vives-Peris
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain.
| |
Collapse
|
30
|
Molecular and epigenetic basis of heat stress responses and acclimatization in plants. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Chayjarung P, Phonherm M, Inmano O, Kongbangkerd A, Wongsa T, Limmongkon A. Influence of peanut hairy root cultivars on prenylated stilbenoid production and the response mechanism for combining the elicitors of chitosan, methyl jasmonate, and cyclodextrin. PLANTA 2022; 256:32. [PMID: 35794498 DOI: 10.1007/s00425-022-03946-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Peanut cultivars are known to produce stilbene compounds. Transcriptional control plays a key role in the early stages of the stress response mechanism, involving both PR-proteins and stilbene compounds. In this study, the production of stilbenoid compounds, especially prenylated, was investigated in two cultivars of peanut hairy root lines, designated as K2-K599 and T9-K599 elicited with a combination of chitosan (CHT), methyl jasmonate (MeJA), and cyclodextrin (CD): CHT + MeJA + CD. The antioxidant activities and stilbenoid content of both K2-K599 and T9-K599 hairy root lines increased significantly during the elicitation period. The T9-K599 hairy root line expressed higher ABTS and FRAP antioxidant activities than the K2-K599 line while the latter exhibited greater total phenolic content than the former at all-time points. Additionally, the K2-K599 line exhibited more stilbene compounds, including trans-resveratrol, trans-arachidin-1, and trans-arachidin-3 than the T9-K599 line, which showed statistically significant differences at all-time points. Gene expression of the enzyme involved in the stilbene biosynthesis pathway (PAL, RS, RS3) was observed, responding early to elicitor treatment and the metabolic production of a high level of stilbenoid compounds at a later stage. The antioxidant enzyme (CuZn-SOD, APX, GPX) and pathogenesis-related protein (PR; PR4A, PR5, PR10, chitinase) genes were strongly expressed after elicitor treatment at 24 h and decreased with an increasing elicitation time. Investigation of the response mechanism illustrates that the elicitor treatment can affect various plant responses, including plant cell wall structure and integrity, antioxidant system, PR-proteins, and secondary plant metabolites at different time points after facing external environmental stimuli.
Collapse
Affiliation(s)
- Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Montinee Phonherm
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Onrut Inmano
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanakorn Wongsa
- Faculty of Science and Technology, Kamphaeng Phet Rajabhat University, Kamphaeng phet, 62000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
32
|
Sánchez-Bermúdez M, del Pozo JC, Pernas M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918537. [PMID: 35845642 PMCID: PMC9284278 DOI: 10.3389/fpls.2022.918537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major threat to crop productivity that negatively affects food security worldwide. Increase in global temperatures are usually accompanied by drought, flooding and changes in soil nutrients composition that dramatically reduced crop yields. Against the backdrop of climate change, human population increase and subsequent rise in food demand, finding new solutions for crop adaptation to environmental stresses is essential. The effects of single abiotic stress on crops have been widely studied, but in the field abiotic stresses tend to occur in combination rather than individually. Physiological, metabolic and molecular responses of crops to combined abiotic stresses seem to be significantly different to individual stresses. Although in recent years an increasing number of studies have addressed the effects of abiotic stress combinations, the information related to the root system response is still scarce. Roots are the underground organs that directly contact with the soil and sense many of these abiotic stresses. Understanding the effects of abiotic stress combinations in the root system would help to find new breeding tools to develop more resilient crops. This review will summarize the current knowledge regarding the effects of combined abiotic stress in the root system in crops. First, we will provide a general overview of root responses to particular abiotic stresses. Then, we will describe how these root responses are integrated when crops are challenged to the combination of different abiotic stress. We will focus on the main changes on root system architecture (RSA) and physiology influencing crop productivity and yield and convey the latest information on the key molecular, hormonal and genetic regulatory pathways underlying root responses to these combinatorial stresses. Finally, we will discuss possible directions for future research and the main challenges needed to be tackled to translate this knowledge into useful tools to enhance crop tolerance.
Collapse
|
33
|
Zhao Q, Chen S, Wang G, Du Y, Zhang Z, Yu G, Ren C, Zhang Y, Du J. Exogenous melatonin enhances soybean (Glycine max (L.) Merr.) seedling tolerance to saline-alkali stress by regulating antioxidant response and DNA damage repair. PHYSIOLOGIA PLANTARUM 2022; 174:e13731. [PMID: 35717632 DOI: 10.1111/ppl.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Saline-alkali (SA) stress induces excessive reactive oxygen species (ROS) accumulation in plant cells, resulting in oxidative damages of membranes, lipids, proteins, and nucleic acids. Melatonin has antioxidant protection effects in living organisms and thus has received a lot of attention. This study aimed to investigate the effect and regulating mechanism of melatonin treatment on soybean tolerance to SA stress. In this study, cultivars Heihe 49 (HH49, SA-tolerant) and Henong 95 (HN95, SA-sensitive) were pot-cultured in SA soil, then treated with MT (0-300 μM) at V1 stage. SA stress induced ROS accumulation and DNA damage in the seedling roots of both cultivars, causing G1/S arrest in HN95 and G2/M arrest in HH49. Melatonin treatment enhanced the activity of antioxidant enzymes in soybean seedling roots and reduced ROS accumulation. Additionally, melatonin treatment upregulated DNA damage repair genes, thus enhancing the reduction of DNA oxidative damage under SA stress. The effects of melatonin treatment were manifested as decreased RAPD polymorphism, 8-hydroxy-2'-deoxyguanine (8-OH-dG) level, and relative density of apurinic sites (AP-sites). Meanwhile, melatonin treatment partially alleviated the SA-induced G1/S arrest in HN95 and G2/M arrest in HH49, thus enhancing soybean seedling tolerance to SA stress.
Collapse
Affiliation(s)
- Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Suyu Chen
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Guangda Wang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Yanli Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Zhaoning Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Gaobo Yu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Chunyuan Ren
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, People's Republic of China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, People's Republic of China
| |
Collapse
|
34
|
Rani S, Kumar P, Dahiya P, Dang AS, Suneja P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front Microbiol 2022; 13:824427. [PMID: 35756000 PMCID: PMC9226681 DOI: 10.3389/fmicb.2022.824427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Nanofertilizers effectively deliver the micronutrients besides reducing the phytotoxicity and environmental damage associated with chemical fertilizers. Zinc, an essential micronutrient, is significant for chloroplast development, activation of certain enzymes, and primary metabolism. Nano zinc oxide (ZnO) is the most widely used zinc nanoparticle. Concerns regarding the toxicity of conventional physical and chemical methods of synthesizing the nanoparticles have generated the need for a green approach. It involves the biogenic synthesis of metallic nanoparticles using plants and microorganisms. Microbe-mediated biogenic synthesis of metallic nanoparticles is a bottom-up approach in which the functional biomolecules of microbial supernatant reduce the metal ions into its nanoparticles. This review discusses the biological synthesis of nano-ZnO from microorganisms and related aspects such as the mechanism of synthesis, factors affecting the same, methods of application, along with their role in conferring drought stress tolerance to the plants and challenges involved in their large-scale synthesis and applications.
Collapse
Affiliation(s)
- Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
35
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
36
|
Qian R, Hu Q, Ma X, Zhang X, Ye Y, Liu H, Gao H, Zheng J. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. BMC PLANT BIOLOGY 2022; 22:138. [PMID: 35321648 PMCID: PMC8941805 DOI: 10.1186/s12870-022-03497-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Clematis species are attractive ornamental plants with a variety of flower colors and patterns. Heat stress is one of the main factors restricting the growth, development, and ornamental value of Clematis. Clematis lanuginosa and Clematis crassifolia are large-flowered and evergreen Clematis species, respectively, that show different tolerance to heat stress. We compared and analyzed the transcriptome of C. lanuginose and C. crassifolia under heat stress to determine the regulatory mechanism(s) of resistance. RESULTS A total of 1720 and 6178 differentially expressed genes were identified from C. lanuginose and C. crassifolia, respectively. The photosynthesis and oxidation-reduction processes of C. crassifolia were more sensitive than C. lanuginose under heat stress. Glycine/serine/threonine metabolism, glyoxylic metabolism, and thiamine metabolism were important pathways in response to heat stress in C. lanuginose, and flavonoid biosynthesis, phenylalanine metabolism, and arginine/proline metabolism were the key pathways in C. crassifolia. Six sHSPs (c176964_g1, c200771_g1, c204924_g1, c199407_g2, c201522_g2, c192936_g1), POD1 (c200317_g1), POD3 (c210145_g2), DREB2 (c182557_g1), and HSFA2 (c206233_g2) may be key genes in the response to heat stress in C. lanuginose and C. crassifolia. CONCLUSIONS We compared important metabolic pathways and differentially expressed genes in response to heat stress between C. lanuginose and C. crassifolia. The results increase our understanding of the response mechanism and candidate genes of Clematis under heat stress. These data may contribute to the development of new Clematis varieties with greater heat tolerance.
Collapse
Affiliation(s)
- Renjuan Qian
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Qingdi Hu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Xiaohua Ma
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Xule Zhang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Youju Ye
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Hongjian Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| | - Handong Gao
- College of Forestry, Nanjing Forestry University, Nanjing, 210037 China
| | - Jian Zheng
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Wenzhou, 325005 Zhejiang China
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021 Wenzhou, China
| |
Collapse
|
37
|
Lourkisti R, Froelicher Y, Morillon R, Berti L, Santini J. Enhanced Photosynthetic Capacity, Osmotic Adjustment and Antioxidant Defenses Contribute to Improve Tolerance to Moderate Water Deficit and Recovery of Triploid Citrus Genotypes. Antioxidants (Basel) 2022; 11:antiox11030562. [PMID: 35326213 PMCID: PMC8944853 DOI: 10.3390/antiox11030562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/22/2022] Open
Abstract
Currently, drought stress is a major issue for crop productivity, and future climate models predict a rise in frequency and severity of drought episodes. Polyploidy has been related to improved tolerance of plants to environmental stresses. In Citrus breeding programs, the use of triploidy is an effective way to produce seedless fruits, one of the greatest consumer expectations. The current study used physiological and biochemical parameters to assess the differential responses to moderate water deficit of 3x genotypes compared to 2x genotypes belonging to the same hybridization. Both parents, the mandarin Fortune and Ellendale tangor, were also included in the experimental design, while the 2x common clementine tree was used as reference. Water deficit affects leaf water status, as well as physiological and detoxification processes. Triploid genotypes showed a better ability to maintain water status through increased proline content and photosynthetic capacity. Moreover, less oxidative damage was associated with stronger antioxidant defenses in triploid genotypes. We also found that triploidy improved the recovery capacity after a water deficit episode.
Collapse
Affiliation(s)
- Radia Lourkisti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
- Correspondence: ; Tel.: +33-420-202-268
| | - Yann Froelicher
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP, 20230 San Giuliano, France
| | - Raphaël Morillon
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP Institut, INRAE, Institut Agro, University Montpellier, 34398 Montpellier, France; (Y.F.); (R.M.)
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
| | - Liliane Berti
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| | - Jérémie Santini
- Laboratoire de Biochimie et Biologie Moléculaire du Végétal, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR), 6134 Sciences pour l’Environnement (SPE), Université de Corse, 20250 Corte, France; (L.B.); (J.S.)
| |
Collapse
|
38
|
Balfagón D, Terán F, de Oliveira TDR, Santa-Catarina C, Gómez-Cadenas A. Citrus rootstocks modify scion antioxidant system under drought and heat stress combination. PLANT CELL REPORTS 2022; 41:593-602. [PMID: 34232376 PMCID: PMC8989854 DOI: 10.1007/s00299-021-02744-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 06/01/2023]
Abstract
The activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion. Therefore, rootstock selection is key to improve crop performance and a sustainable production under changing climate conditions. Climate change is altering weather conditions such as mean temperatures and precipitation patterns. Rising temperatures, especially in certain regions, accelerates soil water depletion and increases drought risk, which affects agriculture yield. Previously, our research demonstrated that the citrus rootstock Carrizo citrange (Citrus sinensis × Poncirus trifoliata) is more tolerant than Cleopatra mandarin (C. reshni) to drought and heat stress combination, in part, due to a higher activation of the antioxidant system that alleviated damage produced by oxidative stress. Here, by using reciprocal grafts of both genotypes, we studied the importance of the rootstock on scion performance and antioxidant response under this stress combination. Carrizo rootstock, under stress combination, positively influenced Cleopatra scion by reducing H2O2 accumulation, increasing superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymatic activities and inducing SOD1, APX2 and catalase (CAT) protein accumulations. On the contrary, Cleopatra rootstock induced decreases in APX2 expression, CAT activity and SOD1, APX2 and CAT contents on Carrizo scion. Taken together, our findings indicate that the activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion and highlight the importance of the rootstock selection to improve crop performance and maintain citrus yield under the current scenario of climate change.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Fátima Terán
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Tadeu Dos Reis de Oliveira
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Centro de Biociências e Biotecnologia (CBB), Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
39
|
Shariatipour N, Heidari B, Shams Z, Richards C. Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions. Sci Rep 2022; 12:1121. [PMID: 35064142 PMCID: PMC8782833 DOI: 10.1038/s41598-022-05024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Evaluation of forage yield and antioxidant activity in Poa pratensis with high quality and good spring green-up forage might help variety improvement for use under water deficit condition. Germplasm and phenotypic diversity evaluations lay a foundation for genotype selection and improvement of varieties for drought tolerance in P. pratensis. The present study was conducted to assess the genetic potential of a collection of P. pratensis accessions for drought stress and to identify the association between polyphenol compounds and forage yield traits. Vegetative clone samples of 100 accessions collected from a diverse geographical area of Iran were clonally propagated in a greenhouse and evaluated in the field under two moisture regimes (non-stress and drought stress) in 2018 and 2019. Drought stress had negative effects on fresh and dry forage yields and reduced phenotypic variances. On average, drought stress reduced fresh and dry forage yields by 45% and 28%, respectively. The results of Mantel test showed no significant correlation between forage yield traits and geographical distances. Genetic coefficients of variation for forage yield and most of the phytochemicals were lower under drought stress, suggesting that deficit irrigation may reduce genetic variation for the tested traits. The estimates of heritability were higher under non-stress conditions than under drought stress treatment for forage yield traits and few polyphenols. However, the majority of polyphenol compounds had higher heritability than forage yield traits under drought stress, which suggests the potential for indirect selection. The 'Ciakhor', 'Damavand', 'Karvandan', 'Abrumand', and 'Abr2' accessions had high quantities for polyphenols and yield traits under both moisture regimes. These accessions are promising candidates for use in variety crossing programs and for developing high-yielding varieties under water-deficit conditions.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186, Shiraz, Iran.
| | - Zahra Shams
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, USA
| |
Collapse
|
40
|
Khalid MF, Vincent C, Morillon R, Anjum MA, Ahmad S, Hussain S. Different strategies lead to a common outcome: different water-deficit scenarios highlight physiological and biochemical strategies of water-deficit tolerance in diploid versus tetraploid Volkamer lemon. TREE PHYSIOLOGY 2021; 41:2359-2374. [PMID: 34077547 DOI: 10.1093/treephys/tpab074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/13/2021] [Indexed: 05/21/2023]
Abstract
Water scarcity restricts citrus growth and productivity worldwide. In pot conditions, tetraploid plants tolerate water deficit more than their corresponding diploids. However, their tolerance mechanisms remain elusive. In this study, we focused on which mechanisms (i.e., hydraulic, osmotic or antioxidative) confer water-deficit tolerance to tetraploids. We exposed diploid and tetraploid Volkamer lemon rootstock (Citrus volkameriana Tan. and Pasq.) to quickly (fast) and slowly (slow) developing water-deficit conditions. We evaluated their physiological, antioxidative defense and osmotic adjustment responses, and mineral distribution to leaves and roots. Water-deficit conditions decreased the photosynthetic variables of both diploid and tetraploid plants. Moreover, the corresponding decrease was greater in diploids than tetraploids. Higher concentrations of antioxidant enzymes, osmoprotectants and antioxidant capacity were found in the leaves and roots of tetraploids than diploids under water deficit. Diploid plants showed fast response in slow water-deficit condition, but that response did not persist as the deficit intensified. Meanwhile, tetraploids had lower water loss, which slowed the onset of slow water deficit relative to diploids. This response allowed stronger photosynthesis, while antioxidant and osmoprotectant production allowed for further tolerance once desiccation began. Overall, our results concluded that Volkamer lemon tetraploid plants tolerate rapid and slow water deficit by maintaining their photosynthesis due to low conductance (stem or roots), which helps to avoid desiccation, and stronger biochemical defense machinery than their corresponding diploids.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Horticultural Sciences Department, Citrus Research and Education Centre, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Christopher Vincent
- Horticultural Sciences Department, Citrus Research and Education Centre, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | - Raphael Morillon
- Equipe SEAPAG, UMR AGAP Institut, CIRAD, F-97170 Petit-Bourg, Guadeloupe, French West Indies
- UMR AGAP Institut, University of Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Muhammad Akbar Anjum
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shakeel Ahmad
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
41
|
García-Caparrós P, De Filippis L, Gul A, Hasanuzzaman M, Ozturk M, Altay V, Lao MT. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: a Review. THE BOTANICAL REVIEW 2021; 87:421-466. [PMID: 0 DOI: 10.1007/s12229-020-09231-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 05/25/2023]
|
42
|
Mustafa T, Sattar A, Sher A, Ul-Allah S, Ijaz M, Irfan M, Butt M, Cheema M. Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms. Sci Rep 2021; 11:23170. [PMID: 34848766 PMCID: PMC8633343 DOI: 10.1038/s41598-021-02594-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Due to climate change, temperature in late February and early March raised up which cause heat stress at reproductive stage (terminal growth phase of wheat crop) which has become the major causative factor towards low wheat production in arid and semiarid regions. Therefore; strategies need to be adopted for improving terminal heat stress tolerance in wheat. In this study, we assessed whether foliar application of silicon (Si) (2 and 4 mM) at terminal growth phase i.e. heading stage of wheat imposed to heat stress (37 ± 2 °C) under polythene tunnel could improve the performance of wheat. Results of the study revealed that heat stress significantly reduced the photosynthetic pigments (chlorophyll a, b and a + b and carotenoids) leading to a lower grain yield. However, a 4 mM Si application (foliar applied) at heading stage prominently increased the chlorophyll a, b and a + b and carotenoids of flag leaf by improving the activities of enzymatic antioxidants (catalase, peroxidase and superoxide dismutase) and osmoprotectants (soluble sugar protein and proline) under terminal heat stress. Improvements in the performance of wheat (chlorophyll contents, carotenoids, soluble sugar and proteins and proline and yield) with foliar application of Si were also observed under control conditions. Correlation analysis revealed strong association (r > 0.90) of chlorophyll contents and carotenoids with grain and biological yield. Negative correlation (-0.81 < r > -0.63) of physio-biochemical components (antioxidants, proline, soluble sugars and proteins) with yield revealed that under heat stress these components produced in more quantities to alleviate the effects of heat, and Si application also improved these physio biochemical components. In crux, foliar application of Si alleviates the losses in the performance of wheat caused by terminal heat stress by improving the antioxidant mechanism and production of osmoprotectants.
Collapse
Affiliation(s)
- Talha Mustafa
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Abdul Sattar
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Ahmad Sher
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan.
| | - Muhammad Ijaz
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Muhammad Irfan
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Madiha Butt
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus Layyah, Layyah, Pakistan
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada.
| |
Collapse
|
43
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
44
|
Du B, Kruse J, Winkler JB, Alfarraj S, Albasher G, Schnitzler JP, Ache P, Hedrich R, Rennenberg H. Metabolic responses of date palm (Phoenix dactylifera L.) leaves to drought differ in summer and winter climate. TREE PHYSIOLOGY 2021; 41:1685-1700. [PMID: 33607652 DOI: 10.1093/treephys/tpab027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Drought negatively impacts growth and productivity of plants, particularly in arid and semi-arid regions. Although drought events can take place in summer and winter, differences in the impact of drought on physiological processes between seasons are largely unknown. The aim of this study was to elucidate metabolic strategies of date palms in response to drought in summer and winter season. To identify such differences, we exposed date palm seedlings to a drought-recovery regime, both in simulated summer and winter climate. Leaf hydration, carbon discrimination (${\Delta}$13C), and primary and secondary metabolite composition and contents were analyzed. Depending on season, drought differently affected physiological and biochemical traits of the leaves. In summer, drought induced significantly decreased leaf hydration, concentrations of ascorbate, most sugars, primary and secondary organic acids, as well as phenolic compounds, while thiol, amino acid, raffinose and individual fatty acid contents were increased compared with well-watered plants. In winter, drought had no effect on leaf hydration, ascorbate and fatty acids contents, but resulted in increased foliar thiol and amino acid levels as observed in summer. Compared with winter, foliar traits of plants exposed to drought in summer only partly recovered after re-watering. Memory effects on water relations, and primary and secondary metabolites seem to prepare foliar traits of date palms for repeated drought events in summer. Apparently, a well-orchestrated metabolic network, including the anti-oxidative system, compatible solutes accumulation and osmotic adjustment, and maintenance of cell-membrane stability strongly reduces the susceptibility of date palms to drought. These mechanisms of drought compensation may be more frequently required in summer.
Collapse
Affiliation(s)
- Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, 621000 Mianyang, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Joerg Kruse
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Saleh Alfarraj
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gadah Albasher
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Joerg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Ingolstädter, Landstraße 1, 85764 Neuherberg, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53, 79110 Freiburg, Germany
- King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Beibei District, 400715 Chongqing,China
| |
Collapse
|
45
|
Wani KI, Naeem M, Castroverde CDM, Kalaji HM, Albaqami M, Aftab T. Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants. Int J Mol Sci 2021; 22:ijms22179656. [PMID: 34502565 PMCID: PMC8432174 DOI: 10.3390/ijms22179656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Abiotic stressors, such as drought, heavy metals, and high salinity, are causing huge crop losses worldwide. These abiotic stressors are expected to become more extreme, less predictable, and more widespread in the near future. With the rapidly growing human population and changing global climate conditions, it is critical to prevent global crop losses to meet the increasing demand for food and other crop products. The reactive gaseous signaling molecule nitric oxide (NO) is involved in numerous plant developmental processes as well as plant responses to various abiotic stresses through its interactions with various molecules. Together, these interactions lead to the homeostasis of reactive oxygen species (ROS), proline and glutathione biosynthesis, post-translational modifications such as S-nitrosylation, and modulation of gene and protein expression. Exogenous application of various NO donors positively mitigates the negative effects of various abiotic stressors. In view of the multidimensional role of this signaling molecule, research over the past decade has investigated its potential in alleviating the deleterious effects of various abiotic stressors, particularly in ROS homeostasis. In this review, we highlight the recent molecular and physiological advances that provide insights into the functional role of NO in mediating various abiotic stress responses in plants.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
| | - M. Naeem
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
| | | | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, India; (K.I.W.); (M.N.)
- Correspondence:
| |
Collapse
|
46
|
Bian F, Wang Y, Duan B, Wu Z, Zhang Y, Bi Y, Wang A, Zhong H, Du X. Drought stress introduces growth, physiological traits and ecological stoichiometry changes in two contrasting Cunninghamia lanceolata cultivars planted in continuous-plantation soils. BMC PLANT BIOLOGY 2021; 21:379. [PMID: 34407754 PMCID: PMC8371764 DOI: 10.1186/s12870-021-03159-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/06/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND The decrease in Cunninghamia lanceolata (Lamb.) production on continuously planted soil is an essential problem. In this study, two-year-old seedlings of two cultivars (a normal cultivar, NC, and a super cultivar, SC) were grown in two types of soil (not planted (NP) soil; continuously planted (CP) soil) with three watering regimes, and the interactive effects on plant growth and physiological traits were investigated in a greenhouse experiment. The water contents of the soil in the control (CK) (normal water content), medium water content (MWC) and low water content (LWC) treatments reached 75-80 %, 45-50 % and 20-25 % of the field water capacity, respectively. RESULTS The results indicated that the CP soil had a negative effect on growth and physiological traits and that the LWC treatment caused even more severe and comprehensive negative effects. In both cultivars, the CP soil significantly decreased the height increment (HI), basal diameter increment (DI), dry matter accumulation (DMA), net photosynthetic rate (Pn), total chlorophyll content (TChl), carotenoid content (Caro) and photosynthetic nitrogen use efficiency (PNUE). Compared to the NP soil, the CP soil also decreased the proline and soluble protein contents, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) and increased the nitrogen:phosphorus ratio in roots, stems and leaves. The LWC treatment decreased growth and photosynthesis, changed ecological stoichiometry, induced oxidative stress, promoted water use efficiency and damaged chloroplast ultrastructure. Significant increases in ascorbate peroxidase (APX), peroxidase (POD), soluble protein and proline contents were found in the LWC treatment. Compared with the NC, the SC was more tolerant to the CP soil and water stress, as indicated by the higher levels of DMA, Pn, and WUE. After exposure to the CP soil and watering regimes, the decreases in biomass accumulation and gas exchange were more pronounced. CONCLUSIONS The combination of drought and CP soil may have detrimental effects on C. lanceolata growth, and low water content enhances the impacts of CP soil stress on C. lanceolata seedlings. The superiority of the SC over the NC is significant in Chinese fir plantation soil. Therefore, continuously planted soil can be utilized to cultivate improved varieties of C. lanceolata and maintain water capacity. This can improve their growth and physiological performance to a certain extent.
Collapse
Affiliation(s)
- Fangyuan Bian
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Yukui Wang
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Baoli Duan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Zhizhuang Wu
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Yuanbing Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 610041 Chengdu, China
| | - Yufang Bi
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Anke Wang
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Hao Zhong
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
| | - Xuhua Du
- Key Laboratory of National Forestry and Grassland Administration on Bamboo Resources and Utilization, China National Bamboo Research Center, Zhejiang 310012 Hangzhou, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan China
| |
Collapse
|
47
|
Kurniawan A, Chuang HW. Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. J Appl Microbiol 2021; 132:1260-1274. [PMID: 34365711 DOI: 10.1111/jam.15252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
AIMS To analyse effects and mechanisms of plant growth promotion mediated by Bacillus mycoides strain A3 (BmA3), in Arabidopsis thaliana seedlings. METHODS AND RESULTS Bacillus mycoides strain A3 (BmA3) isolated from the bamboo rhizosphere produced phytohormones, including indole-3-acetic acid (IAA) and gibberellic acid (GA), and exhibited phosphate solubilization and radical scavenging activities. A. thaliana seedlings inoculated with BmA3 exhibited an altered root architecture including an increased number of lateral roots and root hairs. Likewise, enhanced photosynthetic efficiency through the accumulation of higher levels of chlorophyll and starch, and increased plant size and fresh weight were observed in the BmA3-treated seedlings. This bacterial inoculation stimulated the antioxidant defence system by increasing the activities of catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and phenylalanine ammonia-lyase (PAL). Secondary metabolites, including phenolic compounds, flavonoids and glucosinolates, were induced to higher levels in the BmA3-treated plants. Under drought and heat stresses, lower levels of H2 O2 , malondialdehyde (MDA) and electrolyte leakage were noticed in the treated seedlings. Genes involved in the signalling pathway of jasmonic acid (JA) including MYC2 and lipoxygenase 1 (LOX1) and salicylic acid (SA) including SAR DEFICIENT 1 (SARD1) and CAM-BINDING PROTEIN 60-LIKE G (CBP60G), and the antioxidant defence system including Ascorbate peroxidase (AtAPX) and alternative oxidase (AOX) were upregulated in BmA3-treated plants. Moreover, pathogenesis-related protein 1 (PR-1) and PR-2, marker genes for disease resistance, as well as DREB2A and HsFA2, which function in abiotic stress regulation, were also upregulated. CONCLUSIONS BmA3 was able to activate JA and SA signalling pathways to induce plant growth and abiotic stress tolerance in A. thaliana seedlings. SIGNIFICANCE AND IMPACT OF STUDY The plant growth promotion and increased stress tolerance induced by BmA3 were the result of the combined effects of microbial metabolites and activated host plant responses, including phytohormone signalling pathways and antioxidant defence systems.
Collapse
Affiliation(s)
- Andi Kurniawan
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
48
|
Jia X, Feng H, Bu Y, Ji N, Lyu Y, Zhao S. Comparative Transcriptome and Weighted Gene Co-expression Network Analysis Identify Key Transcription Factors of Rosa chinensis 'Old Blush' After Exposure to a Gradual Drought Stress Followed by Recovery. Front Genet 2021; 12:690264. [PMID: 34335694 PMCID: PMC8320538 DOI: 10.3389/fgene.2021.690264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Rose is one of the most fundamental ornamental crops, but its yield and quality are highly limited by drought. The key transcription factors (TFs) and co-expression networks during rose’s response to drought stress and recovery after drought stress are still limited. In this study, the transcriptomes of leaves of 2-year-old cutting seedlings of Rosa chinensis ‘Old Blush’ from three continuous droughted stages (30, 60, 90 days after full watering) and rewatering were analyzed using RNA sequencing. Weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network, which was associated with the physiological traits of drought response to discovering the hub TFs involved in drought response. More than 45 million high-quality clean reads were generated from the sample and used for comparison with the rose reference genome. A total of 46433 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that drought stress caused significant changes in signal transduction, plant hormones including ABA, auxin, brassinosteroid (BR), cytokinin, ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), primary and secondary metabolism, and a certain degree of recovery after rewatering. Gene co-expression analysis identified 18 modules, in which four modules showed a high degree of correlation with physiological traits. In addition, 42 TFs including members of NACs, WRKYs, MYBs, AP2/ERFs, ARFs, and bHLHs with high connectivity in navajowhite1 and blue modules were screened. This study provides the transcriptome sequencing report of R. chinensis ‘Old Blush’ during drought stress and rewatering process. The study also identifies the response of candidate TFs to drought stress, providing guidelines for improving the drought tolerance of the rose through molecular breeding in the future.
Collapse
Affiliation(s)
- Xin Jia
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Hui Feng
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Yanhua Bu
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Naizhe Ji
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Germplasm Innovation and Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Shiwei Zhao
- Beijing Key Laboratory of Greening Plant Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| |
Collapse
|
49
|
Mukarram M, Choudhary S, Kurjak D, Petek A, Khan MMA. Drought: Sensing, signalling, effects and tolerance in higher plants. PHYSIOLOGIA PLANTARUM 2021; 172:1291-1300. [PMID: 33847385 DOI: 10.1111/ppl.13423] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 05/12/2023]
Abstract
Drought can be considered as a cocktail of multiple stressful conditions that contribute to osmotic and ionic imbalance in plants. Considering that water is vital for plant life, the very survival of the plant becomes questionable during drought conditions. Water deficit affects a wide spectrum of morpho-physiological phenomena restricting overall plant growth, development and productivity. To evade such complications and ameliorate drought-induced effects, plants have a battery of various defence mechanisms. These mechanisms can vary from stomatal adjustments to osmotic adjustments and antioxidant metabolism to ion regulations. In this review, we critically evaluate how drought is perceived and signalled through the whole plant via abscisic acid mediated pathways. Additionally, the impact of drought on photosynthesis, gas exchange variables and reactive oxygen species pathway was also reviewed, along with the reversal of these induced effects through associated morpho-physiological counter mechanisms.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Anja Petek
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
50
|
Shokat S, Novák O, Široká J, Singh S, Gill KS, Roitsch T, Großkinsky DK, Liu F. Elevated CO2 modulates the effect of heat stress responses in Triticum aestivum by differential expression of isoflavone reductase-like (IRL) gene. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab247. [PMID: 34050754 DOI: 10.1093/jxb/erab247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Two wheat genotypes forming high and low biomass (HB and LB), exhibiting differential expression of an isoflavone reductase-like (IRL) gene, and resulting in contrasting grain yield under heat stress field conditions, were analyzed in detail for their responses under controlled heat and elevated CO2 conditions. Significant differences in IRL expression between the two lines were hypothesized to be the basis of their differential performance under the tested conditions and their stress tolerance potential. By a holistic approach integrating advanced cell physiological phenotyping of the antioxidative and phytohormone system in spikes and leaves with measurements of ecophysiological and agronomic traits, the genetic differences of the genotypes in IRL expression were assessed. In response to heat and elevated CO2, the two genotypes showed opposite regulation of IRL expression, which was associated with cytokinin concentration, total flavonoid contents, activity of superoxide dismutase, antioxidant capacity and photosynthetic rate in leaves and cytokinin concentration and ascorbate peroxidase activity in spikes. Our study showed that IRL expression is associated with wheat yield performance under heat stress at anthesis, mediated by diverse physiological mechanisms. Hence, based on our results, the IRL gene is a promising candidate for developing genetic markers for breeding heat-tolerant wheat.
Collapse
Affiliation(s)
- Sajid Shokat
- Crop science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Jitka Široká
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | | | - Kulvinder Singh Gill
- Geneshifters, Mary Jena Lane, Pullman WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Thomas Roitsch
- Crop science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czech Republic
| | - Dominik K Großkinsky
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, Thorvaldsensvej, Frederiksberg C, Denmark
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße, Tulln, Austria
| | - Fulai Liu
- Crop science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé, Taastrup, Denmark
| |
Collapse
|