1
|
González-Sánchez GD, Martínez-Pérez LA, Pérez-Reyes Á, Guzmán-Flores JM, Garcia-Robles MJ. Prevalence of the genetic variant rs61330082 and serum levels of the visfatin gene in Mexican individuals with metabolic syndrome: a clinical and bioinformatics approach. NUTR HOSP 2024; 41:1194-1201. [PMID: 39446118 DOI: 10.20960/nh.05183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Introduction Background: metabolic syndrome (MetS) is a group of clinical anomalies that share an inflammatory component of multifactorial etiology. Objectives: the present study aims to relate the genetic variant (rs61330082 C/T) with dietary patterns in the presence of MetS and the application of molecular docking according to the genotype and associated transcription factors. Methods: 197 individuals aged 18 to 65 were included, from whom anthropometric measurements were taken, and a blood sample from the forearm. DNA extraction and enzymatic digestion were performed to determine the genotype of each participant by PCR-RFLP. Dietary patterns were analyzed using a nutritional questionnaire validated for the Mexican population. Serum levels of the protein visfatin were assessed by ELISA. Finally, bioinformatics tools were used for molecular docking to infer the binding of transcriptional factors in the polymorphic region. Results: the TT genotype was present in only 10 % of the population. Women carrying the CT+TT genotype, according to the dominant genetic model, had higher serum levels of triglycerides and VDLD-C. Statistical analysis did not show a significant association between the presence of MetS and the dominant CT+TT model (OR = 1.41, 95 % CI = 0.61-3.44, p = 0.53). We identified PAX5 as a transcription factor binding to the polymorphic site of this genetic variant. Conclusions: this study demonstrated a significant association between the genetic variant (rs61330082 C/T) and lipid parameters. Women carrying the T allele have a higher risk of high triglyceride levels, a criterion for metabolic syndrome.
Collapse
Affiliation(s)
| | | | - Ángel Pérez-Reyes
- Biosciences. Centro Universitario de Los Altos. Universidad de Guadalajara
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias. Department of Health Sciences. Centro Universitario de Los Altos. Universidad de Guadalajara
| | | |
Collapse
|
2
|
Li H, Niu X, Xu F, Ansari AR, Zou W, Yang K, Pang X, Song H. The role of visfatin in peripheral immune organs and intestines of weaned piglets under lipopolysaccharide induced immune stress. Res Vet Sci 2024; 184:105499. [PMID: 39729949 DOI: 10.1016/j.rvsc.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
To investigate the regulatory mechanisms and pathways of visfatin under immune stress injury in weaned piglets, we established a lipopolysaccharide-induced immune stress model in weaned piglets to study how visfatin affects peripheral immune organs and intestinal function. The results revealed that visfatin improved the inflammatory response in immune-stressed weaned piglets by reducing the levels of pro-inflammatory cytokines interleukin-1β, interleukin-6 and monocyte chemoattractant protein-1, as well as decreasing the neutrophil/lymphocyte ratio. Visfatin ameliorated oxidative stress in piglets by promoting the expression of superoxide dismutase and glutathione peroxidase. It also enhanced cell proliferation in peripheral immune organs (spleen and mesenteric lymph nodes) and suppressed cell apoptosis in these organs through the death receptor apoptosis pathway, thereby improving the immune function of weaned piglets under immune stress. Moreover, it alleviated intestinal villi damage, increased the abundance of beneficial bacteria, and elevated the levels of short-chain fatty acids, thus preserving the intestinal barrier's integrity and the balance of intestinal microbiota. Hence, these data indicate that visfatin can ameliorate immune stress injury in weaned piglets by exerting anti-inflammatory and antioxidant effects, enhancing immune organ and intestinal function.
Collapse
Affiliation(s)
- Huizhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Loudi Vocational and Technical College, Loudi 417000, China.
| | - Xiaoyu Niu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fenliang Xu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdur Rahman Ansari
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Anatomy and Histology Section, College of Veterinary and Animal Sciences (CVAS), Jhang: University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Weihua Zou
- Shanghai Fuxin Medical Technology Co., Ltd, Shanghai 200000, China
| | - Keli Yang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xinxin Pang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Mansour H, Slika H, Nasser SA, Pintus G, Khachab M, Sahebkar A, Eid AH. Flavonoids, gut microbiota and cardiovascular disease: Dynamics and interplay. Pharmacol Res 2024; 209:107452. [PMID: 39383791 DOI: 10.1016/j.phrs.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of global morbidity and mortality. Extensive efforts have been invested to explicate mechanisms implicated in the onset and progression of CVD. Besides the usual suspects as risk factors (obesity, diabetes, and others), the gut microbiome has emerged as a prominent and essential factor in the pathogenesis of CVD. With its endocrine-like effects, the microbiome modulates many physiologic processes. As such, it is not surprising that dysbiosis-by generating metabolites, inciting inflammation, and altering secondary bile acid signaling- could predispose to or aggravate CVD. Nevertheless, various natural and synthetic compounds have been shown to modulate the microbiome. Prime among these molecules are flavonoids, which are natural polyphenols mainly present in fruits and vegetables. Accumulating evidence supports the potential of flavonoids in attenuating the development of CVD. The ascribed mechanisms of these compounds appear to involve mitigation of inflammation, alteration of the microbiome composition, enhancement of barrier integrity, induction of reverse cholesterol transport, and activation of farnesoid X receptor signaling. In this review, we critically appraise the methods by which the gut microbiome, despite being essential to the human body, predisposes to CVD. Moreover, we dissect the mechanisms and pathways underlying the cardioprotective effects of flavonoids.
Collapse
Affiliation(s)
- Hadi Mansour
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Al Zein M, Akomolafe AF, Mahmood FR, Khrayzat A, Sahebkar A, Pintus G, Kobeissy F, Eid AH. Leptin is a potential biomarker of childhood obesity and an indicator of the effectiveness of weight-loss interventions. Obes Rev 2024; 25:e13807. [PMID: 39044542 DOI: 10.1111/obr.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/12/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Childhood obesity represents a significant public health concern, imposing a substantial burden on the healthcare system. Furthermore, weight-loss programs often exhibit reduced effectiveness in adults who have a history of childhood obesity. Therefore, early intervention against childhood obesity is imperative. Presently, the primary method for diagnosing childhood obesity relies on body mass index (BMI), yet this approach has inherent limitations. Leptin, a satiety hormone produced by adipocytes, holds promise as a superior tool for predicting both childhood and subsequent adulthood obesity. In this review, we elucidate the tools employed for assessing obesity in children, delve into the biological functions of leptin, and examine the factors governing its expression. Additionally, we discuss maternal and infantile leptin levels as predictors of childhood obesity. By exploring the relationship between leptin levels and weight loss, we present leptin as a potential indicator of the effectiveness of obesity interventions.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Fathima R Mahmood
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali Khrayzat
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Lu J, Zhang X, Dong P, Mei C, Yang Y, Yu C, Song L. Single-Cell Analysis Reveals the Cellular and Molecular Changes of Liver Injury and Fibrosis in Mice During the Progression of Schistosoma japonicum Infection. Curr Issues Mol Biol 2024; 46:11906-11926. [PMID: 39590301 PMCID: PMC11592686 DOI: 10.3390/cimb46110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Schistosomiasis is a parasitic disease that poses a serious threat to human health. However, the pathogenic mechanism during the progression of Schistosoma japonicum infection remains unclear. In order to elucidate this mechanism, we used single-cell RNA sequencing (scRNA-seq) to investigate the transcriptome characteristics of the cellular (single-cell) landscape in the livers of mice infected with Schistosoma japonicum, which were divided into three groups: uninfected mice (0 week (w)), infected mice at 6 w post-infection (the acute phase), and infected mice at 10 w post-infection (the chronic phase). A total of 31,847 liver cells were included and clustered into 21 groups. The cells and T-cells had high heterogeneity in the liver during the progression of schistosome infection. The number and intensity of the intercellular interactions significantly increased at 6 w after infection but decreased at 10 w. The inflammatory signaling pathways chemoattractant cytokine ligand (CCL)5-chemokine C-C-motif receptor (CCR)5 between macrophages and T-cells were predominant at 6 w post-infection; the CCL6-CCR2 signaling pathway between macrophages was predominant at 10 w. The CD80 signaling pathway related to T-cell activation was increased at 6 w after infection, and increased expression of its receptor CD28 on the surfaces of CD4+ and CD8+ T-cells was confirmed by flow cytometry, suggesting an increase in their activation. In addition, scRNA-seq and quantitative reverse transcription polymerase chain reaction (qRT-PCR) confirmed that the intercellular communication between secretory phosphoprotein 1 (SPP1)-cluster of differentiation (CD44), insulin-like growth factor (IGF)-1-IGF1r and visfatin-insulin receptor (Insr) associated with bone metabolism and insulin metabolism was increased and enhanced in the liver at 6 w post-infection. Overall, we provide the comprehensive single-cell transcriptome landscape of the liver in mice during the progression of schistosome infection and delineate the key cellular and molecular events involved in schistosome infection-induced liver injury and fibrosis. The elevated CCL5-CCR5 and CCL6-CCR2 signaling pathways in the liver may be a drug target for liver injury and fibrosis caused by schistosome infection, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuanxin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; (J.L.); (X.Z.); (P.D.); (C.M.); (Y.Y.)
| | - Lijun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; (J.L.); (X.Z.); (P.D.); (C.M.); (Y.Y.)
| |
Collapse
|
6
|
JUMAAH YK, FATHI ZH, MOHAMMAD JA. Comparative Effects of Candesartan Versus Enalapril on Apelin, Visfatin, and Lipid Levels in Non-obese Hypertensive Patients. Medeni Med J 2024; 39:204-210. [PMID: 39350559 PMCID: PMC11572212 DOI: 10.4274/mmj.galenos.2024.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/26/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Apelin and visfatin are adipokines secreted from adipose tissue that play important roles in regulating blood pressure. Therefore, the current study aimed to investigate the effects of candesartan versus enalapril on apelin, visfatin, and lipid profiles in hypertensive patients. Methods In this case-control study, 120 participants were enrolled in four groups; Healthy people, newly diagnosed hypertensive patients, and enalapril- and candesartan-treated patients. Results Serum apelin levels were significantly lower and visfatin levels were significantly higher in newly diagnosed hypertensive patients compared with the control group (p=0.0015, p=0.0175 respectively). Moreover, apelin levels were higher and visfatin levels were lower in the candesartan-treated patients compared with the newly diagnosed group (p=0.0487, p<0.0001 respectively). Interestingly, apelin levels were non-significantly higher and visfatin levels were significantly lower in enalapril-treated patients compared with the newly diagnosed group (p<0.0001). Conclusions Lower apelin and higher visfatin levels are associated with newly diagnosed patients with hypertension. Interestingly, the findings suggest that ACE inhibition and angiotensin receptor blockade by enalapril and candesartan, respectively, positively regulate apelin and visfatin levels in hypertension. Specifically, candesartan regulates these adipokine to a greater extent than enalapril.
Collapse
Affiliation(s)
- Yaseen K. JUMAAH
- University of Mosul, College of Pharmacy, Department of Pharmacognosy and Medicinal Plants, Mosul, Iraq
| | - Zainab H. FATHI
- University of Mosul, College of Pharmacy, Department of Pharmacognosy and Medicinal Plants, Mosul, Iraq
| | - Jehan A. MOHAMMAD
- University of Mosul, College of Pharmacy, Department of Pharmacognosy and Medicinal Plants, Mosul, Iraq
| |
Collapse
|
7
|
Hernando-Redondo J, Malcampo M, Pérez-Vega KA, Paz-Graniel I, Martínez-González MÁ, Corella D, Estruch R, Salas-Salvadó J, Pintó X, Arós F, Bautista-Castaño I, Romaguera D, Lapetra J, Ros E, Cueto-Galán R, Fitó M, Castañer O. Mediterranean Diet Modulation of Neuroinflammation-Related Genes in Elderly Adults at High Cardiovascular Risk. Nutrients 2024; 16:3147. [PMID: 39339745 PMCID: PMC11434799 DOI: 10.3390/nu16183147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Individuals with dementia and neurodegenerative diseases (NDDs) often suffer from cardiovascular diseases (CVDs). Neuroinflammation driven by conditions involved in CVDs is linked to disruptions in the central nervous system triggering immune reactions, perpetuating an "inflammatory-like" environment. The Mediterranean diet (MedDiet), known for its anti-inflammatory and antioxidant properties, has been proposed as a key factor to attenuate these risks. Blood nuclear cell samples were collected from 134 participants of the PREDIMED trial, which randomized participants to three diets: one supplemented with extra-virgin olive oil (MedDiet-EVOO), another with nuts (MedDiet-Nuts), and a low-fat control diet. These samples were analyzed at baseline and 12-month follow-up to assess the impact of these dietary interventions on gene expression markers. We first selected target genes by analyzing intersections between NDD and CVD associations. Significant gene expression changes from baseline to 12 months were observed in the participants allocated to the MedDiet-EVOO, particularly in CDKN2A, IFNG, NLRP3, PIK3CB, and TGFB2. Additionally, TGFB2 expression changed over time in the MedDiet-Nuts group. Comparative analyses showed significant differences in TGFB2 between MedDiet-EVOO and control, and in NAMPT between MedDiet-Nuts and control. Longitudinal models adjusted for different covariates also revealed significant effects for TGFB2 and NAMPT. In conclusion, our results suggest that one year of traditional MedDiet, especially MedDiet-EVOO, modulates gene expression associated with CVD risk and NDDs in older adults at high CV risk.
Collapse
Affiliation(s)
- Javier Hernando-Redondo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- Ph.D. Program in Food Science and Nutrition, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Malcampo
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Karla Alejandra Pérez-Vega
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Indira Paz-Graniel
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Universidad de Navarra, 31009 Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 46010 Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Xavier Pintó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Lipids and Vascular Risk Unit, Internal Medicine, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitario de Bellvitge, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Cardiology Department, Organización Sanitaria Integrada Araba (OSI ARABA), University Hospital of Araba, 01009 Gasteiz, Spain
- University of País Vasco/Euskal Herria Unibersitatea (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Inmaculada Bautista-Castaño
- Institute for Biomedical Research, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Dora Romaguera
- Research Group in Nutritional Epidemiology and Cardiovascular Pathophysiology, Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Department of Family Medicine, Research Unity, Distrito Sanitario Atención Primaria Sevilla, 41013 Seville, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, 46010 Barcelona, Spain
| | - Raquel Cueto-Galán
- Preventive Medicine and Public Health Department, School of Medicine, University of Malaga, Spain, Biomedical Research Institute of Malaga (IBIMA), 29071 Malaga, Spain;
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.H.-R.); (K.A.P.-V.); (I.P.-G.); (M.Á.M.-G.); (J.S.-S.); (F.A.); (E.R.)
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
| | - Olga Castañer
- Unit of Cardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute, 08024 Barcelona, Spain (O.C.)
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Gao L, Ramirez FJ, Cabrera JTO, Varghese MV, Watanabe M, Tsuji-Hosokawa A, Zheng Q, Yang M, Razan MR, Kempf CL, Camp SM, Wang J, Garcia JGN, Makino A. eNAMPT is a novel therapeutic target for mitigation of coronary microvascular disease in type 2 diabetes. Diabetologia 2024; 67:1998-2011. [PMID: 38898303 PMCID: PMC11410976 DOI: 10.1007/s00125-024-06201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
AIMS/HYPOTHESIS Individuals with diabetes are at high risk of cardiovascular complications, which significantly increase morbidity/mortality. Coronary microvascular disease (CMD) is recognised as a critical contributor to the increased cardiac mortality observed in people with diabetes. Therefore, there is an urgent need for treatments that are specific to CMD. eNAMPT (extracellular nicotinamide phosphoribosyltransferase) is a damage-associated molecular pattern and TLR4 ligand, whose plasma levels are elevated in people with diabetes. This study was thus designed to investigate the pathogenic role of intracellular nicotinamide phosphoribosyltransferase (iNAMPT) and eNAMPT in promoting the development of CMD in a preclinical murine model of type 2 diabetes. METHODS An inducible type 2 diabetic mouse model was generated by a single injection of low-dose streptozocin (75 mg/kg, i.p.) combined with a high-fat diet for 16 weeks. The in vivo effects of i/eNAMPT inhibition on cardiac endothelial cell (CEC) function were evaluated by using Nampt+/- heterozygous mice, chronic administration of eNAMPT-neutralising monoclonal antibody (mAb) or use of an NAMPT enzymatic inhibitor (FK866). RESULTS As expected, diabetic wild-type mice exhibited significantly lower coronary flow velocity reserve (CFVR), a determinant of coronary microvascular function, compared with control wild-type mice. eNAMPT plasma levels or expression in CECs were significantly greater in diabetic mice than in control mice. Furthermore, in comparison with diabetic wild-type mice, diabetic Nampt+/- heterozygous mice showed markedly improved CFVR, accompanied by increased left ventricular capillary density and augmented endothelium-dependent relaxation (EDR) in the coronary artery. NAMPT inhibition by FK866 or an eNAMPT-neutralising mAb significantly increased CFVR in diabetic mice. Furthermore, administration of the eNAMPT mAb upregulated expression of angiogenesis- and EDR-related genes in CECs from diabetic mice. Treatment with either eNAMPT or NAD+ significantly decreased CEC migration and reduced EDR in coronary arteries, partly linked to increased production of mitochondrial reactive oxygen species. CONCLUSIONS/INTERPRETATION These data indicate that increased i/eNAMPT expression contributes to the development of diabetic coronary microvascular dysfunction, and provide compelling support for eNAMPT inhibition as a novel and effective therapeutic strategy for CMD in diabetes.
Collapse
Affiliation(s)
- Lei Gao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco J Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jody Tori O Cabrera
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | | | - Qiuyu Zheng
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingya Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Md Rahatullah Razan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Carrie L Kempf
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Gusain Y, Malik A, Filteau S, Pathak R, Sachdev HS, Trilok-Kumar G. Markers of chronic disease risk in term low birthweight Indian children aged 8-14 years. Front Pediatr 2024; 12:1339808. [PMID: 39268361 PMCID: PMC11390577 DOI: 10.3389/fped.2024.1339808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Background Low birth weight (LBW) is a public health problem in India with consequences in the short and long term. It increases the risk of obesity and its related comorbidities including type 2 diabetes and cardiovascular disease (CVD) in later life. This study aimed to assess the risk markers of chronic disease in term born low birthweight Indian children aged 8-14 years. Methods This was a cross-sectional follow-up of LBW children from DIViDS (Delhi Infant Vitamin D Supplementation) cohort and involved assessment of their anthropometric measurements, body composition, levels of adipokines and biomarkers of chronic diseases. Neighbourhood children born normal birth weight (NBW) (>2.5 kg) were enrolled for comparison. Results The study included 667 LBW and 87 NBW children. Height-for-age, body mass index for-age (BMIZ), fat-free mass index, and waist circumference of LBW children were lower than those of NBW children. LBW children could jump farther. LBW children who were now overweight had higher leptin, triglyceride and VLDL and lower HDL, compared to NBW children in the same BMIZ category. Currently underweight LBW children had higher adiponectin and lower leptin levels than the reference group. There were no differences between LBW and NBW children in visfatin, fasting glucose and insulin, hemoglobin A1c, triglyceride, low density lipoprotein or C-reactive protein. Conclusion At 8-14 years few children were overweight and there were few differences in some risk markers of chronic disease between LBW and NBW children. Overweight, which was associated with some increased risk markers, may increase with age, thus timely counselling and monitoring of these LBW children will be important to mitigate these risks.
Collapse
Affiliation(s)
- Yamini Gusain
- Department of Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Anku Malik
- Department of Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Suzanne Filteau
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Renuka Pathak
- Department of Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Harshpal Singh Sachdev
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Geeta Trilok-Kumar
- Department of Food and Nutrition, Institute of Home Economics, University of Delhi, New Delhi, India
- Koita Centre for Digital Health, Ashoka University, Panipat, India
| |
Collapse
|
10
|
Śliwicka E, Popierz-Rydlewska N, Straburzyńska-Lupa A, Nikolov J, Pilaczyńska-Szcześniak Ł, Gogojewicz A. Prevention Is Better than Cure-Body Composition and Glycolipid Metabolism after a 24-Week Physical Activity Program without Nutritional Intervention in Healthy Sedentary Women. Nutrients 2024; 16:2536. [PMID: 39125415 PMCID: PMC11314461 DOI: 10.3390/nu16152536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Women are generally less active than men; therefore, the search for an attractive form of physical activity that benefits women's health is underway. This study aimed to investigate the influence of a 24-week physical activity program on body composition and indices of carbohydrates and lipid metabolism in sedentary, healthy women. The study comprised 18 female volunteers (mean age 35.0 ± 5.3 years). Dietary intake was assessed using a standardized seven-day food record. Before entering the program and after completing it, each participant's body composition and indices of glycolipid metabolism were measured. Insulin resistance indexes were calculated based on the obtained data. After the physical activity program, significant decreases in body mass and composition, BMI, waist circumference, percentage of fat content, and fat mass were found. Moreover, there was a significant decrease in glucose, insulin, triglycerides (TG), and resistin concentrations, as well as in the mean values of HOMA-IR and HOMA-AD. A substantial increase in adiponectin levels was also found. To conclude, the combined endurance-resistance physical activity program had a beneficial effect on body mass and composition and improved carbohydrate and lipid metabolism in normal-weight, healthy women. Therefore, we recommend this activity to sedentary young women to prevent obesity and metabolic disorders.
Collapse
Affiliation(s)
- Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 61-871 Poznań, Poland
| | - Natalia Popierz-Rydlewska
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (N.P.-R.); (A.G.)
| | - Anna Straburzyńska-Lupa
- Department of Physical Therapy and Sports Recovery, Poznan University of Physical Education, 61-871 Poznań, Poland;
| | - Jivko Nikolov
- Department of Geriatrics and Medical Gerontology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany;
| | - Łucja Pilaczyńska-Szcześniak
- Department of Physiotherapy, Faculty of Medicine and Health Sciences, University of Kalisz, 62-800 Kalisz, Poland;
| | - Anna Gogojewicz
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (N.P.-R.); (A.G.)
- Department of Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
11
|
Kakkat S, Suman P, Turbat- Herrera EA, Singh S, Chakroborty D, Sarkar C. Exploring the multifaceted role of obesity in breast cancer progression. Front Cell Dev Biol 2024; 12:1408844. [PMID: 39040042 PMCID: PMC11260727 DOI: 10.3389/fcell.2024.1408844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Obesity is a multifaceted metabolic disorder characterized by excessive accumulation of adipose tissue. It is a well-established risk factor for the development and progression of breast cancer. Adipose tissue, which was once regarded solely as a passive energy storage depot, is now acknowledged as an active endocrine organ producing a plethora of bioactive molecules known as adipokines that contribute to the elevation of proinflammatory cytokines and estrogen production due to enhanced aromatase activity. In the context of breast cancer, the crosstalk between adipocytes and cancer cells within the adipose microenvironment exerts profound effects on tumor initiation, progression, and therapeutic resistance. Moreover, adipocytes can engage in direct interactions with breast cancer cells through physical contact and paracrine signaling, thereby facilitating cancer cell survival and invasion. This review endeavors to summarize the current understanding of the intricate interplay between adipocyte-associated factors and breast cancer progression. Furthermore, by discussing the different aspects of breast cancer that can be adversely affected by obesity, this review aims to shed light on potential avenues for new and novel therapeutic interventions.
Collapse
Affiliation(s)
- Sooraj Kakkat
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Prabhat Suman
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Elba A. Turbat- Herrera
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, AL, United States
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
12
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Dakroub A, Dbouk A, Asfour A, Nasser SA, El-Yazbi AF, Sahebkar A, Eid AA, Iratni R, Eid AH. C-peptide in diabetes: A player in a dual hormone disorder? J Cell Physiol 2024; 239:e31212. [PMID: 38308646 DOI: 10.1002/jcp.31212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, New York, USA
| | - Ali Dbouk
- Department of Medicine, Saint-Joseph University Medical School, Hotel-Dieu de France Hospital, Beirut, Lebanon
| | - Aref Asfour
- Leeds Teaching Hospitals NHS Trust, West Yorkshire, United Kingdom
| | | | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, UAE
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Garganeeva AA, Kuzheleva EA, Tukish OV, Kondratiev MY, Vitt KN, Andreev SL, Ogurkova ON. [Biomarkers of Inflammation in Predicting the Outcomes of Heart Failure of Ischemic Etiology: the Results of Factor Analysis]. KARDIOLOGIIA 2024; 64:18-26. [PMID: 38462800 DOI: 10.18087/cardio.2024.2.n2465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/23/2023] [Indexed: 03/12/2024]
Abstract
AIM To study the prognostic significance of inflammatory biomarkers in patients with chronic heart failure (CHF) and stenotic multivessel coronary atherosclerosis, with determination of the biomarker separate set that reflects subclinical inflammation and is associated with the development of cardiovascular complications during prospective observation. MATERIAL AND METHODS A prospective observational study was conducted that included 80 patients with CHF and ischemic heart disease who were scheduled for coronary artery bypass grafting (CABG) during their current hospitalization. In addition to routine clinical laboratory tests, coagulation parameters were evaluated and the following inflammatory biomarkers were determined: neutrophil gelatinase-associated lipocalin (NGAL), growth/differentiation factor 15 (GDF-15), fibroblast growth factor 23 (FGF-23), transforming growth factor beta-1 (TGF-β1), and high-sensitivity C-reactive protein. Also, the calculated neutrophil-to-lymphocyte ratio (N LR) was included in the analysis. Follow-up duration was at least 12 months (median 16 [13, 22] months). Statistical analysis of the data was performed with the IBM SPSS Statistics 21 software. RESULTS The study presented results of a factor analysis of 10 inflammatory biomarkers in patients who were scheduled for CABG. One of the factors identified by the analysis included the levels of NGAL and GDF-15, N LR, and the level of fibrinogen in the blood in CHF patients with stenotic coronary atherosclerosis and was significantly associated with the death rate during prospective observation. Furthermore, this association remained significant even after adjustments for age, glomerular filtration rate, severity of heart and coronary insufficiency, and the presence of diabetes mellitus. CONCLUSION In patients with CHF and stenotic coronary atherosclerosis, a set of inflammatory markers, including blood NGAL, GDF-15, N LR, and fibrinogen, can be combined into one factor reflecting subclinical inflammation. The value of this factor can be used to predict cardiovascular death in the long term after surgical myocardial revascularization.
Collapse
Affiliation(s)
- A A Garganeeva
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - E A Kuzheleva
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - O V Tukish
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - M Yu Kondratiev
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - K N Vitt
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - S L Andreev
- Research Institute of Cardiology, Tomsk National Research Medical Center
| | - O N Ogurkova
- Research Institute of Cardiology, Tomsk National Research Medical Center
| |
Collapse
|
16
|
Bengi VU, Özcan E, Saygun NI, Guler OS, Serdar MA. Effect of non-surgical periodontal treatment on visfatin and chemerin concentration in the gingival crevicular fluid. Odontology 2024; 112:200-207. [PMID: 36976366 DOI: 10.1007/s10266-023-00808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Visfatin, as a novel adipokine, is considered to play a role in periodontal inflammation. Chemerin is another newly identified adipokine that is possible to have a role in periodontitis firstly reported in our previous study. The aim of the current study is to evaluate the gingival crevicular fluid (GCF) levels of visfatin and chemerin in periodontitis and and compare these adipokine levels with before and after non-surgical periodontal treatment. Twenty-nine patients with Stage III Grade B periodontitis and eighteen healthy subjects included in this cross-sectional cohort study. Clinical periodontal parameters and GCF were obtained from all subjects. Eight weeks after the following non-surgical periodontal treatment including scaling and root planning, samples and clinical periodontal parameters were collected again in the periodontitis group. The levels of adipokines were analyzed with standard enzyme-linked immunosorbent assay. The levels of visfatin and chemerin were statistically significantly higher at periodontitis group as compared to healthy group (P < 0.001). Although, no changes were observed in visfatin levels after periodontal treatment (P > 0.05), chemerin levels were significantly decreased (P < 0.001). Also, no differences were observed as compared to the healthy group (P > 0.05). Visfatin and chemerin may play a role in the periodontal disease process. In addition, it can be considered that the decreased chemerin levels after non-surgical periodontal treatment may play an important role for developing host modulation strategies.
Collapse
Affiliation(s)
- V Umut Bengi
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey.
| | - Erkan Özcan
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - N Işıl Saygun
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - O Sebnem Guler
- Gulhane Faculty of Dental Medicine, University of Health Sciences, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Basic Sciences, Medical Biochemistry, Acibadem Mehmet Ali Aydinlar University, Ankara, Turkey
| |
Collapse
|
17
|
Iwatani Y, Hayashi H, Yamamoto H, Minamikawa H, Ichikawa M, Orikawa H, Masuda A, Tada N, Moriyama Y, Takagi N. Pathogenic role of NAMPT in the perivascular regions after ischemic stroke in mice with type 2 diabetes mellitus. Exp Neurol 2024; 371:114584. [PMID: 37884188 DOI: 10.1016/j.expneurol.2023.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ischemic stroke in patients with abnormal glucose tolerance results in poor outcomes. Nicotinamide phosphoribosyltransferase (NAMPT), an adipocytokine, exerts neuroprotective effects. However, the pathophysiological role of NAMPT after ischemic stroke with diabetes and the relationship of NAMPT with cerebrovascular lesions are unclear. The purpose of this study was to clarify the pathophysiological role of NAMPT in cerebral ischemia with diabetes, using db/db mice as a type 2 diabetes animal model. The number of degenerating neurons increased after middle cerebral artery occlusion and reperfusion (MCAO/R) in db/db mice compared with the degenerating neurons in db/+ mice. Extracellular NAMPT (eNAMPT) levels, especially monomeric eNAMPT, increased significantly in db/db MCAO/R mice but not db/+ mice in isolated brain microvessels. The increased eNAMPT levels were associated with increased expression of inflammatory cytokine mRNA. Immunohistochemical analysis demonstrated that NAMPT colocalized with GFAP-positive cells after MCAO/R. In addition, both dimeric and monomeric eNAMPT levels increased in the conditioned medium of primary cortical astrocytes under high glucose conditions subsequent oxygen/glucose deprivation. Our findings are the first to demonstrate the ability of increased monomeric eNAMPT to induce inflammatory responses in brain microvessels, which may be located near astrocyte foot processes.
Collapse
Affiliation(s)
- Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruna Yamamoto
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Minamikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Ichikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hayato Orikawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Aya Masuda
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Natsumi Tada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoshiyuki Moriyama
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
18
|
Szymanska K, Rytelewska E, Zaobidna E, Kiezun M, Gudelska M, Kopij G, Dobrzyn K, Mlyczynska E, Kurowska P, Kaminska B, Nynca A, Smolinska N, Rak A, Kaminski T. The Effect of Visfatin on the Functioning of the Porcine Pituitary Gland: An In Vitro Study. Cells 2023; 12:2835. [PMID: 38132154 PMCID: PMC10742260 DOI: 10.3390/cells12242835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Visfatin (VIS), also known as nicotinamide phosphoribosyltransferase (NAMPT), is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD+). Recently, VIS has been also recognized as an adipokine. Our previous study revealed that VIS is produced in the anterior and posterior lobes of the porcine pituitary. Moreover, the expression and secretion of VIS are dependent on the phase of the estrous cycle and/or the stage of early pregnancy. Based on this, we hypothesized that VIS may regulate porcine pituitary function. This study was conducted on anterior pituitary (AP) glands harvested from pigs during specific phases of the estrous cycle. We have shown the modulatory effect of VIS in vitro on LH and FSH secretion by porcine AP cells (determined by ELISA). VIS was also found to stimulate cell proliferation (determined by Alamar Blue) without affecting apoptosis in these cells (determined using flow cytometry technique). Moreover, it was indicated that VIS may act in porcine AP cells through the INSR, AKT/PI3K, MAPK/ERK1/2, and AMPK signaling pathways (determined by ELISA or Western Blot). This observation was further supported by the finding that simultaneous treatment of cells with VIS and inhibitors of these pathways abolished the observed VIS impact on LH and FSH secretion (determined by ELISA). In addition, our research indicated that VIS affected the mentioned processes in a manner that was dependent on the dose of VIS and/or the phase of the estrous cycle. Thus, these findings suggest that VIS may regulate the functioning of the porcine pituitary gland during the estrous cycle.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Marlena Gudelska
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland;
| | - Grzegorz Kopij
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, 30-348 Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Anna Nynca
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (A.R.)
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.S.); (E.R.); (M.K.); (G.K.); (B.K.); (A.N.); (N.S.)
| |
Collapse
|
19
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
20
|
Fasipe B, Laher I. Nrf2 modulates the benefits of evening exercise in type 2 diabetes. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:251-258. [PMID: 38314046 PMCID: PMC10831386 DOI: 10.1016/j.smhs.2023.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 02/06/2024] Open
Abstract
Exercise has well-characterized therapeutic benefits in the management of type 2 diabetes mellitus (T2DM). Most of the beneficial effects of exercise arise from the impact of nuclear factor erythroid 2 related factor-2 (Nrf2) activation of glucose metabolism. Nrf2 is an essential controller of cellular anti-oxidative capacity and circadian rhythms. The circadian rhythm of Nrf2 is influenced by circadian genes on its expression, where the timing of exercise effects the activation of Nrf2 and the rhythmicity of Nrf2 and signaling, such that the timing of exercise has differential physiological effects. Exercise in the evening has beneficial effects on diabetes management, such as lowering of blood glucose and weight. The mechanisms responsible for these effects have not yet been associated with the influence of exercise on the circadian rhythm of Nrf2 activity. A better understanding of exercise-induced Nrf2 activation on Nrf2 rhythm and signaling can improve our appreciation of the distinct effects of morning and evening exercise. This review hypothesizes that activation of Nrf2 by exercise in the morning, when Nrf2 level is already at high levels, leads to hyperactivation and decrease in Nrf2 signaling, while activation of Nrf2 in the evening, when Nrf2 levels are at nadir levels, improves Nrf2 signaling and lowers blood glucose levels and increases fatty acid oxidation. Exploring the effects of Nrf2 activators on rhythmic signaling could also provide valuable insights into the optimal timing of their application, while also holding promise for timed treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Al Zein M, Zein O, Diab R, Dimachkie L, Sahebkar A, Al-Asmakh M, Kobeissy F, Eid AH. Intermittent fasting favorably modulates adipokines and potentially attenuates atherosclerosis. Biochem Pharmacol 2023; 218:115876. [PMID: 37871879 DOI: 10.1016/j.bcp.2023.115876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Adipose tissue is now recognized as an endocrine organ that secretes bioactive molecules called adipokines. These biomolecules regulate key physiological functions, including insulin sensitivity, energy metabolism, appetite regulation, endothelial function and immunity. Dysregulated secretion of adipokines is intimately associated with obesity, and translates into increased risk of obesity-related cardiovasculo-metabolic diseases. In particular, emerging evidence suggests that adipokine imbalance contributes to the pathogenesis of atherosclerosis. One of the promising diet regimens that is beneficial in the fight against obesity and cardiometabolic disorders is intermittent fasting (IF). Indeed, IF robustly suppresses inflammation, meditates weight loss and mitigates many aspects of the cardiometabolic syndrome. In this paper, we review the main adipokines and their role in atherosclerosis, which remains a major contributor to cardiovascular-associated morbidity and mortality. We further discuss how IF can be employed as an effective management modality for obesity-associated atherosclerosis. By exploring a plethora of the beneficial effects of IF, particularly on inflammatory markers, we present IF as a possible intervention to help prevent atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rawan Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maha Al-Asmakh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
22
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Bondi D, Bevere M, Piccirillo R, Sorci G, Di Felice V, Re Cecconi AD, D'Amico D, Pietrangelo T, Fulle S. Integrated procedures for accelerating, deepening, and leading genetic inquiry: A first application on human muscle secretome. Mol Genet Metab 2023; 140:107705. [PMID: 37837864 DOI: 10.1016/j.ymgme.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/15/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy.
| | - Rosanna Piccirillo
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Guglielmo Sorci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Andrea David Re Cecconi
- Department of Neurosciences, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy.
| | - Daniela D'Amico
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti - Pescara, Chieti, Italy; Interuniversity Institute of Myology (IIM), Perugia, Italy.
| |
Collapse
|
24
|
Zhu J, Zhang S, Shi J, ning N, Wei Y, Zhang Y. Periodontitis is associated with the increased levels of visfatin: a meta-analysis. BMC Oral Health 2023; 23:799. [PMID: 37884949 PMCID: PMC10601249 DOI: 10.1186/s12903-023-03384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE Periodontitis is a common inflammatory disease associated with systemic factors. Visfatin is a pleiotropic adipokine that exerts metabolic and immune functions. Studies have shown visfatin played roles in the development of periodontitis. The present study aims to compare the levels of visfatin in body fluids including serum, saliva, and gingival crevicular fluid (GCF) between periodontitis patients and healthy individuals, and to elucidate the alteration of visfatin levels after periodontal treatments. MATERIALS AND METHODS The database searched included Pubmed, Embase, Web of Science, and Cochrane Library. According to the Eligibility criteria, the records were screened and the eligible studies were included. The methodological qualities of the included case-controlled studies were assessed according to the Newcastle-Ottawa scale (NOS). The Methodological Index for Nonrandomized Studies (MINORS) was applied for assessing the qualities of the included clinical trials. The statistical analyses were processed using STATA 15.0. RESULTS Twenty-three studies were included in the statistical analyses. The meta-analysis showed significantly elevated visfatin levels of GCF, serum, and saliva in the periodontitis population compared with the controls (GCF: SMD = 5.201, 95% CI: 3.886-6.516, Z = 7.75, P < 0.05; Serum: SMD = 7.417, 95% CI: 3.068-11.767, Z = 3.34, P = P < 0.05; Saliva: SMD = 2.683, 95% CI: 1.202-4.163, Z = 3.34, P < 0.05). Visfatin levels of saliva serum and GCF were significantly decreased after periodontal treatment. (Saliva: SMD = -1.338, 95% CI: -2.289-0.487, Z = 39.77, P < 0.05; Serum: SMD = -2.890, 95% CI: -5.300-0.480, Z = 2.35, P < 0.05; GCF: SMD = -6.075, 95% CI: -11.032-1.117, Z = 2.40, P = 0.016; I 2 = 95.9%, P < 0.05). CONCLUSIONS Periodontitis elevated the visfatin levels in GCF, serum, and saliva. Additionally, GCF, serum, and saliva visfatin levels could be reduced after periodontal treatment.
Collapse
Affiliation(s)
- Junfei Zhu
- Stomatology Center, China Japan Friendship Hospital, Beijing, China
| | - Suhan Zhang
- Department of Dermatology, China Japan Friendship Hospital, Beijing, China
| | - Jing Shi
- The ward of stomatology center, China Japan friendship hospital, Beijing, China
| | - Ning ning
- The ward of stomatology center, China Japan friendship hospital, Beijing, China
| | - Ying Wei
- The Second Department of Proctology, China Japan Friendship Hospital, Beijing, China
| | - Ye Zhang
- Stomatology Center, China Japan Friendship Hospital, Beijing, China
| |
Collapse
|
25
|
Bilska K, Dmitrzak-Węglarz M, Osip P, Pawlak J, Paszyńska E, Permoda-Pachuta A. Metabolic Syndrome and Adipokines Profile in Bipolar Depression. Nutrients 2023; 15:4532. [PMID: 37960185 PMCID: PMC10648184 DOI: 10.3390/nu15214532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Metabolic syndrome (MS) is a growing social, economic, and health problem. MS coexists with nearly half of all patients with affective disorders. This study aimed to evaluate the neurobiological parameters (clinical, anthropometric, biochemical, adipokines levels, and ultrasound of carotid arteries) and their relationship with the development of MS in patients with bipolar disorder. The study group consisted of 70 patients (50 women and 20 men) hospitalized due to episodes of depression in the course of bipolar disorders. The Hamilton Depression Rating Scale was used to assess the severity of the depression symptoms in an acute state of illness and after six weeks of treatment. The serum concentration of adipokines was determined using an ELISA method. The main finding of this study is that the following adipokines correlated with MS in the bipolar depression women group: visfatin, S100B, and leptin had a positive correlation, whereas adiponectin, leptin-receptor, and adiponectin/leptin ratio showed a negative correlation. Moreover, the adiponectin/leptin ratio showed moderate to strong negative correlation with insulin level, BMI, waist circumference, triglyceride level, treatment with metformin, and a positive moderate correlation with HDL. The adiponectin/leptin ratio may be an effective tool to assess MS in depressed female bipolar patients.
Collapse
Affiliation(s)
- Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Monika Dmitrzak-Węglarz
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Elżbieta Paszyńska
- Department of Integrated Dentistry, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | |
Collapse
|
26
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
27
|
Shen C, Fang R, Wang J, Wu N, Wang S, Shu T, Dai J, Feng M, Chen X. Visfatin aggravates transverse aortic constriction-induced cardiac remodelling by enhancing macrophage-mediated oxidative stress in mice. J Cell Mol Med 2023; 27:2562-2571. [PMID: 37584247 PMCID: PMC10468652 DOI: 10.1111/jcmm.17854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Previous studies have reported that visfatin can regulate macrophage polarisation, which has been demonstrated to participate in cardiac remodelling. The aims of this study were to investigate whether visfatin participates in transverse aortic constriction (TAC)-induced cardiac remodelling by regulating macrophage polarisation. First, TAC surgery and angiotensin II (Ang II) infusion were used to establish a mouse cardiac remodelling model, visfatin expression was measured, and the results showed that TAC surgery or Ang II infusion increased visfatin expression in the serum and heart in mice, and phenylephrine or hydrogen peroxide promoted the release of visfatin from macrophages in vitro. All these effects were dose-dependently reduced by superoxide dismutase. Second, visfatin was administered to TAC mice to observe the effects of visfatin on cardiac remodelling. We found that visfatin increased the cross-sectional area of cardiomyocytes, aggravated cardiac fibrosis, exacerbated cardiac dysfunction, further regulated macrophage polarisation and aggravated oxidative stress in TAC mice. Finally, macrophages were depleted in TAC mice to investigate whether macrophages mediate the regulatory effect of visfatin on cardiac remodelling, and the results showed that the aggravating effects of visfatin on oxidative stress and cardiac remodelling were abrogated. Our study suggests that visfatin enhances cardiac remodelling by promoting macrophage polarisation and enhancing oxidative stress. Visfatin may be a potential target for the prevention and treatment of clinical cardiac remodelling.
Collapse
Affiliation(s)
- Caijie Shen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Renyuan Fang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jian Wang
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Nan Wu
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Shuangsuang Wang
- Department of CardiologyWenling First People's Hospital, The Affiliated Wenling Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tian Shu
- Zhejiang University School of MedicineHangzhouChina
| | - Jiating Dai
- Health Science Center, Ningbo UniversityNingboChina
| | - Mingjun Feng
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Xiaomin Chen
- Department of Cardiovascular MedicineThe First Affliated Hospital of Ningbo University, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
28
|
Nigro E, D’Agnano V, Quarcio G, Mariniello DF, Bianco A, Daniele A, Perrotta F. Exploring the Network between Adipocytokines and Inflammatory Response in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2023; 15:3806. [PMID: 37686837 PMCID: PMC10490077 DOI: 10.3390/nu15173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose tissue is actually regarded as an endocrine organ, rather than as an organ that merely stores energy. During the COVID-19 pandemic, obesity has undoubtedly emerged as one of the most important risk factors for disease severity and poor outcomes related to SARS-CoV-2 infection. The aberrant production of cytokine-like hormones, called adipokines, may contribute to alterations in metabolism, dysfunction in vascular endothelium and the creation of a state of general chronic inflammation. Moreover, chronic, low-grade inflammation linked to obesity predisposes the host to immunosuppression and excessive cytokine activation. In this respect, understanding the mechanisms that link obesity with the severity of SARS-CoV-2 infection could represent a real game changer in the development of new therapeutic strategies. Our review therefore examines the pathogenic mechanisms of SARS-CoV-2, the implications with visceral adipose tissue and the influences of the adipose tissue and its adipokines on the clinical behavior of COVID-19.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80055 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| |
Collapse
|
29
|
Aboukhater D, Morad B, Nasrallah N, Nasser SA, Sahebkar A, Kobeissy F, Boudaka A, Eid AH. Inflammation and hypertension: Underlying mechanisms and emerging understandings. J Cell Physiol 2023; 238:1148-1159. [PMID: 37039489 DOI: 10.1002/jcp.31019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.
Collapse
Affiliation(s)
- Diana Aboukhater
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Bassel Morad
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadim Nasrallah
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
30
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Immunological and Molecular Parameters in Patients with Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13101714. [PMID: 37238197 DOI: 10.3390/diagnostics13101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ovarian cancer is one of the most serious challenges in modern gynaecological oncology. Due to its non-specific symptoms and the lack of an effective screening procedure to detect the disease at an early stage, ovarian cancer is still marked by a high mortality rate among women. For this reason, a great deal of research is being carried out to find new markers that can be used in the detection of ovarian cancer to improve early diagnosis and survival rates of women with ovarian cancer. Our study focuses on presenting the currently used diagnostic markers and the latest selected immunological and molecular parameters being currently investigated for their potential use in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
31
|
Ahmed A, Bibi A, Valoti M, Fusi F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells 2023; 12:cells12081196. [PMID: 37190105 DOI: 10.3390/cells12081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
Perivascular adipose tissue (PVAT) is a specialized type of adipose tissue that surrounds most mammalian blood vessels. PVAT is a metabolically active, endocrine organ capable of regulating blood vessel tone, endothelium function, vascular smooth muscle cell growth and proliferation, and contributing critically to cardiovascular disease onset and progression. In the context of vascular tone regulation, under physiological conditions, PVAT exerts a potent anticontractile effect by releasing a plethora of vasoactive substances, including NO, H2S, H2O2, prostacyclin, palmitic acid methyl ester, angiotensin 1-7, adiponectin, leptin, and omentin. However, under certain pathophysiological conditions, PVAT exerts pro-contractile effects by decreasing the production of anticontractile and increasing that of pro-contractile factors, including superoxide anion, angiotensin II, catecholamines, prostaglandins, chemerin, resistin, and visfatin. The present review discusses the regulatory effect of PVAT on vascular tone and the factors involved. In this scenario, dissecting the precise role of PVAT is a prerequisite to the development of PVAT-targeted therapies.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Aasia Bibi
- Nanotechnology Institute, CNR-NANOTEC, Via Monteroni, 73100 Lecce, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
32
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
33
|
Lyu P, Li S, Han Y, Shen S, Feng Z, Hao P, Li Z, Lin L. Affinity-based protein profiling-driven discovery of myricanol as a Nampt activator. Bioorg Chem 2023; 133:106435. [PMID: 36841049 DOI: 10.1016/j.bioorg.2023.106435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Herein, we synthesized an affinity-based probe of myricanol (pMY) with a photo-affinity cross-linker to initiate a bioconjugation reaction, which was applied for target identification in live C2C12 myotubes. Pull-down of biotinylated pMY coupled with mass spectroscopy and Western blotting revealed that pMY can bind with nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Cellular thermal shift assay, drug affinity responsive target stability assay and recombinant protein labeling further validated the direct interaction between myricanol and Nampt. Myricanol did not affect the protein expression of Nampt, but enhanced its activity. Knock-down of Nampt totally abolished the promoting effect of myricanol on insulin-stimulated glucose uptake in C2C12 myotubes. Taken together, myricanol sensitizes insulin action in myotubes through binding with and activating Nampt.
Collapse
Affiliation(s)
- Peng Lyu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Shengrong Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), MOE Key Laboratory of Tumor Molecular Biology, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Zheling Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), MOE Key Laboratory of Tumor Molecular Biology, School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
34
|
Liu F, Yuan Y, Zhang W, Fu Y, Yang M, Yang G, Liu H, Shen H, Li L. A highly sensitive and specific fluorescent strategy for the detection of Visfatin based on nonlinear hybridization chain reaction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
35
|
Chronic Resistance Training Effects on Serum Adipokines in Type 2 Diabetes Mellitus: A Systematic Review. Healthcare (Basel) 2023; 11:healthcare11040594. [PMID: 36833129 PMCID: PMC9957256 DOI: 10.3390/healthcare11040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Non-communicable diseases (NCD) are an important concern for public health because of their high rates of morbidity and mortality. A prevalent lifestyle-linked NCD is type 2 diabetes mellitus (T2D). Recently, molecular biomarkers secreted by adipocytes, called adipokines, have been linked with T2D and muscle function disturbances. However, the effects of resistance training (RT) interventions on adipokine levels in patients with T2D have not been systematically studied. (2) Methods: The PRISMA guidelines were followed. Searches for the studies were performed in the PubMed/MEDLINE and Web of Science electronic databases. Eligibility criteria included: (i) participants with T2D; (ii) RT interventions; (iii) randomized controlled trials; and (iv) measurement of serum adipokines. The PEDro scale was used to assess the methodological quality of the selected studies. Significant differences (p ≤ 0.05) and effect size were screened for each variable. (3) Results: Of the initial 2166 records, database search extraction yielded 14 studies to be included. The methodological quality of the included data was high (median PEDro score of 6.5). Analyzed adipokines in the included studies were leptin, adiponectin, visfatin, apelin, resistin, retinol-binding protein 4 (RBP4), vaspin, chemerin, and omentin. RT interventions (6-52 weeks; minimal effective duration >12 weeks) exert a meaningful effect on serum adipokine, (e.g., leptin) levels in T2D patients. (4) Conclusions: RT may be an alternative, but not an optimal, option in adipokine disruptions in T2D. Combined (i.e., aerobic and RT) long-term training may be considered the optimal intervention for treating adipokine level disturbances.
Collapse
|
36
|
Concentration of Selected Adipokines and Factors Regulating Carbohydrate Metabolism in Patients with Head and Neck Cancer in Respect to Their Body Mass Index. Int J Mol Sci 2023; 24:ijms24043283. [PMID: 36834693 PMCID: PMC9959515 DOI: 10.3390/ijms24043283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck cancers (HNCs) are a group of tumors not common in European populations. So far, not much is known about the role of obesity, adipokines, glucose metabolism, and inflammation in the pathogenesis of HNC. The aim of the study was to determine the concentrations of ghrelin, omentin-1, adipsin, adiponectin, leptin, resistin, visfatin, glucagon, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), plasminogen activator inhibitor-1 (PAI-1), and gastric inhibitory peptide (GIP) in the blood serum of HNC patients depending on their body mass index (BMI). The study included 46 patients divided into two groups according to their BMI values: the normal BMI group (nBMI) included 23 patients with BMI < 25 kg/m2 and the increased BMI group (iBMI) included patients with BMI ≥ 25 kg/m2. A control group (CG) included 23 healthy people (BMI < 25 kg/m2). Statistically significant differences in the levels of adipsin, ghrelin, glucagon, PAI-1, and visfatin were shown between nBMI and CG. In the case of nBMI and iBMI, statistically significant differences were observed in the concentrations of adiponectin, C-peptide, ghrelin, GLP-1, insulin, leptin, omentin-1, PAI-1, resistin, and visfatin. The obtained results indicate a disruption of endocrine function of adipose tissue and impaired glucose metabolism in HNC. Obesity, which is not a typical risk factor for HNC, may aggravate the negative metabolic changes associated with this type of neoplasm. Ghrelin, visfatin, PAI-1, adipsin, and glucagon might be related to head and neck carcinogenesis. They seem to be promising directions for further research.
Collapse
|
37
|
Butler MJ, Volkoff H. The role of visfatin/ NAMPT in the regulation of feeding in goldfish (Carassius auratus). Peptides 2023; 160:170919. [PMID: 36503895 DOI: 10.1016/j.peptides.2022.170919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The protein NAMPT (nicotinamide phosphoribosyltransferase, encoded by the NAPMT gene) is present in two forms. The intracellular form of NAMPT (iNAMPT) is the rate-limiting enzyme in a major nicotinamide adenine dinucleotide (NAD) biosynthetic pathway and regulates cellular metabolism. NAMPT is also secreted by cells in the extracellular milieu, and referred to as extracellular NAMPT (eNAMPT or visfatin). In mammals, visfatin has been linked to various metabolic disorders. However, the role of visfatin in regulating energy homeostasis in fish is not known. In this study, we assessed the effects of nutritional status on NAMPT mRNA expression and the effects of visfatin peripheral injections on food intake and the expression of appetite regulators in goldfish. Our results show that NAMPT is widely expressed in peripheral tissues and brain. Fasting induced increases in NAMPT expression in liver but had no effect on either brain or intestine NAMPT expression levels. Intraperitoneal injections of visfatin (400 ng/g) induced an increase in food intake and in expression levels of hepatic leptin and sirtuin1. Visfatin injections decreased intestine CCK and PYY, and telencephalon (but not hypothalamic) orexin and NPY expression levels. Visfatin did not affect plasma glucose levels, intestine ghrelin or brain CART, POMC and AgRP expressions. These data suggest that visfatin/NAMPT might be involved in the regulation of feeding and energy homeostasis in goldfish.
Collapse
Affiliation(s)
- Maggie J Butler
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| |
Collapse
|
38
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
39
|
Ruan W, Zhai X, Guan L, Wei X, Zhang S. Expressions of serum adiponectin and visfatin in patients with hypertension in cerebrovascular accidents and analysis of risk factors. Am J Transl Res 2022; 14:7852-7859. [PMID: 36505296 PMCID: PMC9730094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the expressions of serum adiponectin and visfatin in patients with hypertension and cerebrovascular accidents and to analyze the risk factors. METHODS Data of 161 patients with hypertension treated in The Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2019 to July 2021 were retrospectively analyzed. There were 72 patients with cerebrovascular accidents assigned to an occurrence group. The remaining 89 patients without cerebrovascular accidents were assigned to a non-occurrence group. The two groups were compared in terms of the coagulation function (activated partial thromboplastin time, prothrombin time, and fibrinogen), liver function (aspartate aminotransferase (AST), glutamic pyruvic transaminase (GPT), albumin and total bilirubin (TB)), blood lipid indexes (cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL)), serum adiponectin, and visfatin levels. Pearson's correlation coefficient was performed to analyze the correlation of serum adiponectin and visfatin with blood lipid indexes. Logistics regression was performed to analyze the risk factors of stroke in patients with hypertension. RESULTS The two groups were similar in terms of sex, age, education level, smoking, drinking, and diabetes histories (P>0.05). There were more patients ≥65 years old with body mass index ≥20 kg/m2 and with hyperlipidemia in the occurrence group than those in the non-occurrence group (P<0.05). The two groups were not notably different in activated partial thromboplastin time, prothrombin time, fibrinogen, AST, GPT, albumin, TB, total cholesterol, and HDL (P>0.05). The occurrence group showed significantly higher triglyceride, LDL and adiponectin levels, and a notably lower visfatin level than the non-occurrence group (P<0.05). Adiponectin showed a positive correlation with triglyceride and a negative association with LDL (P<0.05). Visfatin showed only a negative correlation with triglyceride (P<0.05), but no correlation with LDL (P>0.05). A multivariate logistics regression analysis reported that hyperlipidemia, triglyceride, LDL, adiponectin, and visfatin were independent risk factors for stroke in patients with hypertension (P<0.05). CONCLUSION Serum adiponectin and visfatin were differentially expressed in patients with both hypertension and stroke. Our regression analysis revealed that serum adiponectin and visfatin were independent risk factors for stroke in patients with hypertension.
Collapse
Affiliation(s)
- Wenting Ruan
- Special Inspection Section, Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China
| | - Xixi Zhai
- First College of Clinical Medicine, Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China
| | - Lin Guan
- Special Inspection Section, Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China
| | - Xijin Wei
- Special Inspection Section, Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China
| | - Sishuo Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China,Three Departments of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan 250014, Shandong, China
| |
Collapse
|
40
|
Abdalla MMI. Role of visfatin in obesity-induced insulin resistance. World J Clin Cases 2022; 10:10840-10851. [PMID: 36338223 PMCID: PMC9631142 DOI: 10.12998/wjcc.v10.i30.10840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
The growing worldwide burden of insulin resistance (IR) emphasizes the importance of early identification for improved management. Obesity, particularly visceral obesity, has been a key contributing factor in the development of IR. The obesity-associated chronic inflammatory state contributes to the development of obesity-related comorbidities, including IR. Adipocytokines, which are released by adipose tissue, have been investigated as possible indicators of IR. Visfatin was one of the adipocytokines that attracted attention due to its insulin-mimetic activity. It is released from a variety of sources, including visceral fat and macrophages, and it influences glucose metabolism and increases inflammation. The relationship between visfatin and IR in obesity is debatable. As a result, the purpose of this review was to better understand the role of visfatin in glucose homeostasis and to review the literature on the association between visfatin levels and IR, cardiovascular diseases, and renal diseases in obesity.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Physiology Department, Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur 57000, Bukit Jalil, Malaysia
| |
Collapse
|
41
|
Xu F, Ning X, Zhao T, Lu Q, Chen H. Visfatin is negatively associated with coronary artery lesions in subjects with impaired fasting glucose. Open Med (Wars) 2022; 17:1405-1411. [PMID: 36128447 PMCID: PMC9449683 DOI: 10.1515/med-2022-0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/22/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
It is not determined whether serum visfatin levels are related to the presence and severity of coronary artery disease (CAD) in non-diabetic subjects. In this study, a total of 65 consecutive non-diabetic participants who underwent coronary angiography were enrolled. Serum visfatin and fasting glucose, as well as the serum total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglyceride, were measured in all participants before the procedure. The extent of coronary artery lesions was determined by Gensini score. Serum visfatin levels were significantly lower in patients with CAD compared to participants with normal coronary arteries. Inversely, the circulating levels of fasting glucose were found to be elevated in patients with CAD compared with the control subjects. Multivariable logistic regression analysis demonstrated that visfatin and impaired fasting glucose (IFG) were independently associated with the presence of CAD in non-diabetics. No significant relationship was found between serum visfatin and fasting glucose levels in IFG subjects. However, there was a negative association between visfatin concentrations and Gensini score in participants with IFG. Both circulating visfatin concentrations and IFG are independently associated with CAD in non-diabetics. Serum visfatin levels are negatively related to the angiographic severity of CAD in subjects with IFG.
Collapse
Affiliation(s)
- Fei Xu
- Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Ji-nan , Shandong Province , China
| | - Xiang Ning
- Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Ji-nan , Shandong Province , China
| | - Tong Zhao
- Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Ji-nan , Shandong Province , China
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Ji-nan , Shandong Province , China
| | - Huiqiang Chen
- Department of Cardiology, The Second Hospital of Shandong University, Shandong University , Ji-nan , Shandong Province , China
| |
Collapse
|
42
|
Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells 2022; 11:cells11172627. [PMID: 36078035 PMCID: PMC9454445 DOI: 10.3390/cells11172627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
NAD+ is an important metabolite in cell homeostasis that acts as an essential cofactor in oxidation–reduction (redox) reactions in various energy production processes, such as the Krebs cycle, fatty acid oxidation, glycolysis and serine biosynthesis. Furthermore, high NAD+ levels are required since they also participate in many other nonredox molecular processes, such as DNA repair, posttranslational modifications, cell signalling, senescence, inflammatory responses and apoptosis. In these nonredox reactions, NAD+ is an ADP-ribose donor for enzymes such as sirtuins (SIRTs), poly-(ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADPRs). Therefore, to meet both redox and nonredox NAD+ demands, tumour cells must maintain high NAD+ levels, enhancing their synthesis mainly through the salvage pathway. NAMPT, the rate-limiting enzyme of this pathway, has been identified as an oncogene in some cancer types. Thus, NAMPT has been proposed as a suitable target for cancer therapy. NAMPT inhibition causes the depletion of NAD+ content in the cell, leading to the inhibition of ATP synthesis. This effect can cause a decrease in tumour cell proliferation and cell death, mainly by apoptosis. Therefore, in recent years, many specific inhibitors of NAMPT have been developed, and some of them are currently in clinical trials. Here we review the NAD metabolism as a cancer therapy target.
Collapse
Affiliation(s)
- Lola E. Navas
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
43
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Gao SJ, Liu DQ, Li DY, Sun J, Zhang LQ, Wu JY, Song FH, Zhou YQ, Mei W. Adipocytokines: Emerging therapeutic targets for pain management. Biomed Pharmacother 2022; 149:112813. [PMID: 35279597 DOI: 10.1016/j.biopha.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Although pain has lower mortality rates than cancer, diabetes and stroke, pain is a predominate source of distress and disability. However, the management of pain remains an enormous problem. Many drugs used to pain treatment have more or less side effects. Therefore, the development of novel therapeutic target is critical for the treatment of pain. Notably, studies have shown that adipocytokines have a dual role in pain. Growing shreds of evidence shows that the levels of adipocytokines are upregulated or downregulated in the development of pain. In addition, substantial evidence indicates that regulation of adipocytokines levels in models of pain attenuates or promotes pain behaviors. In this review, we summarized and discussed the effect of adipocytokines in pain. These evidence indicates that adipocytokines attenuate or promote pain behaviors through interacting with their receptors, activating serotonin pathway, interacting with μ-opioid receptor, activating microglia, infiltrating macrophage and so on. Overall, adipocytokines have some potential in treating pain, but the underlying mechanisms remain unclear and need to be further studied.
Collapse
Affiliation(s)
- Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
45
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
46
|
Susairaj P, Snehalatha C, Nanditha A, Satheesh K, Raghavan A, Vinitha R, Ramachandran A. Analysis of an Indian diabetes prevention programme on association of adipokines and a hepatokine with incident diabetes. Sci Rep 2021; 11:20327. [PMID: 34645898 PMCID: PMC8514464 DOI: 10.1038/s41598-021-99784-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
To study the association and possible predictive role of visfatin, resistin, fetuin-A and chemerin with incident type 2 diabetes (T2DM) among Asian Indians with prediabetes. Their association with insulin resistance, β-cell function, glycaemia and anthropometry were also studied. This is a nested case-control study of a large 2-year prospective prevention trial in persons at high risk of developing T2DM. Baseline HbA1c values between 6.0% (42 mmol/mol) and 6.2% (44 mmol/mol) were chosen for this analysis (n = 144). At follow-up, persons with incident T2DM (HbA1c ≥ 6.5%, 48 mmol/mol) were grouped as cases (n = 72) and those reverted to normoglycaemia, (HbA1c < 5.7% (39 mmol/mol) as controls (n = 72). Insulin resistance showed the strongest association with incident T2DM ((Odds Ratio (OR): 23.22 [95%CI 6.36-84.77]; p < 0.0001). Baseline visfatin (OR: 6.56 [95%CI 2.21-19.5]; p < 0.001) and fetuin-A (OR: 1.01 [95%CI (1.01-1.04)]; p < 0.0001) independently contributed to the conversion of prediabetes to T2DM. The contribution was significantly higher when their elevated levels coexisted (OR: 12.63 [95%CI 3.57-44.63]; p < 0.0001). The area under the curve was 0.77 ± SE 0.4 (95%CI 0.69-0.85) and 0.80 ± SE 0.04 (95%CI 0.73-0.88) for visfatin (median 17.7 ng/ml, sensitivity and specificity: 75%, p < 0.0001) and fetuin-A (mean 236.2 µg/ml, sensitivity: 71%, specificity: 75%, p < 0.0001) respectively. Higher baseline visfatin and fetuin-A concentrations are strongly associated with incident T2DM and are predictive of future diabetes.
Collapse
Affiliation(s)
- Priscilla Susairaj
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Chamukuttan Snehalatha
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Arun Nanditha
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Krishnamoorthy Satheesh
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Arun Raghavan
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Ramachandran Vinitha
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India
| | - Ambady Ramachandran
- India Diabetes Research Foundation, Dr. A. Ramachandran's Diabetes Hospitals, 110, Anna Salai, Guindy, Chennai, 600 032, India.
| |
Collapse
|
47
|
Akcabag E, Bayram Z, Kucukcetin IO, Uzun G, Ozdem S, Ozdem SS. Functional effects of visfatin in isolated rat mesenteric small resistance arteries. Eur J Pharmacol 2021; 908:174333. [PMID: 34280396 DOI: 10.1016/j.ejphar.2021.174333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Accepted: 07/11/2021] [Indexed: 01/22/2023]
Abstract
A new adipocytokine, visfatin is expressed in perivascular adipose tissue (PVAT) and exerts effects on vascular system in addition to its relationship with various pathological conditions. The present study aimed to investigate the functional effects of visfatin and the possible underlying mechanism(s) of the effects of visfatin in isolated rat mesenteric small resistance arteries. The study was conducted in small resistance arterial rings isolated from rat mesenteric vascular beds. While visfatin incubation did not produce significant alterations in contractile responses of mesenteric arterial rings to noradrenaline, relaxation responses to acetylcholine but not to sodium nitroprusside (SNP) were significantly reduced in endothelium-intact rings. The inhibitory effect of visfatin on responses to acetylcholine was not observed in endothelium-denuded preparations. Incubation of tissues with nicotinamide phosphoribosyl transferase (NAMPT) inhibitor FK866 or superoxide dismutase (SOD) reversed the inhibitory effects of visfatin on relaxation responses to acetylcholine. Co-incubation of visfatin with Nω-nitro-L-arginine methylester (L-NAME) did not produce a significant alteration in vascular responses to acetylcholine compared to L-NAME incubation alone. Mesenteric PVAT visfatin levels were significantly higher than and correlated positively with plasma visfatin levels. The results of our study indicated that visfatin-induced reductions in endothelium-dependent relaxations of rat isolated small resistance arteries are mediated by oxygen free radicals and a reduction in nitric oxide (NO) bioavailability. It was suggested that increment in systemic and/or local visfatin levels due to various pathologies including obesity and excessive weight gain may play a substantial role in initiation and/or propagation of vascular dysfunctions.
Collapse
Affiliation(s)
- Esra Akcabag
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey.
| | - Zeliha Bayram
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey
| | - Ikbal Ozen Kucukcetin
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Gulbahar Uzun
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Sebahat Ozdem
- Akdeniz University, Medical Faculty, Department of Medical Biochemistry, Antalya, Turkey
| | - Sadi S Ozdem
- Akdeniz University, Medical Faculty, Department of Medical Pharmacology, Antalya, Turkey
| |
Collapse
|
48
|
Heo YJ, Choi SE, Lee N, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine-choline-deficient diet mouse model. J Gastroenterol Hepatol 2021; 36:2592-2600. [PMID: 33600604 DOI: 10.1111/jgh.15465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to non-alcoholic steatohepatitis, which is characterized by hepatic inflammation that can progress to fibrosis, cirrhosis, and hepatocellular carcinoma. Visfatin, an adipocytokine, was reported to induce pro-inflammatory cytokines and can be associated with liver fibrosis. We investigated the role of visfatin on hepatic inflammation and fibrosis in a methionine-choline-deficient (MCD)-diet-induced steatohepatitis mouse model. METHODS Eight-week-old male C57BL/6 J mice were randomly assigned into one of three groups: (1) saline-injected control diet group; (2) saline-injected MCD diet group; and (3) visfatin-injected MCD diet group (n = 8 per group). Mice were administered intravenous saline or 10 μg/kg of recombinant murine visfatin for 2 weeks. Histologic assessment of liver and biochemical and molecular measurements of endoplasmic reticulum (ER) stress, reactive oxidative stress (ROS), inflammation, and fibrosis were performed in livers from these animals. RESULTS Visfatin injection aggravated hepatic steatosis and increased plasma alanine aminotransferase and aspartate aminotransferase concentrations. Visfatin increased inflammatory cell infiltration (as indicated by F4/80, CD68, ly6G, and CD3 mRNA expression) and expression of chemokines in the liver. Visfatin also increased the expression of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) and activated fibrosis markers (CTGF, TIMP1, collagen 1α2, collagen 3α2, αSMA, fibronectin, and vimentin) in liver. Livers of visfatin-injected mice showed upregulation of ER stress and ROS and activation of JNK signaling. CONCLUSIONS These results suggest that visfatin aggravates hepatic inflammation together with induction of ER and oxidative stress and exacerbates fibrosis in an MCD-diet-fed mouse model of NAFLD.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
49
|
Visfatin Promotes the Metastatic Potential of Chondrosarcoma Cells by Stimulating AP-1-Dependent MMP-2 Production in the MAPK Pathway. Int J Mol Sci 2021; 22:ijms22168642. [PMID: 34445345 PMCID: PMC8395530 DOI: 10.3390/ijms22168642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chondrosarcoma is a malignant bone tumor that is characterized by high metastatic potential and marked resistance to radiation and chemotherapy. The knowledge that adipokines facilitate the initiation, progression, metastasis, and treatment resistance of various tumors has driven several in vitro and in vivo investigations into the effects of adipokines resistin, leptin, and adiponectin upon the development and progression of chondrosarcomas. Another adipokine, visfatin, is known to regulate tumor progression and metastasis, although how this molecule may affect chondrosarcoma metastasis is unclear. Here, we found that visfatin facilitated cellular migration via matrix metalloproteinase-2 (MMP-2) production in human chondrosarcoma cells and overexpression of visfatin enhanced lung metastasis in a mouse model of chondrosarcoma. Visfatin-induced stimulation of MMP-2 synthesis and activation of the AP-1 transcription factor facilitated chondrosarcoma cell migration via the ERK, p38, and JNK signaling pathways. This evidence suggests that visfatin is worth targeting in the treatment of metastatic chondrosarcoma.
Collapse
|
50
|
Sirtuin 1, Visfatin and IL-27 Serum Levels of Type 1 Diabetic Females in Relation to Cardiovascular Parameters and Autoimmune Thyroid Disease. Biomolecules 2021; 11:biom11081110. [PMID: 34439776 PMCID: PMC8391548 DOI: 10.3390/biom11081110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/19/2022] Open
Abstract
The loss of cardioprotection observed in premenopausal, diabetic women may result from the interplay between epigenetic, metabolic, and immunological factors. The aim of this study was to evaluate the concentration of sirtuin 1, visfatin, and IL-27 in relation to cardiovascular parameters and Hashimoto’s disease (HD) in young, asymptomatic women with type 1 diabetes mellitus (T1DM). Thyroid ultrasound, carotid intima-media thickness (cIMT) measurement, electrocardiography, and echocardiography were performed in 50 euthyroid females with T1DM (28 with HD and 22 without concomitant diseases) and 30 controls. The concentrations of serum sirtuin 1, visfatin and IL-27 were assessed using ELISA. The T1DM and HD group had higher cIMT (p = 0.018) and lower left ventricular global longitudinal strain (p = 0.025) compared to females with T1DM exclusively. In women with a double diagnosis, the sirtuin 1 and IL-27 concentrations were non-significantly higher than in other groups and significantly positively correlated with each other (r = 0.445, p = 0.018) and thyroid volume (r = 0.511, p = 0.005; r = 0.482, p = 0.009, respectively) and negatively correlated with relative wall thickness (r = –0.451, p = 0.016; r = –0.387, p = 0.041, respectively). These relationships were not observed in the control group nor for the visfatin concentration. These results suggest that sirtuin 1 and IL-27 contribute to the pathogenesis of early cardiac dysfunction in women with T1DM and HD.
Collapse
|