1
|
Small L, Nguyen TV, Larance M, Saunders DN, Hoy AJ, Schmitz-Peiffer C, Cooney GJ, Brandon AE. Liver proteomics identifies a disconnect between proteins associated with de novo lipogenesis and triglyceride storage. J Lipid Res 2024; 65:100687. [PMID: 39490929 PMCID: PMC11626007 DOI: 10.1016/j.jlr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
De novo lipogenesis (DNL) has been implicated in the development and progression of liver steatosis. Hepatic DNL is strongly influenced by dietary macronutrient composition with diets high in carbohydrate increasing DNL while diets high in fat decrease DNL. The enzymes in the core DNL pathway have been well characterized; however, less is known about other liver proteins that play accessory or regulatory roles. In the current study, we associate measured rates of hepatic DNL and fat content with liver proteomic analysis in mice to identify known and unknown proteins that may have a role in DNL. Male mice were fed either a standard chow diet, a semipurified high starch or high-fat diet. Both semipurified diets resulted in increased body weight, fat mass, and liver triglyceride content compared to chow controls, and hepatic DNL was increased in the high starch and decreased in high fat-fed mice. Proteomic analysis identified novel proteins associated with DNL that are involved in taurine metabolism, suggesting a link between these pathways. There was no relationship between proteins that associated with DNL and those associated with liver triglyceride content. Further analysis identified proteins that are differentially regulated when comparing a nonpurified chow diet to either of the semipurified diets, which provide a set of proteins that are influenced by dietary complexity. Finally, we compared the liver proteome between 4- and 30-week diet-fed mice and found remarkable similarity suggesting that metabolic remodeling of the liver occurs rapidly in response to differing dietary components. Together, these findings highlight novel proteins associated with hepatic DNL independently of liver fat content and suggest rapid liver metabolic remodeling in response to dietary composition changes.
Collapse
Affiliation(s)
- Lewin Small
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| | | | - Mark Larance
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darren N Saunders
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carsten Schmitz-Peiffer
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia
| | - Gregory J Cooney
- Garvan Institute, Sydney, NSW, Australia; School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Amanda E Brandon
- School of Life and Environmental Sciences, Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW, Australia; Garvan Institute, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Raun SH, Braun JL, Karavaeva I, Henriquez-Olguín C, Ali MS, Møller LLV, Gerhart-Hines Z, Fajardo VA, Richter EA, Sylow L. Mild Cold Stress at Ambient Temperature Elevates Muscle Calcium Cycling and Exercise Adaptations in Obese Female Mice. Endocrinology 2024; 165:bqae102. [PMID: 39136248 DOI: 10.1210/endocr/bqae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 08/28/2024]
Abstract
CONTEXT Housing temperature is a critical regulator of mouse metabolism and thermoneutral housing can improve model translation to humans. However, the impact of housing temperature on the ability of wheel running exercise training to rescue the detrimental effect of diet-induced obese mice is currently not fully understood. OBJECTIVE To investigate how housing temperature affects muscle metabolism in obese mice with regard to calcium handling and exercise training (ET) adaptations in skeletal muscle, and benefits of ET on adiposity and glucometabolic parameters. METHODS Lean or obese female mice were housed at standard ambient temperature (22 °C) or thermoneutrality (30 °C) with/without access to running wheels. The metabolic phenotype was investigated using glucose tolerance tests, indirect calorimetry, and body composition. Molecular muscle adaptations were measured using immunoblotting, qPCR, and spectrophotometric/fluorescent assays. RESULTS Obese female mice housed at 22 °C showed lower adiposity, lower circulating insulin levels, improved glucose tolerance, and elevated basal metabolic rate compared to 30 °C housing. Mice exposed to voluntary wheel running exhibited a larger fat loss and higher metabolic rate at 22 °C housing compared to thermoneutrality. In obese female mice, glucose tolerance improved after ET independent of housing temperature. Independent of diet and training, 22 °C housing increased skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity. Additionally, housing at 22 °C elevated the induction of training-responsive muscle proteins in obese mice. CONCLUSION Our findings highlight that housing temperature significantly influences adiposity, insulin sensitivity, muscle physiology, and exercise adaptations in diet-induced obese female mice.
Collapse
Affiliation(s)
- Steffen H Raun
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jessica L Braun
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Iuliia Karavaeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Carlos Henriquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Mona S Ali
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lisbeth L V Møller
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| | - Val A Fajardo
- Muscle Plasticity in Health and Disease, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, L2A 3A1, Canada
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lykke Sylow
- Molecular Metabolism in Cancer and Ageing, Department of Biomedical Sciences, Faculty of Health, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
3
|
Cilenti L, Di Gregorio J, Mahar R, Liu F, Ambivero CT, Periasamy M, Merritt ME, Zervos AS. Inactivation of mitochondrial MUL1 E3 ubiquitin ligase deregulates mitophagy and prevents diet-induced obesity in mice. Front Mol Biosci 2024; 11:1397565. [PMID: 38725872 PMCID: PMC11079312 DOI: 10.3389/fmolb.2024.1397565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of Mul1 in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of Mul1(-/-) animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Fei Liu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Camilla T. Ambivero
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Antonis S. Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
4
|
Kenkel WM, Ahmed S, Partie M, Rogers K. Delivery by cesarean section leads to heavier adult bodyweight in prairie voles (Microtus ochrogaster). Horm Behav 2024; 160:105499. [PMID: 38350334 PMCID: PMC10961198 DOI: 10.1016/j.yhbeh.2024.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Delivery by cesarean section now makes up 32.1 % of all births in the United States. Meta-analyses have estimated that delivery by cesarean section is associated with a > 50 % increased risk for childhood obesity by 5 years of age. While this association is independent of maternal obesity, breastfeeding, and heritable factors, studies in humans have been unable to test for a causal role of cesarean delivery in this regard. Here, we set out to use an animal model to experimentally test whether delivery by cesarean section would increase offspring weight in adulthood. Delivery by cesarean section may exert neurodevelopmental consequences by impacting hormones that are important at birth as well as during metabolic regulation in later life, such as oxytocin and vasopressin. The prairie vole (Microtus ochrogaster) has long been studied to investigate the roles of oxytocin and vasopressin in brain development and social behavior. Here, we establish that prairie voles tolerate a range of ambient temperatures, including conventional 22° housing, which makes them translationally appropriate for studies of diet-induced obesity. We also studied vole offspring for their growth, sucrose preference, home cage locomotor activity, and food consumption after birth by either cesarean section or vaginal delivery. At sacrifice, we collected measures of weight, length, and adipose tissue to analyze body composition in adulthood. Voles delivered by cesarean section had consistently greater bodyweights than those born vaginally, despite having lower food consumption and greater locomotive activity. Cesarean-delivered animals were also longer, though this did not explain their greater body weights. While cesarean delivery had no effect on vasopressin, it resulted in less oxytocin immunoreactivity within the hypothalamus in adulthood. These results support the case that cesarean section delivery plays a causal role in increasing offspring body weight, potentially by affecting the oxytocin system.
Collapse
Affiliation(s)
- William M Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, United States of America.
| | - Sabreen Ahmed
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| | - Miranda Partie
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| | - Katelyn Rogers
- Department of Psychological and Brain Sciences, University of Delaware, United States of America
| |
Collapse
|
5
|
Stevenson M, Srivastava A, Nacher M, Hall C, Palaia T, Lee J, Zhao CL, Lau R, Ali MAE, Park CY, Schlamp F, Heffron SP, Fisher EA, Brathwaite C, Ragolia L. The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice. Obes Surg 2024; 34:911-927. [PMID: 38191966 DOI: 10.1007/s11695-023-07052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.
Collapse
Affiliation(s)
- Matthew Stevenson
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Ankita Srivastava
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Maria Nacher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Hall
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Thomas Palaia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jenny Lee
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Chaohui Lisa Zhao
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Raymond Lau
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Endocrinology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Mohamed A E Ali
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher Y Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Collin Brathwaite
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Surgery, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Louis Ragolia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA.
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
6
|
Felix JB, Saha PK, de Groot E, Tan L, Sharp R, Anaya ES, Li Y, Quang H, Saidi N, Abushamat L, Ballantyne CM, Amos CI, Lorenzi PL, Klein S, Gao X, Hartig SM. N-acetylaspartate from fat cells regulates postprandial body temperature. RESEARCH SQUARE 2024:rs.3.rs-3835159. [PMID: 38260478 PMCID: PMC10802732 DOI: 10.21203/rs.3.rs-3835159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.
Collapse
Affiliation(s)
- Jessica B. Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Pradip K. Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Evelyn de Groot
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert Sharp
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Elizabeth S. Anaya
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cancer and Cellular Biology Program, Baylor College of Medicine, Houston, TX
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holly Quang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Nooshin Saidi
- Data Sciences Program, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD
| | - Layla Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Xia Gao
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Sean M. Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
7
|
Jaric I, Voelkl B, Amrein I, Wolfer DP, Novak J, Detotto C, Weber-Stadlbauer U, Meyer U, Manuella F, Mansuy IM, Würbel H. Using mice from different breeding sites fails to improve replicability of results from single-laboratory studies. Lab Anim (NY) 2024; 53:18-22. [PMID: 38151528 PMCID: PMC10766513 DOI: 10.1038/s41684-023-01307-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
| | - David P Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlotta Detotto
- Central Animal Facilities, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
McCue MD. CO 2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO 2 during 13 C breath testing in humans and animals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9639. [PMID: 37817343 DOI: 10.1002/rcm.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.
Collapse
|
9
|
White CR, Marshall DJ. How and Why Does Metabolism Scale with Body Mass? Physiology (Bethesda) 2023; 38:0. [PMID: 37698354 DOI: 10.1152/physiol.00015.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
Most explanations for the relationship between body size and metabolism invoke physical constraints; such explanations are evolutionarily inert, limiting their predictive capacity. Contemporary approaches to metabolic rate and life history lack the pluralism of foundational work. Here, we call for reforging of the lost links between optimization approaches and physiology.
Collapse
Affiliation(s)
- Craig R White
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Dustin J Marshall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Ryu S, Spadaro O, Sidorov S, Lee AH, Caprio S, Morrison C, Smith SR, Ravussin E, Shchukina I, Artyomov MN, Youm YH, Dixit VD. Reduction of SPARC protects mice against NLRP3 inflammasome activation and obesity. J Clin Invest 2023; 133:e169173. [PMID: 37781916 PMCID: PMC10541189 DOI: 10.1172/jci169173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
The comprehensive assessment of long-term effects of reducing intake of energy (CALERIE-II; NCT00427193) clinical trial established that caloric restriction (CR) in humans lowers inflammation. The identity and mechanism of endogenous CR-mimetics that can be deployed to control obesity-associated inflammation and diseases are not well understood. Our studies have found that 2 years of 14% sustained CR in humans inhibits the expression of the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), in adipose tissue. In mice, adipose tissue remodeling caused by weight loss through CR and low-protein diet feeding decreased, while high-fat diet-induced (HFD-induced) obesity increased SPARC expression in adipose tissue. Inducible SPARC downregulation in adult mice mimicked CR's effects on lowering adiposity by regulating energy expenditure. Deletion of SPARC in adipocytes was sufficient to protect mice against HFD-induced adiposity, chronic inflammation, and metabolic dysfunction. Mechanistically, SPARC activates the NLRP3 inflammasome at the priming step and downregulation of SPARC lowers macrophage inflammation in adipose tissue, while excess SPARC activated macrophages via JNK signaling. Collectively, reduction of adipocyte-derived SPARC confers CR-like metabolic and antiinflammatory benefits in obesity by serving as an immunometabolic checkpoint of inflammation.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, South Korea
| | - Olga Spadaro
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sviatoslav Sidorov
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aileen H. Lee
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yun-Hee Youm
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vishwa Deep Dixit
- Department of Pathology and
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Center for Research on Aging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Tsagkaraki E, Guilherme A, Nicoloro SM, Kelly M, Lifshitz LM, Wang H, Min K, Rowland LA, Santos KB, Wetoska N, Friedline RH, Maitland SA, Chen M, Weinstein LS, Wolfe SA, Kim JK, Czech MP. Crosstalk between corepressor NRIP1 and cAMP signaling on adipocyte thermogenic programming. Mol Metab 2023; 76:101780. [PMID: 37482187 PMCID: PMC10410517 DOI: 10.1016/j.molmet.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES Nuclear receptor interacting protein 1 (NRIP1) suppresses energy expenditure via repression of nuclear receptors, and its depletion markedly elevates uncoupled respiration in mouse and human adipocytes. We tested whether NRIP1 deficient adipocytes implanted into obese mice would enhance whole body metabolism. Since β-adrenergic signaling through cAMP strongly promotes adipocyte thermogenesis, we tested whether the effects of NRIP1 knock-out (NRIP1KO) require the cAMP pathway. METHODS NRIP1KO adipocytes were implanted in recipient high-fat diet (HFD) fed mice and metabolic cage studies conducted. The Nrip1 gene was disrupted by CRISPR in primary preadipocytes isolated from control vs adipose selective GsαKO (cAdGsαKO) mice prior to differentiation to adipocytes. Protein kinase A inhibitor was also used. RESULTS Implanting NRIP1KO adipocytes into HFD fed mice enhanced whole-body glucose tolerance by increasing insulin sensitivity, reducing adiposity, and enhancing energy expenditure in the recipients. NRIP1 depletion in both control and GsαKO adipocytes was equally effective in upregulating uncoupling protein 1 (UCP1) and adipocyte beiging, while β-adrenergic signaling by CL 316,243 was abolished in GsαKO adipocytes. Combining NRIP1KO with CL 316,243 treatment synergistically increased Ucp1 gene expression and increased the adipocyte subpopulation responsive to beiging. Estrogen-related receptor α (ERRα) was dispensable for UCP1 upregulation by NRIPKO. CONCLUSIONS The thermogenic effect of NRIP1 depletion in adipocytes causes systemic enhancement of energy expenditure when such adipocytes are implanted into obese mice. Furthermore, NRIP1KO acts independently but cooperatively with the cAMP pathway in mediating its effect on adipocyte beiging.
Collapse
Affiliation(s)
- Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Min Chen
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1752, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, NIDDK, NIH, Bethesda, MD, 20892-1752, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Neri D, Ramos-Lobo AM, Lee S, Lafond A, Zeltser LM. Rearing mice at 22°C programs increased capacity to respond to chronic exposure to cold but not high fat diet. Mol Metab 2023; 73:101740. [PMID: 37211277 PMCID: PMC10248272 DOI: 10.1016/j.molmet.2023.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE Rodent models raised at environmental temperatures of 21-22 °C are increasingly switched to thermoneutral housing conditions in adulthood to better capture human physiology. We quantified the developmental effects of rearing mice at an ambient temperature of 22 °C vs. 30 °C on metabolic responses to cold and high fat diet (HFD) in adulthood. METHODS Mice were reared from birth to 8 weeks of age at 22 °C or 30 °C, when they were acclimated to single housing at the same temperature for 2-3 weeks in indirect calorimetry cages. Energy expenditure attributable to basal metabolic rate, physical activity, thermic effect of food, and adaptive cold- or diet-induced thermogenesis was calculated. Responses to cooling were evaluated by decreasing the ambient temperature from 22 °C to 14 °C, while responses to HFD feeding were assessed at 30 °C. Influences of rearing temperature on thermogenic responses that emerge over hours, days and weeks were assessed by maintaining mice in the indirect calorimetry cages throughout the study. RESULTS At an ambient temperature of 22 °C, total energy expenditure (TEE) was 12-16% higher in mice reared at 22 °C as compared to 30 °C. Rearing temperature had no effect on responses in the first hours or week of the 14 °C challenge. Differences emerged in the third week, when TEE increased an additional 10% in mice reared at 22 °C, but mice reared at 30 °C could not sustain this level of cold-induced thermogenesis. Rearing temperature only affected responses to HFD during the first week, due to differences in the timing but not the strength of metabolic adaptations. CONCLUSION Rearing at 22 °C does not have a lasting effect on metabolic adaptations to HFD at thermoneutrality, but it programs an enhanced capacity to respond to chronic cold challenges in adulthood. These findings highlight the need to consider rearing temperature when using mice to model cold-induced thermogenesis.
Collapse
Affiliation(s)
- Daniele Neri
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angela M Ramos-Lobo
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seoeun Lee
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexandre Lafond
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Carneiro CFD, Drude N, Hülsemann M, Collazo A, Toelch U. Mapping strategies towards improved external validity in preclinical translational research. Expert Opin Drug Discov 2023; 18:1273-1285. [PMID: 37691294 DOI: 10.1080/17460441.2023.2251886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Translation is about successfully bringing findings from preclinical contexts into the clinic. This transfer is challenging as clinical trials frequently fail despite positive preclinical results. Limited robustness of preclinical research has been marked as one of the drivers of such failures. One suggested solution is to improve the external validity of in vitro and in vivo experiments via a suite of complementary strategies. AREAS COVERED In this review, the authors summarize the literature available on different strategies to improve external validity in in vivo, in vitro, or ex vivo experiments; systematic heterogenization; generalizability tests; and multi-batch and multicenter experiments. Articles that tested or discussed sources of variability in systematically heterogenized experiments were identified, and the most prevalent sources of variability are reviewed further. Special considerations in sample size planning, analysis options, and practical feasibility associated with each strategy are also reviewed. EXPERT OPINION The strategies reviewed differentially influence variation in experiments. Different research projects, with their unique goals, can leverage the strengths and limitations of each strategy. Applying a combination of these approaches in confirmatory stages of preclinical research putatively increases the chances of success in clinical studies.
Collapse
Affiliation(s)
- Clarissa F D Carneiro
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Natascha Drude
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Maren Hülsemann
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Anja Collazo
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| | - Ulf Toelch
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité, Berlin, Germany
| |
Collapse
|
15
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
16
|
Oestereicher MA, Wotton JM, Ayabe S, Bou About G, Cheng TK, Choi JH, Clary D, Dew EM, Elfertak L, Guimond A, Haseli Mashhadi H, Heaney JD, Kelsey L, Keskivali-Bond P, Lopez Gomez F, Marschall S, McFarland M, Meziane H, Munoz Fuentes V, Nam KH, Nichtová Z, Pimm D, Bower L, Prochazka J, Rozman J, Santos L, Stewart M, Tanaka N, Ward CS, Willett AME, Wilson R, Braun RE, Dickinson ME, Flenniken AM, Herault Y, Lloyd KCK, Mallon AM, McKerlie C, Murray SA, Nutter LMJ, Sedlacek R, Seong JK, Sorg T, Tamura M, Wells S, Schneltzer E, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, White JK, Spielmann N. Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide for cardiac electrophysiology studies in mice. Mamm Genome 2023; 34:180-199. [PMID: 37294348 PMCID: PMC10290602 DOI: 10.1007/s00335-023-09995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.
Collapse
Affiliation(s)
- Manuela A Oestereicher
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Janine M Wotton
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Ghina Bou About
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Tsz Kwan Cheng
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dave Clary
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Emily M Dew
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lahcen Elfertak
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Alain Guimond
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Jason D Heaney
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Lois Kelsey
- The Centre for Phenogenomics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3H7, Canada
| | - Piia Keskivali-Bond
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Federico Lopez Gomez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Zuzana Nichtová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dale Pimm
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lynette Bower
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Luis Santos
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Nobuhiko Tanaka
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Christopher S Ward
- Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Robert Wilson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Robert E Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Mary E Dickinson
- Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ann M Flenniken
- The Centre for Phenogenomics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3H7, Canada
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Ann-Marie Mallon
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Colin McKerlie
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and Interdisciplinary Program for Bioinformatics, Korea Mouse Phenotyping CenterBK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary ScienceSeoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Elida Schneltzer
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische 83 Universität München, Alte Akademie 8, 85354, Freising, Germany.
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | | | - Nadine Spielmann
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
17
|
Guilherme A, Rowland LA, Wetoska N, Tsagkaraki E, Santos KB, Bedard AH, Henriques F, Kelly M, Munroe S, Pedersen DJ, Ilkayeva OR, Koves TR, Tauer L, Pan M, Han X, Kim JK, Newgard CB, Muoio DM, Czech MP. Acetyl-CoA carboxylase 1 is a suppressor of the adipocyte thermogenic program. Cell Rep 2023; 42:112488. [PMID: 37163372 PMCID: PMC10286105 DOI: 10.1016/j.celrep.2023.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Disruption of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) in mice induces browning in inguinal white adipose tissue (iWAT). However, adipocyte FASN knockout (KO) increases acetyl-coenzyme A (CoA) and malonyl-CoA in addition to depletion of palmitate. We explore which of these metabolite changes triggers adipose browning by generating eight adipose-selective KO mouse models with loss of ATP-citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), ACC2, malonyl-CoA decarboxylase (MCD) or FASN, or dual KOs ACLY/FASN, ACC1/FASN, and ACC2/FASN. Preventing elevation of acetyl-CoA and malonyl-CoA by depletion of adipocyte ACLY or ACC1 in combination with FASN KO does not block the browning of iWAT. Conversely, elevating malonyl-CoA levels in MCD KO mice does not induce browning. Strikingly, adipose ACC1 KO induces a strong iWAT thermogenic response similar to FASN KO while also blocking malonyl-CoA and palmitate synthesis. Thus, ACC1 and FASN are strong suppressors of adipocyte thermogenesis through promoting lipid synthesis rather than modulating the DNL intermediates acetyl-CoA or malonyl-CoA.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicole Wetoska
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaltinaitis B Santos
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sean Munroe
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA
| | - Lauren Tauer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27705, USA; Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Moore SM, Quirk JD, Lassiter AW, Laforest R, Ayers GD, Badea CT, Fedorov AY, Kinahan PE, Holbrook M, Larson PEZ, Sriram R, Chenevert TL, Malyarenko D, Kurhanewicz J, Houghton AM, Ross BD, Pickup S, Gee JC, Zhou R, Gammon ST, Manning HC, Roudi R, Daldrup-Link HE, Lewis MT, Rubin DL, Yankeelov TE, Shoghi KI. Co-Clinical Imaging Metadata Information (CIMI) for Cancer Research to Promote Open Science, Standardization, and Reproducibility in Preclinical Imaging. Tomography 2023; 9:995-1009. [PMID: 37218941 PMCID: PMC10204428 DOI: 10.3390/tomography9030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Preclinical imaging is a critical component in translational research with significant complexities in workflow and site differences in deployment. Importantly, the National Cancer Institute's (NCI) precision medicine initiative emphasizes the use of translational co-clinical oncology models to address the biological and molecular bases of cancer prevention and treatment. The use of oncology models, such as patient-derived tumor xenografts (PDX) and genetically engineered mouse models (GEMMs), has ushered in an era of co-clinical trials by which preclinical studies can inform clinical trials and protocols, thus bridging the translational divide in cancer research. Similarly, preclinical imaging fills a translational gap as an enabling technology for translational imaging research. Unlike clinical imaging, where equipment manufacturers strive to meet standards in practice at clinical sites, standards are neither fully developed nor implemented in preclinical imaging. This fundamentally limits the collection and reporting of metadata to qualify preclinical imaging studies, thereby hindering open science and impacting the reproducibility of co-clinical imaging research. To begin to address these issues, the NCI co-clinical imaging research program (CIRP) conducted a survey to identify metadata requirements for reproducible quantitative co-clinical imaging. The enclosed consensus-based report summarizes co-clinical imaging metadata information (CIMI) to support quantitative co-clinical imaging research with broad implications for capturing co-clinical data, enabling interoperability and data sharing, as well as potentially leading to updates to the preclinical Digital Imaging and Communications in Medicine (DICOM) standard.
Collapse
Affiliation(s)
- Stephen M. Moore
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew W. Lassiter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37235, USA
| | - Cristian T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC 27708, USA
| | - Andriy Y. Fedorov
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Holbrook
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University, Durham, NC 27708, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Thomas L. Chenevert
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dariya Malyarenko
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | | | - Brian D. Ross
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Pickup
- Department of Radiology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C. Gee
- Department of Radiology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Zhou
- Department of Radiology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Henry Charles Manning
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Lewis
- Dan L Duncan Comprehensive Cancer Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel L. Rubin
- Departments of Biomedical Data Science, Radiology and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas E. Yankeelov
- Departments of Biomedical Engineering, Diagnostic Medicine and Oncology, Oden Institute for Computational and Engineering Sciences, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kooresh I. Shoghi
- Mallinckrodt Institute of Radiology, Department of Biomedical Engineering, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
19
|
Sukoff Rizzo SJ, Finkel T, Greenspan SL, Resnick NM, Brach JS. Speaking the Same Language: Team Science Approaches in Aging Research for Integrating Basic and Translational Science With Clinical Practice. Innov Aging 2023; 7:igad035. [PMID: 37213324 PMCID: PMC10198772 DOI: 10.1093/geroni/igad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Indexed: 05/23/2023] Open
Abstract
Research on aging is at an important inflection point, where the insights accumulated over the last 2 decades in the basic biology of aging are poised to be translated into new interventions to promote health span and improve longevity. Progress in the basic science of aging is increasingly influencing medical practice, and the application and translation of geroscience require seamless integration of basic, translational, and clinical researchers. This includes the identification of new biomarkers, novel molecular targets as potential therapeutic agents, and translational in vivo studies to assess the potential efficacy of new interventions. To facilitate the required dialog between basic, translational, and clinical investigators, a multidisciplinary approach is essential and requires the collaborative expertise of investigators spanning molecular and cellular biology, neuroscience, physiology, animal models, physiologic and metabolic processes, pharmacology, genetics, and high-throughput drug screening approaches. In an effort to better enable the cross-talk of investigators across the broad spectrum of aging-related research disciplines, a goal of our University of Pittsburgh Claude D. Pepper Older Americans Independence Center has been to reduce the barriers to collaborative interactions by promoting a common language through team science. The culmination of these efforts will ultimately accelerate the ability to conduct first-in-human clinical trials of novel agents to extend health span and life span.
Collapse
Affiliation(s)
- Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Claude D. Pepper Older Americans Independence Center, Division of Geriatrics and Gerontology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Claude D. Pepper Older Americans Independence Center, Division of Geriatrics and Gerontology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan L Greenspan
- Pittsburgh Claude D. Pepper Older Americans Independence Center, Division of Geriatrics and Gerontology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Neil M Resnick
- Pittsburgh Claude D. Pepper Older Americans Independence Center, Division of Geriatrics and Gerontology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer S Brach
- Pittsburgh Claude D. Pepper Older Americans Independence Center, Division of Geriatrics and Gerontology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure. Mol Metab 2023; 71:101699. [PMID: 36858190 PMCID: PMC10090438 DOI: 10.1016/j.molmet.2023.101699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. CONCLUSIONS The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.
Collapse
|
21
|
Nance SA, Muir L, Delproprosto J, Lumeng CN. MSR1 is not required for obesity-associated inflammation and insulin resistance in mice. Sci Rep 2023; 13:2651. [PMID: 36788340 PMCID: PMC9927046 DOI: 10.1038/s41598-023-29736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.
Collapse
Affiliation(s)
- Sierra A Nance
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Lindsey Muir
- Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jennifer Delproprosto
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, 109 Zina Pitcher Place, 2057 BSRB, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
I'Anson H, Archer HR, Choi HJ, Ko TB, Rodriguez CL, Samuel MA, Bezold KA, Whitworth GB. Resting metabolic rate, abdominal fat pad and liver metabolic gene expression in female rats provided a snacking diet from weaning to adulthood. Physiol Behav 2022; 256:113962. [PMID: 36100110 DOI: 10.1016/j.physbeh.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
Our female rat model with continuous, ad libitum access to snacks and chow from weaning to adulthood closely mimics human feeding behavior from childhood onwards. It causes weight gain, enlarged abdominal fat pads, reduced insulin sensitivity and leptin resistance without an increase in total caloric intake. Our current study investigated if this change in energy partitioning is due to a decrease in resting metabolic rate (RMR). In addition, we determined if carbohydrate and lipid metabolism changes in abdominal fat pads and liver. RMR, using indirect calorimetry, was determined in control and snacking rats every two weeks from Days 28-29 to Days 76-77. RMR decreased with age in both groups, but there was no difference between snacking and control rats at any age. At termination, abdominal fat pads (parametrial, retroperitoneal and mesenteric) and liver samples were collected for determination of gene expression for 21 genes involved in carbohydrate and lipid metabolism using RT-qPCR. Analysis of gene expression data showed a striking difference between metabolic profiles of control and snacking rats in abdominal fat pads and liver, with a distinct segregation of genes for both lipid and carbohydrate metabolism that correlated with an increase in body weight and fat pad weights. Genes involved in lipogenesis were upregulated in abdominal fat pads, while genes involved in adipogenesis, and lipid recycling were upregulated in the liver. In conclusion, snacking in addition to chow from weaning in female rats causes a repartitioning of energy that is not due to depressed RMR in snacking rats. Rather, snacking from weaning causes a shift in gene expression resulting in energy partitioning toward enhanced abdominal fat pad lipogenesis, and adipogenesis and lipid recycling in liver.
Collapse
Affiliation(s)
- Helen I'Anson
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States.
| | - Hannah R Archer
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Hannah J Choi
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Tiffany B Ko
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Carissa L Rodriguez
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Mariam A Samuel
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Kelly A Bezold
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| | - Gregg B Whitworth
- Department of Biology, Washington & Lee University, Lexington VA 24450, United States
| |
Collapse
|
24
|
Jaric I, Voelkl B, Clerc M, Schmid MW, Novak J, Rosso M, Rufener R, von Kortzfleisch VT, Richter SH, Buettner M, Bleich A, Amrein I, Wolfer DP, Touma C, Sunagawa S, Würbel H. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol 2022; 20:e3001837. [PMID: 36269766 PMCID: PMC9629646 DOI: 10.1371/journal.pbio.3001837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings. The phenotype of an organism results not only from its genotype but also the influence of its environment throughout development. This study shows that common environmental differences between animal facilities can induce substantial variation in the phenotype of mice, thereby highlighting an important limitation of inferences from single-laboratory studies in animal research.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Clerc
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Chadi Touma
- Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| |
Collapse
|
25
|
Winn NC, Wolf EM, Garcia JN, Hasty AH. Exon 2-mediated deletion of Trem2 does not worsen metabolic function in diet-induced obese mice. J Physiol 2022; 600:4485-4501. [PMID: 36044273 PMCID: PMC9588740 DOI: 10.1113/jp283684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (Trem2) is highly expressed on myeloid cells and is involved in cellular lipid homeostasis and inflammatory processes. Trem2 deletion in mice (Trem2-/- ) evokes adipose tissue dysfunction, but its role in worsening obesity-induced metabolic dysfunction has not been resolved. Here we aimed to determine the causal role of Trem2 in regulating glucose homeostasis and insulin sensitivity in mice. Nine-week-old male and female littermate wild-type (WT) and Trem2-/- mice were fed a low- or high-fat diet for 18 weeks and phenotyped for metabolic function. Diet-induced weight gain was similar between genotypes, irrespective of sex. Consistent with previous reports, we find that loss of Trem2 causes massive adipocyte hypertrophy and an attenuation in the lipid-associated macrophage transcriptional response to obesity. In contrast to published data, we find that loss of Trem2 does not worsen metabolic function in obese mice. No differences in intraperitoneal glucose tolerance (ipGTT), oral GTT or mixed meal substrate control, including postprandial glucose, non-esterified fatty acids, insulin or triglycerides, were found between WT and Trem2-/- animals. Similarly, no phenotypic differences existed when animals were challenged with stressors on metabolic demand (i.e. acute exercise or environmental temperature modulation). Collectively, we report a disassociation between adipose tissue remodelling caused by loss of Trem2 and whole-body metabolic homeostasis in obese mice. The complementary nature of experiments conducted gives credence to the conclusion that loss of Trem2 is unlikely to worsen glucose homeostasis in mice.
Collapse
Affiliation(s)
- Nathan C. Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Elysa M. Wolf
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jamie N. Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, Wang A, Dixit VD. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 2022; 55:1609-1626.e7. [PMID: 35963236 PMCID: PMC9474643 DOI: 10.1016/j.immuni.2022.07.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Maxim Artyomov
- Section of Immunology, Washington School of Medicine, St Louis, MO 63110, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Rucker R. Allometric Scaling: Comparison of Interspecies Nutritional Relationships and Requirements. J Nutr 2022; 152:2626-2627. [PMID: 36774128 PMCID: PMC9644180 DOI: 10.1093/jn/nxac189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Robert Rucker
- From the Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Zhou B, Claflin KE, Flippo KH, Sullivan AI, Asghari A, Tadinada SM, Jensen-Cody SO, Abel T, Potthoff MJ. Central FGF21 production regulates memory but not peripheral metabolism. Cell Rep 2022; 40:111239. [PMID: 36001982 PMCID: PMC9472585 DOI: 10.1016/j.celrep.2022.111239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/25/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory. Zhou et al. reveal that the endocrine hormone FGF21 is expressed in the brain. Central FGF21 expression occurs in distinct areas, including the retrosplenial cortex, but not the hypothalamus. Interestingly, brain-derived FGF21 regulates spatial memory formation, but not metabolism, and the converse is true for liver-derived FGF21.
Collapse
Affiliation(s)
- Bolu Zhou
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Arvand Asghari
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Satya M Tadinada
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, 169 Newton Road, 3322 PBDB, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
30
|
Chen Z, Raj A, Prateek GV, Di Francesco A, Liu J, Keyes BE, Kolumam G, Jojic V, Freund A. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. eLife 2022; 11:e72664. [PMID: 35404230 PMCID: PMC9000950 DOI: 10.7554/elife.72664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Behavior and physiology are essential readouts in many studies but have not benefited from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. To address this, we developed an approach that combines commercially available automated phenotyping hardware with a systems biology analysis pipeline to generate a high-dimensional readout of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can only be measured at the limits of animal ability via challenge-based tasks, we observed widespread physiological and behavioral aging starting in early life. Using network connectivity analysis, we found that organism-level resilience exhibited an accelerating decline with age that was distinct from the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and showed that the resulting model is able to predict both variables simultaneously, a behavior that is not captured by separate age and mortality prediction models. This study provides a uniquely high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of physiology provides insights not captured by individual phenotypes. The approach described here allows aging, and other processes that affect behavior and physiology, to be studied with improved throughput, resolution, and phenotypic scope.
Collapse
Affiliation(s)
- Zhenghao Chen
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Anil Raj
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - GV Prateek
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Andrea Di Francesco
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Justin Liu
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Brice E Keyes
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Ganesh Kolumam
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| | - Adam Freund
- Calico Life Sciences LLC, South San FranciscoSouth San FranciscoUnited States
| |
Collapse
|
31
|
Morató L, Astori S, Zalachoras I, Rodrigues J, Ghosal S, Huang W, Guillot de Suduiraut I, Grosse J, Zanoletti O, Cao L, Auwerx J, Sandi C. eNAMPT actions through nucleus accumbens NAD +/SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress. SCIENCE ADVANCES 2022; 8:eabj9109. [PMID: 35235362 PMCID: PMC8890725 DOI: 10.1126/sciadv.abj9109] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2022] [Indexed: 05/15/2023]
Abstract
Obesity is frequently associated with impairments in the social domain, and stress at puberty can lead to long-lasting changes in visceral fat deposition and in social behaviors. However, whether stress-induced changes in adipose tissue can affect fat-to-brain signaling, thereby orchestrating behavioral changes, remains unknown. We found that peripubertally stressed male-but not female-mice exhibit concomitant increased adiposity and sociability deficits. We show that reduced levels of the adipokine nicotinamide phosphoribosyltransferase (NAMPT) in fat and its extracellular form eNAMPT in blood contribute to lifelong reductions in sociability induced by peripubertal stress. By using a series of adipose tissue and brain region-specific loss- and gain-of-function approaches, we implicate impaired nicotinamide adenine dinucleotide (NAD+)/SIRT1 pathway in the nucleus accumbens. Impairments in sociability and accumbal neuronal excitability are prevented by normalization of eNAMPT levels or treatment with nicotinamide mononucleotide (NMN), a NAD+-boosting compound. We propose NAD+ boosters to treat social deficits of early life stress origin.
Collapse
Affiliation(s)
- Laia Morató
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ioannis Zalachoras
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Joao Rodrigues
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wei Huang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lei Cao
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Đukanović N, La Spada F, Emmenegger Y, Niederhäuser G, Preitner F, Franken P. Depriving Mice of Sleep also Deprives of Food. Clocks Sleep 2022; 4:37-51. [PMID: 35225952 PMCID: PMC8884003 DOI: 10.3390/clockssleep4010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Both sleep-wake behavior and circadian rhythms are tightly coupled to energy metabolism and food intake. Altered feeding times in mice are known to entrain clock gene rhythms in the brain and liver, and sleep-deprived humans tend to eat more and gain weight. Previous observations in mice showing that sleep deprivation (SD) changes clock gene expression might thus relate to altered food intake, and not to the loss of sleep per se. Whether SD affects food intake in the mouse and how this might affect clock gene expression is, however, unknown. We therefore quantified (i) the cortical expression of the clock genes Per1, Per2, Dbp, and Cry1 in mice that had access to food or not during a 6 h SD, and (ii) food intake during baseline, SD, and recovery sleep. We found that food deprivation did not modify the SD-incurred clock gene changes in the cortex. Moreover, we discovered that although food intake during SD did not differ from the baseline, mice lost weight and increased food intake during subsequent recovery. We conclude that SD is associated with food deprivation and that the resulting energy deficit might contribute to the effects of SD that are commonly interpreted as a response to sleep loss.
Collapse
Affiliation(s)
- Nina Đukanović
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Francesco La Spada
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
| | - Guy Niederhäuser
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Frédéric Preitner
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Mouse Metabolic Evaluation Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (G.N.); (F.P.)
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; (N.Đ.); (F.L.S.); (Y.E.)
- Correspondence:
| |
Collapse
|
33
|
Abstract
The role of central estrogen in cognitive, metabolic, and reproductive health has long fascinated the lay public and scientists alike. In the last two decades, insight into estrogen signaling in the brain and its impact on female physiology is beginning to catch up with the vast information already established for its actions on peripheral tissues. Using newer methods to manipulate estrogen signaling in hormone-sensitive brain regions, neuroscientists are now identifying the molecular pathways and neuronal subtypes required for controlling sex-dependent energy allocation. However, the immense cellular complexity of these hormone-sensitive brain regions makes it clear that more research is needed to fully appreciate how estrogen modulates neural circuits to regulate physiological and behavioral end points. Such insight is essential for understanding how natural or drug-induced hormone fluctuations across lifespan affect women's health.
Collapse
Affiliation(s)
- Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - Candice B Herber
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| | - William C Krause
- Department of Cellular and Molecular Pharmacology, School of Medicine, Mission Bay, University of California, San Francisco, California, USA;
| |
Collapse
|
34
|
Cortopassi MD, Ramachandran D, Rubio WB, Hochbaum D, Sabatini BL, Banks AS. Analysis of Thermogenesis Experiments with CalR. Methods Mol Biol 2022; 2448:43-72. [PMID: 35167089 DOI: 10.1007/978-1-0716-2087-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern indirect calorimetry systems allow for high-frequency time series measurements of the factors affected by thermogenesis: energy intake and energy expenditure. These indirect calorimetry systems generate a flood of raw data recording oxygen consumption, carbon dioxide production, physical activity, and food intake among other factors. Analysis of these data requires time-consuming manual manipulation for formatting, data cleaning, quality control, and visualization. Beyond data handling, analyses of indirect calorimetry experiments require specialized statistical treatment to account for differential contributions of fat mass and lean mass to metabolic rates.Here we describe how to use the software package CalR version 1.2, to analyze indirect calorimetry data from three examples of thermogenesis, cold exposure, adrenergic agonism, and hyperthyroidism in mice, by providing standardized methods for reproducible research. CalR is a free online tool with an easy-to-use graphical user interface to import data files from the Columbus Instruments' CLAMS, Sable Systems' Promethion, and TSE Systems' PhenoMaster. Once loaded, CalR can quickly visualize experimental results and perform basic statistical analyses. We present a framework that standardizes the data structures and analyses of indirect calorimetry experiments to provide reusable and reproducible methods for the physiological data affecting body weight.
Collapse
Affiliation(s)
- Marissa D Cortopassi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Deepti Ramachandran
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - William B Rubio
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniel Hochbaum
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Pohorec V, Križančić Bombek L, Skelin Klemen M, Dolenšek J, Stožer A. Glucose-Stimulated Calcium Dynamics in Beta Cells From Male C57BL/6J, C57BL/6N, and NMRI Mice: A Comparison of Activation, Activity, and Deactivation Properties in Tissue Slices. Front Endocrinol (Lausanne) 2022; 13:867663. [PMID: 35399951 PMCID: PMC8988149 DOI: 10.3389/fendo.2022.867663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between C57BL/6J, C57BL/6N, and NMRI mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease in tissue slices.
Collapse
Affiliation(s)
- Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| |
Collapse
|
36
|
Leibold S, Bagivalu Lakshminarasimha A, Gremse F, Hammerschmidt M, Michel M. Long-term obesogenic diet leads to metabolic phenotypes which are not exacerbated by catch-up growth in zebrafish. PLoS One 2022; 17:e0267933. [PMID: 35544474 PMCID: PMC9094543 DOI: 10.1371/journal.pone.0267933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Obesity and metabolic syndrome are of increasing global concern. In order to understand the basic biology and etiology of obesity, research has turned to animals across the vertebrate spectrum including zebrafish. Here, we carefully characterize zebrafish in a long-term obesogenic environment as well as zebrafish that went through early lifetime caloric restriction. We found that long-term obesity in zebrafish leads to metabolic endpoints comparable to mammals including increased adiposity, weight, hepatic steatosis and hepatic lesions but not signs of glucose dysregulation or differences in metabolic rate or mitochondrial function. Malnutrition in early life has been linked to an increased likelihood to develop and an exacerbation of metabolic syndrome, however fish that were calorically restricted from five days after fertilization until three to nine months of age did not show signs of an exacerbated phenotype. In contrast, the groups that were shifted later in life from caloric restriction to the obesogenic environment did not completely catch up to the long-term obesity group by the end of our experiment. This dataset provides insight into a slowly exacerbating time-course of obesity phenotypes.
Collapse
Affiliation(s)
- Sandra Leibold
- Institute of Zoology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Gremse-IT GmbH, Aachen, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximilian Michel
- Institute of Zoology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
37
|
Wade G, McGahee A, Ntambi JM, Simcox J. Lipid Transport in Brown Adipocyte Thermogenesis. Front Physiol 2021; 12:787535. [PMID: 35002769 PMCID: PMC8733649 DOI: 10.3389/fphys.2021.787535] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.
Collapse
Affiliation(s)
| | | | | | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
38
|
Cartwright DM, Oakey LA, Fletcher RS, Doig CL, Heising S, Larner DP, Nasteska D, Berry CE, Heaselgrave SR, Ludwig C, Hodson DJ, Lavery GG, Garten A. Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity. J Endocrinol 2021; 251:111-123. [PMID: 34370682 PMCID: PMC8494379 DOI: 10.1530/joe-21-0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.
Collapse
Affiliation(s)
- David M Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy A Oakey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Craig L Doig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Silke Heising
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean P Larner
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caitlin E Berry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sam R Heaselgrave
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
39
|
Škop V, Xiao C, Liu N, Gavrilova O, Reitman ML. The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Mol Metab 2021; 53:101332. [PMID: 34478905 PMCID: PMC8463779 DOI: 10.1016/j.molmet.2021.101332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Objective To improve understanding of mouse energy homeostasis and its applicability to humans, we quantitated the effects of housing density on mouse thermal physiology in both sexes. Methods Littermate wild type and Brs3-null mice were single- or group- (three per cage) housed and studied by indirect calorimetry with continuous measurement of core body temperature, energy expenditure, physical activity, and food intake. Results At 23 °C, below thermoneutrality, single-housed males had a lower body temperature and unchanged metabolic rate compared to group-housed controls. In contrast, single-housed females maintained a similar body temperature to group-housed controls by increasing their metabolic rate. With decreasing ambient temperature below 27 °C, only group-housed mice decreased their heat conductance, likely due to huddling, thus interfering with the energy expenditure vs ambient temperature relationship described by Scholander. In a hot environment (35 °C), the single-housed mice were less heat stressed. Upon fasting, single-housed mice had larger reductions in body temperature, with male mice having more torpor episodes of similar duration and female mice having a similar number of torpor episodes that lasted longer. Qualitatively, the effects of housing density on thermal physiology of Brs3-null mice generally mimicked the effects in controls. Conclusions Single housing is more sensitive than group housing for detecting thermal physiology phenotypes. Single housing increases heat loss and amplifies the effects of fasting or a cold environment. Male and female mice utilize different thermoregulatory strategies to respond to single housing. • Changing housing density changes thermal physiology and metabolic rate. • Singly housed mice are more affected by fasting and by cold temperatures. • Single housing is more sensitive than group housing for detecting thermal phenotypes. • Certain principles of thermal physiology are masked by group housing. • Male and female mice respond differently to single housing.
Collapse
Affiliation(s)
- Vojtěch Škop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Cimino I, Rimmington D, Tung YCL, Lawler K, Larraufie P, Kay RG, Virtue S, Lam BYH, Fagnocchi L, Ma MKL, Saudek V, Zvetkova I, Vidal-Puig A, Yeo GSH, Farooqi IS, Pospisilik JA, Gribble FM, Reimann F, O'Rahilly S, Coll AP. Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Sci Rep 2021; 11:17571. [PMID: 34475432 PMCID: PMC8413370 DOI: 10.1038/s41598-021-96278-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/-p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/-p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/-p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/-p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/-p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/-p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.
Collapse
Affiliation(s)
- Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Y C Loraine Tung
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Pierre Larraufie
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Richard G Kay
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Samuel Virtue
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marcella K L Ma
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Ilona Zvetkova
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Frank Reimann
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK.
| |
Collapse
|
41
|
Oteng AB, Higuchi S, Banks AS, Haeusler RA. Cyp2c-deficiency depletes muricholic acids and protects against high-fat diet-induced obesity in male mice but promotes liver damage. Mol Metab 2021; 53:101326. [PMID: 34438105 PMCID: PMC8449133 DOI: 10.1016/j.molmet.2021.101326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Murine-specific muricholic acids (MCAs) are reported to protect against obesity and associated metabolic disorders. However, the response of mice with genetic depletion of MCA to an obesogenic diet has not been evaluated. We used Cyp2c-deficient (Cyp2c−/−) mice, which lack MCAs and thus have a human-like bile acid (BA) profile, to directly investigate the potential role of MCAs in diet-induced obesity. Methods Male and female Cyp2c−/− mice and wild-type (WT) littermate controls were fed a standard chow diet or a high-fat diet (HFD) for 18 weeks. We measured BA composition from a pool of liver, gallbladder, and intestine, as well as weekly body weight, food intake, lean and fat mass, systemic glucose homeostasis, energy expenditure, intestinal lipid absorption, fecal lipid, and energy content. Results Cyp2c-deficiency depleted MCAs and caused other changes in BA composition, namely a decrease in the ratio of 12α-hydroxylated (12α-OH) BAs to non-12α-OH BAs, without altering the total BA levels. While WT male mice became obese after HFD feeding, Cyp2c−/− male mice were protected from obesity and associated metabolic dysfunctions. Cyp2c−/− male mice also showed reduced intestinal lipid absorption and increased lipid excretion, which was reversed by oral gavage with the 12α-OH BA and taurocholic acid (TCA). Cyp2c−/− mice also showed increased liver damage, which appeared stronger in females. Conclusions MCA does not protect against diet-induced obesity but may protect against liver injury. Reduced lipid absorption in Cyp2c-deficient male mice is potentially due to a reduced ratio of 12α-OH/non-12α-OH BAs. Presence of MCA does not necessarily protect against diet-induced obesity. Cyp2c deficiency promotes resistance to diet-induced obesity in males. Cyp2c-knockout mice have decreased the ratio of 12α-OH/non-12α-OH BAs that promotes decreased intestinal lipid absorption. Cyp2c-knockout mice have improved glucose homeostasis. Cyp2c-deficiency promotes mild and severe liver injury in male and female mice, respectively.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sei Higuchi
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Alexander S Banks
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Chaix A, Deota S, Bhardwaj R, Lin T, Panda S. Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice. Cell Rep 2021; 36:109543. [PMID: 34407415 PMCID: PMC8500107 DOI: 10.1016/j.celrep.2021.109543] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Time-restricted feeding (TRF) is a nutritional intervention wherein food intake is limited to a consistent 8- to 10-h daily window without changes in nutritional quality or quantity. TRF can prevent and treat diet-induced obesity (DIO) and associated metabolic disease in young male mice fed an obesogenic diet, the gold standard preclinical model for metabolic disease research. Because age and sex are key biological variables affecting metabolic disease pathophysiology and response to therapies, we assessed their impact on TRF benefits by subjecting young 3-month-old or middle-aged 12-month-old male and female mice to ad libitum or TRF of a Western diet. We show that most of the benefits of TRF are age-independent but are sex-dependent. TRF protects both sexes against fatty liver and glucose intolerance while body weight benefits are observed only in males. We also find that TRF imparts performance benefits and increases survival to sepsis in both sexes.
Collapse
Affiliation(s)
- Amandine Chaix
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Shaunak Deota
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Raghav Bhardwaj
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Terry Lin
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Shoghi KI, Badea CT, Blocker SJ, Chenevert TL, Laforest R, Lewis MT, Luker GD, Manning HC, Marcus DS, Mowery YM, Pickup S, Richmond A, Ross BD, Vilgelm AE, Yankeelov TE, Zhou R. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine. ACTA ACUST UNITED AC 2021; 6:273-287. [PMID: 32879897 PMCID: PMC7442091 DOI: 10.18383/j.tom.2020.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The National Institutes of Health’s (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.
Collapse
Affiliation(s)
- Kooresh I Shoghi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | - Stephanie J Blocker
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC
| | | | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Michael T Lewis
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes-Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Yvonne M Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, Durham, NC
| | - Stephen Pickup
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt School of Medicine, Nashville, TN
| | - Brian D Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Anna E Vilgelm
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Oden Institute for Computational Engineering and Sciences, Austin, TX; and.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
44
|
Abstract
Prairie voles have emerged as an important rodent model for understanding the neuroscience of social behavior. Prairie voles are well known for their capacity for pair bonding and alloparental care. These behavioral phenomena overlap with human social behavior but are not commonly observed in traditional rodent models. In this article, we highlight the many benefits of using prairie voles in neuroscience research. We begin by describing the advantages of using diverse and non-traditional study models. We then focus on social behaviors, including pair bonding, alloparental care, and peer interactions, that have brought voles to the forefront of social neuroscience. We describe many additional features of prairie vole biology and behavior that provide researchers with opportunities to address an array of research questions. We also survey neuroethological methods that have been used with prairie voles, from classic to modern techniques. Finally, we conclude with a discussion of other vole species, particularly meadow voles, and their own unique advantages for neuroscience studies. This article provides a foundation for researchers who are new to working with voles, as well as for experienced neuroscientists who want to expand their research scope. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- William M. Kenkel
- Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716
| | - Morgan L. Gustison
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| | - Annaliese K. Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
45
|
Tobón-Cornejo S, Vargas-Castillo A, Leyva-Martínez A, Ortíz V, Noriega LG, Velázquez-Villegas LA, Aleman G, Furosawa-Carballeda J, Torres N, Tovar AR. PPARα/RXRα downregulates amino acid catabolism in the liver via interaction with HNF4α promoting its proteasomal degradation. Metabolism 2021; 116:154705. [PMID: 33422545 DOI: 10.1016/j.metabol.2021.154705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.
Collapse
Affiliation(s)
- Sandra Tobón-Cornejo
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Alekxa Leyva-Martínez
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Victor Ortíz
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Gabriela Aleman
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Janette Furosawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
46
|
Habtemichael EN, Li DT, Camporez JP, Westergaard XO, Sales CI, Liu X, López-Giráldez F, DeVries SG, Li H, Ruiz DM, Wang KY, Sayal BS, González Zapata S, Dann P, Brown SN, Hirabara S, Vatner DF, Goedeke L, Philbrick W, Shulman GI, Bogan JS. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat Metab 2021; 3:378-393. [PMID: 33686286 PMCID: PMC7990718 DOI: 10.1038/s42255-021-00359-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug (Aspscr1)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Collapse
Affiliation(s)
- Estifanos N Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Evelo Biosciences, Inc., Cambridge, MA, USA
| | - Don T Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - João Paulo Camporez
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- University of São Paulo, São Paulo, Brazil
| | - Xavier O Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Columbia University, New York, NY, USA
| | - Chloe I Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | | | - Stephen G DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hanbing Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Zhejiang University of Technology, Hangzhou, China
| | - Diana M Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kenny Y Wang
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Bhavesh S Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sofia González Zapata
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stacey N Brown
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro Hirabara
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Daniel F Vatner
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - William Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
47
|
Rahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, Jedrychowski MP, Vergnes L, Reue K, Spiegelman BM, Kazak L. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature 2021; 590:480-485. [PMID: 33597756 DOI: 10.1038/s41586-021-03221-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.
Collapse
Affiliation(s)
- Janane F Rahbani
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Anna Roesler
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Mohammed F Hussain
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bozena Samborska
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Christien B Dykstra
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark P Jedrychowski
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Lawrence Kazak
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
48
|
Rathod YD, Di Fulvio M. The feeding microstructure of male and female mice. PLoS One 2021; 16:e0246569. [PMID: 33539467 PMCID: PMC7861458 DOI: 10.1371/journal.pone.0246569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/21/2021] [Indexed: 11/19/2022] Open
Abstract
The feeding pattern and control of energy intake in mice housed in groups are poorly understood. Here, we determined and quantified the normal feeding microstructure of social male and female mice of the C57BL/6J genetic background fed a chow diet. Mice at 10w, 20w and 30w of age showed the expected increase in lean and fat mass, being the latter more pronounced and variable in males than in females. Under ad libitum conditions, 20w and 30w old females housed in groups showed significantly increased daily energy intake when adjusted to body weight relative to age-matched males. This was the combined result of small increases in energy intake during the nocturnal and diurnal photoperiods of the day without major changes in the circadian pattern of energy intake or spontaneous ambulatory activity. The analysis of the feeding microstructure suggests sex- and age-related contributions of meal size, meal frequency and intermeal interval to the control of energy intake under stable energy balance, but not under negative energy balance imposed by prolonged fasting. During the night, 10-20w old females ate less frequently bigger meals and spent more time eating them resulting in reduced net energy intake relative to age-matched males. In addition, male and female mice at all ages tested significantly shortened the intermeal interval during the first hours of re-feeding in response to fasting without affecting meal size. Further, 20-30w old males lengthened their intermeal interval as re-feeding time increased to reach fed-levels faster than age-matched females. Collectively, our results suggest that the physiological mechanisms controlling meal size (satiation) and the non-eating time spent between meals (satiety) during stable or negative energy balance are regulated in a sex- and age-dependent manner in social mice.
Collapse
Affiliation(s)
- Yakshkumar Dilipbhai Rathod
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| | - Mauricio Di Fulvio
- Department of Pharmacology and Toxicology, School of Medicine, Wright State University, Dayton, OH, United States of America
| |
Collapse
|
49
|
Würbel H, Voelkl B, Altman NS, Forsman A, Forstmeier W, Gurevitch J, Jaric I, Karp NA, Kas MJ, Schielzeth H, Van de Casteele T. Reply to 'It is time for an empirically informed paradigm shift in animal research'. Nat Rev Neurosci 2020; 21:661-662. [PMID: 32826978 DOI: 10.1038/s41583-020-0370-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hanno Würbel
- Animal Welfare Division, Vetsuisse, University of Bern, Bern, Switzerland.
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse, University of Bern, Bern, Switzerland
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jessica Gurevitch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse, University of Bern, Bern, Switzerland
| | - Natasha A Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Tom Van de Casteele
- Statistics and Decision Sciences, Janssen R&D, Johnson & Johnson, Beerse, Belgium
| |
Collapse
|