1
|
Leite GGF, Sousa MB, Rodrigues LDOCP, Brunialti MKC, Medina-Pestana J, Butler JM, Peters-Sengers H, Requião-Moura L, Salomão R. Proteomic profiling of peripheral blood mononuclear cells reveals immune dysregulation and metabolic alterations in kidney transplant recipients with COVID-19. Front Immunol 2024; 15:1508110. [PMID: 39737170 PMCID: PMC11683116 DOI: 10.3389/fimmu.2024.1508110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The COVID-19 pandemic has significantly impacted global health, especially in vulnerable populations like kidney transplant recipients (KTRs). Recently, mass spectrometry-based proteomics has emerged as a powerful tool to shed light on a broad spectrum of dysregulated biological processes in KTRs with COVID-19. In this study, we prospectively collected blood samples from 17 COVID-19-positive KTRs and 10 non-infected KTRs between May and September 2020. Using tandem mass tag-based quantitative proteomics, we analyzed peripheral blood mononuclear cells (PBMCs), plasma protein biomarkers, and lymphocyte counts, followed by bioinformatics analysis. Our results revealed significant proteomic alterations in COVID-19-infected KTRs, particularly in pathways related to glycolysis, glucose metabolism, and neutrophil degranulation. Additionally, we observed an altered immune response characterized by elevated cytokines and decreased lymphocyte counts. Notably, KTRs with AKI exhibited worse clinical outcomes, including higher rates of ICU admission and mechanical ventilation. Comparative analysis of PBMC proteomic profiles between AKI and non-AKI patients identified distinct immune-related pathways, with AKI patients showing marked changes in innate immune responses, particularly neutrophil degranulation. Furthermore, we observed a negative correlation between T cell counts and neutrophil degranulation, suggesting a role for immune dysregulation in COVID-19. Our findings provide critical insights into the immune and metabolic responses in COVID-19-infected KTRs, especially those with AKI, highlighting the need for focused research and therapeutic strategies targeting immune dysregulation in this high-risk population.
Collapse
Affiliation(s)
- Giuseppe G. F. Leite
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Bragança Sousa
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Medina-Pestana
- Division of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Hospital do Rim, Fundação Oswaldo Ramos, São Paulo, Brazil
| | - Joe M. Butler
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, location University of Amsterdam, Amsterdam, Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, location Vrije Universiteit, Amsterdam, Netherlands
| | - Lúcio Requião-Moura
- Division of Nephrology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Hospital do Rim, Fundação Oswaldo Ramos, São Paulo, Brazil
| | - Reinaldo Salomão
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Amarilla-Irusta A, Zenarruzabeitia O, Sevilla A, Sandá V, Lopez-Pardo A, Astarloa-Pando G, Pérez-Garay R, Pérez-Fernández S, Meijide S, Imaz-Ayo N, Arana-Arri E, Amo L, Borrego F. CD151 identifies an NK cell subset that is enriched in COVID-19 patients and correlates with disease severity. J Infect 2024; 89:106304. [PMID: 39374860 DOI: 10.1016/j.jinf.2024.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) often leads to acute respiratory distress syndrome and multi-organ dysfunction, driven by a dysregulated immune response, including a cytokine storm with elevated proinflammatory cytokine levels. Natural killer (NK) cells are part of the innate immune system with a fundamental role in the defense against viral infections. However, during COVID-19 acute infection, they exhibit an altered phenotype and impaired functionality contributing to the immunopathogenesis of the disease. In this work, we have studied a cohort of patients with COVID-19 (ranging from mild to severe) by analyzing IL-15, TGF-β, PlGF and GDF-15 plasma levels and performing multiparametric flow cytometry studies. Our results revealed that severe COVID-19 patients exhibited high levels of IL-15, PlGF and GDF-15, along with an enrichment of an NK cell subset expressing the CD151 tetraspanin, which correlated with IL-15 plasma levels and disease severity. In patients, these CD151+ NK cells displayed a more activated phenotype characterized by an increased expression of HLA-DR, CD38 and granzyme B, a distinct receptor repertoire, with lower levels of CD160 and CD31 and higher levels of CD55 and, remarkably, a higher expression of tissue-resident markers CD103 and the NK cell decidual marker CD9. Last of all, in individuals with severe disease, we identified an expansion of a CD151brightCD9+ NK cell subset, suggesting that these cells play a specific role in COVID-19. Altogether, our findings suggest that CD151+ NK cells may have a relevant role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Arrate Sevilla
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Víctor Sandá
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ainara Lopez-Pardo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Raquel Pérez-Garay
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Clinical Analysis Service, Cruces University Hospital, OSI Ezkerraldea-Enkarterri-Cruces, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Wang B, Golubov J, Oswald EM, Poon P, Wei Q, Lett C, Shehadeh F, Kaczynski M, Felix LO, Mishra B, Mylona EK, Wipperman MF, Chio E, Hamon SC, Hooper AT, Somersan-Karakaya S, Musser BJ, Petro CD, Hamilton JD, Sleeman MA, Kalliolias GD, Mylonakis E, Skokos D. Potential immunomodulatory effects of CAS+IMD monoclonal antibody cocktail in hospitalized patients with COVID-19. EBioMedicine 2024; 108:105334. [PMID: 39270622 PMCID: PMC11415811 DOI: 10.1016/j.ebiom.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Passive administration of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs), such as CAS + IMD (Casirivimab + Imdevimab) antibody cocktail demonstrated beneficial effects on clinical outcomes in hospitalized patients with COVID-19 who were seronegative at baseline and outpatients. However, little is known about their impact on the host immunophenotypes. METHODS We conducted an immunoprofiling study in 46 patients from a single site of a multi-site trial of CAS + IMD in hospitalized patients. We collected longitudinal samples during October 2020 ∼ April 2021, prior to the emergence of the Delta and Omicron variants and the use of COVID-19 vaccines. All collected samples were analyzed without exclusion and post-hoc statistical analysis was performed. We examined the dynamic interplay of CAS + IMD with host immunity applying dimensional reduction approach on plasma proteomics and high dimensional flow cytometry data. FINDINGS Using an unbiased clustering method, we identified unique immunophenotypes associated with acute inflammation and disease resolution. Compared to placebo group, administration of CAS + IMD accelerated the transition from an acute inflammatory immunophenotype, to a less inflammatory or "resolving" immunophenotype, as characterized by reduced tissue injury, proinflammatory markers and restored lymphocyte/monocyte imbalance independent of baseline serostatus. Moreover, CAS + IMD did not impair the magnitude or the quality of host T cell immunity against SARS-CoV-2 spike protein. INTERPRETATION Our results identified immunophenotypic changes indicative of a possible SARS-CoV-2 neutralizing antibodies-induced anti-inflammatory effect, without an evident impairment of cellular antiviral immunity, suggesting that further studies of Mabs effects on SAS-CoV-2 or other viral mediated inflammation are warranted. FUNDING Regeneron Pharmaceuticals Inc and federal funds from the Department of Health and Human Services; Administration for Strategic Preparedness and Response; Biomedical Advanced Research and Development Authority, under OT number: HHSO100201700020C.
Collapse
Affiliation(s)
- Bei Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | | | - Erin M Oswald
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Patrick Poon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Qiaozhi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Clarissa Lett
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Fadi Shehadeh
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA; Department of Medicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Matthew Kaczynski
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA
| | - Lewis Oscar Felix
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA; Department of Medicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Biswajit Mishra
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA; Department of Medicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Evangelia K Mylona
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA; Department of Medicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | | | - Erica Chio
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Sara C Hamon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | - Andrea T Hooper
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | | | - Bret J Musser
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | | | | | - Matthew A Sleeman
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA
| | | | - Eleftherios Mylonakis
- Division of Infectious Diseases, Department of Medicine, The Brown Alpert Medical School and the Miriam Hospital, Providence, RI, USA; Department of Medicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY, 10591, USA.
| |
Collapse
|
4
|
Kanth SM, Huapaya JA, Gairhe S, Wang H, Tian X, Demirkale CY, Hou C, Ma J, Kuhns DB, Fink DL, Malayeri A, Turkbey E, Harmon SA, Chen MY, Regenold D, Lynch NF, Ramelli S, Li W, Krack J, Kuruppu J, Lionakis MS, Strich JR, Davey R, Childs R, Chertow DS, Kovacs JA, Parizi PT, Suffredini AF. Longitudinal analysis of the lung proteome reveals persistent repair months after mild to moderate COVID-19. Cell Rep Med 2024; 5:101642. [PMID: 38981485 PMCID: PMC11293333 DOI: 10.1016/j.xcrm.2024.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
In order to assess homeostatic mechanisms in the lung after COVID-19, changes in the protein signature of bronchoalveolar lavage from 45 patients with mild to moderate disease at three phases (acute, recovery, and convalescent) are evaluated over a year. During the acute phase, inflamed and uninflamed phenotypes are characterized by the expression of tissue repair and host defense response molecules. With recovery, inflammatory and fibrogenic mediators decline and clinical symptoms abate. However, at 9 months, quantified radiographic abnormalities resolve in the majority of patients, and yet compared to healthy persons, all showed ongoing activation of cellular repair processes and depression of the renin-kallikrein-kinin, coagulation, and complement systems. This dissociation of prolonged reparative processes from symptom and radiographic resolution suggests that occult ongoing disruption of the lung proteome is underrecognized and may be relevant to recovery from other serious viral pneumonias.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julio A Huapaya
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Honghui Wang
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cumhur Y Demirkale
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chunyan Hou
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Danielle L Fink
- Neutrophil Monitoring Lab, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Evrim Turkbey
- Radiology and Imaging Sciences, Clinical Center (CC), National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Institute of Heart, Lung, and Blood, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Regenold
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas F Lynch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Ramelli
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Willy Li
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janell Krack
- Pharmacy Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Janaki Kuruppu
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Davey
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph A Kovacs
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parizad Torabi- Parizi
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Sun J, Edsfeldt A, Svensson J, Ruge T, Goncalves I, Swärd P. ADAM-17 Activity and Its Relation to ACE2: Implications for Severe COVID-19. Int J Mol Sci 2024; 25:5911. [PMID: 38892098 PMCID: PMC11172796 DOI: 10.3390/ijms25115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.
Collapse
Affiliation(s)
- Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Joel Svensson
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Toralph Ruge
- Department of Emergency and Internal Medicine, Skånes University Hospital, 214 28 Malmö, Sweden;
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
6
|
Viode A, Smolen KK, van Zalm P, Stevenson D, Jha M, Parker K, Levy O, Steen JA, Steen H. Longitudinal plasma proteomic analysis of 1117 hospitalized patients with COVID-19 identifies features associated with severity and outcomes. SCIENCE ADVANCES 2024; 10:eadl5762. [PMID: 38787940 PMCID: PMC11122669 DOI: 10.1126/sciadv.adl5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by highly heterogeneous manifestations ranging from asymptomatic cases to death for still incompletely understood reasons. As part of the IMmunoPhenotyping Assessment in a COVID-19 Cohort study, we mapped the plasma proteomes of 1117 hospitalized patients with COVID-19 from 15 hospitals across the United States. Up to six samples were collected within ~28 days of hospitalization resulting in one of the largest COVID-19 plasma proteomics cohorts with 2934 samples. Using perchloric acid to deplete the most abundant plasma proteins allowed for detecting 2910 proteins. Our findings show that increased levels of neutrophil extracellular trap and heart damage markers are associated with fatal outcomes. Our analysis also identified prognostic biomarkers for worsening severity and death. Our comprehensive longitudinal plasma proteomics study, involving 1117 participants and 2934 samples, allowed for testing the generalizability of the findings of many previous COVID-19 plasma proteomics studies using much smaller cohorts.
Collapse
Affiliation(s)
- Arthur Viode
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kinga K. Smolen
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
| | - Patrick van Zalm
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Stevenson
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Meenakshi Jha
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Kenneth Parker
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - IMPACC Network‡
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Ofer Levy
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Judith A. Steen
- Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, Xu L, Hoch A, Jayavelu ND, Haddad EK, Reed EF, Kraft M, McComsey GA, Metcalf JP, Ozonoff A, Esserman D, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen LB, van Bakel H, Wilson M, Eckalbar WL, Maecker HT, Langelier CR, Steen H, Altman MC, Montgomery RR, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen KK, Fragiadakis GK, Becker PM, Sekaly RP, Ehrlich LI, Fourati S, Peters B, Kleinstein SH, Guan L. Integrated longitudinal multiomics study identifies immune programs associated with acute COVID-19 severity and mortality. J Clin Invest 2024; 134:e176640. [PMID: 38690733 PMCID: PMC11060740 DOI: 10.1172/jci176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).
Collapse
Affiliation(s)
| | - Cole Maguire
- The University of Texas at Austin, Austin, Texas, USA
| | | | - Pramod Shinde
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Casey P. Shannon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Providence Research, Vancouver, British Columbia, Canada
| | - Leqi Xu
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Annmarie Hoch
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Elias K. Haddad
- Drexel University, Tower Health Hospital, Philadelphia, Pennsylvania, USA
| | - IMPACC Network
- The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) Network is detailed in Supplemental Acknowledgments
| | - Elaine F. Reed
- David Geffen School of Medicine at the UCLA, Los Angeles, California, USA
| | - Monica Kraft
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Grace A. McComsey
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Jordan P. Metcalf
- Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Al Ozonoff
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Charles B. Cairns
- Drexel University, Tower Health Hospital, Philadelphia, Pennsylvania, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Lindsey B. Rosen
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Hanno Steen
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Bali Pulendran
- Stanford University School of Medicine, Palo Alto, California, USA
| | - Joann Diray-Arce
- Clinical and Data Coordinating Center (CDCC) and
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Rafick P. Sekaly
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | | | - Slim Fourati
- Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Leying Guan
- Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Fredolini C, Dodig-Crnković T, Bendes A, Dahl L, Dale M, Albrecht V, Mattsson C, Thomas CE, Torinsson Naluai Å, Gisslen M, Beck O, Roxhed N, Schwenk JM. Proteome profiling of home-sampled dried blood spots reveals proteins of SARS-CoV-2 infections. COMMUNICATIONS MEDICINE 2024; 4:55. [PMID: 38565620 PMCID: PMC10987641 DOI: 10.1038/s43856-024-00480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Self-sampling of dried blood spots (DBS) offers new routes to gather valuable health-related information from the general population. Yet, the utility of using deep proteome profiling from home-sampled DBS to obtain clinically relevant insights about SARS-CoV-2 infections remains largely unexplored. METHODS Our study involved 228 individuals from the general Swedish population who used a volumetric DBS sampling device and completed questionnaires at home during spring 2020 and summer 2021. Using multi-analyte COVID-19 serology, we stratified the donors by their response phenotypes, divided them into three study sets, and analyzed 276 proteins by proximity extension assays (PEA). After normalizing the data to account for variances in layman-collected samples, we investigated the association of DBS proteomes with serology and self-reported information. RESULTS Our three studies display highly consistent variance of protein levels and share associations of proteins with sex (e.g., MMP3) and age (e.g., GDF-15). Studying seropositive (IgG+) and seronegative (IgG-) donors from the first pandemic wave reveals a network of proteins reflecting immunity, inflammation, coagulation, and stress response. A comparison of the early-infection phase (IgM+IgG-) with the post-infection phase (IgM-IgG+) indicates several proteins from the respiratory system. In DBS from the later pandemic wave, we find that levels of a virus receptor on B-cells differ between seropositive (IgG+) and seronegative (IgG-) donors. CONCLUSIONS Proteome analysis of volumetric self-sampled DBS facilitates precise analysis of clinically relevant proteins, including those secreted into the circulation or found on blood cells, augmenting previous COVID-19 reports with clinical blood collections. Our population surveys support the usefulness of DBS, underscoring the role of timing the sample collection to complement clinical and precision health monitoring initiatives.
Collapse
Affiliation(s)
- Claudia Fredolini
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Tea Dodig-Crnković
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Annika Bendes
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Leo Dahl
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Matilda Dale
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Vincent Albrecht
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Cecilia Mattsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Affinity Proteomics Unit, SciLifeLab Infrastructure, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Cecilia E Thomas
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Åsa Torinsson Naluai
- Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Magnus Gisslen
- Department of Infectious Diseases, The Sahlgrenska Academy at University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
- Public Health Agency of Sweden, 171 65, Solna, Sweden
| | - Olof Beck
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Niclas Roxhed
- MedTechLabs, BioClinicum, Karolinska University Hospital, 171 64, Solna, Sweden.
- Department of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology Stockholm, 100 44, Stockholm, Sweden.
| | - Jochen M Schwenk
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, 171 65, Solna, Sweden.
| |
Collapse
|
9
|
Abe K, Beer JC, Nguyen T, Ariyapala IS, Holmes TH, Feng W, Zhang B, Kuo D, Luo Y, Ma XJ, Maecker HT. Cross-Platform Comparison of Highly Sensitive Immunoassays for Inflammatory Markers in a COVID-19 Cohort. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1244-1253. [PMID: 38334457 PMCID: PMC10948291 DOI: 10.4049/jimmunol.2300729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing Ab pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on human serum samples from the National Institutes of Health IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. First, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Second, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Third, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.
Collapse
Affiliation(s)
- Koji Abe
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Tran Nguyen
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Tyson H. Holmes
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| | - Wei Feng
- Alamar Biosciences, Inc., Fremont, CA 94538
| | | | - Dwight Kuo
- Alamar Biosciences, Inc., Fremont, CA 94538
| | - Yuling Luo
- Alamar Biosciences, Inc., Fremont, CA 94538
| | | | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
10
|
Švitek L, Lišnjić D, Grubišić B, Zlosa M, Schönberger E, Vlahović Vlašić N, Smajić P, Sabadi D, Rolić T, Kralik K, Mandić S. GDF-15 Levels and Other Laboratory Findings as Predictors of COVID-19 Severity and Mortality: A Pilot Study. Biomedicines 2024; 12:757. [PMID: 38672113 PMCID: PMC11048158 DOI: 10.3390/biomedicines12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced cytokine associated with acute and chronic inflammatory states. This prospective observational study aimed to investigate the prognostic roles of GDF-15 and routine clinical laboratory parameters in COVID-19 patients. Upon the admission of 95 adult hospitalized COVID-19 patients in Croatia, blood analysis was performed, and medical data were collected. The patients were categorized based on survival, ICU admission, and hospitalization duration. Logistic regression and ROC curve methods were employed for the statistical analysis. Logistic regression revealed two independent predictors of negative outcomes: CURB-65 score (OR = 2.55) and LDH (OR = 1.005); one predictor of ICU admission: LDH (OR = 1.004); and one predictor of prolonged hospitalization: the need for a high-flow nasal cannula (HFNC) upon admission (OR = 4.75). The ROC curve showed diagnostic indicators of negative outcomes: age, CURB-65 score, LDH, and GDF-15. The largest area under the curve (AUC = 0.767, specificity = 65.6, sensitivity = 83.9) was represented by GDF-15, with a cutoff value of 3528 pg/mL. For ICU admission, significant diagnostic indicators were LDH, CRP, and IL-6. Significant diagnostic indicators of prolonged hospitalization were CK, GGT, and oxygenation with an HFNC upon admission. This study reaffirms the significance of the commonly used laboratory parameters and clinical scores in evaluating COVID-19. Additionally, it introduces the potential for a new diagnostic approach and research concerning GDF-15 levels in this widespread disease.
Collapse
Affiliation(s)
- Luka Švitek
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dubravka Lišnjić
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Barbara Grubišić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Mihaela Zlosa
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ema Schönberger
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Endocrinology, Internal Medicine Clinic, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Nika Vlahović Vlašić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Petra Smajić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dario Sabadi
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tara Rolić
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Institute of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Mandić
- Polyclinic LabPlus, 31000 Osijek, Croatia
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Kugler S, Hahnefeld L, Kloka JA, Ginzel S, Nürenberg-Goloub E, Zinn S, Vehreschild MJ, Zacharowski K, Lindau S, Ullrich E, Burmeister J, Kohlhammer J, Schwäble J, Gurke R, Dorochow E, Bennett A, Dauth S, Campe J, Knape T, Laux V, Kannt A, Köhm M, Geisslinger G, Resch E, Behrens F. Short-term predictor for COVID-19 severity from a longitudinal multi-omics study for practical application in intensive care units. Talanta 2024; 268:125295. [PMID: 37866305 DOI: 10.1016/j.talanta.2023.125295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The COVID-19 pandemic challenged the management of technical and human resources in intensive care units (ICU) across the world. Several long-term predictors for COVID-19 disease progression have been discovered. However, predictors to support short-term planning of resources and medication that can be translated to future pandemics are still missing. A workflow was established to identify a predictor for short-term COVID-19 disease progression in the acute phase of intensive care patients to support clinical decision-making. METHODS Thirty-two patients with SARS-CoV-2 infection were recruited on admission to the ICU and clinical data collected. During their hospitalization, plasma samples were acquired from each patient on multiple occasions, excepting one patient for which only one time point was possible, and the proteome (Inflammation, Immune Response and Organ Damage panels from Olink® Target 96), metabolome and lipidome (flow injection analysis and liquid chromatography-mass spectrometry) analyzed for each sample. Patient visits were grouped according to changes in disease severity based on their respiratory and organ function, and evaluated using a combination of statistical analysis and machine learning. The resulting short-term predictor from this multi-omics approach was compared to the human assessment of disease progression. Furthermore, the potential markers were compared to the baseline levels of 50 healthy subjects with no known SARS-CoV-2 or other viral infections. RESULTS A total of 124 clinical parameters, 271 proteins and 782 unique metabolites and lipids were assessed. The dimensionality of the dataset was reduced, selecting 47 from the 1177 parameters available following down-selection, to build the machine learning model. Subsequently, two proteins (C-C motif chemokine 7 (CCL7) and carbonic anhydrase 14 (CA14)) and one lipid (hexosylceramide 18:2; O2/20:0) were linked to disease progression in the studied SARS-CoV-2 infections. Thus, a predictor delivering the prognosis of an upcoming worsening of the patient's condition up to five days in advance with a reasonable accuracy (79 % three days prior to event, 84 % four to five days prior to event) was found. Interestingly, the predictor's performance was complementary to the clinicians' capabilities to foresee a worsening of a patient. CONCLUSION This study presents a workflow to identify omics-based biomarkers to support clinical decision-making and resource management in the ICU. This was successfully applied to develop a short-term predictor for aggravation of COVID-19 symptoms. The applied methods can be adapted for future small cohort studies.
Collapse
Affiliation(s)
- Sabine Kugler
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, Schloss Birlinghoven 1, St. Augustin, Germany
| | - Lisa Hahnefeld
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Jan Andreas Kloka
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Ginzel
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS, Schloss Birlinghoven 1, St. Augustin, Germany
| | - Elina Nürenberg-Goloub
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sebastian Zinn
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Leistungszentrum TheraNova, Theodor-Stern-Kai 6, 60596, Frankfurt am Main, Germany
| | - Maria Jgt Vehreschild
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, 60590, Frankfurt am Main, Germany
| | - Kai Zacharowski
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Simone Lindau
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- University Cancer Center Frankfurt (UCT), University Hospital, Goethe University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany; Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt, Germany
| | - Jan Burmeister
- Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
| | - Jörn Kohlhammer
- Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany
| | - Joachim Schwäble
- Goethe University Frankfurt, University Hospital, Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg, Frankfurt, Germany
| | - Robert Gurke
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Erika Dorochow
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Alexandre Bennett
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Stephanie Dauth
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Julia Campe
- Goethe University Frankfurt, Department of Pediatrics, Experimental Immunology and Cell Therapy, Frankfurt, Germany; Goethe University Frankfurt, Biological Sciences, Frankfurt am Main, Germany
| | - Tilo Knape
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Aimo Kannt
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Leistungszentrum TheraNova, Theodor-Stern-Kai 6, 60596, Frankfurt am Main, Germany
| | - Michaela Köhm
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Rheumatology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Frank Behrens
- Fraunhofer Cluster of Excellence Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Rheumatology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
12
|
Harriott NC, Ryan AL. Proteomic profiling identifies biomarkers of COVID-19 severity. Heliyon 2024; 10:e23320. [PMID: 38163173 PMCID: PMC10755324 DOI: 10.1016/j.heliyon.2023.e23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
SARS-CoV-2 infection remains a major public health concern, particularly for the aged and those individuals with co-morbidities at risk for developing severe COVID-19. Understanding the pathogenesis and biomarkers associated with responses to SARS-CoV-2 infection remain critical components in developing effective therapeutic approaches, especially in cases of severe and long-COVID-19. In this study blood plasma protein expression was compared in subjects with mild, moderate, and severe COVID-19 disease. Evaluation of an inflammatory protein panel confirms upregulation of proteins including TNFβ, IL-6, IL-8, IL-12, already associated with severe cytokine storm and progression to severe COVID-19. Importantly, we identify several proteins not yet associated with COVID-19 disease, including mesothelin (MSLN), that are expressed at significantly higher levels in severe COVID-19 subjects. In addition, we find a subset of markers associated with T-cell and dendritic cell responses to viral infection that are significantly higher in mild cases and decrease in expression as severity of COVID-19 increases, suggesting that an immediate and effective activation of T-cells is critical in modulating disease progression. Together, our findings identify new targets for further investigation as therapeutic approaches for the treatment of SARS-CoV-2 infection and prevention of complications of severe COVID-19.
Collapse
Affiliation(s)
- Noa C. Harriott
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City IA 52240, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles CA 90033, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City IA 52240, USA
| |
Collapse
|
13
|
Lanktree MB, Collister D, Pigyere M, Mazzetti A, Paré G, Walsh M. Proteome-Wide Changes in Blood Biomarkers During Hemodialysis. Kidney Int Rep 2024; 9:177-181. [PMID: 38312796 PMCID: PMC10831367 DOI: 10.1016/j.ekir.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Matthew B. Lanktree
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David Collister
- Division of Nephrology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marie Pigyere
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Mazzetti
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael Walsh
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Gygi JP, Maguire C, Patel RK, Shinde P, Konstorum A, Shannon CP, Xu L, Hoch A, Jayavelu ND, Network I, Haddad EK, Reed EF, Kraft M, McComsey GA, Metcalf J, Ozonoff A, Esserman D, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen LB, van Bakel H, Wilson M, Eckalbar W, Maecker H, Langelier CR, Steen H, Altman MC, Montgomery RR, Levy O, Melamed E, Pulendran B, Diray-Arce J, Smolen KK, Fragiadakis GK, Becker PM, Augustine AD, Sekaly RP, Ehrlich LIR, Fourati S, Peters B, Kleinstein SH, Guan L. Integrated longitudinal multi-omics study identifies immune programs associated with COVID-19 severity and mortality in 1152 hospitalized participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565292. [PMID: 37986828 PMCID: PMC10659275 DOI: 10.1101/2023.11.03.565292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.
Collapse
|
15
|
Abe K, Beer JC, Nguyen T, Ariyapala IS, Holmes TH, Feng W, Zhang B, Kuo D, Luo Y, Ma XJ, Maecker HT. Cross-platform comparison of highly-sensitive immunoassays for inflammatory markers in a COVID-19 cohort 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563866. [PMID: 37961126 PMCID: PMC10634816 DOI: 10.1101/2023.10.24.563866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A variety of commercial platforms are available for the simultaneous detection of multiple cytokines and associated proteins, often employing antibody pairs to capture and detect target proteins. In this study, we comprehensively evaluated the performance of three distinct platforms: the fluorescent bead-based Luminex assay, the proximity extension-based Olink assay, and a novel proximity ligation assay platform known as Alamar NULISAseq. These assessments were conducted on serum samples from the NIH IMPACC study, with a focus on three essential performance metrics: detectability, correlation, and differential expression. Our results reveal several key findings. Firstly, the Alamar platform demonstrated the highest overall detectability, followed by Olink and then Luminex. Secondly, the correlation of protein measurements between the Alamar and Olink platforms tended to be stronger than the correlation of either of these platforms with Luminex. Thirdly, we observed that detectability differences across the platforms often translated to differences in differential expression findings, although high detectability did not guarantee the ability to identify meaningful biological differences. Our study provides valuable insights into the comparative performance of these assays, enhancing our understanding of their strengths and limitations when assessing complex biological samples, as exemplified by the sera from this COVID-19 cohort.
Collapse
|
16
|
Yazici D, Cagan E, Tan G, Li M, Do E, Kucukkase OC, Simsek A, Kizmaz MA, Bozkurt T, Aydin T, Heider A, Rückert B, Brüggen MC, Dhir R, O'Mahony L, Akdis M, Nadeau KC, Budak F, Akdis CA, Ogulur I. Disrupted epithelial permeability as a predictor of severe COVID-19 development. Allergy 2023; 78:2644-2658. [PMID: 37422701 DOI: 10.1111/all.15800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND An impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID-19. METHODS Levels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID-19 patients and 49 healthy controls. RESULTS Significantly high levels of circulating bacterial DNA were detected in severe COVID-19 cases. In mild COVID-19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID-19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID-19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6. CONCLUSION Our results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Eren Cagan
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Evan Do
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Ozan C Kucukkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abdurrahman Simsek
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tugce Bozkurt
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ferah Budak
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
17
|
Zhang F, Luna A, Tan T, Chen Y, Sander C, Guo T. COVIDpro: Database for Mining Protein Dysregulation in Patients with COVID-19. J Proteome Res 2023; 22:2847-2859. [PMID: 37555633 DOI: 10.1021/acs.jproteome.3c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The ongoing pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 still has limited treatment options. Our understanding of the molecular dysregulations that occur in response to infection remains incomplete. We developed a web application COVIDpro (https://www.guomics.com/covidPro/) that includes proteomics data obtained from 41 original studies conducted in 32 hospitals worldwide, involving 3077 patients and covering 19 types of clinical specimens, predominantly plasma and serum. The data set encompasses 53 protein expression matrices, comprising a total of 5434 samples and 14,403 unique proteins. We identified a panel of proteins that exhibit significant dysregulation, enabling the classification of COVID-19 patients into severe and non-severe disease categories. The proteomic signatures achieved promising results in distinguishing severe cases, with a mean area under the curve of 0.87 and accuracy of 0.80 across five independent test sets. COVIDpro serves as a valuable resource for testing hypotheses and exploring potential targets for novel treatments in COVID-19 patients.
Collapse
Affiliation(s)
- Fangfei Zhang
- Fudan University, 220 Handan Road, Shanghai 200433, China
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Augustin Luna
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Cambridge, Massachusetts 02142, United States
| | - Tingting Tan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Yingdan Chen
- Westlake Omics (Hangzhou) Biotechnology Company Limited, Hangzhou, Zhejiang Province 310024, China
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Cambridge, Massachusetts 02142, United States
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
18
|
Wan YI, Puthucheary ZA, Pearse RM, Prowle JR. Characterising biological mechanisms underlying ethnicity-associated outcomes in COVID-19 through biomarker trajectories: a multicentre registry analysis. Br J Anaesth 2023; 131:491-502. [PMID: 37198030 PMCID: PMC10121108 DOI: 10.1016/j.bja.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Differences in routinely collected biomarkers between ethnic groups could reflect dysregulated host responses to disease and to treatments, and be associated with excess morbidity and mortality in COVID-19. METHODS A multicentre registry analysis from patients aged ≥16 yr with SARS-CoV-2 infection and emergency admission to Barts Health NHS Trust hospitals during January 1, 2020 to May 13, 2020 (wave 1) and September 1, 2020 to February 17, 2021 (wave 2) was subjected to unsupervised longitudinal clustering techniques to identify distinct phenotypic patient clusters based on trajectories of routine blood results over the first 15 days of hospital admission. Distribution of trajectory clusters across ethnic categories was determined, and associations between ethnicity, trajectory clusters, and 30-day survival were assessed using multivariable Cox proportional hazards modelling. Secondary outcomes were ICU admission, survival to hospital discharge, and long-term survival to 640 days. RESULTS We included 3237 patients with hospital length of stay ≥7 days. In patients who died, there was greater representation of Black and Asian ethnicity in trajectory clusters for C-reactive protein and urea-to-creatinine ratio associated with increased risk of death. Inclusion of trajectory clusters in survival analyses attenuated or abrogated the higher risk of death in Asian and Black patients. Inclusion of C-reactive protein went from hazard ratio (HR) 1.36 [0.95-1.94] to HR 0.97 [0.59-1.59] (wave 1), and from HR 1.42 [1.15-1.75]) to HR 1.04 [0.78-1.39] (wave 2) in Asian patients. Trajectory clusters associated with reduced 30-day survival were similarly associated with worse secondary outcomes. CONCLUSIONS Clinical biochemical monitoring of COVID-19 and progression and treatment response in SARS-CoV-2 infection should be interpreted in the context of ethnic background.
Collapse
Affiliation(s)
- Yize I Wan
- William Harvey Research Institute, Queen Mary University of London, London, UK; Acute Critical Care Research Unit, Royal London Hospital, Barts Health NHS Trust, London, UK.
| | - Zudin A Puthucheary
- William Harvey Research Institute, Queen Mary University of London, London, UK; Acute Critical Care Research Unit, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Rupert M Pearse
- William Harvey Research Institute, Queen Mary University of London, London, UK; Acute Critical Care Research Unit, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - John R Prowle
- William Harvey Research Institute, Queen Mary University of London, London, UK; Acute Critical Care Research Unit, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
19
|
Schmidt F, Abdesselem HB, Suhre K, Vaikath NN, Sohail MU, Al-Nesf M, Bensmail I, Mashod F, Sarwath H, Bernhardt J, Schaefer-Ramadan S, Tan TM, Morris PE, Schenck EJ, Price D, Mohamed-Ali V, Al-Maadheed M, Arredouani A, Decock J, Blackburn JM, Choi AMK, El-Agnaf OM. Auto-immunoproteomics analysis of COVID-19 ICU patients revealed increased levels of autoantibodies related to the male reproductive system. Front Physiol 2023; 14:1203723. [PMID: 37520825 PMCID: PMC10374950 DOI: 10.3389/fphys.2023.1203723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.
Collapse
Affiliation(s)
- Frank Schmidt
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Nishant N. Vaikath
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| | | | - Maryam Al-Nesf
- Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Fathima Mashod
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - Joerg Bernhardt
- Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Ti-Myen Tan
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Priscilla E. Morris
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward J. Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - David Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, University College London, London, United Kingdom
- Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Jonathan M. Blackburn
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Sengenics Corporation, Damansara Heights, Kuala Lumpur, Malaysia
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Augustine M. K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York Presbyterian Hospital—Weill Cornell Medical Center, Weill Cornell Medicine, New York, NY, United States
| | - Omar M. El-Agnaf
- Neurological Disorders Research Center, QBRI, HBKU, Qatar Foundation, Doha, Qatar
| |
Collapse
|
20
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
22
|
Su CY, Zhou S, Gonzalez-Kozlova E, Butler-Laporte G, Brunet-Ratnasingham E, Nakanishi T, Jeon W, Morrison DR, Laurent L, Afilalo J, Afilalo M, Henry D, Chen Y, Carrasco-Zanini J, Farjoun Y, Pietzner M, Kimchi N, Afrasiabi Z, Rezk N, Bouab M, Petitjean L, Guzman C, Xue X, Tselios C, Vulesevic B, Adeleye O, Abdullah T, Almamlouk N, Moussa Y, DeLuca C, Duggan N, Schurr E, Brassard N, Durand M, Del Valle DM, Thompson R, Cedillo MA, Schadt E, Nie K, Simons NW, Mouskas K, Zaki N, Patel M, Xie H, Harris J, Marvin R, Cheng E, Tuballes K, Argueta K, Scott I, Greenwood CMT, Paterson C, Hinterberg MA, Langenberg C, Forgetta V, Pineau J, Mooser V, Marron T, Beckmann ND, Kim-Schulze S, Charney AW, Gnjatic S, Kaufmann DE, Merad M, Richards JB. Circulating proteins to predict COVID-19 severity. Sci Rep 2023; 13:6236. [PMID: 37069249 PMCID: PMC10107586 DOI: 10.1038/s41598-023-31850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict COVID-19 severity in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different COVID-19 severity were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of COVID-19 severity. Further research is needed to understand how to incorporate protein measurement into clinical care.
Collapse
Affiliation(s)
- Chen-Yang Su
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Computer Science, McGill University, Montréal, QC, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, Canada
| | - Sirui Zhou
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | - Guillaume Butler-Laporte
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | - Tomoko Nakanishi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Graduate School of Medicine, McGill International Collaborative School in Genomic Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Wonseok Jeon
- Department of Computer Science, McGill University, Montréal, QC, Canada
| | - David R Morrison
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Laetitia Laurent
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Jonathan Afilalo
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Marc Afilalo
- Department of Emergency Medicine, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Danielle Henry
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Yiheng Chen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Julia Carrasco-Zanini
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yossi Farjoun
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Maik Pietzner
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nofar Kimchi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Zaman Afrasiabi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Nardin Rezk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Meriem Bouab
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Louis Petitjean
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Charlotte Guzman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Xiaoqing Xue
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Chris Tselios
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Branka Vulesevic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Olumide Adeleye
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Tala Abdullah
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Noor Almamlouk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Yara Moussa
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Chantal DeLuca
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Naomi Duggan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Erwin Schurr
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Nathalie Brassard
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
| | - Diane Marie Del Valle
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Thompson
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario A Cedillo
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole W Simons
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantinos Mouskas
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Zaki
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Marvin
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Cheng
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimberly Argueta
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ieisha Scott
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | | | | | - Claudia Langenberg
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada
| | - Joelle Pineau
- Department of Computer Science, McGill University, Montréal, QC, Canada
| | - Vincent Mooser
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas Marron
- Immunotherapy and Phase 1 Trials, Mount Sinai Hospital, New York, NY, USA
| | - Noam D Beckmann
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander W Charney
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de L'Université de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Pavilion H-413, 3755 Côte-Ste-Catherine Montréal, Montreal, QC, H3T 1E2, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Twin Research, King's College London, London, UK.
| |
Collapse
|
23
|
Dimitsaki S, Gavriilidis GI, Dimitriadis VK, Natsiavas P. Benchmarking of Machine Learning classifiers on plasma proteomic for COVID-19 severity prediction through interpretable artificial intelligence. Artif Intell Med 2023; 137:102490. [PMID: 36868685 PMCID: PMC9846931 DOI: 10.1016/j.artmed.2023.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The SARS-CoV-2 pandemic highlighted the need for software tools that could facilitate patient triage regarding potential disease severity or even death. In this article, an ensemble of Machine Learning (ML) algorithms is evaluated in terms of predicting the severity of their condition using plasma proteomics and clinical data as input. An overview of AI-based technical developments to support COVID-19 patient management is presented outlining the landscape of relevant technical developments. Based on this review, the use of an ensemble of ML algorithms that analyze clinical and biological data (i.e., plasma proteomics) of COVID-19 patients is designed and deployed to evaluate the potential use of AI for early COVID-19 patient triage. The proposed pipeline is evaluated using three publicly available datasets for training and testing. Three ML "tasks" are defined, and several algorithms are tested through a hyperparameter tuning method to identify the highest-performance models. As overfitting is one of the typical pitfalls for such approaches (mainly due to the size of the training/validation datasets), a variety of evaluation metrics are used to mitigate this risk. In the evaluation procedure, recall scores ranged from 0.6 to 0.74 and F1-score from 0.62 to 0.75. The best performance is observed via Multi-Layer Perceptron (MLP) and Support Vector Machines (SVM) algorithms. Additionally, input data (proteomics and clinical data) were ranked based on corresponding Shapley additive explanation (SHAP) values and evaluated for their prognosticated capacity and immuno-biological credence. This "interpretable" approach revealed that our ML models could discern critical COVID-19 cases predominantly based on patient's age and plasma proteins on B cell dysfunction, hyper-activation of inflammatory pathways like Toll-like receptors, and hypo-activation of developmental and immune pathways like SCF/c-Kit signaling. Finally, the herein computational workflow is corroborated in an independent dataset and MLP superiority along with the implication of the abovementioned predictive biological pathways are corroborated. Regarding limitations of the presented ML pipeline, the datasets used in this study contain less than 1000 observations and a significant number of input features hence constituting a high-dimensional low-sample (HDLS) dataset which could be sensitive to overfitting. An advantage of the proposed pipeline is that it combines biological data (plasma proteomics) with clinical-phenotypic data. Thus, in principle, the presented approach could enable patient triage in a timely fashion if used on already trained models. However, larger datasets and further systematic validation are needed to confirm the potential clinical value of this approach. The code is available on Github: https://github.com/inab-certh/Predicting-COVID-19-severity-through-interpretable-AI-analysis-of-plasma-proteomics.
Collapse
Affiliation(s)
- Stella Dimitsaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thermi, Thessaloniki, Greece.
| | - George I Gavriilidis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thermi, Thessaloniki, Greece
| | - Vlasios K Dimitriadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thermi, Thessaloniki, Greece
| | - Pantelis Natsiavas
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, Thermi, Thessaloniki, Greece
| |
Collapse
|
24
|
Hédou J, Marić I, Bellan G, Einhaus J, Gaudillière DK, Ladant FX, Verdonk F, Stelzer IA, Feyaerts D, Tsai AS, Ganio EA, Sabayev M, Gillard J, Bonham TA, Sato M, Diop M, Angst MS, Stevenson D, Aghaeepour N, Montanari A, Gaudillière B. Stabl: sparse and reliable biomarker discovery in predictive modeling of high-dimensional omic data. RESEARCH SQUARE 2023:rs.3.rs-2609859. [PMID: 36909508 PMCID: PMC10002850 DOI: 10.21203/rs.3.rs-2609859/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
High-content omic technologies coupled with sparsity-promoting regularization methods (SRM) have transformed the biomarker discovery process. However, the translation of computational results into a clinical use-case scenario remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features included in multivariate models. We propose Stabl, a machine learning framework that unifies the biomarker discovery process with multivariate predictive modeling of clinical outcomes by selecting a sparse and reliable set of biomarkers. Evaluation of Stabl on synthetic datasets and four independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used SRMs at similar predictive performance. Stabl readily extends to double- and triple-omics integration tasks and identifies a sparser and more reliable set of biomarkers than those selected by state-of-the-art early- and late-fusion SRMs, thereby facilitating the biological interpretation and clinical translation of complex multi-omic predictive models. The complete package for Stabl is available online at https://github.com/gregbellan/Stabl.
Collapse
Affiliation(s)
- Julien Hédou
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Ivana Marić
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Jakob Einhaus
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dyani K. Gaudillière
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA
| | | | - Franck Verdonk
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Intensive Care, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris; Paris, France
| | - Ina A. Stelzer
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Dorien Feyaerts
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Amy S. Tsai
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Edward A. Ganio
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Maximilian Sabayev
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Joshua Gillard
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Thomas A. Bonham
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Masaki Sato
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Maïgane Diop
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | - Martin S. Angst
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
- Department of Biomedical Data Science, Stanford University, Stanford, CA
| | - Andrea Montanari
- Department of Statistics, Stanford University, Stanford, CA
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
25
|
Ebihara T, Matsubara T, Togami Y, Matsumoto H, Tachino J, Matsuura H, Kojima T, Sugihara F, Seno S, Okuzaki D, Hirata H, Ogura H. Combination of WFDC2, CHI3L1, and KRT19 in Plasma Defines a Clinically Useful Molecular Phenotype Associated with Prognosis in Critically Ill COVID-19 Patients. J Clin Immunol 2023; 43:286-298. [PMID: 36331721 PMCID: PMC9638294 DOI: 10.1007/s10875-022-01386-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND COVID-19 is now a common disease, but its pathogenesis remains unknown. Blood circulating proteins reflect host defenses against COVID-19. We investigated whether evaluation of longitudinal blood proteomics for COVID-19 and merging with clinical information would allow elucidation of its pathogenesis and develop a useful clinical phenotype. METHODS To achieve the first goal (determining key proteins), we derived plasma proteins related to disease severity by using a first discovery cohort. We then assessed the association of the derived proteins with clinical outcome in a second discovery cohort. Finally, the candidates were validated by enzyme-linked immunosorbent assay in a validation cohort to determine key proteins. For the second goal (understanding the associations of the clinical phenotypes with 28-day mortality and clinical outcome), we assessed the associations between clinical phenotypes derived by latent cluster analysis with the key proteins and 28-day mortality and clinical outcome. RESULTS We identified four key proteins (WFDC2, GDF15, CHI3L1, and KRT19) involved in critical pathogenesis from the three different cohorts. These key proteins were related to the function of cell adhesion and not immune response. Considering the multicollinearity, three clinical phenotypes based on WFDC2, CHI3L1, and KRT19 were identified that were associated with mortality and clinical outcome. CONCLUSION The use of these easily measured key proteins offered new insight into the pathogenesis of COVID-19 and could be useful in a potential clinical application.
Collapse
Affiliation(s)
- Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsunehiro Matsubara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Jotaro Tachino
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Matsuura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Prefectural Nakakawachi Emergency and Critical Care Center, Higashiosaka, Osaka, Japan
| | - Takashi Kojima
- Laboratory for Clinical Investigation, Osaka University Hospital, Suita, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
26
|
Liang X, Sun R, Wang J, Zhou K, Li J, Chen S, Lyu M, Li S, Xue Z, Shi Y, Xie Y, Zhang Q, Yi X, Pan J, Wang D, Xu J, Zhu H, Zhu G, Zhu J, Zhu Y, Zheng Y, Shen B, Guo T. Proteomics Investigation of Diverse Serological Patterns in COVID-19. Mol Cell Proteomics 2023; 22:100493. [PMID: 36621767 PMCID: PMC9814280 DOI: 10.1016/j.mcpro.2023.100493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Serum antibodies IgM and IgG are elevated during Coronavirus Disease 2019 (COVID-19) to defend against viral attacks. Atypical results such as negative and abnormally high antibody expression were frequently observed whereas the underlying molecular mechanisms are elusive. In our cohort of 144 COVID-19 patients, 3.5% were both IgM and IgG negative, whereas 29.2% remained only IgM negative. The remaining patients exhibited positive IgM and IgG expression, with 9.3% of them exhibiting over 20-fold higher titers of IgM than the others at their plateau. IgG titers in all of them were significantly boosted after vaccination in the second year. To investigate the underlying molecular mechanisms, we classed the patients into four groups with diverse serological patterns and analyzed their 2-year clinical indicators. Additionally, we collected 111 serum samples for TMTpro-based longitudinal proteomic profiling and characterized 1494 proteins in total. We found that the continuously negative IgM and IgG expression during COVID-19 were associated with mild inflammatory reactions and high T cell responses. Low levels of serum IgD, inferior complement 1 activation of complement cascades, and insufficient cellular immune responses might collectively lead to compensatory serological responses, causing overexpression of IgM. Serum CD163 was positively correlated with antibody titers during seroconversion. This study suggests that patients with negative serology still developed cellular immunity for viral defense and that high titers of IgM might not be favorable to COVID-19 recovery.
Collapse
Affiliation(s)
- Xiao Liang
- Fudan University, Shanghai, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jing Wang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Kai Zhou
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jun Li
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shiyong Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Mengge Lyu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Sainan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhangzhi Xue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yingqiu Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuting Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Xiao Yi
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Juan Pan
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Donglian Wang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jiaqin Xu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hongguo Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Guangjun Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jiansheng Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Yufen Zheng
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| | - Bo Shen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| | - Tiannan Guo
- Fudan University, Shanghai, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
González-Cuadrado C, Caro-Espada PJ, Chivite-Lacaba M, Utrero-Rico A, Lozano-Yuste C, Gutierrez-Solis E, Morales E, Sandino-Pérez J, Gil-Etayo FJ, Allende-Martínez L, Laguna-Goya R, Paz-Artal E. Hemodialysis-Associated Immune Dysregulation in SARS-CoV-2-Infected End-Stage Renal Disease Patients. Int J Mol Sci 2023; 24:ijms24021712. [PMID: 36675231 PMCID: PMC9865754 DOI: 10.3390/ijms24021712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Patients on hemodialysis show dysregulated immunity, basal hyperinflammation and a marked vulnerability to COVID-19. We evaluated the immune profile in COVID-19 hemodialysis patients and the changes associated with clinical deterioration after the hemodialysis session. Recruited patients included eight hemodialysis subjects with active, PCR-confirmed SARS-CoV-2 infection, five uninfected hemodialysis patients and five healthy controls. In SARS-CoV-2-infected hemodialysis patients TNF-α, IL-6 and IL-8 were particularly increased. Lymphopenia was mostly due to reduction in CD4+ T, B and central memory CD8+ T cells. There was a predominance of classical and intermediate monocytes with reduced HLA-DR expression and enhanced production of pro-inflammatory molecules. Immune parameters were analysed pre- and post-hemodialysis in three patients with COVID-19 symptoms worsening after the hemodialysis session. There was a higher than 2.5-fold increase in GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, IL-17A and IL-21 in serum, and augmentation of monocytes-derived TNF-α, IL-1β and IL-8 and CXCL10 (p < 0.05). In conclusion, COVID-19 in hemodialysis patients associates with alteration of lymphocyte subsets, increasing of pro-inflammatory cytokines and monocyte activation. The observed worsening during the hemodialysis session in some patients was accompanied by augmentation of particular inflammatory cytokines, which might suggest biomarkers and therapeutic targets to prevent or mitigate the hemodialysis-related deterioration during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cecilia González-Cuadrado
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| | | | - Marta Chivite-Lacaba
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Alberto Utrero-Rico
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Claudia Lozano-Yuste
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Enrique Morales
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Medicine, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Justo Sandino-Pérez
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Luis Allende-Martínez
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
| | - Rocio Laguna-Goya
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (C.G.-C.); (E.P.-A.); Tel.: +34-628-502-629 (C.G.-C.)
| |
Collapse
|
28
|
Lin M, Bao Y, Du Z, Zhou Y, Zhang N, Lin C, Xie Y, Zhang R, Li Q, Quan J, Zhu T, Xie Y, Xu C, Xie Y, Wei Y, Luo Q, Pan W, Wang L, Ling T, Jin Q, Wu L, Yin T, Xie Y. Plasma protein profiling analysis in patients with atrial fibrillation before and after three different ablation techniques. Front Cardiovasc Med 2023; 9:1077992. [PMID: 36704472 PMCID: PMC9871787 DOI: 10.3389/fcvm.2022.1077992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background There are controversies on the pathophysiological alteration in patients with atrial fibrillation (AF) undergoing pulmonary vein isolation using different energy sources. Objectives We evaluated the changes in plasma proteins in acute phase post-ablation in patients receiving cryoballoon ablation, radiofrequency balloon ablation, or radiofrequency ablation. Methods Blood samples from eight healthy controls and 24 patients with AF were taken on the day of admission, day 1, and day 2 post-ablation and analyzed by the Olink proximity extension assay. Proteins were identified and performed with enrichment analysis. Protein-protein interaction network and module analysis were conducted using Cytoscape software. Results Of 181 proteins, 42 proteins in the cryoballoon group, 46 proteins in the radiofrequency balloon group, and 43 proteins in the radiofrequency group significantly changed after ablation. Most of the proteins altered significantly on the first day after ablation. Altered proteins were mainly involved in cytokine-cytokine receptor interaction. Both balloon-based ablations showed a similar shift toward enhancing cell communication and regulation of signaling while inhibiting neutrophil chemotaxis. However, radiofrequency ablation presented a different trend. Seed proteins, including osteopontin, interleukin-6, interleukin-10, C-C motif ligand 8, and matrix metalloproteinase-1, were identified. More significant proteins associated with hemorrhage and coagulation were selected in balloon-based ablations by machine learning. Conclusion Plasma protein response after three different ablations in patients with AF mainly occurred on the first day. Radiofrequency balloon ablation shared similar alteration in protein profile as cryoballoon ablation compared with radiofrequency ablation, suggesting that lesion size rather than energy source is the determinant in pathophysiological responses to the ablation.
Collapse
Affiliation(s)
- Menglu Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunhui Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinyin Xie
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiheng Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwei Quan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingfang Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Xie
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States
| | - Cathy Xu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingzhi Luo
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Liqun Wu,
| | - Tong Yin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Tong Yin,
| | - Yucai Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yucai Xie,
| |
Collapse
|
29
|
Ayaz H, Aslam N, Awan FM, Basri R, Rauff B, Alzahrani B, Arif M, Ikram A, Obaid A, Naz A, Khan SN, Yang BB, Nazir A. Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as a potential theranostic agents for SARS-CoV-2 infection. PLoS One 2023; 18:e0283589. [PMID: 37053191 PMCID: PMC10101458 DOI: 10.1371/journal.pone.0283589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) can control the flux of genetic information; affect RNA stability and play crucial roles in mediating epigenetic modifications. A number of studies have highlighted the potential roles of both virus-encoded and host-encoded ncRNAs in viral infections, transmission and therapeutics. However, the role of an emerging type of non-coding transcript, circular RNA (circRNA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been fully elucidated so far. Moreover, the potential pathogenic role of circRNA-miRNA-mRNA regulatory axis has not been fully explored as yet. The current study aimed to holistically map the regulatory networks driven by SARS-CoV-2 related circRNAs, miRNAs and mRNAs to uncover plausible interactions and interplay amongst them in order to explore possible therapeutic options in SARS-CoV-2 infection. Patient datasets were analyzed systematically in a unified approach to explore circRNA, miRNA, and mRNA expression profiles. CircRNA-miRNA-mRNA network was constructed based on cytokine storm related circRNAs forming a total of 165 circRNA-miRNA-mRNA pairs. This study implies the potential regulatory role of the obtained circRNA-miRNA-mRNA network and proposes that two differentially expressed circRNAs hsa_circ_0080942 and hsa_circ_0080135 might serve as a potential theranostic agents for SARS-CoV-2 infection. Collectively, the results shed light on the functional role of circRNAs as ceRNAs to sponge miRNA and regulate mRNA expression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hassan Ayaz
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nouman Aslam
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET), Lahore, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Arif
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Azhar Nazir
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
30
|
Abstract
Tenascin-C is a large extracellular matrix glycoprotein with complex, not yet fully unveiled roles. Its context- and structure-dependent modus operandi renders tenascin-C a puzzling protein. Since its discovery ∼40 years ago, research into tenascin-C biology continues to reveal novel functions, the most recent of all being its immunomodulatory activity, especially its role in infection, which is just now beginning to emerge. Here, we explore the role of tenascin-C in the immune response to viruses, including SARS-CoV-2 and HIV-1. Recently, tenascin-C has emerged as a biomarker of disease severity during COVID-19 and other viral infections, and we highlight relevant RNA sequencing and proteomic analyses that suggest a correlation between tenascin-C levels and disease severity. Finally, we ask what the function of this protein during viral replication is and propose tenascin-C as an intercellular signal of inflammation shuttled to distal sites via exosomes, a player in the repair and remodeling of infected and damaged tissues during severe infectious disease, as well as a ligand for specific pathogens with distinct implications for the host.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- 1QBI Coronavirus Research Group, San Francisco, California,2Quantitative Biosciences Institute, University of California, San Francisco, California,3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Anna M. Piccinini
- 4School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
31
|
Gisby JS, Buang NB, Papadaki A, Clarke CL, Malik TH, Medjeral-Thomas N, Pinheiro D, Mortimer PM, Lewis S, Sandhu E, McAdoo SP, Prendecki MF, Willicombe M, Pickering MC, Botto M, Thomas DC, Peters JE. Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nat Commun 2022; 13:7775. [PMID: 36522333 PMCID: PMC9753891 DOI: 10.1038/s41467-022-35454-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.
Collapse
Affiliation(s)
- Jack S Gisby
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Norzawani B Buang
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Artemis Papadaki
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice L Clarke
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Talat H Malik
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Nicholas Medjeral-Thomas
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Damiola Pinheiro
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Paige M Mortimer
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Shanice Lewis
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Eleanor Sandhu
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Maria F Prendecki
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - David C Thomas
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK.
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| | - James E Peters
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
32
|
Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines 2022; 10:biomedicines10123251. [PMID: 36552007 PMCID: PMC9775159 DOI: 10.3390/biomedicines10123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A cytokine storm drives the pathogenesis of severe COVID-19 infection and several biomarkers have been linked to mortality. Chronic kidney disease (CKD) emerged as a risk factor for severe COVID-19. We investigated the association between selected biomarkers and mortality in 77 patients hospitalized for COVID-19, and whether they differ in patients with eGFR higher and lower than 45 mL/min. The association between patients’ characteristics, plasma biomarkers and mortality was conducted by univariate logistic regression models and independent predictors of mortality were then used to create a multivariate prediction model through Cox regression. Patients with lower eGFR had a significant increase of GDF-15, CD-25 and RAGE, with higher plasma levels in non-survivors and in patients who needed ventilation. At univariate analysis, low and mid-low GDF-15 quartiles (<4.45 ng/mL) were associated with lower mortality risk, while mid-high and high quartiles (>4.45 ng/mL) were associated with higher mortality risk. Independent association between GDF-15 quartiles and mortality risk was confirmed in the Cox model and adjusted for eGFR, age, fever and dyspnea (HR 2.28, CI 1.53−3.39, p < 0.0001). The strength of the association between GDF-15 quartiles and mortality risk increased in patients with lower compared to higher eGFR (HR 2.53, CI 1.34−4.79 versus HR 1.99, CI 1.17−3.39). Our findings may suggest a further investigation of the effect of GDF-15 signaling pathway inhibition in CKD.
Collapse
|
33
|
Cosgriff CV, Miano TA, Mathew D, Huang AC, Giannini HM, Kuri-Cervantes L, Pampena MB, Ittner CAG, Weisman AR, Agyekum RS, Dunn TG, Oniyide O, Turner AP, D'Andrea K, Adamski S, Greenplate AR, Anderson BJ, Harhay MO, Jones TK, Reilly JP, Mangalmurti NS, Shashaty MGS, Betts MR, Wherry EJ, Meyer NJ. Validating a Proteomic Signature of Severe COVID-19. Crit Care Explor 2022; 4:e0800. [PMID: 36479446 PMCID: PMC9722553 DOI: 10.1097/cce.0000000000000800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN Prospective observational cohort study. SETTING Two hospitals in the United States. PATIENTS One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.
Collapse
Affiliation(s)
- Christopher V Cosgriff
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Todd A Miano
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Heather M Giannini
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - M Betina Pampena
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Caroline A G Ittner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ariel R Weisman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Roseline S Agyekum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thomas G Dunn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Oluwatosin Oniyide
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Alexandra P Turner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kurt D'Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sharon Adamski
- Immune Health Project, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Immune Health Project, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian J Anderson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael O Harhay
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Tiffanie K Jones
- Department of Epidemiology, Biostatistics, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael G S Shashaty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
34
|
Captur G, Moon JC, Topriceanu CC, Joy G, Swadling L, Hallqvist J, Doykov I, Patel N, Spiewak J, Baldwin T, Hamblin M, Menacho K, Fontana M, Treibel TA, Manisty C, O'Brien B, Gibbons JM, Pade C, Brooks T, Altmann DM, Boyton RJ, McKnight Á, Maini MK, Noursadeghi M, Mills K, Heywood WE. Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. EBioMedicine 2022; 85:104293. [PMID: 36182629 PMCID: PMC9515404 DOI: 10.1016/j.ebiom.2022.104293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Center for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London NW3 2QG, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Constantin-Cristian Topriceanu
- UCL MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, London WC1B 5JU, UK; Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK
| | - George Joy
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Jenny Hallqvist
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Justyna Spiewak
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Tomas Baldwin
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Matt Hamblin
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Katia Menacho
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; The Royal Free Hospital, Cardiac MRI Unit, Pond Street, Hampstead, London NW3 2QG, UK
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK; Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiac Anesthesiology and Intensive Care Medicine, Charité Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Outcomes Research Consortium, Department of Outcomes Research, The Cleveland Clinic, 9500 Euclid Ave P77, Cleveland, OH 44195, USA
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Corrina Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tim Brooks
- National Infection Service, Public Health England, Porton Down, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK; Lung Division, Royal Brompton Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 6NP, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6JF, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
35
|
Zhang F, Luna A, Tan T, Chen Y, Sander C, Guo T. COVIDpro: Database for mining protein dysregulation in patients with COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509819. [PMID: 36203550 PMCID: PMC9536031 DOI: 10.1101/2022.09.27.509819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background The ongoing pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has limited treatment options partially due to our incomplete understanding of the molecular dysregulations of the COVID-19 patients. We aimed to generate a repository and data analysis tools to examine the modulated proteins underlying COVID-19 patients for the discovery of potential therapeutic targets and diagnostic biomarkers. Methods We built a web server containing proteomic expression data from COVID-19 patients with a toolset for user-friendly data analysis and visualization. The web resource covers expert-curated proteomic data from COVID-19 patients published before May 2022. The data were collected from ProteomeXchange and from select publications via PubMed searches and aggregated into a comprehensive dataset. Protein expression by disease subgroups across projects was compared by examining differentially expressed proteins. We also visualize differentially expressed pathways and proteins. Moreover, circulating proteins that differentiated severe cases were nominated as predictive biomarkers. Findings We built and maintain a web server COVIDpro ( https://www.guomics.com/covidPro/ ) containing proteomics data generated by 41 original studies from 32 hospitals worldwide, with data from 3077 patients covering 19 types of clinical specimens, the majority from plasma and sera. 53 protein expression matrices were collected, for a total of 5434 samples and 14,403 unique proteins. Our analyses showed that the lipopolysaccharide-binding protein, as identified in the majority of the studies, was highly expressed in the blood samples of patients with severe disease. A panel of significantly dysregulated proteins was identified to separate patients with severe disease from non-severe disease. Classification of severe disease based on these proteomic signatures on five test sets reached a mean AUC of 0.87 and ACC of 0.80. Interpretation COVIDpro is an online database with an integrated analysis toolkit. It is a unique and valuable resource for testing hypotheses and identifying proteins or pathways that could be targeted by new treatments of COVID-19 patients. Funding National Key R&D Program of China: Key PDPM technologies (2021YFA1301602, 2021YFA1301601, 2021YFA1301603), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04), National Natural Science Foundation of China (81972492) and National Science Fund for Young Scholars (21904107), National Resource for Network Biology (NRNB) from the National Institute of General Medical Sciences (NIGMS-P41 GM103504). Research in context Evidence before this study: Although an increasing number of therapies against COVID-19 are being developed, they are still insufficient, especially with the rise of new variants of concern. This is partially due to our incomplete understanding of the disease’s mechanisms. As data have been collected worldwide, several questions are now worth addressing via meta-analyses. Most COVID-19 drugs function by targeting or affecting proteins. Effectiveness and resistance to therapeutics can be effectively assessed via protein measurements. Empowered by mass spectrometry-based proteomics, protein expression has been characterized in a variety of patient specimens, including body fluids (e.g., serum, plasma, urea) and tissue (i.e., formalin-fixed and paraffin-embedded (FFPE)). We expert-curated proteomic expression data from COVID-19 patients published before May 2022, from the largest proteomic data repository ProteomeXhange as well as from literature search engines. Using this resource, a COVID-19 proteome meta-analysis could provide useful insights into the mechanisms of the disease and identify new potential drug targets.Added value of this study: We integrated many published datasets from patients with COVID-19 from 11 nations, with over 3000 patients and more than 5434 proteome measurements. We collected these datasets in an online database, and generated a toolbox to easily explore, analyze, and visualize the data. Next, we used the database and its associated toolbox to identify new proteins of diagnostic and therapeutic value for COVID-19 treatment. In particular, we identified a set of significantly dysregulated proteins for distinguishing severe from non-severe patients using serum samples.Implications of all the available evidence: COVIDpro will support the navigation and analysis of patterns of dysregulated proteins in various COVID-19 clinical specimens for identification and verification of protein biomarkers and potential therapeutic targets.
Collapse
|
36
|
COVID-19 Salivary Protein Profile: Unravelling Molecular Aspects of SARS-CoV-2 Infection. J Clin Med 2022; 11:jcm11195571. [PMID: 36233441 PMCID: PMC9570692 DOI: 10.3390/jcm11195571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is the most impacting global pandemic of all time, with over 600 million infected and 6.5 million deaths worldwide, in addition to an unprecedented economic impact. Despite the many advances in scientific knowledge about the disease, much remains to be clarified about the molecular alterations induced by SARS-CoV-2 infection. In this work, we present a hybrid proteomics and in silico interactomics strategy to establish a COVID-19 salivary protein profile. Data are available via ProteomeXchange with identifier PXD036571. The differential proteome was narrowed down by the Partial Least-Squares Discriminant Analysis and enrichment analysis was performed with FunRich. In parallel, OralInt was used to determine interspecies Protein-Protein Interactions between humans and SARS-CoV-2. Five dysregulated biological processes were identified in the COVID-19 proteome profile: Apoptosis, Energy Pathways, Immune Response, Protein Metabolism and Transport. We identified 10 proteins (KLK 11, IMPA2, ANXA7, PLP2, IGLV2-11, IGHV3-43D, IGKV2-24, TMEM165, VSIG10 and PHB2) that had never been associated with SARS-CoV-2 infection, representing new evidence of the impact of COVID-19. Interactomics analysis showed viral influence on the host immune response, mainly through interaction with the degranulation of neutrophils. The virus alters the host’s energy metabolism and interferes with apoptosis mechanisms.
Collapse
|
37
|
Parchwani D, Dholariya S, Katoch CDS, Singh R. Growth differentiation factor 15 as an emerging novel biomarker in SARS-CoV-2 infection. World J Methodol 2022; 12:438-447. [PMID: 36186744 PMCID: PMC9516548 DOI: 10.5662/wjm.v12.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a member of a transforming growth factor-β cytokine superfamily that regulates metabolism and is released in response to inflammation, hypoxia and tissue injury. It has evolved as one of the most potent cytokines for predicting the severity of infections and inflammatory conditions, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
AIM To investigate the utility of GDF-15 in predicting the severity of SARS-CoV-2 infection.
METHODS PubMed, Reference Citation Analysis, CNKI, and Goggle Scholar were explored by using related MeSH keywords and data such as the first author’s name, study duration, type and place of study, sample size and subgroups of participants if any, serum/plasma GDF- 15 level in pg/mL, area under the curve and cut-off value in receiver operating characteristic analysis, method of measurement of GDF-15, and the main conclusion were extracted.
RESULTS In all studies, the baseline GDF-15 level was elevated in SARS-CoV-2-infected patients, and it was significantly associated with severity, hypoxemia, viral load, and worse clinical consequences. In addition, GDF-15 levels were correlated with C-reactive protein, D-dimer, ferritin and procalcitonin, and it had superior discriminatory ability to detect severity and in-hospital mortality of SARS-CoV-2 infection. Hence, GDF-15 might be used to predict the severity and prognosis of hospitalized patients with SARS-CoV-2.
CONCLUSION Serial estimation of GDF-15 levels in hospitalized patients with SARS-CoV-2 infection appeared to have useful prognostic value and GDF-15 can be considered a clinically prominent sepsis biomarker for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - CDS Katoch
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| |
Collapse
|
38
|
Rahmani K, Shavaleh R, Forouhi M, Disfani HF, Kamandi M, Oskooi RK, Foogerdi M, Soltani M, Rahchamani M, Mohaddespour M, Dianatinasab M. The effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19: A systematic review and meta-analysis. Front Public Health 2022; 10:873596. [PMID: 36091533 PMCID: PMC9459165 DOI: 10.3389/fpubh.2022.873596] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Background Vaccination, one of the most important and effective ways of preventing infectious diseases, has recently been used to control the COVID-19 pandemic. The present meta-analysis study aimed to evaluate the effectiveness of COVID-19 vaccines in reducing the incidence, hospitalization, and mortality from COVID-19. Methods A systematic search was performed independently in Scopus, PubMed via Medline, ProQuest, and Google Scholar electronic databases as well as preprint servers using the keywords under study. We used random-effect models and the heterogeneity of the studies was assessed using I 2 and χ2 statistics. In addition, the Pooled Vaccine Effectiveness (PVE) obtained from the studies was calculated by converting based on the type of outcome. Results A total of 54 studies were included in this meta-analysis. The PVE against SARS-COV 2 infection were 71% [odds ratio (OR) = 0.29, 95% confidence intervals (CI): 0.23-0.36] in the first dose and 87% (OR = 0.13, 95% CI: 0.08-0.21) in the second dose. The PVE for preventing hospitalization due to COVID-19 infection was 73% (OR = 0.27, 95% CI: 0.18-0.41) in the first dose and 89% (OR = 0.11, 95% CI: 0.07-0.17) in the second dose. With regard to the type of vaccine, mRNA-1273 and combined studies in the first dose and ChAdOx1 and mRNA-1273 in the second dose had the highest effectiveness in preventing infection. Regarding the COVID-19-related mortality, PVE was 68% (HR = 0.32, 95% CI: 0.23-0.45) in the first dose and 92% (HR = 0.08, 95% CI: 0.02-0.29) in the second dose. Conclusion The results of this meta-analysis indicated that vaccination against COVID-19 with BNT162b2 mRNA, mRNA-1273, and ChAdOx1, and also their combination, was associated with a favorable effectiveness against SARS-CoV2 incidence rate, hospitalization, and mortality rate in the first and second doses in different populations. We suggest that to prevent the severe form of the disease in the future, and, in particular, in the coming epidemic picks, vaccination could be the best strategy to prevent the severe form of the disease. Systematic review registration PROSPERO International Prospective Register of Systematic Reviews: http://www.crd.york.ac.uk/PROSPERO/, identifier [CRD42021289937].
Collapse
Affiliation(s)
- Kazem Rahmani
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Shavaleh
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Rasoul Shavaleh
| | - Mahtab Forouhi
- Department of Pharmacy, Shahid Behest University of Medical Sciences, Tehran, Iran
| | - Hamideh Feiz Disfani
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Kamandi
- Hematologist-Oncologist, Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Khatamian Oskooi
- Department of Emergency Medicine, Faculty of Medicine, Birgand University of Medical Sciences, Birjand, Iran
| | - Molood Foogerdi
- Department of Emergency Medicine, Faculty of Medicine, Birgand University of Medical Sciences, Birjand, Iran
| | - Moslem Soltani
- Department of Gastroenterology and Hepatology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Rahchamani
- Department of Internal Medicine, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohaddespour
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Dianatinasab
- Department of Complex Genetics and Epidemiology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands,Mostafa Dianatinasab
| |
Collapse
|
39
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier JM, Saad HM, Batiha GES. The Potential Role of Growth Differentiation Factor 15 in COVID-19: A Corollary Subjective Effect or Not? Diagnostics (Basel) 2022; 12:diagnostics12092051. [PMID: 36140453 PMCID: PMC9497461 DOI: 10.3390/diagnostics12092051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants. COVID-19 is characterized by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Different biomarkers are used in the assessment of COVID-19 severity including D-dimer, ferritin, lactate dehydrogenase (LDH), and hypoxia-inducible factor (HIF). Interestingly, growth differentiation factor 15 (GDF15) has recently become a potential biomarker correlated with the COVID-19 severity. Thus, this critical review aimed to determine the critical association between GDF15 and COVID-19. The perfect function of GDF15 remains not well-recognized; nevertheless, it plays a vital role in controlling cell growth, apoptosis and inflammatory activation. Furthermore, GDF15 may act as anti-inflammatory and pro-inflammatory signaling in diverse cardiovascular complications. Furthermore, the release of GDF15 is activated by various growth factors and cytokines including macrophage colony-stimulating factor (M-CSF), angiotensin II (AngII) and p53. Therefore, higher expression of GDF15 in COVID-19 might a compensatory mechanism to stabilize and counteract dysregulated inflammatory reactions. In conclusion, GDF15 is an anti-inflammatory cytokine that could be associated with the COVID-19 severity. Increased GDF15 could be a compensatory mechanism against hyperinflammation and exaggerated immune response in the COVID-19. Experimental, preclinical and large-scale clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, F-44007 Nantes, France
- LabEx Ion Channels, Science & Therapeutics, Université de Nice Sophia-Antipolis, F-06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh 51744, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| |
Collapse
|
40
|
Prognostic Value of Catestatin in Severe COVID-19: An ICU-Based Study. J Clin Med 2022; 11:jcm11154496. [PMID: 35956112 PMCID: PMC9369405 DOI: 10.3390/jcm11154496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Catestatin is a pleiotropic peptide with a wide range of immunomodulatory effects. Considering that patients with a severe COVID-19 infection have a major immunological dysregulation, the aim of this study was to evaluate catestatin levels in patients with COVID-19 treated in the intensive care unit (ICU) and to compare them between the fatal and non-fatal outcomes. The study included 152 patients with severe COVID-19, out of which 105 had a non-fatal outcome and 47 had a fatal outcome. Serum catestatin levels were estimated by an enzyme-linked immunosorbent assay in a commercially available diagnostic kit. The results show that catestatin levels were significantly lower in the fatal group compared to the non-fatal group (16.6 ± 7.8 vs. 23.2 ± 9.2 ng/mL; p < 0.001). Furthermore, there was a significant positive correlation between serum catestatin levels and vitamin D levels (r = 0.338; p < 0.001) while there was also a significant positive correlation between serum catestatin levels and growth differentiation factor-15 (GDF-15) levels (r = −0.345; p < 0.001). Furthermore, multivariate logistic regression showed that catestatin, GDF-15 and leukocyte count were significant predictors for COVID-19 survival. These findings imply that catestatin could be playing a major immunomodulatory role in the complex pathophysiology of the COVID-19 infection and that serum catestatin could also be a predictor of a poor COVID-19 outcome.
Collapse
|
41
|
Cantarelli C, Angeletti A, Perin L, Russo LS, Sabiu G, Podestà MA, Cravedi P. Immune responses to SARS-CoV-2 in dialysis and kidney transplantation. Clin Kidney J 2022; 15:1816-1828. [PMID: 36147709 PMCID: PMC9384565 DOI: 10.1093/ckj/sfac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/15/2022] Open
Abstract
Despite progressive improvements in the management of patients with coronavirus disease 2019 (COVID-19), individuals with end-stage kidney disease (ESKD) are still at high risk of infection-related complications. Although the risk of infection in these patients is comparable to that of the general population, their lower rate of response to vaccination is a matter of concern. When prevention strategies fail, infection is often severe. Comorbidities affecting patients on maintenance dialysis and kidney transplant recipients clearly account for the increased risk of severe COVID-19, while the role of uremia and chronic immunosuppression is less clear. Immune monitoring studies have identified differences in the innate and adaptive immune response against the virus that could contribute to the increased disease severity. In particular, individuals on dialysis show signs of T cell exhaustion that may impair antiviral response. Similar to kidney transplant recipients, antibody production in these patients occurs, but with delayed kinetics compared with the general population, leaving them more exposed to viral expansion during the early phases of infection. Overall, unique features of the immune response during COVID-19 in individuals with ESKD may occur with severe comorbidities affecting these individuals in explaining their poor outcomes.
Collapse
Affiliation(s)
- Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria di Parma , Parma , Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Istituto Giannina Gaslini
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles , Los Angeles, CA , USA ; , Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California , Los Angeles, CA , USA ; , Los Angeles, CA
| | - Luis Sanchez Russo
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY
| | - Gianmarco Sabiu
- Nephrology and Dialysis Unit, ASST Fatebenefratelli Sacco, Università degli Studi di Milano , Italy
| | - Manuel Alfredo Podestà
- Nephrology Unit, Department of Health Sciences, Università degli Studi di Milano , Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, NY
| |
Collapse
|
42
|
Buyukozkan M, Alvarez-Mulett S, Racanelli AC, Schmidt F, Batra R, Hoffman KL, Sarwath H, Engelke R, Gomez-Escobar L, Simmons W, Benedetti E, Chetnik K, Zhang G, Schenck E, Suhre K, Choi JJ, Zhao Z, Racine-Brzostek S, Yang HS, Choi ME, Choi AM, Cho SJ, Krumsiek J. Integrative metabolomic and proteomic signatures define clinical outcomes in severe COVID-19. iScience 2022; 25:104612. [PMID: 35756895 PMCID: PMC9212983 DOI: 10.1016/j.isci.2022.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/05/2022] [Accepted: 06/09/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has ravaged global healthcare with previously unseen levels of morbidity and mortality. In this study, we performed large-scale integrative multi-omics analyses of serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic complexities of this disease and identifying molecular signatures that predict clinical outcomes. We assembled a network of protein-metabolite interactions through targeted metabolomic and proteomic profiling in 330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network identified distinct protein-metabolite cross talk related to immune modulation, energy and nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our data linked multiple proteins and metabolites to clinical indices associated with long-term mortality and morbidity. Finally, we developed a novel composite outcome measure for COVID-19 disease severity based on metabolomics data. The model predicts severe disease with a concordance index of around 0.69, and shows high predictive power of 0.83-0.93 in two independent datasets.
Collapse
Affiliation(s)
- Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Alvarez-Mulett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexandra C. Racanelli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Katherine L. Hoffman
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Hina Sarwath
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine – Qatar, Doha, Qatar
| | - Luis Gomez-Escobar
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Will Simmons
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kelsey Chetnik
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Edward Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine – Qatar, Education City, Doha 24144, Qatar
| | - Justin J. Choi
- Department of Medicine, Division of General Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - He S. Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - Augustine M.K. Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Soo Jung Cho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
43
|
Structural basis of human IL-18 sequestration by the decoy receptor IL-18 binding protein (IL-18BP) in inflammation and tumor immunity. J Biol Chem 2022; 298:101908. [PMID: 35398099 PMCID: PMC9111989 DOI: 10.1016/j.jbc.2022.101908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Human Interleukin-18 (IL-18) is an omnipresent proinflammatory cytokine of the IL-1 family with central roles in autoimmune and inflammatory diseases and serves as a staple biomarker in the evaluation of inflammation in physiology and disease, including the inflammatory phase of COVID-19. The sequestration of IL-18 by its soluble decoy receptor IL-18-Binding Protein (IL-18BP) is critical to the regulation of IL-18 activity. Since an imbalance in expression and circulating levels of IL-18 is associated with disease, structural insights into how IL-18BP outcompetes binding of IL-18 by its cognate cell-surface receptors are highly desirable; however, the structure of human IL-18BP in complex with IL-18 has been elusive. Here, we elucidate the sequestration mechanism of human IL-18 mediated by IL-18BP based on the crystal structure of the IL-18:IL-18BP complex. These detailed structural snapshots reveal the interaction landscape leading to the ultra-high affinity of IL-18BP toward IL-18 and identify substantial differences with respect to previously characterized complexes of IL-18 with IL-18BP of viral origin. Furthermore, our structure captured a fortuitous higher-order assembly between IL-18 and IL-18BP coordinated by a disulfide-bond distal to the binding surface connecting IL-18 and IL-18BP molecules from different complexes, resulting in a novel tetramer with 2:2 stoichiometry. This tetrapartite assembly was found to restrain IL-18 activity more effectively than the canonical 1:1 complex. Collectively, our findings provide a framework for innovative, structure-driven therapeutic strategies and further functional interrogation of IL-18 in physiology and disease.
Collapse
|
44
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
45
|
Vijayakumar B, Boustani K, Ogger PP, Papadaki A, Tonkin J, Orton CM, Ghai P, Suveizdyte K, Hewitt RJ, Desai SR, Devaraj A, Snelgrove RJ, Molyneaux PL, Garner JL, Peters JE, Shah PL, Lloyd CM, Harker JA. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 2022; 55:542-556.e5. [PMID: 35151371 PMCID: PMC8789571 DOI: 10.1016/j.immuni.2022.01.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.
Collapse
Affiliation(s)
- Bavithra Vijayakumar
- National Heart and Lung Institute, Imperial College London, London, UK; Chelsea and Westminster Hospital, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karim Boustani
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre for Allergic Mechanisms of Asthma, London, London, UK
| | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis Papadaki
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Christopher M Orton
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Richard J Hewitt
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sujal R Desai
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK; Margaret Turner-Warwick Centre for Fibrosing Lung Diseases, London, UK
| | - Anand Devaraj
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Robert J Snelgrove
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre for Allergic Mechanisms of Asthma, London, London, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Justin L Garner
- Chelsea and Westminster Hospital, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - James E Peters
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Pallav L Shah
- National Heart and Lung Institute, Imperial College London, London, UK; Chelsea and Westminster Hospital, London, UK; Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre for Allergic Mechanisms of Asthma, London, London, UK
| | - James A Harker
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre for Allergic Mechanisms of Asthma, London, London, UK.
| |
Collapse
|
46
|
Alberici F, Affatato S, Moratto D, Mescia F, Delbarba E, Guerini A, Tedesco M, Burbelo PD, Zani R, Castagna I, Gallico A, Tonoli M, Venturini M, Roccaro AM, Giacomelli M, Cohen JI, Giustini V, Dobbs K, Su HC, Fiorini C, Quaresima V, Viola FB, Vizzardi V, Gaggiotti M, Bossini N, Gaggia P, Badolato R, Notarangelo LD, Chiarini M, Scolari F. SARS-CoV-2 infection in dialysis and kidney transplant patients: immunological and serological response. J Nephrol 2022; 35:745-759. [PMID: 35067905 PMCID: PMC8784230 DOI: 10.1007/s40620-021-01214-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Background Dialysis and kidney transplant patients with moderate-severe COVID-19 have a high mortality rate, around 30%, that is similar in the two populations, despite differences in their baseline characteristics. In these groups, the immunology of the disease has been poorly explored. Methods Thirty-two patients on dialysis or with kidney transplant and SARS-CoV-2 infection requiring hospitalization (COV group) were included in our study. Lymphocyte subsets, dendritic cell (DC) counts and monocyte activation were studied. SARS-CoV-2 anti-spike/anti-nucleocapsid were monitored, and baseline cytokines and chemokines were measured in 10 patients. Results The COV group, compared to healthy subjects and uninfected dialysis/kidney transplant controls, showed lower numbers of CD4 + and CD8 + T cells, Natural-Killer (NK), B cells, plasmacytoid and myeloid DCs, while the proportion of terminally differentiated B-cells was increased. IL6, IL10, IFN-α and chemokines involved in monocyte and neutrophil recruitment were higher in the COV group, compared to uninfected dialysis/kidney transplant controls. Patients with severe disease had lower CD4 + , CD8 + and B-cell counts and lower monocyte HLA-DR expression. Of note, when comparing dialysis and kidney transplant patients with COVID-19, the latter group presented lower NK and pDC counts and monocyte HLA-DR expression. Up to 60 days after symptom onset, kidney transplant recipients showed lower levels of anti-spike antibodies compared to dialysis patients. Conclusions During SARS-CoV-2 infection, dialysis and kidney transplant patients manifest immunophenotype abnormalities; these are similar in the two groups, however kidney transplant recipients show more profound alterations of the innate immune system and lower anti-spike antibody response. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40620-021-01214-8.
Collapse
Affiliation(s)
- Federico Alberici
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy.
| | - Stefania Affatato
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Federica Mescia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Elisa Delbarba
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Alice Guerini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Martina Tedesco
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Roberta Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Ilaria Castagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Agnese Gallico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Mattia Tonoli
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Margherita Venturini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mauro Giacomelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Viviana Giustini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chiara Fiorini
- Centro di Ricerca Emato-Oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Virginia Quaresima
- Centro di Ricerca Emato-Oncologica AIL (CREA), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Battista Viola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Valerio Vizzardi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Mario Gaggiotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Nicola Bossini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Paola Gaggia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- "Angelo Nocivelli" Institute of Molecular Medicine, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Scolari
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Nephrology Unit, Spedali Civili Hospital, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25125, Brescia, Italy
| |
Collapse
|
47
|
Shirvaliloo M. The unfavorable clinical outcome of COVID-19 in smokers is mediated by H3K4me3, H3K9me3 and H3K27me3 histone marks. Epigenomics 2022; 14:153-162. [PMID: 35021853 PMCID: PMC8763212 DOI: 10.2217/epi-2021-0476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Lasso G, Khan S, Allen SA, Mariano M, Florez C, Orner EP, Quiroz JA, Quevedo G, Massimi A, Hegde A, Wirchnianski AS, Bortz RH, Malonis RJ, Georgiev GI, Tong K, Herrera NG, Morano NC, Garforth SJ, Malaviya A, Khokhar A, Laudermilch E, Dieterle ME, Fels JM, Haslwanter D, Jangra RK, Barnhill J, Almo SC, Chandran K, Lai JR, Kelly L, Daily JP, Vergnolle O. Longitudinally monitored immune biomarkers predict the timing of COVID-19 outcomes. PLoS Comput Biol 2022; 18:e1009778. [PMID: 35041647 PMCID: PMC8812869 DOI: 10.1371/journal.pcbi.1009778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2022] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical outcome of SARS-CoV-2 infection varies widely between individuals. Machine learning models can support decision making in healthcare by assessing fatality risk in patients that do not yet show severe signs of COVID-19. Most predictive models rely on static demographic features and clinical values obtained upon hospitalization. However, time-dependent biomarkers associated with COVID-19 severity, such as antibody titers, can substantially contribute to the development of more accurate outcome models. Here we show that models trained on immune biomarkers, longitudinally monitored throughout hospitalization, predicted mortality and were more accurate than models based on demographic and clinical data upon hospital admission. Our best-performing predictive models were based on the temporal analysis of anti-SARS-CoV-2 Spike IgG titers, white blood cell (WBC), neutrophil and lymphocyte counts. These biomarkers, together with C-reactive protein and blood urea nitrogen levels, were found to correlate with severity of disease and mortality in a time-dependent manner. Shapley additive explanations of our model revealed the higher predictive value of day post-symptom onset (PSO) as hospitalization progresses and showed how immune biomarkers contribute to predict mortality. In sum, we demonstrate that the kinetics of immune biomarkers can inform clinical models to serve as a powerful monitoring tool for predicting fatality risk in hospitalized COVID-19 patients, underscoring the importance of contextualizing clinical parameters according to their time post-symptom onset.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Saad Khan
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Stephanie A. Allen
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Margarette Mariano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Catalina Florez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, United States of America
| | - Erika P. Orner
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jose A. Quiroz
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Gregory Quevedo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aldo Massimi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aditi Hegde
- Eastchester High School, 2 Stewart Place, Eastchester, New York, United States of America
| | - Ariel S. Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Robert H. Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ryan J. Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - George I. Georgiev
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Karen Tong
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Natalia G. Herrera
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicholas C. Morano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Avinash Malaviya
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Ahmed Khokhar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Ethan Laudermilch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - M. Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - J. Maximilian Fels
- Department of Cell Biology, Harvard Medical School, Boston, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Cambridge, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Cambridge, Massachusetts, United States of America
| | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Barnhill
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, New York, United States of America
- Department of Radiology and Radiological Services, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan R. Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Libusha Kelly
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Johanna P. Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
49
|
Konrad ER, Soo J, Conroy AL, Namasopo S, Opoka RO, Hawkes MT. Interleukin-18 binding protein in infants and children hospitalized with pneumonia in low-resource settings. Cytokine 2021; 150:155775. [PMID: 34875584 DOI: 10.1016/j.cyto.2021.155775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022]
Abstract
Pneumonia is the leading infectious cause of death in children, with especially high mortality in low- and middle-income countries. Interleukin-18 binding protein (IL-18BP) is a natural antagonist of the pro-inflammatory cytokine interleukin-18 and is elevated in numerous autoimmune conditions and infectious diseases. We conducted a prospective cohort study to determine the association between admission IL-18BP levels and clinical severity among children admitted to two hospitals in Uganda for hypoxemic pneumonia. A total of 42 children (median age of 1.2 years) were included. IL-18BP levels were higher in patients with respiratory distress, including chest indrawing (median 15 ng/mL (IQR 9.8-18) versus 4.5 ng/mL (IQR 3.8-11) without chest indrawing, P = 0.0064) and nasal flaring (median 15 ng/mL (IQR 9.7-19) versus 11 ng/mL (IQR 5.4-14) without nasal flaring, P = 0.034). IL-18BP levels were positively correlated with the composite clinical severity score, Pediatric Early Death Index for Africa (PEDIA-e, ρ = 0.46, P = 0.0020). Patients with IL-18BP > 14 ng/mL also had slower recovery times, including time to sit (median 0.69 days (IQR 0.25-1) versus 0.15 days (IQR 0.076-0.36) with IL-18BP < 14 ng/mL, P = 0.036) and time to fever resolution (median 0.63 days (IQR 0.16-2) versus 0.13 days (IQR 0-0.42), P = 0.016). In summary, higher IL-18BP levels were associated with increased disease severity and prolonged recovery times in Ugandan children with pneumonia.
Collapse
Affiliation(s)
- Emily R Konrad
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Jeremy Soo
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, USA
| | | | - Robert O Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala, Uganda
| | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Distinguished Researcher, Stollery Science Lab, Canada; Member, Women and Children's Health Research Institute, Canada.
| |
Collapse
|
50
|
Beaudoin CA, Hamaia SW, Huang CLH, Blundell TL, Jackson AP. Can the SARS-CoV-2 Spike Protein Bind Integrins Independent of the RGD Sequence? Front Cell Infect Microbiol 2021; 11:765300. [PMID: 34869067 PMCID: PMC8637727 DOI: 10.3389/fcimb.2021.765300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
The RGD motif in the Severe Acute Syndrome Coronavirus 2 (SARS-CoV-2) spike protein has been predicted to bind RGD-recognizing integrins. Recent studies have shown that the spike protein does, indeed, interact with αVβ3 and α5β1 integrins, both of which bind to RGD-containing ligands. However, computational studies have suggested that binding between the spike RGD motif and integrins is not favourable, even when unfolding occurs after conformational changes induced by binding to the canonical host entry receptor, angiotensin-converting enzyme 2 (ACE2). Furthermore, non-RGD-binding integrins, such as αx, have been suggested to interact with the SARS-CoV-2 spike protein. Other viral pathogens, such as rotaviruses, have been recorded to bind integrins in an RGD-independent manner to initiate host cell entry. Thus, in order to consider the potential for the SARS-CoV-2 spike protein to bind integrins independent of the RGD sequence, we investigate several factors related to the involvement of integrins in SARS-CoV-2 infection. First, we review changes in integrin expression during SARS-CoV-2 infection to identify which integrins might be of interest. Then, all known non-RGD integrin-binding motifs are collected and mapped to the spike protein receptor-binding domain and analyzed for their 3D availability. Several integrin-binding motifs are shown to exhibit high sequence similarity with solvent accessible regions of the spike receptor-binding domain. Comparisons of these motifs with other betacoronavirus spike proteins, such as SARS-CoV and RaTG13, reveal that some have recently evolved while others are more conserved throughout phylogenetically similar betacoronaviruses. Interestingly, all of the potential integrin-binding motifs, including the RGD sequence, are conserved in one of the known pangolin coronavirus strains. Of note, the most recently recorded mutations in the spike protein receptor-binding domain were found outside of the putative integrin-binding sequences, although several mutations formed inside and close to one motif, in particular, may potentially enhance binding. These data suggest that the SARS-CoV-2 spike protein may interact with integrins independent of the RGD sequence and may help further explain how SARS-CoV-2 and other viruses can evolve to bind to integrins.
Collapse
Affiliation(s)
- Christopher A Beaudoin
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Tom L Blundell
- Department of Biochemistry, Sanger Building, University of Cambridge, Cambridge, United Kingdom
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|