151
|
Mendz GL, Cook M. Transhumanist Genetic Enhancement: Creation of a 'New Man' Through Technological Innovation. New Bioeth 2021; 27:105-126. [PMID: 33955830 DOI: 10.1080/20502877.2021.1917228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The transhumanist project of reshaping human beings by promoting their improvement through technological innovations has a broad agenda. This study focuses on the enhancement of the human organism through genetic modification techniques. Transhumanism values and a discussion of their philosophical background provide a framework to understand its ideals. Genetics and ethics are employed to assess the claims of the transhumanist program of human enhancement. A succinct description of central concepts in genetics and an explanation of current techniques to edit the human genome serve to assess the capabilities and limitations of editing techniques. Potential benefits and liabilities of human enhancement through genome editing are discussed to appraise its feasibility. Ethical considerations of genome editing inform a reflection on the implications of introducing heritable changes in the genome of individuals. It is concluded that the transhumanist program is underpinned by a large number of hypotheses rather than by sufficient evidence.
Collapse
Affiliation(s)
- George L Mendz
- School of Medicine, The University of Notre Dame Australia, Sydney, Australia
| | - Michael Cook
- BioEdge Newsletter, New Media Foundation, Botany, Australia
| |
Collapse
|
152
|
Porcu E, Sjaarda J, Lepik K, Carmeli C, Darrous L, Sulc J, Mounier N, Kutalik Z. Causal Inference Methods to Integrate Omics and Complex Traits. Cold Spring Harb Perspect Med 2021; 11:a040493. [PMID: 32816877 PMCID: PMC8091955 DOI: 10.1101/cshperspect.a040493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major biotechnological advances have facilitated a tremendous boost to the collection of (gen-/transcript-/prote-/methyl-/metabol-)omics data in very large sample sizes worldwide. Coordinated efforts have yielded a deluge of studies associating diseases with genetic markers (genome-wide association studies) or with molecular phenotypes. Whereas omics-disease associations have led to biologically meaningful and coherent mechanisms, the identified (non-germline) disease biomarkers may simply be correlates or consequences of the explored diseases. To move beyond this realm, Mendelian randomization provides a principled framework to integrate information on omics- and disease-associated genetic variants to pinpoint molecular traits causally driving disease development. In this review, we show the latest advances in this field, flag up key challenges for the future, and propose potential solutions.
Collapse
Affiliation(s)
- Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jennifer Sjaarda
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Kaido Lepik
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Institute of Computer Science, University of Tartu, Tartu 50409, Estonia
| | - Cristian Carmeli
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Liza Darrous
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Jonathan Sulc
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX2 5AX, United Kingdom
| |
Collapse
|
153
|
Bouchard C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity (Silver Spring) 2021; 29:802-820. [PMID: 33899337 DOI: 10.1002/oby.23116] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
There is a genetic component to human obesity that accounts for 40% to 50% of the variability in body weight status but that is lower among normal weight individuals (about 30%) and substantially higher in the subpopulation of individuals with obesity and severe obesity (about 60%-80%). The appreciation that heritability varies across classes of BMI represents an important advance. After controlling for BMI, ectopic fat and fat distribution traits are characterized by heritability levels ranging from 30% to 55%. Defects in at least 15 genes are the cause of monogenic obesity cases, resulting mostly from deficiencies in the leptin-melanocortin signaling pathway. Approximately two-thirds of the BMI heritability can be imputed to common DNA variants, whereas low-frequency and rare variants explain the remaining fraction. Diminishing allele effect size is observed as the number of obesity-associated variants expands, with most BMI-increasing or -decreasing alleles contributing only a few grams or less to body weight. Obesity-promoting alleles exert minimal effects in normal weight individuals but have larger effects in individuals with a proneness to obesity, suggesting a higher penetrance; however, it is not known whether these larger effect sizes precede obesity or are caused by an obese state. The obesity genetic risk is conditioned by thousands of DNA variants that make genetically based obesity prevention and treatment a major challenge.
Collapse
Affiliation(s)
- Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
154
|
Geographic variation in the polygenic score of height in Japan. Hum Genet 2021; 140:1097-1108. [PMID: 33900438 DOI: 10.1007/s00439-021-02281-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
A geographical gradient of height has existed in Japan for approximately 100 years. People in northern Japan tend to be taller than those in southern Japan. The differences in annual temperature and day length between the northern and southern prefectures of Japan have been suggested as possible causes of the height gradient. Although height is well known to be a polygenic trait with high heritability, the genetic contributions to the gradient have not yet been explored. Polygenic score (PS) is calculated by aggregating the effects of genetic variants identified by genome-wide association studies (GWASs) to predict the traits of individual subjects. Here, we calculated the PS of height for 10,840 Japanese individuals from all 47 prefectures in Japan. The median height PS for each prefecture was significantly correlated with the mean height of females and males obtained from another independent Japanese nation-wide height dataset, suggesting genetic contribution to the observed height gradient. We also found that individuals and prefectures genetically closer to continental East Asian ancestry tended to have a higher PS; modern Japanese people are considered to have originated as result of admixture between indigenous Jomon people and immigrants from continental East Asia. Another PS analysis based on the GWAS using only the mainland Japanese was conducted to evaluate the effect of population stratification on PS. The result also supported genetic contribution to height, and indicated that the PS might be affected by a bias due to population stratification even in a relatively homogenous population like Japanese.
Collapse
|
155
|
Kespohl B, Schumertl T, Bertrand J, Lokau J, Garbers C. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 2021; 60:18-27. [PMID: 33940443 DOI: 10.1016/j.cytogfr.2021.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
156
|
Estrada K, Froelich S, Wuster A, Bauer CR, Sterling T, Clark WT, Ru Y, Trinidad M, Nguyen HP, Luu AR, Wendt DJ, Yogalingam G, Yu GK, LeBowitz JH, Cardon LR. Identifying therapeutic drug targets using bidirectional effect genes. Nat Commun 2021; 12:2224. [PMID: 33850126 PMCID: PMC8044152 DOI: 10.1038/s41467-021-21843-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/12/2021] [Indexed: 01/15/2023] Open
Abstract
Prioritizing genes for translation to therapeutics for common diseases has been challenging. Here, we propose an approach to identify drug targets with high probability of success by focusing on genes with both gain of function (GoF) and loss of function (LoF) mutations associated with opposing effects on phenotype (Bidirectional Effect Selected Targets, BEST). We find 98 BEST genes for a variety of indications. Drugs targeting those genes are 3.8-fold more likely to be approved than non-BEST genes. We focus on five genes (IGF1R, NPPC, NPR2, FGFR3, and SHOX) with evidence for bidirectional effects on stature. Rare protein-altering variants in those genes result in significantly increased risk for idiopathic short stature (ISS) (OR = 2.75, p = 3.99 × 10-8). Finally, using functional experiments, we demonstrate that adding an exogenous CNP analog (encoded by NPPC) rescues the phenotype, thus validating its potential as a therapeutic treatment for ISS. Our results show the value of looking for bidirectional effects to identify and validate drug targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanbin Ru
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Li S, Liu C, Goldstein A, Xin Y, Ke C, Duan C. Calcium State-Dependent Regulation of Epithelial Cell Quiescence by Stanniocalcin 1a. Front Cell Dev Biol 2021; 9:662915. [PMID: 33898465 PMCID: PMC8063699 DOI: 10.3389/fcell.2021.662915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
The molecular mechanisms regulating cell quiescence-proliferation balance are not well defined. Using a zebrafish model, we report that Stc1a, a secreted glycoprotein, plays a key role in regulating the quiescence-proliferation balance of Ca2+ transporting epithelial cells (ionocytes). Zebrafish stc1a, but not the other stc genes, is expressed in a Ca2+ state-dependent manner. Genetic deletion of stc1a, but not stc2b, increased ionocyte proliferation, leading to elevated body Ca2+ levels, cardiac edema, body swelling, and premature death. The increased ionocyte proliferation was accompanied by an increase in the IGF1 receptor-mediated PI3 kinase-Akt-Tor signaling activity in ionocytes. Inhibition of the IGF1 receptor, PI3 kinase, Akt, and Tor signaling reduced ionocyte proliferation and rescued the edema and premature death in stc1a–/– fish, suggesting that Stc1a promotes ionocyte quiescence by suppressing local IGF signaling activity. Mechanistically, Stc1 acts by inhibiting Papp-aa, a zinc metalloproteinase degrading Igfbp5a. Inhibition of Papp-aa proteinase activity restored ionocyte quiescence-proliferation balance. Genetic deletion of papp-aa or its substrate igfbp5a in the stc1a–/– background reduced ionocyte proliferation and rescued the edema and premature death. These findings uncover a novel and Ca2+ state-dependent pathway regulating cell quiescence. Our findings also provide new insights into the importance of ionocyte quiescent-proliferation balance in organismal Ca2+ homeostasis and survival.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Chengdong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Allison Goldstein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yi Xin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
158
|
Graff M, Justice AE, Young KL, Marouli E, Zhang X, Fine RS, Lim E, Buchanan V, Rand K, Feitosa MF, Wojczynski MK, Yanek LR, Shao Y, Rohde R, Adeyemo AA, Aldrich MC, Allison MA, Ambrosone CB, Ambs S, Amos C, Arnett DK, Atwood L, Bandera EV, Bartz T, Becker DM, Berndt SI, Bernstein L, Bielak LF, Blot WJ, Bottinger EP, Bowden DW, Bradfield JP, Brody JA, Broeckel U, Burke G, Cade BE, Cai Q, Caporaso N, Carlson C, Carpten J, Casey G, Chanock SJ, Chen G, Chen M, Chen YDI, Chen WM, Chesi A, Chiang CWK, Chu L, Coetzee GA, Conti DV, Cooper RS, Cushman M, Demerath E, Deming SL, Dimitrov L, Ding J, Diver WR, Duan Q, Evans MK, Falusi AG, Faul JD, Fornage M, Fox C, Freedman BI, Garcia M, Gillanders EM, Goodman P, Gottesman O, Grant SFA, Guo X, Hakonarson H, Haritunians T, Harris TB, Harris CC, Henderson BE, Hennis A, Hernandez DG, Hirschhorn JN, McNeill LH, Howard TD, Howard B, Hsing AW, Hsu YHH, Hu JJ, Huff CD, Huo D, Ingles SA, Irvin MR, John EM, Johnson KC, Jordan JM, Kabagambe EK, Kang SJ, Kardia SL, Keating BJ, Kittles RA, Klein EA, Kolb S, Kolonel LN, et alGraff M, Justice AE, Young KL, Marouli E, Zhang X, Fine RS, Lim E, Buchanan V, Rand K, Feitosa MF, Wojczynski MK, Yanek LR, Shao Y, Rohde R, Adeyemo AA, Aldrich MC, Allison MA, Ambrosone CB, Ambs S, Amos C, Arnett DK, Atwood L, Bandera EV, Bartz T, Becker DM, Berndt SI, Bernstein L, Bielak LF, Blot WJ, Bottinger EP, Bowden DW, Bradfield JP, Brody JA, Broeckel U, Burke G, Cade BE, Cai Q, Caporaso N, Carlson C, Carpten J, Casey G, Chanock SJ, Chen G, Chen M, Chen YDI, Chen WM, Chesi A, Chiang CWK, Chu L, Coetzee GA, Conti DV, Cooper RS, Cushman M, Demerath E, Deming SL, Dimitrov L, Ding J, Diver WR, Duan Q, Evans MK, Falusi AG, Faul JD, Fornage M, Fox C, Freedman BI, Garcia M, Gillanders EM, Goodman P, Gottesman O, Grant SFA, Guo X, Hakonarson H, Haritunians T, Harris TB, Harris CC, Henderson BE, Hennis A, Hernandez DG, Hirschhorn JN, McNeill LH, Howard TD, Howard B, Hsing AW, Hsu YHH, Hu JJ, Huff CD, Huo D, Ingles SA, Irvin MR, John EM, Johnson KC, Jordan JM, Kabagambe EK, Kang SJ, Kardia SL, Keating BJ, Kittles RA, Klein EA, Kolb S, Kolonel LN, Kooperberg C, Kuller L, Kutlar A, Lange L, Langefeld CD, Le Marchand L, Leonard H, Lettre G, Levin AM, Li Y, Li J, Liu Y, Liu Y, Liu S, Lohman K, Lotay V, Lu Y, Maixner W, Manson JE, McKnight B, Meng Y, Monda KL, Monroe K, Moore JH, Mosley TH, Mudgal P, Murphy AB, Nadukuru R, Nalls MA, Nathanson KL, Nayak U, N'Diaye A, Nemesure B, Neslund-Dudas C, Neuhouser ML, Nyante S, Ochs-Balcom H, Ogundiran TO, Ogunniyi A, Ojengbede O, Okut H, Olopade OI, Olshan A, Padhukasahasram B, Palmer J, Palmer CD, Palmer ND, Papanicolaou G, Patel SR, Pettaway CA, Peyser PA, Press MF, Rao DC, Rasmussen-Torvik LJ, Redline S, Reiner AP, Rhie SK, Rodriguez-Gil JL, Rotimi CN, Rotter JI, Ruiz-Narvaez EA, Rybicki BA, Salako B, Sale MM, Sanderson M, Schadt E, Schreiner PJ, Schurmann C, Schwartz AG, Shriner DA, Signorello LB, Singleton AB, Siscovick DS, Smith JA, Smith S, Speliotes E, Spitz M, Stanford JL, Stevens VL, Stram A, Strom SS, Sucheston L, Sun YV, Tajuddin SM, Taylor H, Taylor K, Tayo BO, Thun MJ, Tucker MA, Vaidya D, Van Den Berg DJ, Vedantam S, Vitolins M, Wang Z, Ware EB, Wassertheil-Smoller S, Weir DR, Wiencke JK, Williams SM, Williams LK, Wilson JG, Witte JS, Wrensch M, Wu X, Yao J, Zakai N, Zanetti K, Zemel BS, Zhao W, Zhao JH, Zheng W, Zhi D, Zhou J, Zhu X, Ziegler RG, Zmuda J, Zonderman AB, Psaty BM, Borecki IB, Cupples LA, Liu CT, Haiman CA, Loos R, Ng MCY, North KE. Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry. Am J Hum Genet 2021; 108:564-582. [PMID: 33713608 PMCID: PMC8059339 DOI: 10.1016/j.ajhg.2021.02.011] [Show More Authors] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
Collapse
Affiliation(s)
- Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Population Health Services, Geisinger Health, Danville, PA 17822, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Genomic Health, Life Sciences, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xinruo Zhang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Victoria Buchanan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristin Rand
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yaming Shao
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca Rohde
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melinda C Aldrich
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Thoracic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher Amos
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Donna K Arnett
- School of Public Health, University of Kentucky, Lexington, KY 40563, USA
| | - Larry Atwood
- Framingham Heart Study, Boston University School of Medicine, Boston, MA 02118, USA
| | - Elisa V Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Traci Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Erwin P Bottinger
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Donald W Bowden
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Diabetes Research, Wake Forest school of Medicine, Winston-Salem, NC 27157, USA
| | - Jonathan P Bradfield
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gregory Burke
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chris Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Carpten
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Graham Casey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhui Chen
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wei-Min Chen
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lisa Chu
- Cancer Prevention Institute of California, Fremont, CA 94538, USA
| | - Gerry A Coetzee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, LA 90033, USA
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Richard S Cooper
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Mary Cushman
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Ellen Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Latchezar Dimitrov
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jingzhong Ding
- Section on Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michele K Evans
- Health Disparities Research Section, Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Adeyinka G Falusi
- Institute for Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Caroline Fox
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Framingham Heart Study, Framingham, MA 01702, USA; Division of Endocrinology and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Melissa Garcia
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elizabeth M Gillanders
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | - Phyllis Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omri Gottesman
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Struan F A Grant
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia Research Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Talin Haritunians
- Medical Genetics Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Anselm Hennis
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Chronic Disease Research Centre and Faculty of Medical Sciences, University of West Indies, Bridgetown, Barbados; Ministry of Health, Bridgetown, Barbados
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Joel N Hirschhorn
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Lorna Haughton McNeill
- Department of Health Disparities Research, Division of OVP, Cancer Prevention and Population Sciences, and Center for Community Implementation and Dissemination Research, Duncan Family Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Ann W Hsing
- Cancer Prevention Institute of California, Fremont, CA 94538, USA; Department of Medicine, Stanford Prevention Research Center and Cancer Institute, Stanford, CA 94305, USA
| | - Yu-Han H Hsu
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chad D Huff
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Sue A Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joanne M Jordan
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edmond K Kabagambe
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sun J Kang
- Genetic Epidemiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharon L Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan J Keating
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Eric A Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Laurence N Kolonel
- Epidemiology Program, Cancer Research Center, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lewis Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abdullah Kutlar
- Sickle Cell Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica Int'l, LLC, Glen Echo, MD 20812, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Department of Medicine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yun Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Youfang Liu
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI 02912, USA
| | - Kurt Lohman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Vaneet Lotay
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara McKnight
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Yan Meng
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Keri L Monda
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Center for Observational Research, Amgen, Inc., Thousand Oaks, CA 91320, USA
| | - Kris Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jason H Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest school of Medicine, Winston-Salem, NC 27157, USA
| | - Adam B Murphy
- Department of Urology, Northwestern University, Chicago, IL 60611, USA
| | - Rajiv Nadukuru
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica Int'l, LLC, Glen Echo, MD 20812, USA
| | | | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | - Barbara Nemesure
- Department of Preventive Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah Nyante
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Heather Ochs-Balcom
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adesola Ogunniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Centre for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Hayrettin Okut
- Center for Diabetes Research, Wake Forest school of Medicine, Winston-Salem, NC 27157, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Andrew Olshan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Badri Padhukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI 48202, USA
| | - Julie Palmer
- Slone Epidemiology Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cameron D Palmer
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Nicholette D Palmer
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA
| | - George Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sanjay R Patel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Curtis A Pettaway
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael F Press
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Suhn K Rhie
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jorge L Rodriguez-Gil
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA
| | - Babatunde Salako
- Centre for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Michele M Sale
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - Claudia Schurmann
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ann G Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Daniel A Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa B Signorello
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; International Epidemiology Institute, Rockville, MD 20850, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Shad Smith
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret Spitz
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA 98195, USA
| | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Alex Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sara S Strom
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lara Sucheston
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Salman M Tajuddin
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Herman Taylor
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Kira Taylor
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Bamidele O Tayo
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Michael J Thun
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dhananjay Vaidya
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David J Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sailaja Vedantam
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mara Vitolins
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin B Ware
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Scott M Williams
- Departments of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - L Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI 48202, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Neil Zakai
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Krista Zanetti
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | - Babette S Zemel
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaofeng Zhu
- Departments of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joe Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA; BioData Catalyst Program, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; Framingham Heart Study, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruth Loos
- The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maggie C Y Ng
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Center for Diabetes Research, Wake Forest school of Medicine, Winston-Salem, NC 27157, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
159
|
Sonehara K, Okada Y. Genomics-driven drug discovery based on disease-susceptibility genes. Inflamm Regen 2021; 41:8. [PMID: 33691789 PMCID: PMC7944616 DOI: 10.1186/s41232-021-00158-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies have identified numerous disease-susceptibility genes. As knowledge of gene–disease associations accumulates, it is becoming increasingly important to translate this knowledge into clinical practice. This challenge involves finding effective drug targets and estimating their potential side effects, which often results in failure of promising clinical trials. Here, we review recent advances and future perspectives in genetics-led drug discovery, with a focus on drug repurposing, Mendelian randomization, and the use of multifaceted omics data.
Collapse
Affiliation(s)
- Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan. .,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan. .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan.
| |
Collapse
|
160
|
Rapaport R, Wit JM, Savage MO. Growth failure: 'idiopathic' only after a detailed diagnostic evaluation. Endocr Connect 2021; 10:R125-R138. [PMID: 33543731 PMCID: PMC8052574 DOI: 10.1530/ec-20-0585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/02/2023]
Abstract
The terms 'idiopathic short stature' (ISS) and 'small for gestational age' (SGA) were first used in the 1970s and 1980s. ISS described non-syndromic short children with undefined aetiology who did not have growth hormone (GH) deficiency, chromosomal defects, chronic illness, dysmorphic features or low birth weight. Despite originating in the pre-molecular era, ISS is still used as a diagnostic label today. The term 'SGA' was adopted by paediatric endocrinologists to describe children born with low birth weight and/or length, some of whom may experience lack of catch-up growth and present with short stature. GH treatment was approved by the FDA for short children born SGA in 2001, and by the EMA in 2003, and for the treatment of ISS in the US, but not Europe, in 2003. These approvals strengthened the terms 'SGA' and 'ISS' as clinical entities. While clinical and hormonal diagnostic techniques remain important, it is the emergence of genetic investigations that have led to numerous molecular discoveries in both ISS and SGA subjects. The primary message of this article is that the labels ISS and SGA are not definitive diagnoses. We propose that the three disciplines of clinical evaluation, hormonal investigation and genetic sequencing should have equal status in the hierarchy of short stature assessments and should complement each other to identify the true pathogenesis in poorly growing patients.
Collapse
Affiliation(s)
- Robert Rapaport
- Division of Pediatric Endocrinology & Diabetes, Mount Sinai Kravis Children’s Hospital and Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK
| |
Collapse
|
161
|
Falk EN, Norman KJ, Garkun Y, Demars MP, Im S, Taccheri G, Short J, Caro K, McCraney SE, Cho C, Smith MR, Lin HM, Koike H, Bateh J, Maccario P, Waltrip L, Janis M, Morishita H. Nicotinic regulation of local and long-range input balance drives top-down attentional circuit maturation. SCIENCE ADVANCES 2021; 7:eabe1527. [PMID: 33674307 PMCID: PMC7935362 DOI: 10.1126/sciadv.abe1527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cognitive function depends on frontal cortex development; however, the mechanisms driving this process are poorly understood. Here, we identify that dynamic regulation of the nicotinic cholinergic system is a key driver of attentional circuit maturation associated with top-down frontal neurons projecting to visual cortex. The top-down neurons receive robust cholinergic inputs, but their nicotinic tone decreases following adolescence by increasing expression of a nicotinic brake, Lynx1 Lynx1 shifts a balance between local and long-range inputs onto top-down frontal neurons following adolescence and promotes the establishment of attentional behavior in adulthood. This key maturational process is disrupted in a mouse model of fragile X syndrome but was rescued by a suppression of nicotinic tone through the introduction of Lynx1 in top-down projections. Nicotinic signaling may serve as a target to rebalance local/long-range balance and treat cognitive deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa N Falk
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Kevin J Norman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yury Garkun
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Susanna Im
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Giulia Taccheri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jenna Short
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Keaven Caro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sarah E McCraney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Christina Cho
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Milo R Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hiroyuki Koike
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Julia Bateh
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Priscilla Maccario
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Leah Waltrip
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Meaghan Janis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
162
|
Neumann JS, Desalle R, Narechania A, Schierwater B, Tessler M. Morphological Characters Can Strongly Influence Early Animal Relationships Inferred from Phylogenomic Data Sets. Syst Biol 2021; 70:360-375. [PMID: 32462193 PMCID: PMC7875439 DOI: 10.1093/sysbio/syaa038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
There are considerable phylogenetic incongruencies between morphological and phylogenomic data for the deep evolution of animals. This has contributed to a heated debate over the earliest-branching lineage of the animal kingdom: the sister to all other Metazoa (SOM). Here, we use published phylogenomic data sets ($\sim $45,000-400,000 characters in size with $\sim $15-100 taxa) that focus on early metazoan phylogeny to evaluate the impact of incorporating morphological data sets ($\sim $15-275 characters). We additionally use small exemplar data sets to quantify how increased taxon sampling can help stabilize phylogenetic inferences. We apply a plethora of common methods, that is, likelihood models and their "equivalent" under parsimony: character weighting schemes. Our results are at odds with the typical view of phylogenomics, that is, that genomic-scale data sets will swamp out inferences from morphological data. Instead, weighting morphological data 2-10$\times $ in both likelihood and parsimony can in some cases "flip" which phylum is inferred to be the SOM. This typically results in the molecular hypothesis of Ctenophora as the SOM flipping to Porifera (or occasionally Placozoa). However, greater taxon sampling improves phylogenetic stability, with some of the larger molecular data sets ($>$200,000 characters and up to $\sim $100 taxa) showing node stability even with $\geqq100\times $ upweighting of morphological data. Accordingly, our analyses have three strong messages. 1) The assumption that genomic data will automatically "swamp out" morphological data is not always true for the SOM question. Morphological data have a strong influence in our analyses of combined data sets, even when outnumbered thousands of times by molecular data. Morphology therefore should not be counted out a priori. 2) We here quantify for the first time how the stability of the SOM node improves for several genomic data sets when the taxon sampling is increased. 3) The patterns of "flipping points" (i.e., the weighting of morphological data it takes to change the inferred SOM) carry information about the phylogenetic stability of matrices. The weighting space is an innovative way to assess comparability of data sets that could be developed into a new sensitivity analysis tool. [Metazoa; Morphology; Phylogenomics; Weighting.].
Collapse
Affiliation(s)
- Johannes S Neumann
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Rob Desalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Bernd Schierwater
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- ITZ, Division of Ecology and Evolution, Tierärztliche Hochschule Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Michael Tessler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
163
|
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, Wang G, Jiang Z, Zhou D, Hormozdiari F, Liu B, Rao A, Hamel AR, Pividori MD, Aguet F, Bastarache L, Jordan DM, Verbanck M, Do R, Stephens M, Ardlie K, McCarthy M, Montgomery SB, Segrè AV, Brown CD, Lappalainen T, Wen X, Im HK. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol 2021; 22:49. [PMID: 33499903 PMCID: PMC7836161 DOI: 10.1186/s13059-020-02252-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
The resources generated by the GTEx consortium offer unprecedented opportunities to advance our understanding of the biology of human diseases. Here, we present an in-depth examination of the phenotypic consequences of transcriptome regulation and a blueprint for the functional interpretation of genome-wide association study-discovered loci. Across a broad set of complex traits and diseases, we demonstrate widespread dose-dependent effects of RNA expression and splicing. We develop a data-driven framework to benchmark methods that prioritize causal genes and find no single approach outperforms the combination of multiple approaches. Using colocalization and association approaches that take into account the observed allelic heterogeneity of gene expression, we propose potential target genes for 47% (2519 out of 5385) of the GWAS loci examined.
Collapse
Affiliation(s)
- Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Rodrigo Bonazzola
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Data Science Institute, Vanderbilt University, Nashville, TN, USA
- Clare Hall, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yanyu Liang
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - YoSon Park
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Kim-Hellmuth
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Gao Wang
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Zhuoxun Jiang
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Dan Zhou
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Farhad Hormozdiari
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Boxiang Liu
- Department of Biology, Stanford University, Stanford, 94305, CA, USA
| | - Abhiram Rao
- Department of Biology, Stanford University, Stanford, 94305, CA, USA
| | - Andrew R Hamel
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Milton D Pividori
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel M Jordan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie Verbanck
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Université de Paris - EA 7537 BIOSTM, Paris, France
| | - Ron Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kristin Ardlie
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ayellet V Segrè
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
164
|
Liu D, Alhazmi N, Matthews H, Lee MK, Li J, Hecht JT, Wehby GL, Moreno LM, Heike CL, Roosenboom J, Feingold E, Marazita ML, Claes P, Liao EC, Weinberg SM, Shaffer JR. Impact of low-frequency coding variants on human facial shape. Sci Rep 2021; 11:748. [PMID: 33436952 PMCID: PMC7804299 DOI: 10.1038/s41598-020-80661-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
The contribution of low-frequency variants to the genetic architecture of normal-range facial traits is unknown. We studied the influence of low-frequency coding variants (MAF < 1%) in 8091 genes on multi-dimensional facial shape phenotypes in a European cohort of 2329 healthy individuals. Using three-dimensional images, we partitioned the full face into 31 hierarchically arranged segments to model facial morphology at multiple levels, and generated multi-dimensional phenotypes representing the shape variation within each segment. We used MultiSKAT, a multivariate kernel regression approach to scan the exome for face-associated low-frequency variants in a gene-based manner. After accounting for multiple tests, seven genes (AR, CARS2, FTSJ1, HFE, LTB4R, TELO2, NECTIN1) were significantly associated with shape variation of the cheek, chin, nose and mouth areas. These genes displayed a wide range of phenotypic effects, with some impacting the full face and others affecting localized regions. The missense variant rs142863092 in NECTIN1 had a significant effect on chin morphology and was predicted bioinformatically to have a deleterious effect on protein function. Notably, NECTIN1 is an established craniofacial gene that underlies a human syndrome that includes a mandibular phenotype. We further showed that nectin1a mutations can affect zebrafish craniofacial development, with the size and shape of the mandibular cartilage altered in mutant animals. Findings from this study expanded our understanding of the genetic basis of normal-range facial shape by highlighting the role of low-frequency coding variants in several novel genes.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora Alhazmi
- Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA, USA
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Gasthuisberg, Leuven, Belgium
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, USA
| | - Lina M Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Carrie L Heike
- Department of Pediatrics, Seattle Children's Craniofacial Center, University of Washington, Seattle, WA, USA
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Eric C Liao
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Shriners Hospital, Boston, MA, USA
| | - Seth M Weinberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
165
|
Faienza MF, Chiarito M, Brunetti G, D'Amato G. Growth plate gene involment and isolated short stature. Endocrine 2021; 71:28-34. [PMID: 32504378 DOI: 10.1007/s12020-020-02362-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Short stature is a common clinical presentation, thus it is widely accepted that it is a polygenic trait. However, genome wide association and next generation sequencing studies have recently challenged this view, suggesting that many of the children classified as idiopathic short stature could instead have monogenic defects. Linear growth is determined primarily by chondrogenesis at the growth plate. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is perfectly coordinated by complex networks of local paracrine and endocrine factors. Alterations in genes which control growth plate development can explain a large number of cases of isolated short stature, allowing an etiological diagnosis. METHODS/RESULTS We reviewed recent data on the genetic alterations in fundamental cellular processes, paracrine signaling, and cartilage matrix formation associated with impaired growth plate chondrogenesis. In particular we focused on growth plate gene involvement in nonsyndromic short stature. CONCLUSIONS The identification of genetic basis of growth failure will have a significant impact on the care of children affected with short stature.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Mariangela Chiarito
- Paediatric Unit, Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University of Bari "A. Moro", Bari, Italy
| | | |
Collapse
|
166
|
Zhou E, Lui J. Physiological regulation of bone length and skeletal proportion in mammals. Exp Physiol 2020; 106:389-395. [PMID: 33369789 DOI: 10.1113/ep089086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Mechanisms regulating bone length and skeletal proportions What advances does it highlight? The study of differential bone length between leg and finger bones, metatarsals of the Egyptian jerboa and genomic analysis of giraffes. ABSTRACT Among mammalian species, skeletal structures vary greatly in size and shape, leading to a dramatic variety of body sizes and proportions. How different bones grow to different lengths, whether among different species, different individuals of the same species, or even in different anatomical parts of our the body, has always been a fascinating subject of research in biology and physiology. In the current review, we focus on some of the recent advances in the field and discuss how these provided important new insights into the mechanisms regulating bone length and skeletal proportions.
Collapse
Affiliation(s)
- Elaine Zhou
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Julian Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
167
|
Abstract
Understanding the genetic mechanisms underlying particular adaptations/phenotypes of organisms is one of the core issues of evolutionary biology. The use of genomic data has greatly advanced our understandings on this issue, as well as other aspects of evolutionary biology, including molecular adaptation, speciation, and even conservation of endangered species. Despite the well-recognized advantages, usages of genomic data are still limited to non-mammal vertebrate groups, partly due to the difficulties in assembling large or highly heterozygous genomes. Although this is particularly the case for amphibians, nonetheless, several comparative and population genomic analyses have shed lights into the speciation and adaptation processes of amphibians in a complex landscape, giving a promising hope for a wider application of genomics in the previously believed challenging groups of organisms. At the same time, these pioneer studies also allow us to realize numerous challenges in studying the molecular adaptations and/or phenotypic evolutionary mechanisms of amphibians. In this review, we first summarize the recent progresses in the study of adaptive evolution of amphibians based on genomic data, and then we give perspectives regarding how to effectively identify key pathways underlying the evolution of complex traits in the genomic era, as well as directions for future research.
Collapse
Affiliation(s)
- Yan-Bo Sun
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Yi Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Kai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma 73072, USA
| |
Collapse
|
168
|
Can Genetic Testing Predict Talent? A Case Study of 5 Elite Athletes. Int J Sports Physiol Perform 2020; 16:429-434. [PMID: 33271500 DOI: 10.1123/ijspp.2019-0543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 04/18/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The genetic influence on the attainment of elite athlete status is well established, with a number of polymorphisms found to be more common in elite athletes than in the general population. As such, there is considerable interest in understanding whether this information can be utilized to identify future elite athletes. Accordingly, the aim of this study was to compare the total genotype scores of 5 elite athletes to those of nonathletic controls, to subsequently determine whether genetic information could discriminate between these groups, and, finally, to suggest how these findings may inform debates relating to the potential for genotyping to be used as a talent-identification tool. METHODS The authors compared the total genotype scores for both endurance (68 genetic variants) and speed-power (48 genetic variants) elite athlete status of 5 elite track-and-field athletes, including an Olympic champion, to those of 503 White European nonathletic controls. RESULTS Using the speed-power total genotype score, the elite speed-power athletes scored higher than the elite endurance athletes; however, using this speed-power score, 68 nonathletic controls registered higher scores than the elite power athletes. Surprisingly, using the endurance total genotype score, the elite speed-power athletes again scored higher than the elite endurance athletes. CONCLUSIONS These results suggest that genetic information is not capable of accurately discriminating between elite athletes and nonathletic controls, illustrating that the use of such information as a talent-identification tool is currently unwarranted and ineffective.
Collapse
|
169
|
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, et alSurendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert RD, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YDI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RAD, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WHH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, Howson JMM. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet 2020; 52:1314-1332. [PMID: 33230300 PMCID: PMC7610439 DOI: 10.1038/s41588-020-00713-x] [Show More Authors] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elena V Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam, Amsterdam, the Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | | | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Bram P Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Paul L Auer
- Joseph J Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vickie S Braithwaite
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Nutrition and Bone Health Group, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona, Italy
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Teresa Ferreira
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christopher N Foley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Queen Mary University of London, London, UK
- Division of Psychiatry, University College of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Aki S Havulinna
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
| | - Jukka Kontto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin G Larson
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaana Lindström
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Tropical and Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James R Staley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alena Stanáková
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robin Young
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing-Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Eralda Asllanaj
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mihir Kamat
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, , Chung Shan Medical University, Taichung, Taiwan
- College of Science, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Marie Moitry
- Department of Public health, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Katrine L Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jacques Rossouw
- Division of Cardiovascular Sciences, NHLBI, Bethesda, MD, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naheed Aliya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Almgren
- Department of Medicine, Lund University, Malmö, Sweden
| | - Philippe Amouyel
- Univ Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- INSERM, U1167, Lille, France
- CHU Lille, U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-communicable Disease Research (CNCR), Dhaka, Bangladesh
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK-London at Imperial College London, London, UK
- UKDRI, Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation (BHF) Centre of Research Excellence, Imperial College London, London, UK
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jean Ferrières
- Department of Cardiology and Department of Epidemiology, INSERM UMR 1027, Toulouse University Hospital, Toulouse, France
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Branwen J Hennig
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- Wellcome Trust, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- National Institute of Public Health, Madrid, Spain
| | - Marjo-Riitta Järvelin
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie, Oulu, Finland
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kee
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Jaspal S Kooner
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, South San Francisco, San Francisco, CA, USA
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- MRC International Nutrition Group at London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicole Soranzo
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin D Tobin
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Vasan S Ramachandran
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Niek Verweij
- University Medical Center Groningen, Groningen, the Netherlands
| | - Jarmo Virtamo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Health Innovation and Transformation Center, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Danish Saleheen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Levy
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Population Sciences, Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK.
| |
Collapse
|
170
|
Cousminer DL, Grant SFA. Insights into the Genetic Underpinnings of Endocrine Traits from Large-Scale Genome-Wide Association Studies. Endocrinol Metab Clin North Am 2020; 49:725-739. [PMID: 33153676 DOI: 10.1016/j.ecl.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Great strides have been made in genetic association studies of endocrine traits and diseases, with hundreds or thousands of variants associated with height, body mass index, bone density, pubertal timing, and diabetes in recent years. The common variants associated with these traits explain up to half of the trait variation owing to genetic factors, and when aggregated into polygenic risk scores, can also impact clinically relevant phenotypes at the tail ends of the trait distributions. However, pediatric studies tend to lag behind, and it is often unclear how adult-associated variants behave across life.
Collapse
Affiliation(s)
- Diana L Cousminer
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
171
|
Fujimoto M, Andrew M, Dauber A. Disorders caused by genetic defects associated with GH-dependent genes: PAPPA2 defects. Mol Cell Endocrinol 2020; 518:110967. [PMID: 32739295 PMCID: PMC7609568 DOI: 10.1016/j.mce.2020.110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) and its mediator, insulin-like growth factor-1 (IGF-1), have long been recognized as central to human growth physiology. IGF-1 is known to complex with IGF binding proteins as well as with the acid labile subunit (ALS) in order to prolong its half-life in circulation. Factors regulating the bioavailability of IGF-1 (i.e. the balance between free and bound IGF-1) were less well understood. Recently, pregnancy-associated plasma protein-A2 (PAPP-A2) was discovered as a protease which specifically cleaves IGF-binding protein (IGFBP)-3 and -5. PAPP-A2 deficient patients present with characteristic findings including growth failure, elevated total IGF-1 and -2, IGFBPs, and ALS, but decreased percentage of free to total IGF-1. Additionally, patients with PAPP-A2 deficiency have impairments in glucose metabolism and bone mineral density (BMD). Treatment with recombinant human IGF-1 (rhIGF-1) improved height SD scores, growth velocity, body composition, and dysglycemia. Mouse models recapitulate many of the human findings of PAPP-A2 deficiency. This review summarizes the function of PAPP-A2 and its contribution to the GH-IGF axis through an examination of PAPP-A2 deficient patients and mouse models, thereby emphasizing the importance of the regulation of IGF-1 bioavailability in human growth.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Melissa Andrew
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
172
|
Landi E, Karabatas L, Scaglia P, Pisciottano F, Gutiérrez M, Ramírez L, Bergadá I, Rey RA, Jasper HG, Domené HM, Plazas PV, Domené S. Expression of acid-labile subunit (ALS) in developing and adult zebrafish and its role in dorso-ventral patterning during development. Gen Comp Endocrinol 2020; 299:113591. [PMID: 32828812 DOI: 10.1016/j.ygcen.2020.113591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
Mammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied. In this study we elucidate the role of igfals during zebrafish development. In zebrafish embryos igfals mRNA is expressed throughout development, mainly in the brain and subsequently also in the gut and swimbladder. To determine its role during development, we knocked down igfals gene product using morpholinos (MOs). Igfals morphant embryos displayed dorsalization in different degrees of severity, including a shortened trunk and loss of tail. Furthermore, co-injection of human IGFALS (hIGFALS) mRNA was able to rescue the MO-induced phenotype. Finally, overexpression of either hIGFALS or zebrafish igfals (zigfals) mRNA leads to ventralization of embryos including a reduced head and enlarged tail. These findings suggest that als plays an important role in dorso-ventral patterning during zebrafish development.
Collapse
Affiliation(s)
- Estefanía Landi
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina.
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Laura Ramírez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Héctor Guillermo Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Horacio Mario Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paola Viviana Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
173
|
Yaghootkar H, Zhang Y, Spracklen CN, Karaderi T, Huang LO, Bradfield J, Schurmann C, Fine RS, Preuss MH, Kutalik Z, Wittemans LBL, Lu Y, Metz S, Willems SM, Li-Gao R, Grarup N, Wang S, Molnos S, Sandoval-Zárate AA, Nalls MA, Lange LA, Haesser J, Guo X, Lyytikäinen LP, Feitosa MF, Sitlani CM, Venturini C, Mahajan A, Kacprowski T, Wang CA, Chasman DI, Amin N, Broer L, Robertson N, Young KL, Allison M, Auer PL, Blüher M, Borja JB, Bork-Jensen J, Carrasquilla GD, Christofidou P, Demirkan A, Doege CA, Garcia ME, Graff M, Guo K, Hakonarson H, Hong J, Ida Chen YD, Jackson R, Jakupović H, Jousilahti P, Justice AE, Kähönen M, Kizer JR, Kriebel J, LeDuc CA, Li J, Lind L, Luan J, Mackey DA, Mangino M, Männistö S, Martin Carli JF, Medina-Gomez C, Mook-Kanamori DO, Morris AP, de Mutsert R, Nauck M, Prokic I, Pennell CE, Pradhan AD, Psaty BM, Raitakari OT, Scott RA, Skaaby T, Strauch K, Taylor KD, Teumer A, Uitterlinden AG, Wu Y, Yao J, Walker M, North KE, Kovacs P, Ikram MA, van Duijn CM, Ridker PM, Lye S, Homuth G, Ingelsson E, Spector TD, McKnight B, Province MA, Lehtimäki T, Adair LS, Rotter JI, Reiner AP, Wilson JG, et alYaghootkar H, Zhang Y, Spracklen CN, Karaderi T, Huang LO, Bradfield J, Schurmann C, Fine RS, Preuss MH, Kutalik Z, Wittemans LBL, Lu Y, Metz S, Willems SM, Li-Gao R, Grarup N, Wang S, Molnos S, Sandoval-Zárate AA, Nalls MA, Lange LA, Haesser J, Guo X, Lyytikäinen LP, Feitosa MF, Sitlani CM, Venturini C, Mahajan A, Kacprowski T, Wang CA, Chasman DI, Amin N, Broer L, Robertson N, Young KL, Allison M, Auer PL, Blüher M, Borja JB, Bork-Jensen J, Carrasquilla GD, Christofidou P, Demirkan A, Doege CA, Garcia ME, Graff M, Guo K, Hakonarson H, Hong J, Ida Chen YD, Jackson R, Jakupović H, Jousilahti P, Justice AE, Kähönen M, Kizer JR, Kriebel J, LeDuc CA, Li J, Lind L, Luan J, Mackey DA, Mangino M, Männistö S, Martin Carli JF, Medina-Gomez C, Mook-Kanamori DO, Morris AP, de Mutsert R, Nauck M, Prokic I, Pennell CE, Pradhan AD, Psaty BM, Raitakari OT, Scott RA, Skaaby T, Strauch K, Taylor KD, Teumer A, Uitterlinden AG, Wu Y, Yao J, Walker M, North KE, Kovacs P, Ikram MA, van Duijn CM, Ridker PM, Lye S, Homuth G, Ingelsson E, Spector TD, McKnight B, Province MA, Lehtimäki T, Adair LS, Rotter JI, Reiner AP, Wilson JG, Harris TB, Ripatti S, Grallert H, Meigs JB, Salomaa V, Hansen T, Willems van Dijk K, Wareham NJ, Grant SFA, Langenberg C, Frayling TM, Lindgren CM, Mohlke KL, Leibel RL, Loos RJF, Kilpeläinen TO. Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity. Diabetes 2020; 69:2806-2818. [PMID: 32917775 PMCID: PMC7679778 DOI: 10.2337/db20-0070] [Show More Authors] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
Collapse
Affiliation(s)
- Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K.
- Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, U.K
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biostatistics and Epidemiology, University of Massachusetts-Amherst, Amherst, MA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- DTU Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lam Opal Huang
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Bradfield
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Quantinuum Research LLC, San Diego, CA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rebecca S Fine
- Department of Genetics, Harvard Medical School, Boston, MA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoltan Kutalik
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laura B L Wittemans
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, and Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Sophie Molnos
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD
- Data Tecnica International, Glen Echo, MD
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Denver, CO
| | - Jeffrey Haesser
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Cristina Venturini
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Carol A Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Neil Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Judith B Borja
- Office of Population Studies Foundation, Inc., Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Germán D Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ayse Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Claudia A Doege
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Carolina Center for Genome Sciences, Chapel Hill, NC
| | - Kaiying Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Hakon Hakonarson
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Rebecca Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH
| | - Hermina Jakupović
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Anne E Justice
- Center for Biomedical and Translational Informatics, Geisinger, Danville, PA
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, University of California San Francisco, San Francisco, CA
- Departments of Medicine and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Jennifer Kriebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | - Charles A LeDuc
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Jin Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, West Australia, Australia
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, U.K
| | - Satu Männistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jayne F Martin Carli
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Department of Biostatistics, University of Liverpool, Liverpool, U.K
- Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, U.K
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ivana Prokic
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Craig E Pennell
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Arund D Pradhan
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, Turku University Hospital, Turku, Finland
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, Insitute of Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Ludwig Maximilian University Munich, München, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Alexander Teumer
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Mark Walker
- Institute of Cellular Medicine (Diabetes), Newcastle University, Newcastle upon Tyne, U.K
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Stephen Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Palo Alto, CA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, U.K
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Linda S Adair
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Samuli Ripatti
- Broad Institute of MIT and Harvard, Cambridge, MA
- Institute for Molecular Medicine Finland, Helsinki, Finland
- Public Health, University of Helsinki, Helsinki, Finland
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, München-Neuherberg, Germany
| | - James B Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Struan F A Grant
- Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Spatial and Functional Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
- Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, U.K
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, U.K
- Broad Institute of MIT and Harvard, Cambridge, MA
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
174
|
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol 2020; 518:111035. [PMID: 32941924 DOI: 10.1016/j.mce.2020.111035] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
The insulin-like growth factor (IGF) system comprises two ligands, IGF-I and IGF-II, that regulate multiple physiological processes, including mammalian development, metabolism and growth, through the type 1 IGF receptor (IGF-1R). The growth hormone (GH)-IGF-I axis is the major regulator of longitudinal growth. IGF-II is expressed in many tissues, notably the placenta, to regulate human pre- and post-natal growth and development. This review provides a brief introduction to the IGF system and summarizes findings from reports arising from recent larger genomic sequencing studies of human genetic mutations in IGF1 and IGF2 and genes of proteins regulating IGF action, namely the IGF-1R, IGF-1R signaling pathway components and the IGF binding proteins (IGFBPs). A perspective on the effect of homozygous mutations on structure and function of the IGFs and IGF-1R is also given and this is related to the effects on growth.
Collapse
Affiliation(s)
- Briony E Forbes
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - Andrew J Blyth
- Discipline of Medical Biochemistry, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
175
|
Łopuszańska-Dawid M, Szklarska A. Growth change in Polish women: Reduction of the secular trends? PLoS One 2020; 15:e0242074. [PMID: 33253200 PMCID: PMC7703883 DOI: 10.1371/journal.pone.0242074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to analyse changes in the average height of adult Polish women born in 1931-2001 in the aspect of dynamically changing economic and socio-economic conditions of the living environment. An ethnically homogeneous group of 6,028 adult women from large Polish cities, born in 1931-2001, living between 1931 and 2020, were examined using the same research methods and research equipment. All women were divided into eight birth cohorts. The Kruskal-Wallis test and multiple regression analyses were used. Root Mean Square Standardized Effect (RMSSE), critical value of the test, and test power were calculated. The average height of women born during 70 years of the study increased by 9.63 cm, from 158.22 cm (SD = 5.57 cm) to 167.85 cm (SD = 6.91 cm) (H = 1084.84, p<0.001). The intensity of the intergenerational trend in subsequent cohorts of years of birth varied strongly between decades, averaging 1.34 cm/decade. The body height in women increased significantly up to the height of those born between 1970 and 1979 and then the trend weakened noticeably, although it remained positive. The observed secular trend confirms positive changes in the standard of living of Polish women between 1931 and 2020. Improving living conditions allow people to fully achieve their genetically determined growth potential.
Collapse
Affiliation(s)
- Monika Łopuszańska-Dawid
- Józef Pilsudski University of Physical Education in Warsaw, Faculty of Physical Education, Department of Human Biology, Warsaw, Poland
| | - Alicja Szklarska
- Polish Academy of Sciences, Poland, Palace of Culture and Science, Warsaw, Poland
| |
Collapse
|
176
|
Pei YF, Liu YZ, Yang XL, Zhang H, Feng GJ, Wei XT, Zhang L. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol 2020; 3:608. [PMID: 33097823 PMCID: PMC7585446 DOI: 10.1038/s42003-020-01334-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 09/30/2020] [Indexed: 01/19/2023] Open
Abstract
Appendicular lean mass (ALM) is a heritable trait associated with loss of lean muscle mass and strength, or sarcopenia, but its genetic determinants are largely unknown. Here we conducted a genome-wide association study (GWAS) with 450,243 UK Biobank participants to uncover its genetic architecture. A total of 1059 conditionally independent variants from 799 loci were identified at the genome-wide significance level (p < 5 × 10-9), all of which were also significant at p < 5 × 10-5 in both sexes. These variants explained ~15.5% of the phenotypic variance, accounting for more than one quarter of the total ~50% GWAS-attributable heritability. There was no difference in genetic effect between sexes or among different age strata. Heritability was enriched in certain functional categories, such as conserved and coding regions, and in tissues related to the musculoskeletal system. Polygenic risk score prediction well distinguished participants with high and low ALM. The findings are important not only for lean mass but also for other complex diseases, such as type 2 diabetes, as ALM is shown to be a protective factor for type 2 diabetes.
Collapse
Affiliation(s)
- Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China.
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Xiao-Lin Yang
- Department of Research, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
| | - Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China
| | - Lei Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China.
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Soochow, Jiangsu, PR China.
| |
Collapse
|
177
|
Qian J, Tanigawa Y, Du W, Aguirre M, Chang C, Tibshirani R, Rivas MA, Hastie T. A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank. PLoS Genet 2020; 16:e1009141. [PMID: 33095761 PMCID: PMC7641476 DOI: 10.1371/journal.pgen.1009141] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 11/04/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
The UK Biobank is a very large, prospective population-based cohort study across the United Kingdom. It provides unprecedented opportunities for researchers to investigate the relationship between genotypic information and phenotypes of interest. Multiple regression methods, compared with genome-wide association studies (GWAS), have already been showed to greatly improve the prediction performance for a variety of phenotypes. In the high-dimensional settings, the lasso, since its first proposal in statistics, has been proved to be an effective method for simultaneous variable selection and estimation. However, the large-scale and ultrahigh dimension seen in the UK Biobank pose new challenges for applying the lasso method, as many existing algorithms and their implementations are not scalable to large applications. In this paper, we propose a computational framework called batch screening iterative lasso (BASIL) that can take advantage of any existing lasso solver and easily build a scalable solution for very large data, including those that are larger than the memory size. We introduce snpnet, an R package that implements the proposed algorithm on top of glmnet and optimizes for single nucleotide polymorphism (SNP) datasets. It currently supports ℓ1-penalized linear model, logistic regression, Cox model, and also extends to the elastic net with ℓ1/ℓ2 penalty. We demonstrate results on the UK Biobank dataset, where we achieve competitive predictive performance for all four phenotypes considered (height, body mass index, asthma, high cholesterol) using only a small fraction of the variants compared with other established polygenic risk score methods.
Collapse
Affiliation(s)
- Junyang Qian
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Wenfei Du
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| | - Matthew Aguirre
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Chris Chang
- Grail, Inc., Menlo Park, CA, United States of America
| | - Robert Tibshirani
- Department of Statistics, Stanford University, Stanford, CA, United States of America
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Trevor Hastie
- Department of Statistics, Stanford University, Stanford, CA, United States of America
- Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
- * E-mail:
| |
Collapse
|
178
|
Koyama S, Ito K, Terao C, Akiyama M, Horikoshi M, Momozawa Y, Matsunaga H, Ieki H, Ozaki K, Onouchi Y, Takahashi A, Nomura S, Morita H, Akazawa H, Kim C, Seo JS, Higasa K, Iwasaki M, Yamaji T, Sawada N, Tsugane S, Koyama T, Ikezaki H, Takashima N, Tanaka K, Arisawa K, Kuriki K, Naito M, Wakai K, Suna S, Sakata Y, Sato H, Hori M, Sakata Y, Matsuda K, Murakami Y, Aburatani H, Kubo M, Matsuda F, Kamatani Y, Komuro I. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat Genet 2020; 52:1169-1177. [PMID: 33020668 DOI: 10.1038/s41588-020-0705-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
To elucidate the genetics of coronary artery disease (CAD) in the Japanese population, we conducted a large-scale genome-wide association study of 168,228 individuals of Japanese ancestry (25,892 cases and 142,336 controls) with genotype imputation using a newly developed reference panel of Japanese haplotypes including 1,781 CAD cases and 2,636 controls. We detected eight new susceptibility loci and Japanese-specific rare variants contributing to disease severity and increased cardiovascular mortality. We then conducted a trans-ancestry meta-analysis and discovered 35 additional new loci. Using the meta-analysis results, we derived a polygenic risk score (PRS) for CAD, which outperformed those derived from either Japanese or European genome-wide association studies. The PRS prioritized risk factors among various clinical parameters and segregated individuals with increased risk of long-term cardiovascular mortality. Our data improve the clinical characterization of CAD genetics and suggest the utility of trans-ancestry meta-analysis for PRS derivation in non-European populations.
Collapse
Affiliation(s)
- Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi Matsunaga
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Ieki
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Division for Genomic Medicine, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshihiro Onouchi
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Department of Genomic Medicine, Research Institute, National Cerebral, and Cardiovascular Center, Suita, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Changhoon Kim
- Bioinformatics Institute, Macrogen Inc., Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Bioinformatics Institute, Macrogen Inc., Seoul, Republic of Korea.,Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.,Human Disease Genomics, Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Ikezaki
- Department of Comprehensive General Internal Medicine, Kyushu University Graduate School of Medical Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Naoyuki Takashima
- Department of Public Health, Faculty of Medicine, Kindai University, Osaka, Japan.,Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Naito
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichiro Suna
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Sato
- School of Human Welfare Studies Health Care Center and Clinic, Kwansei Gakuin University, Nishinomiya, Japan
| | - Masatsugu Hori
- Osaka Prefectural Hospital Organization, Osaka International Cancer Institute, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Fumihiko Matsuda
- Human Disease Genomics, Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan. .,Human Disease Genomics, Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
179
|
Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum Genomics 2020; 14:35. [PMID: 33008459 PMCID: PMC7530549 DOI: 10.1186/s40246-020-00287-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Precision medicine aims to empower clinicians to predict the most appropriate course of action for patients with complex diseases like cancer, diabetes, cardiomyopathy, and COVID-19. With a progressive interpretation of the clinical, molecular, and genomic factors at play in diseases, more effective and personalized medical treatments are anticipated for many disorders. Understanding patient’s metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic, and predictive biomarkers and paths ultimately providing optimal and personalized care for diverse, and targeted chronic and acute diseases. In clinical settings, we need to timely model clinical and multi-omics data to find statistical patterns across millions of features to identify underlying biologic pathways, modifiable risk factors, and actionable information that support early detection and prevention of complex disorders, and development of new therapies for better patient care. It is important to calculate quantitative phenotype measurements, evaluate variants in unique genes and interpret using ACMG guidelines, find frequency of pathogenic and likely pathogenic variants without disease indicators, and observe autosomal recessive carriers with a phenotype manifestation in metabolome. Next, ensuring security to reconcile noise, we need to build and train machine-learning prognostic models to meaningfully process multisource heterogeneous data to identify high-risk rare variants and make medically relevant predictions. The goal, today, is to facilitate implementation of mainstream precision medicine to improve the traditional symptom-driven practice of medicine, and allow earlier interventions using predictive diagnostics and tailoring better-personalized treatments. We strongly recommend automated implementation of cutting-edge technologies, utilizing machine learning (ML) and artificial intelligence (AI) approaches for the multimodal data aggregation, multifactor examination, development of knowledgebase of clinical predictors for decision support, and best strategies for dealing with relevant ethical issues.
Collapse
|
180
|
Perchard R, Murray PG, Payton A, Highton GL, Whatmore A, Clayton PE. Novel Mutations and Genes That Impact on Growth in Short Stature of Undefined Aetiology: The EPIGROW Study. J Endocr Soc 2020; 4:bvaa105. [PMID: 32939436 PMCID: PMC7482646 DOI: 10.1210/jendso/bvaa105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Children with short stature of undefined aetiology (SS-UA) may have undiagnosed genetic conditions. PURPOSE To identify mutations causing short stature (SS) and genes related to SS, using candidate gene sequence data from the European EPIGROW study. METHODS First, we selected exonic single nucleotide polymorphisms (SNPs), in cases and not controls, with minor allele frequency (MAF) < 2%, whose carriage fitted the mode of inheritance. Known mutations were identified using Ensembl and gene-specific databases. Variants were classified as pathogenic, likely pathogenic, or variant of uncertain significance using criteria from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. If predicted by ≥ 5/10 algorithms (eg, Polyphen2) to be deleterious, this was considered supporting evidence of pathogenicity. Second, gene-based burden testing determined the difference in SNP frequencies between cases and controls across all and then rare SNPs. For genotype/phenotype relationships, we used PLINK, based on haplotype, MAF > 2%, genotype present in > 75%, and Hardy Weinberg equilibrium P > 10-4. RESULTS First, a diagnostic yield of 10% (27/263) was generated by 2 pathogenic (nonsense in ACAN) and a further 25 likely pathogenic mutations, including previously known missense mutations in FANCB, IGFIR, MMP13, NPR2, OBSL1, and PTPN11. Second, genes related to SS: all methods identified PEX2. Another 7 genes (BUB1B, FANCM, CUL7, FANCA, PTCH1, TEAD3, BCAS3) were identified by both gene-based approaches and 6 (A2M, EFEMP1, PRKCH, SOS2, RNF135, ZBTB38) were identified by gene-based testing for all SNPs and PLINK. CONCLUSIONS Such panels improve diagnosis in SS-UA, extending known disease phenotypes. Fourteen genes related to SS included some known to cause growth disorders as well as novel targets.
Collapse
Affiliation(s)
- Reena Perchard
- Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Philip George Murray
- Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Endocrinology, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Antony Payton
- Informatics, Imaging & Data Science, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Georgina Lee Highton
- Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Whatmore
- Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Peter Ellis Clayton
- Developmental Biology & Medicine, Faculty of Biology, Medicine & Health, University of Manchester and Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
181
|
Reyes M, Silve C, Jüppner H. Shortened Fingers and Toes: GNAS Abnormalities are Not the Only Cause. Exp Clin Endocrinol Diabetes 2020; 128:681-686. [PMID: 31860119 PMCID: PMC7950720 DOI: 10.1055/a-1047-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The PTH/PTHrP receptor (PTHR1) mediates the actions of parathyroid hormone (PTH) and PTH-related peptide (PTHrP) by coupling this G protein-coupled receptor (GPCR) to the alpha-subunit of the heterotrimeric stimulatory G protein (Gsα) and thereby to the formation of cAMP. In growth plates, PTHrP-dependent activation of the cAMP/PKA second messenger pathway prevents the premature differentiation of chondrocytes into hypertrophic cells resulting in delayed growth plate closure. Heterozygous mutations in GNAS, the gene encoding Gsα, lead to a reduction in cAMP levels in growth plate chondrocytes that is sufficient to cause shortening of metacarpals and/or -tarsals, i. e. typical skeletal aspects of Albright's Hereditary Osteodystrophy (AHO). However, heterozygous mutations in other genes, including those encoding PTHrP, PRKAR1A, PDE4D, and PDE3A, can lead to similar or even more pronounced acceleration of skeletal maturation that is particularly obvious in hands and feet, and reduces final adult height. Genetic mutations other than those resulting in Gsα haploinsufficiency thus reduce intracellular cAMP levels in growth plate chondrocytes to a similar extent and thereby accelerate skeletal maturation.
Collapse
Affiliation(s)
- Monica Reyes
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Silve
- INSERM équipe “Génomiques et épigénétique des tumeurs rares”, Institut Cochin, Paris, France
- Centre de Référence des Maladies rares du Calcium et du Phosphore and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
- Service de Biochimie et Génétique Moléculaires, Hôpital Cochin, AP- HP, Paris, France
| | - Harald Jüppner
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, MassGeneral Hospital for Children Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Hanley PC, Kanwar HS, Martineau C, Levine MA. Short Stature is Progressive in Patients with Heterozygous NPR2 Mutations. J Clin Endocrinol Metab 2020; 105:5877389. [PMID: 32720985 PMCID: PMC7442278 DOI: 10.1210/clinem/dgaa491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND NPR2 encodes atrial natriuretic peptide receptor B (ANPRB), a regulator of skeletal growth. Biallelic loss-of-function mutations in NPR2 result in acromesomelic dysplasia Maroteaux type (AMDM; OMIM 602875), while heterozygous mutations may account for 2% to 6% of idiopathic short stature (ISS). OBJECTIVE Describe the physical proportions and growth characteristics of an extended family with novel NPR2 mutations including members with AMDM, ISS, or normal stature. DESIGN AND PARTICIPANTS We performed whole exome sequencing in 2 healthy parents and 2 children with AMDM. Detailed genotyping and phenotyping were performed on members of a multigenerational family in an academic medical center. We expressed mutant proteins in mammalian cells and characterized expression and function. RESULTS The sisters with AMDM were compound heterozygotes for missense mutations in the NPR2 gene, a novel p.P93S (maternal) and the previously reported p.R989L (paternal). Both mutant ANPRB proteins were normally expressed in HEK293T cells and exhibited dominant negative effects on wild-type ANPRB catalytic activity. Heterozygous relatives had proportionate short stature (height z-scores -2.06 ± 0.97, median ± SD) compared with their wild-type siblings (-1.37 ± 0.59). Height z-scores progressively and significantly decreased as NPR2-heterozygous children matured, while remaining constant in their wild-type siblings. CONCLUSIONS Biallelic NPR2 mutations cause severe skeletal dysplasia (AMDM), whereas heterozygous mutations lead to a subtler phenotype characterized by progressive short stature with by increasing loss of height potential with age.
Collapse
Affiliation(s)
- Patrick C Hanley
- Division of Endocrinology, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware
- Correspondence and Reprint Requests: Patrick C. Hanley, MD, Division of Endocrinology, Nemours Alfred I. DuPont Hospital for Children, 1600 Rockland Rd, Wilmington, DE 19803. E-mail:
| | - Harsh S Kanwar
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Corine Martineau
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
183
|
Ohde D, Walz M, Walz C, Noce A, Brenmoehl J, Langhammer M, Hoeflich A. Sex-Specific Control of Muscle Mass: Elevated IGFBP Proteolysis and Reductions of IGF-1 Levels Are Associated with Substantial Loss of Carcass Weight in Male DU6PxIGFBP-2 Transgenic Mice. Cells 2020; 9:cells9102174. [PMID: 32993096 PMCID: PMC7600981 DOI: 10.3390/cells9102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
In farmed animals, carcass weight represents an important economic trait. Since we had demonstrated that IGFBP-2 represents a potent inhibitor of muscle accretion in inbred mice, we wanted to quantify the inhibitory effects of IGFBP-2 under conditions of elevated protein mass in growth selected non-inbred mice (DU6P). Therefore, we crossed male DU6P mice with female IGFBP-2 transgenic mice. Male IGFBP-2 transgenic offspring (DU6P/IGFBP-2) were characterized by more than 20% reductions of carcass mass compared to male non-transgenic littermates. The carcass mass in males was also significantly lower (p < 0.001) than in transgenic female DU6P/IGFBP-2 mice, which showed a reduction of less than 10% (p < 0.05) compared to non-transgenic female DU6P/IGFBP-2 mice. Although transgene expression was elevated in the muscle of both sexes (p < 0.001), serum levels were normal in female, but significantly reduced in male transgenic DU6P/IGFBP-2 mice (p < 0.001). In this group, also IGFBP-3 and IGFBP-4 were significantly reduced in the circulation (p < 0.01). Particularly in male transgenic mice, we were able to identify proteolytic activity against recombinant IGFBP-2 included in diluted serum. IGFBP-proteolysis in males correlated with massive reductions of IGF-1 in serum samples and the presence of elevated levels of IGFBP-2 fragments. From our data, we conclude that elevated tissue expression of IGFBP-2 is an essential effector of muscle accretion and may block more than 20% of carcass mass. However, in the circulation, intact IGFBP-2 contained no reliable biomarker content. Notably, for the estimation of breeding values in meat-producing animal species, monitoring of IGFBP-2 expression in muscle appears to be supported by the present study in a model system.
Collapse
Affiliation(s)
- Daniela Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Michael Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Christina Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Antonia Noce
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (D.O.); (M.W.); (C.W.); (A.N.); (J.B.)
- Correspondence: ; Tel.: +49-38208-68744
| |
Collapse
|
184
|
Chen Y, Branicki W, Walsh S, Nothnagel M, Kayser M, Liu F. The impact of correlations between pigmentation phenotypes and underlying genotypes on genetic prediction of pigmentation traits. Forensic Sci Int Genet 2020; 50:102395. [PMID: 33070049 DOI: 10.1016/j.fsigen.2020.102395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022]
Abstract
Predicting appearance phenotypes from genotypes is relevant for various areas of human genetic research and applications such as genetic epidemiology, human history, anthropology, and particularly in forensics. Many appearance phenotypes, and thus their underlying genotypes, are highly correlated, with pigmentation traits serving as primary examples. However, all available genetic prediction models, including those for pigmentation traits currently used in forensic DNA phenotyping, ignore phenotype correlations. Here, we investigated the impact of appearance phenotype correlations on genetic appearance prediction in the exemplary case of three pigmentation traits. We used data for categorical eye, hair and skin colour as well as 41 DNA markers utilized in the recently established HIrisPlex-S system from 762 individuals with complete phenotype and genotype information. Based on these data, we performed genetic prediction modelling of eye, hair and skin colour via three different strategies, namely the established approach of predicting phenotypes solely based on genotypes while not considering phenotype correlations, and two novel approaches that considered phenotype correlations, either incorporating truly observed correlated phenotypes or DNA-predicted correlated phenotypes in addition to the DNA predictors. We found that using truly observed correlated pigmentation phenotypes as additional predictors increased the DNA-based prediction accuracies for almost all eye, hair and skin colour categories, with the largest increase for intermediate eye colour, brown hair colour, dark to black skin colour, and particularly for dark skin colour. Outcomes of dedicated computer simulations suggest that this prediction accuracy increase is due to the additional genetic information that is implicitly provided by the truly observed correlated pigmentation phenotypes used, yet not covered by the DNA predictors applied. In contrast, considering DNA-predicted correlated pigmentation phenotypes as additional predictors did not improve the performance of the genetic prediction of eye, hair and skin colour, which was in line with the results from our computer simulations. Hence, in practical applications of DNA-based appearance prediction where no phenotype knowledge is available, such as in forensic DNA phenotyping, it is not advised to use DNA-predicted correlated phenotypes as predictors in addition to the DNA predictors. In the very least, this is not recommended for the pigmentation traits and the established pigmentation DNA predictors tested here.
Collapse
Affiliation(s)
- Yan Chen
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; University Hospital Cologne, Cologne, Germany
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
185
|
Barbeira AN, Melia OJ, Liang Y, Bonazzola R, Wang G, Wheeler HE, Aguet F, Ardlie KG, Wen X, Im HK. Fine-mapping and QTL tissue-sharing information improves the reliability of causal gene identification. Genet Epidemiol 2020; 44:854-867. [PMID: 32964524 PMCID: PMC7693040 DOI: 10.1002/gepi.22346] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023]
Abstract
The integration of transcriptomic studies and genome-wide association studies (GWAS) via imputed expression has seen extensive application in recent years, enabling the functional characterization and causal gene prioritization of GWAS loci. However, the techniques for imputing transcriptomic traits from DNA variation remain underdeveloped. Furthermore, associations found when linking eQTL studies to complex traits through methods like PrediXcan can lead to false positives due to linkage disequilibrium between distinct causal variants. Therefore, the best prediction performance models may not necessarily lead to more reliable causal gene discovery. With the goal of improving discoveries without increasing false positives, we develop and compare multiple transcriptomic imputation approaches using the most recent GTEx release of expression and splicing data on 17,382 RNA-sequencing samples from 948 post-mortem donors in 54 tissues. We find that informing prediction models with posterior causal probability from fine-mapping (dap-g) and borrowing information across tissues (mashr) can lead to better performance in terms of number and proportion of significant associations that are colocalized and the proportion of silver standard genes identified as indicated by precision-recall and receiver operating characteristic curves. All prediction models are made publicly available at predictdb.org.
Collapse
Affiliation(s)
- Alvaro N. Barbeira
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Owen J. Melia
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Yanyu Liang
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Rodrigo Bonazzola
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
| | - Gao Wang
- Department of Human GeneticsThe University of ChicagoChicagoIllinois
| | - Heather E. Wheeler
- Department of BiologyLoyola University ChicagoChicagoIllinois
- Department of Computer ScienceLoyola University ChicagoChicagoIllinois
- Department of Public Health Sciences, Stritch School of MedicineLoyola University ChicagoMaywoodIllinois
| | - François Aguet
- The Broad Institute of MIT and HarvardCambridgeMassachusetts
| | | | - Xiaoquan Wen
- Department of BiostatisticsUniversity of MichiganAnn ArborMichigan
| | - Hae K. Im
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoIllinois
- Department of Human GeneticsThe University of ChicagoChicagoIllinois
| |
Collapse
|
186
|
Yang J, Wang Z, Liu S, Wang W, Zhang H, Gui C. Functional Characterization Reveals the Significance of Rare Coding Variations in Human Organic Anion Transporting Polypeptide 2B1 (SLCO2B1). Mol Pharm 2020; 17:3966-3978. [DOI: 10.1021/acs.molpharmaceut.0c00747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingjie Yang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Zhongmin Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Hongjian Zhang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
187
|
Jakobson CM, Jarosz DF. What Has a Century of Quantitative Genetics Taught Us About Nature's Genetic Tool Kit? Annu Rev Genet 2020; 54:439-464. [PMID: 32897739 DOI: 10.1146/annurev-genet-021920-102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
188
|
Li G, Hou L, Liu X, Wu C. A weighted empirical Bayes risk prediction model using multiple traits. Stat Appl Genet Mol Biol 2020; 19:/j/sagmb.ahead-of-print/sagmb-2019-0056/sagmb-2019-0056.xml. [PMID: 32887211 DOI: 10.1515/sagmb-2019-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/06/2020] [Indexed: 11/15/2022]
Abstract
With rapid advances in high-throughput sequencing technology, millions of single-nucleotide variants (SNVs) can be simultaneously genotyped in a sequencing study. These SNVs residing in functional genomic regions such as exons may play a crucial role in biological process of the body. In particular, non-synonymous SNVs are closely related to the protein sequence and its function, which are important in understanding the biological mechanism of sequence evolution. Although statistically challenging, models incorporating such SNV annotation information can improve the estimation of genetic effects, and multiple responses may further strengthen the signals of these variants on the assessment of disease risk. In this work, we develop a new weighted empirical Bayes method to integrate SNV annotation information in a multi-trait design. The performance of this proposed model is evaluated in simulation as well as a real sequencing data; thus, the proposed method shows improved prediction accuracy compared to other approaches.
Collapse
Affiliation(s)
- Gengxin Li
- Department of Mathematics and Statistics, University of Michigan Dearborn, 4901 Evergreen Rd, Dearborn, MI48128,USA
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing100084,China
| | - Xiaoyu Liu
- Department of Mathematics and Statistics, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH45435,USA
| | - Cen Wu
- Department of Statistics, Kansas State University, 1116 Mid-Campus Drive N., Manhattan, KS66506,USA
| |
Collapse
|
189
|
Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, et alChen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, Trivedi B, Jiang T, Akbari P, Vuckovic D, Bao EL, Zhong X, Manansala R, Laplante V, Chen M, Lo KS, Qian H, Lareau CA, Beaudoin M, Hunt KA, Akiyama M, Bartz TM, Ben-Shlomo Y, Beswick A, Bork-Jensen J, Bottinger EP, Brody JA, van Rooij FJA, Chitrala K, Cho K, Choquet H, Correa A, Danesh J, Di Angelantonio E, Dimou N, Ding J, Elliott P, Esko T, Evans MK, Floyd JS, Broer L, Grarup N, Guo MH, Greinacher A, Haessler J, Hansen T, Howson JMM, Huang QQ, Huang W, Jorgenson E, Kacprowski T, Kähönen M, Kamatani Y, Kanai M, Karthikeyan S, Koskeridis F, Lange LA, Lehtimäki T, Lerch MM, Linneberg A, Liu Y, Lyytikäinen LP, Manichaikul A, Martin HC, Matsuda K, Mohlke KL, Mononen N, Murakami Y, Nadkarni GN, Nauck M, Nikus K, Ouwehand WH, Pankratz N, Pedersen O, Preuss M, Psaty BM, Raitakari OT, Roberts DJ, Rich SS, Rodriguez BAT, Rosen JD, Rotter JI, Schubert P, Spracklen CN, Surendran P, Tang H, Tardif JC, Trembath RC, Ghanbari M, Völker U, Völzke H, Watkins NA, Zonderman AB, Wilson PWF, Li Y, Butterworth AS, Gauchat JF, Chiang CWK, Li B, Loos RJF, Astle WJ, Evangelou E, van Heel DA, Sankaran VG, Okada Y, Soranzo N, Johnson AD, Reiner AP, Auer PL, Lettre G. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 2020; 182:1198-1213.e14. [PMID: 32888493 PMCID: PMC7480402 DOI: 10.1016/j.cell.2020.06.045] [Show More Authors] [Citation(s) in RCA: 413] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/16/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
Collapse
Affiliation(s)
- Ming-Huei Chen
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Abdou Mousas
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bhavi Trivedi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Parsa Akbari
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Regina Manansala
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Véronique Laplante
- Département de Pharmacologie et Physiologie, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Minhui Chen
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | | | - Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA 98101, USA
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Andrew Beswick
- Translational Health Sciences, Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol BS10 5NB, UK
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Hasso-Plattner-Institut, Universität Potsdam, Potsdam 14469, Germany
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Kumaraswamynaidu Chitrala
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Division on Aging, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Emanuele Di Angelantonio
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon 69008, France; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Jingzhong Ding
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK; Imperial Biomedical Research Centre, Imperial College London and Imperial College NHS Healthcare Trust, London SW7 2AZ, UK; Medical Research Council-Public Health England Centre for Environment, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK; Health Data Research UK - London, London SW7 2AZ, UK
| | - Tõnu Esko
- Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA
| | - Linda Broer
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael H Guo
- Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Joanna M M Howson
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Novo Nordisk Research Centre Oxford, Innovation Building, Old Road Campus, Oxford OX3 7FZ, UK
| | - Qin Qin Huang
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI), Shanghai 201203, China
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Tim Kacprowski
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany; Chair of Experimental Bioinformatics, Research Group Computational Systems Medicine, Technical University of Munich, Freising-Weihenstephan 85354, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland; Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Savita Karthikeyan
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Fotis Koskeridis
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece
| | - Leslie A Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Markus M Lerch
- Department of Internal Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg 2000, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27701, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Hilary C Martin
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Yoshinori Murakami
- Division of Molecular Pathology, The Institute of Medical Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthias Nauck
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany; Institue of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, Finland; Department of Cardiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland
| | - Willem H Ouwehand
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA 98101, USA; Department of Epidemiology, University of Washington, Seattle, WA 98101, USA; Department of Health Services, University of Washington, Seattle, WA 98101, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20521, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20521, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland
| | - David J Roberts
- The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; Department of Haematology, Churchill Hospital, Oxford OX3 7LE, UK; NHS Blood and Transplant - Oxford Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Benjamin A T Rodriguez
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Jonathan D Rosen
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Petra Schubert
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA 01002, USA
| | - Praveen Surendran
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Richard C Trembath
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam 3015, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany
| | - Henry Völzke
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald 17475, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nicholas A Watkins
- National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD 21224, USA
| | | | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB10 1SA, UK
| | - Jean-François Gauchat
- Département de Pharmacologie et Physiologie, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William J Astle
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge CB2 0QQ, UK; NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Strangeways Laboratory, Cambridge CB1 8RN, UK
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina 45110, Greece; Department of Epidemiology and Biostatistics, Imperial College London, London W2 1PG, UK
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02446, USA
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan; Laboratory of Statistical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Nicole Soranzo
- Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Andrew D Johnson
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 01702, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98109, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
190
|
Common polymorphisms in MC4R and FTO genes are associated with BMI and metabolic indicators in Mexican children: Differences by sex and genetic ancestry. Gene 2020; 754:144840. [DOI: 10.1016/j.gene.2020.144840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
|
191
|
Bartell E, Fujimoto M, Khoury JC, Khoury PR, Vedantam S, Astley CM, Hirschhorn JN, Dauber A. Protein QTL analysis of IGF-I and its binding proteins provides insights into growth biology. Hum Mol Genet 2020; 29:2625-2636. [PMID: 32484228 PMCID: PMC7471503 DOI: 10.1093/hmg/ddaa103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
The growth hormone and insulin-like growth factor (IGF) system is integral to human growth. Genome-wide association studies (GWAS) have identified variants associated with height and located near the genes in this pathway. However, mechanisms underlying these genetic associations are not understood. To investigate the regulation of the genes in this pathway and mechanisms by which regulation could affect growth, we performed GWAS of measured serum protein levels of IGF-I, IGF binding protein-3 (IGFBP-3), pregnancy-associated plasma protein A (PAPP-A2), IGF-II and IGFBP-5 in 838 children (3-18 years) from the Cincinnati Genomic Control Cohort. We identified variants associated with protein levels near IGFBP3 and IGFBP5 genes, which contain multiple signals of association with height and other skeletal growth phenotypes. Surprisingly, variants that associate with protein levels at these two loci do not colocalize with height associations, confirmed through conditional analysis. Rather, the IGFBP3 signal (associated with total IGFBP-3 and IGF-II levels) colocalizes with an association with sitting height ratio (SHR); the IGFBP5 signal (associated with IGFBP-5 levels) colocalizes with birth weight. Indeed, height-associated single nucleotide polymorphisms near genes encoding other proteins in this pathway are not associated with serum levels, possibly excluding PAPP-A2. Mendelian randomization supports a stronger causal relationship of measured serum levels with SHR (for IGFBP-3) and birth weight (for IGFBP-5) than with height. In conclusion, we begin to characterize the genetic regulation of serum levels of IGF-related proteins in childhood. Furthermore, our data strongly suggest the existence of growth-regulating mechanisms acting through IGF-related genes in ways that are not reflected in measured serum levels of the corresponding proteins.
Collapse
Affiliation(s)
- Eric Bartell
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Masanobu Fujimoto
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori 683-8504, Japan
| | - Jane C Khoury
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Philip R Khoury
- Heart Institute Research Core, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sailaja Vedantam
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Astley
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joel N Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Dauber
- Division of Endocrinology, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
192
|
Li Z, Simianer H. Pan-genomic open reading frames: A potential supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction. PLoS Genet 2020; 16:e1008995. [PMID: 32833967 PMCID: PMC7470747 DOI: 10.1371/journal.pgen.1008995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 09/03/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
Pan-genomic open reading frames (ORFs) potentially carry protein-coding gene or coding variant information in a population. In this study, we suggest that pan-genomic ORFs are promising to be utilized in estimation of heritability and genomic prediction. A Saccharomyces cerevisiae dataset with whole-genome SNPs, pan-genomic ORFs, and the copy numbers of those ORFs is used to test the effectiveness of ORF data as a predictor in three prediction models for 35 traits. Our results show that the ORF-based heritability can capture more genetic effects than SNP-based heritability for all traits. Compared to SNP-based genomic prediction (GBLUP), pan-genomic ORF-based genomic prediction (OBLUP) is distinctly more accurate for all traits, and the predictive abilities on average are more than doubled across all traits. For four traits, the copy number of ORF-based prediction(CBLUP) is more accurate than OBLUP. When using different numbers of isolates in training sets in ORF-based prediction, the predictive abilities for all traits increased as more isolates are added in the training sets, suggesting that with very large training sets the prediction accuracy will be in the range of the square root of the heritability. We conclude that pan-genomic ORFs have the potential to be a supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction.
Collapse
Affiliation(s)
- Zhengcao Li
- Animal Breeding and Genetics Group, Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| | - Henner Simianer
- Animal Breeding and Genetics Group, Center for Integrated Breeding Research, Department of Animal Sciences, University of Goettingen, Goettingen, Germany
| |
Collapse
|
193
|
Dron JS, Dilliott AA, Lawson A, McIntyre AD, Davis BD, Wang J, Cao H, Movsesyan I, Malloy MJ, Pullinger CR, Kane JP, Hegele RA. Loss-of-Function
CREB3L3
Variants in Patients With Severe Hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2020; 40:1935-1941. [DOI: 10.1161/atvbaha.120.314168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective:
Genetic determinants of severe hypertriglyceridemia include both common variants with small effects (assessed using polygenic risk scores) plus heterozygous and homozygous rare variants in canonical genes directly affecting triglyceride metabolism. Here, we broadened our scope to detect associations with rare loss-of-function variants in genes affecting noncanonical pathways, including those known to affect triglyceride metabolism indirectly.
Approach and Results:
From targeted next-generation sequencing of 69 metabolism-related genes in 265 patients of European descent with severe hypertriglyceridemia (≥10 mmol/L or ≥885 mg/dL) and 477 normolipidemic controls, we focused on the association of rare heterozygous loss-of-function variants in individual genes. We observed that compared with controls, severe hypertriglyceridemia patients were 20.2× (95% CI, 1.11–366.1;
P
=0.03) more likely than controls to carry a rare loss-of-function variant in
CREB3L3
, which encodes a transcription factor that regulates several target genes with roles in triglyceride metabolism.
Conclusions:
Our findings indicate that rare variants in a noncanonical gene for triglyceride metabolism, namely
CREB3L3
, contribute significantly to severe hypertriglyceridemia. Secondary genes and pathways should be considered when evaluating the genetic architecture of this complex trait.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Allison A. Dilliott
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Arden Lawson
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
| | - Adam D. McIntyre
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Brent D. Davis
- Schulich School of Medicine and Dentistry, and Department of Computer Science (B.D.D.), Western University, London, ON, Canada
| | - Jian Wang
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Henian Cao
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
| | - Irina Movsesyan
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Mary J. Malloy
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Clive R. Pullinger
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - John P. Kane
- Cardiovascular Research Institute, University of California, San Francisco (I.M., M.J.M., C.R.P., J.P.K.)
| | - Robert A. Hegele
- From the Robarts Research Institute (J.S.D., A.A.D., A.L., A.D.M., J.W., H.C., R.A.H.), Western University, London, ON, Canada
- Department of Biochemistry (J.S.D., A.A.D., A.L., R.A.H.), Western University, London, ON, Canada
- Department of Medicine (R.A.H.), Western University, London, ON, Canada
| |
Collapse
|
194
|
Sentchordi-Montané L, Benito-Sanz S, Aza-Carmona M, Pereda A, Parrón-Pajares M, de la Torre C, Vasques GA, Funari MFA, Travessa AM, Dias P, Suarez-Ortega L, González-Buitrago J, Portillo-Najera NE, Llano-Rivas I, Martín-Frías M, Ramírez-Fernández J, Sánchez Del Pozo J, Garzón-Lorenzo L, Martos-Moreno GA, Alfaro-Iznaola C, Mulero-Collantes I, Ruiz-Ocaña P, Casano-Sancho P, Portela A, Ruiz-Pérez L, Del Pozo A, Vallespín E, Solís M, Lerario AM, González-Casado I, Ros-Pérez P, Pérez de Nanclares G, Jorge AAL, Heath KE. Clinical and Molecular Description of 16 Families With Heterozygous IHH Variants. J Clin Endocrinol Metab 2020; 105:5822861. [PMID: 32311039 DOI: 10.1210/clinem/dgaa218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT Heterozygous variants in the Indian hedgehog gene (IHH) have been reported to cause brachydactyly type A1 and mild hand and feet skeletal anomalies with short stature. Genetic screening in individuals with short stature and mild skeletal anomalies has been increasing over recent years, allowing us to broaden the clinical spectrum of skeletal dysplasias. OBJECTIVE The objective of this article is to describe the genotype and phenotype of 16 probands with heterozygous variants in IHH. PATIENTS AND METHODS Targeted next-generation sequencing or Sanger sequencing was performed in patients with short stature and/or brachydactyly for which the genetic cause was unknown. RESULTS Fifteen different heterozygous IHH variants were detected, one of which is the first reported complete deletion of IHH. None of the patients showed the classical phenotype of brachydactyly type A1. The most frequently observed clinical characteristics were mild to moderate short stature as well as shortening of the middle phalanx on the fifth finger. The identified IHH variants were demonstrated to cosegregate with the short stature and/or brachydactyly in the 13 probands whose family members were available. However, clinical heterogeneity was observed: Two short-statured probands showed no hand radiological anomalies, whereas another 5 were of normal height but had brachydactyly. CONCLUSIONS Short stature and/or mild skeletal hand defects can be caused by IHH variants. Defects in this gene should be considered in individuals with these findings, especially when there is an autosomal dominant pattern of inheritance. Although no genotype-phenotype correlation was observed, cosegregation studies should be performed and where possible functional characterization before concluding that a variant is causative.
Collapse
Affiliation(s)
- Lucía Sentchordi-Montané
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Manuel Parrón-Pajares
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Radiology, Hospital Universitario La Paz, Madrid, Spain
| | - Carolina de la Torre
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Gabriela A Vasques
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - André M Travessa
- Serviςo de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Patrícia Dias
- Serviςo de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | | | | | | | - Isabel Llano-Rivas
- Osakidetza Basque Health Service, Cruces University Hospital Department of Genetics, Barakaldo, Bizkaia, Spain
| | - María Martín-Frías
- Department of Pediatric Endocrinology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Jaime Sánchez Del Pozo
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Lucía Garzón-Lorenzo
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Gabriel A Martos-Moreno
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- Department of Pediatrics, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- CIBEROBN, ISCIII, Madrid, Spain
| | | | | | - Pablo Ruiz-Ocaña
- Department of Pediatrics, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Paula Casano-Sancho
- Department of Pediatric Endocrinology, Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, University of Barcelona, 08950 Espluges de Llobregat, Barcelona, Spain and CIBERDEM, ISCIII, Madrid, Spain
| | - Ana Portela
- Department of Pediatric Endocrinology, Pediatric Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerif, Spain
| | - Lorea Ruiz-Pérez
- Department of Pediatric Endocrinology, Hospital General Universitario de Alicante, Alicante, Spain
| | - Angela Del Pozo
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Elena Vallespín
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| | - Mario Solís
- Department of Pediatrics, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Antônio M Lerario
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, US
| | - Isabel González-Casado
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Pediatric Endocrinology, Hospital Universitario La Paz, Madrid, Spain
| | - Purificación Ros-Pérez
- Department of Pediatrics, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Guiomar Pérez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, BioAraba Health Research Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Alexander A L Jorge
- Unidades de Endocrinologia Genetica (LIM/25), Hospital das Clinicas da Faculdades de Medicina, Universidades de São Paulo, São Paulo, Universidades de São Paulo, São Paulo, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM); IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- Skeletal Dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
195
|
Frystyk J, Teran E, Gude MF, Bjerre M, Hjortebjerg R. Pregnancy-associated plasma proteins and Stanniocalcin-2 - Novel players controlling IGF-I physiology. Growth Horm IGF Res 2020; 53-54:101330. [PMID: 32693362 DOI: 10.1016/j.ghir.2020.101330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 10/23/2022]
Abstract
IGF-I was originally discovered as a GH-dependent growth factor stimulating longitudinal growth. Currently, however, it has become evident that the biological activities of IGF-I extend well beyond those of a simple growth factor and impact such processes as insulin sensitivity, aging, cancer and cardiovascular disease. The vast majority of IGF-I is tightly bound to IGF-binding proteins (IGFBPs), which renders IGF-I unable to stimulate the IGF-I receptor (IGF-IR) in vivo. This binding means that liberation of IGF-I from the IGFBPs is an important step controlling IGF-I action. In this context, IGFBP-cleaving enzymes appear to play a key role. Enzymatic cleavage of the IGFBPs markedly lowers their ligand affinity, and as a consequence, IGF-I becomes liberated and hence available for stimulation of the IGF-IR. Two of the best-characterized IGFBP-cleaving enzymes are pregnancy-associated plasma protein-A (PAPP-A) and its paralog PAPP-A2. The two enzymes (often referred to as pappalysins) regulate the liberation of IGF-I in a highly controlled manner. PAPP-A is believed to act predominantly in tissues, serving to liberate IGF-I at the cell surface in close proximity to the IGF-IR. In keeping with this notion, mice lacking PAPP-A exhibit reduced body size, despite having normal circulating IGF-I concentrations. In contrast, human findings indicate that altered PAPP-A2 activity changes circulating IGF-I concentrations, although PAPP-A2 is also present in high concentrations in tissues. Thus, PAPP-A2 appears to impact circulating, as well as tissue, IGF-I activity. The enzymatic activity of PAPP-A and PAPP-A2 was recently discovered to be regulated by the protein Stanniocalcin-2 (STC2). By binding to the enzymatic sites of PAPP-A and PAPP-A2, STC2 inhibits their activity. To date, the majority of findings demonstrating the ability of pappalysins and STC2 to regulate IGF-I action are from preclinical studies. However, clinical studies are now beginning to emerge. In this review, we will summarize our data on STC2, PAPP-A and PAPP-A2 in humans. These results indicate that pappalysins and STC2 constitute an important IGF-I activity-regulating system that warrants further investigation.
Collapse
Affiliation(s)
- Jan Frystyk
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mette Faurholdt Gude
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Rikke Hjortebjerg
- Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense (SDCO), Odense University Hospital, Odense, Denmark
| |
Collapse
|
196
|
Protein-Protein Interactions Mediated by Intrinsically Disordered Protein Regions Are Enriched in Missense Mutations. Biomolecules 2020; 10:biom10081097. [PMID: 32722039 PMCID: PMC7463635 DOI: 10.3390/biom10081097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
Because proteins are fundamental to most biological processes, many genetic diseases can be traced back to single nucleotide variants (SNVs) that cause changes in protein sequences. However, not all SNVs that result in amino acid substitutions cause disease as each residue is under different structural and functional constraints. Influential studies have shown that protein–protein interaction interfaces are enriched in disease-associated SNVs and depleted in SNVs that are common in the general population. These studies focus primarily on folded (globular) protein domains and overlook the prevalent class of protein interactions mediated by intrinsically disordered regions (IDRs). Therefore, we investigated the enrichment patterns of missense mutation-causing SNVs that are associated with disease and cancer, as well as those present in the healthy population, in structures of IDR-mediated interactions with comparisons to classical globular interactions. When comparing the different categories of interaction interfaces, division of the interface regions into solvent-exposed rim residues and buried core residues reveal distinctive enrichment patterns for the various types of missense mutations. Most notably, we demonstrate a strong enrichment at the interface core of interacting IDRs in disease mutations and its depletion in neutral ones, which supports the view that the disruption of IDR interactions is a mechanism underlying many diseases. Intriguingly, we also found an asymmetry across the IDR interaction interface in the enrichment of certain missense mutation types, which may hint at an increased variant tolerance and urges further investigations of IDR interactions.
Collapse
|
197
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
198
|
Root AW. Genetic Regulation of Adult Stature in Humans. J Clin Endocrinol Metab 2020; 105:dgaa210. [PMID: 32300792 PMCID: PMC7229986 DOI: 10.1210/clinem/dgaa210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Allen W Root
- Adjunct Professor of Pediatrics, Johns Hopkins School of Medicine; Professor of Pediatrics Emeritus, University of South Florida Morsani College of Medicine; Division of Pediatric Endocrinology and Diabetes, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| |
Collapse
|
199
|
Zhang H, Liang Q, Wang N, Wang Q, Leng L, Mao J, Wang Y, Wang S, Zhang J, Liang H, Zhou X, Li Y, Cao Z, Luan P, Wang Z, Yuan H, Wang Z, Zhou X, Lamont SJ, Da Y, Li R, Tian S, Du Z, Li H. Microevolutionary Dynamics of Chicken Genomes under Divergent Selection for Adiposity. iScience 2020; 23:101193. [PMID: 32554187 PMCID: PMC7303556 DOI: 10.1016/j.isci.2020.101193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/19/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023] Open
Abstract
Decades of artificial selection have significantly improved performance and efficiency of animal production systems. However, little is known about the microevolution of genomes due to intensive breeding. Using whole-genome sequencing, we document dynamic changes of chicken genomes under divergent selection on adiposity over 19 generations. Directional selection reduced within-line but increased between-line genomic differences. We observed that artificial selection tended to result in recruitment of preexisting variations of genes related to adipose tissue growth. In addition, novel mutations contributed to divergence of phenotypes under selection but contributed significantly less than preexisting genomic variants. Integration of 15 generations genome sequencing, genome-wide association study, and multi-omics data further identified that genes involved in signaling pathways important to adipogenesis, such as autophagy and lysosome (URI1, MBL2), neural system (CHAT), and endocrine (PCSK1) pathways, were under strong selection. Our study provides insights into the microevolutionary dynamics of domestic animal genomes under artificial selection.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing 10089, P. R. China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Qigui Wang
- Chongqing Academy of Animal Science, Chongqing 402460, P. R. China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jie Mao
- Novogene Bioinformatics Institute, Beijing 10089, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hao Liang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xun Zhou
- Novogene Bioinformatics Institute, Beijing 10089, P. R. China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhipeng Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hui Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2C8, Canada
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | - Yang Da
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 10089, P. R. China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing 10089, P. R. China.
| | - Zhiqiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China.
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
200
|
Walz M, Chau L, Walz C, Sawitzky M, Ohde D, Brenmoehl J, Tuchscherer A, Langhammer M, Metzger F, Höflich C, Hoeflich A. Overlap of Peak Growth Activity and Peak IGF-1 to IGFBP Ratio: Delayed Increase of IGFBPs versus IGF-1 in Serum as a Mechanism to Speed up and down Postnatal Weight Gain in Mice. Cells 2020; 9:cells9061516. [PMID: 32580353 PMCID: PMC7348928 DOI: 10.3390/cells9061516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Forced expression of insulin-like growth factor binding proteins (IGFBPs) in transgenic mice has clearly revealed inhibitory effects on somatic growth. However, by this approach, it cannot be solved if or how IGFBPs rule insulin-like growth factor (IGF)-dependent growth under normal conditions. In order to address this question, we have used growth-selected mouse models (obese and lean) and studied IGF-1 and IGFBPs in serum with respect to longitudinal growth activity in males and females compared with unselected controls. In mice of both genders, body weights were recorded and daily weight gains were calculated. Between 2 and 54 weeks of age, serum IGF-1 was determined by ELISA and intact IGFBP-2, -3 and -4 were quantified by Western ligand blotting. The molar ratio of IGF-1 to the sum of IGFBP-2 to -4 was calculated for all groups and plotted against the daily weight gain curve. Growth-selected mice are characterized by higher daily weight gains and extended periods of elevated growth activity if compared to matched unselected controls. Therefore, adult mice from the obese and lean groups can achieve more than twofold increased body weight in both genders (p < 0.001). Between 2 and 11 weeks of age, in obese and lean mice of both genders, serum IGF-1 concentrations are increased more prominently if compared to unselected controls (p < 0.001). Instead, substantial decreases of IGFBPs, particularly of IGFBP-2, are observed in males and females of all groups at the age of 2 to 4 weeks (p < 0.001). Due to the strong increase of IGF-1 but not of IGFBPs between two and four weeks of age, the ratio of IGF-1 to IGFBP-2 to -4 in serum significantly increased in all groups and genders (p < 0.05). Notably, the IGF-1 to IGFBP ratio was higher in male and female obese mice if compared to unselected controls (p < 0.05).
Collapse
Affiliation(s)
- Michael Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Luong Chau
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Christina Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Mandy Sawitzky
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Daniela Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Julia Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18197 Dummerstorf, Germany; (A.T.); (M.L.)
| | - Martina Langhammer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), 18197 Dummerstorf, Germany; (A.T.); (M.L.)
| | | | | | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.W.); (L.C.); (C.W.); (M.S.); (D.O.); (J.B.)
- Correspondence: ; Tel.: +49-(0)38208-68744; Fax: +49-(0)38208-68-702
| |
Collapse
|