201
|
Zhao D, Chen X, Han D, Zhong J, Zhang SE, Yang C. Pulmonary ACE2 expression in neonatal and adult rats. FEBS Open Bio 2021. [PMID: 34137203 PMCID: PMC8329949 DOI: 10.1002/2211-5463.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 12/05/2022] Open
Abstract
Children show a distinct presentation of COVID‐19, characterized by a lower incidence and mild phenotype, but the reason for this is still unknown. The angiotensin‐converting enzyme 2 (ACE2) functions as the primary cell entry receptor for Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and is thought to cause distinct clinical features between children and old people. The primary purpose of this study was to determine whether differences exist in the level of expression and distribution of ACE2 between neonatal and adult rat lungs. The lung tissues from rats of various ages were used to investigate the expression patterns of ACE2. Western blot, immunohistochemistry, and immunofluorescence were used to quantify or identify the localization of ACE2 in rat lungs. ACE2 was homogenously expressed in fewer alveolar type II (AT2) cells in the neonatal lung, with no polarization to the alveolar space and additional expression in pulmonary endothelium when compared to adult rat lungs. These findings suggest that the patterns of ACE2 distribution and cellular localization in rat lungs change with age.
Collapse
Affiliation(s)
- Depeng Zhao
- Department of Reproductive Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Junyan Zhong
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Su-E Zhang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Chuanzhong Yang
- Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, China
| |
Collapse
|
202
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
203
|
Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev 2021; 34:e00299-20. [PMID: 33980688 PMCID: PMC8142516 DOI: 10.1128/cmr.00299-20] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a rapidly evolving pandemic worldwide with at least 68 million COVID-19-positive cases and a mortality rate of about 2.2%, as of 10 December 2020. About 20% of COVID-19 patients exhibit moderate to severe symptoms. Severe COVID-19 manifests as acute respiratory distress syndrome (ARDS) with elevated plasma proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), C-X-C motif chemokine ligand 10 (CXCL10/IP10), macrophage inflammatory protein 1 alpha (MIP-1α), and chemokine (C-C motif) ligand 2 (CCL2), with low levels of interferon type I (IFN-I) in the early stage and elevated levels of IFN-I during the advanced stage of COVID-19. Most of the severe and critically ill COVID-19 patients have had preexisting comorbidities, including hypertension, diabetes, cardiovascular diseases, and respiratory diseases. These conditions are known to perturb the levels of cytokines, chemokines, and angiotensin-converting enzyme 2 (ACE2), an essential receptor involved in SARS-CoV-2 entry into the host cells. ACE2 downregulation during SARS-CoV-2 infection activates the angiotensin II/angiotensin receptor (AT1R)-mediated hypercytokinemia and hyperinflammatory syndrome. However, several SARS-CoV-2 proteins, including open reading frame 3b (ORF3b), ORF6, ORF7, ORF8, and the nucleocapsid (N) protein, can inhibit IFN type I and II (IFN-I and -II) production. Thus, hyperinflammation, in combination with the lack of IFN responses against SARS-CoV-2 early on during infection, makes the patients succumb rapidly to COVID-19. Therefore, therapeutic approaches involving anti-cytokine/anti-cytokine-signaling and IFN therapy would favor the disease prognosis in COVID-19. This review describes critical host and viral factors underpinning the inflammatory "cytokine storm" induction and IFN antagonism during COVID-19 pathogenesis. Therapeutic approaches to reduce hyperinflammation and their limitations are also discussed.
Collapse
Affiliation(s)
- Santhamani Ramasamy
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
204
|
Fang P, Fang L, Zhang H, Xia S, Xiao S. Functions of Coronavirus Accessory Proteins: Overview of the State of the Art. Viruses 2021; 13:1139. [PMID: 34199223 PMCID: PMC8231932 DOI: 10.3390/v13061139] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus accessory proteins are a unique set of proteins whose genes are interspersed among or within the genes encoding structural proteins. Different coronavirus genera, or even different species within the same coronavirus genus, encode varying amounts of accessory proteins, leading to genus- or species-specificity. Though accessory proteins are dispensable for the replication of coronavirus in vitro, they play important roles in regulating innate immunity, viral proliferation, and pathogenicity. The function of accessory proteins on virus infection and pathogenesis is an area of particular interest. In this review, we summarize the current knowledge on accessory proteins of several representative coronaviruses that infect humans or animals, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with an emphasis on their roles in interaction between virus and host, mainly involving stress response, innate immunity, autophagy, and apoptosis. The cross-talking among these pathways is also discussed.
Collapse
Affiliation(s)
- Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huichang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.F.); (L.F.); (H.Z.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
205
|
Comprehensive Investigation on the Interplay between Feline APOBEC3Z3 Proteins and Feline Immunodeficiency Virus Vif Proteins. J Virol 2021; 95:e0017821. [PMID: 33762419 PMCID: PMC8437355 DOI: 10.1128/jvi.00178-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the hosts of lentiviruses, almost 40 species of felids (family Felidae) are distributed around the world, and more than 20 feline species test positive for feline immunodeficiency virus (FIV), a lineage of lentiviruses. These observations suggest that FIVs globally infected a variety of feline species through multiple cross-species transmission events during a million-year history. Cellular restriction factors potentially inhibit lentiviral replication and limit cross-species lentiviral transmission, and cellular APOBEC3 deaminases are known as a potent restriction factor. In contrast, lentiviruses have evolutionary-acquired viral infectivity factor (Vif) to neutralize the APOBEC3-mediated antiviral effect. Because the APOBEC3-Vif interaction is strictly specific for viruses and their hosts, a comprehensive investigation focusing on Vif-APOBEC3 interplay can provide clues that will elucidate the roles of this virus-host interplay on cross-species transmission of lentiviruses. Here, we performed a comprehensive investigation with 144 patterns of a round robin test using 18 feline APOBEC3Z3 genes, an antiviral APOBEC3 gene in felid, and 8 FIV Vifs and derived a matrix showing the interplay between feline APOBEC3Z3 and FIV Vif. We particularly focused on the interplay between the APOBEC3Z3 of three felids (domestic cat, ocelot, and Asian golden cat) and an FIV Vif (strain Petaluma), and revealed that residues 65 and 66 of the APOBEC3Z3 protein of multiple felids are responsible for the counteraction triggered by FIV Petaluma Vif. Altogether, our findings can be a clue to elucidate not only the scenarios of the cross-species transmissions of FIVs in felids but also the evolutionary interaction between mammals and lentiviruses. IMPORTANCE Most of the emergences of new virus infections originate from the cross-species transmission of viruses. The fact that some virus infections are strictly specific for the host species indicates that certain “species barriers” in the hosts restrict cross-species jump of viruses, while viruses have evolutionary acquired their own “arms” to overcome/antagonize/neutralize these hurdles. Therefore, understanding of the molecular mechanism leading to successful cross-species viral transmission is crucial for considering the menus of the emergence of novel pathogenic viruses. In the field of retrovirology, APOBEC3-Vif interaction is a well-studied example of the battles between hosts and viruses. Here, we determined the sequences of 11 novel feline APOBEC3Z3 genes and demonstrated that all 18 different feline APOBEC3Z3 proteins tested exhibit anti-feline immunodeficiency virus (FIV) activity. Our comprehensive investigation focusing on the interplay between feline APOBEC3 and FIV Vif can be a clue to elucidate the scenarios of the cross-species transmissions of FIVs in felids.
Collapse
|
206
|
Simeoni M, Cavinato T, Rodriguez D, Gatfield D. I(nsp1)ecting SARS-CoV-2-ribosome interactions. Commun Biol 2021; 4:715. [PMID: 34112887 PMCID: PMC8192748 DOI: 10.1038/s42003-021-02265-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
While SARS-CoV-2 is causing modern human history’s most serious health crisis and upending our way of life, clinical and basic research on the virus is advancing rapidly, leading to fascinating discoveries. Two studies have revealed how the viral virulence factor, nonstructural protein 1 (Nsp1), binds human ribosomes to inhibit host cell translation. Here, we examine the main conclusions on the molecular activity of Nsp1 and its role in suppressing innate immune responses. We discuss different scenarios potentially explaining how the viral RNA can bypass its own translation blockage and speculate on the suitability of Nsp1 as a therapeutic target. Simeoni et al discuss how recent structural work has improved our understanding of SARS-CoV-2 Nsp1-mediated translation inhibition and how Nsp1 inhibition could impact host immune responses and suppress viral replication.
Collapse
Affiliation(s)
- Matthieu Simeoni
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Théo Cavinato
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Daniel Rodriguez
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
207
|
Timmers LFSM, Peixoto JV, Ducati RG, Bachega JFR, de Mattos Pereira L, Caceres RA, Majolo F, da Silva GL, Anton DB, Dellagostin OA, Henriques JAP, Xavier LL, Goettert MI, Laufer S. SARS-CoV-2 mutations in Brazil: from genomics to putative clinical conditions. Sci Rep 2021; 11:11998. [PMID: 34099808 PMCID: PMC8184806 DOI: 10.1038/s41598-021-91585-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Due to the high rate of transmissibility, Brazil became the new COVID-19 outbreak epicenter and, since then, is being monitored to understand how SARS-CoV-2 mutates and spreads. We combined genomic and structural analysis to evaluate genomes isolated from different regions of Brazil and show that the most prevalent mutations were located in the S, N, ORF3a and ORF6 genes, which are involved in different stages of viral life cycle and its interaction with the host cells. Structural analysis brought to light the positions of these mutations on protein structures, contributing towards studies of selective structure-based drug discovery and vaccine development.
Collapse
Affiliation(s)
- Luis Fernando Saraiva Macedo Timmers
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil.
| | - Julia Vasconcellos Peixoto
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande Do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - José Fernando Ruggiero Bachega
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Leandro de Mattos Pereira
- Laboratory of Molecular Microbial Ecology, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rafael Andrade Caceres
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Fernanda Majolo
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Débora Bublitz Anton
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Odir Antônio Dellagostin
- Graduate Program in Biotechnology, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - João Antônio Pegas Henriques
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Léder Leal Xavier
- Laboratory of Cell and Tissue Biology, Pontifical Catholic University of Rio Grande Do Sul - PUCRS, Porto Alegre, RS, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
- Graduate Program in Medical Sciences, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
208
|
Sanjay S, Mutalik D, Gowda S, Mahendradas P, Kawali A, Shetty R. "Post Coronavirus Disease (COVID-19) Reactivation of a Quiescent Unilateral Anterior Uveitis". ACTA ACUST UNITED AC 2021; 3:1843-1847. [PMID: 34124585 PMCID: PMC8184259 DOI: 10.1007/s42399-021-00985-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Coronavirus disease (COVID-19) can be associated with ophthalmic manifestations like conjunctivitis, retinal haemorrhages, retinal vascular occlusions, papillophlebitis, and Adie’s syndrome. We herein report for a case of a unilateral acute anterior uveitis which was quiescent for 13 years and was reactivated post COVID-19 infection in a 43-year-old Asian Indian male. He had a past history of recurrent unilateral granulomatous anterior and intermediate uveitis in the right eye (RE), and all the investigations done 14 years ago were negative and had been on treatment with topical and oral steroids. He developed cataract 6 months later in the RE and underwent surgery. Patient was in remission for the past 13 years. Uveitis investigations for the present episode were all negative. Topical steroid and cycloplegic helped in resolution of the uveitis. This may be the first instance of reactivation of a quiescent unilateral anterior uveitis following COVID-19 infection.
Collapse
Affiliation(s)
- Srinivasan Sanjay
- Department of Uvea and Ocular Immunology, Naryana Nethralaya, Bangalore, India
| | - Deepashri Mutalik
- Department of Uvea and Ocular Immunology, Naryana Nethralaya, Bangalore, India
| | - Sunil Gowda
- Department of Ear, Nose and Throat, St Martha's Hospital, Bangalore, India
| | | | - Ankush Kawali
- Department of Uvea and Ocular Immunology, Naryana Nethralaya, Bangalore, India
| | - Rohit Shetty
- Department of Neuro-ophthalmology, Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| |
Collapse
|
209
|
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021; 17:1635-1649. [PMID: 33270478 PMCID: PMC7754925 DOI: 10.1080/21645515.2020.1845524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic mandates the development of a safe and effective Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccine. This review analyzes the complexities, challenges, and other vital issues associated with the development of the SARS-CoV-2 vaccine. A brief review of the immune responses (innate, antibody, and T-cell) to SARS-CoV-2, including immune targets, correlates of protection, and duration of immunity is presented. Approaches to vaccine development including different vaccine platforms, critical attributes of novel vaccine candidates, the status of the ongoing clinical trials, and the ways to speed up vaccine development are also reviewed. Despite a historical average success rate of only 6%, and a usual gestation period of 10-12 years for the development of a new vaccine, the world is on the verge of developing COVID-19 vaccines in an extraordinary short time span.
Collapse
Affiliation(s)
- Vipin M. Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, India
| | | |
Collapse
|
210
|
Kehrer T, García-Sastre A, Miorin L. Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. J Interferon Cytokine Res 2021; 41:205-219. [PMID: 34161170 PMCID: PMC8336211 DOI: 10.1089/jir.2021.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of unprecedented proportions. After the emergence of SARS-CoV-1 in 2002, and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, this is the third outbreak of a highly pathogenic zoonotic coronavirus (CoV) that the world has witnessed in the last 2 decades. Infection with highly pathogenic human CoVs often results in a severe respiratory disease characterized by a delayed and blunted interferon (IFN) response, accompanied by an excessive production of proinflammatory cytokines. This indicates that CoVs developed effective mechanisms to overcome the host innate immune response and promote viral replication and pathogenesis. In this review, we describe the key innate immune signaling pathways that are activated during infection with SARS-CoV-2 and other well studied pathogenic CoVs. In addition, we summarize the main strategies that these viruses employ to modulate the host immune responses through the antagonism of IFN induction and effector pathways.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
211
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila MA, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Rep 2021; 35:109197. [PMID: 34043946 PMCID: PMC8118641 DOI: 10.1016/j.celrep.2021.109197] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over 950,000 whole-genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been determined for viruses isolated from around the world. These sequences are critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We isolate one of these mutant viruses from a patient sample and use viral challenge experiments to link this isolate (ORF7aΔ115) to a growth defect. ORF7a is implicated in immune modulation, and we show that the C-terminal truncation negates anti-immune activities of the protein, which results in elevated type I interferon response to the viral infection. Collectively, this work indicates that ORF7a mutations occur frequently, and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark A Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
212
|
Galani IE, Andreakos E. Impaired innate antiviral defenses in COVID-19: Causes, consequences and therapeutic opportunities. Semin Immunol 2021; 55:101522. [PMID: 34815163 PMCID: PMC8576141 DOI: 10.1016/j.smim.2021.101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged pathogen that has caused coronavirus disease 2019 (COVID-19), the worst pandemic of our times leading to tremendous loss of human life and unprecedented measures of social distancing. COVID-19 symptom manifestations range from asymptomatic disease to severe and lethal outcomes. Lack of previous exposure and immunity to SARS-CoV-2, and high infectivity of the virus have contributed to its broad spread across the globe. In the absence of specific adaptive immunity, innate immune mechanisms are crucial for efficient antiviral defenses and control of the infection. Accumulating evidence now suggests that the remarkable heterogeneity in COVID-19 disease manifestations is due to variable degrees of impairment of innate immune mechanisms. In this review, we summarize recent findings describing both viral and host intrinsic factors that have been linked to defective innate immune responses and account for severe COVID-19. We also discuss emerging therapeutic opportunities for targeting innate immunity for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ioanna-Evdokia Galani
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
213
|
Das A, Ahmed R, Akhtar S, Begum K, Banu S. An overview of basic molecular biology of SARS-CoV-2 and current COVID-19 prevention strategies. GENE REPORTS 2021; 23:101122. [PMID: 33821222 PMCID: PMC8012276 DOI: 10.1016/j.genrep.2021.101122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) manifests as extreme acute respiratory conditions caused by a novel beta coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) which is reported to be the seventh coronavirus to infect humans. Like other SARS-CoVs it has a large positive-stranded RNA genome. But, specific furin site in the spike protein, mutation prone and phylogenetically mess open reading frame1ab (Orf1ab) separates SARS-CoV-2 from other RNA viruses. Since the outbreak (February-March 2020), researchers, scientists, and medical professionals are inspecting all possible facts and aspects including its replication, detection, and prevention strategies. This led to the prompt identification of its basic biology, genome characterization, structural and expression based functional information of proteins, and utilization of this information in optimizing strategies to prevent its spread. This review summarizes the recent updates on the basic molecular biology of SARS-CoV-2 and prevention strategies undertaken worldwide to tackle COVID-19. This recent information can be implemented for the development and designing of therapeutics against SARS-CoV-2.
Collapse
Key Words
- AEC2, angiotensin-converting enzyme 2
- CD4 and CD8, cluster of differentiation
- CDC, Centers for Disease Control and Prevention
- COVID-19, Coronavirus Diseases 2019
- GM-CSF, macrophage colony-stimulating factor
- Genome organization and expression
- HCV, hepatitis C virus
- HIV, human immune deficiency virus
- LAMP, loop mediated isothermal amplification
- MARS-CoV, Middle East Respiratory Syndrome Coronavirus
- Prevention strategies
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- WHO, World Health Organization
Collapse
Affiliation(s)
- Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
214
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
215
|
De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol 2021; 93:e13043. [PMID: 33783027 PMCID: PMC8250184 DOI: 10.1111/sji.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus infections are frequent viral infections in several species. As soon as the severe acute respiratory syndrome (SARS) appeared in the early 2000s, most of the research focused on pulmonary disease. However, disorders in immune response and organ dysfunctions have been documented. Elderly individuals with comorbidities exhibit worse outcomes in all the coronavirus that cause SARS. Disease severity in SARS-CoV-2 infection is related to severe inflammation and tissue injury, and effective immune response against the virus is still under analysis. ACE2 receptor expression and polymorphism, age, gender and immune genetics are factors that also play an essential role in patients' clinical features and immune responses and have been partially discussed. The present report aims to review the physiopathology of SARS-CoV-2 infection and propose new research topics to understand the complex mechanisms of viral infection and viral clearance.
Collapse
Affiliation(s)
- Juan Bautista De Sanctis
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Alexis Hipólito García
- Institute of ImmunologyFaculty of MedicineUniversidad Central de VenezuelaCaracasVenezuela
| | - Dolores Moreno
- Chair of General Pathology and PathophysiologyFaculty of MedicineCentral University of VenezuelaCaracasVenezuela
| | - Marián Hajduch
- Institute of Molecular and Translational MedicineFaculty of Medicine and DentistryPalacky UniversityOlomoucCzech Republic
| |
Collapse
|
216
|
Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe 2021; 29:1052-1062. [PMID: 34022154 PMCID: PMC8126603 DOI: 10.1016/j.chom.2021.05.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
COVID-19 can result in severe disease characterized by significant immunopathology that is spurred by an exuberant, yet dysregulated, innate immune response with a poor adaptive response. A limited and delayed interferon I (IFN-I) and IFN-III response results in exacerbated proinflammatory cytokine production and in extensive cellular infiltrates in the respiratory tract, resulting in lung pathology. The development of effective therapeutics for patients with severe COVID-19 depends on our understanding of the pathological elements of this unbalanced innate immune response. Here, we review the mechanisms by which SARS-CoV-2 both activates and antagonizes the IFN and inflammatory response following infection, how a dysregulated cytokine and cellular response contributes to immune-mediated pathology in COVID-19, and therapeutic strategies that target elements of the innate response.
Collapse
Affiliation(s)
- Shea A Lowery
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Alan Sariol
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
217
|
Eriksen AZ, Møller R, Makovoz B, Uhl SA, tenOever BR, Blenkinsop TA. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell 2021; 28:1205-1220.e7. [PMID: 34022129 PMCID: PMC8126605 DOI: 10.1016/j.stem.2021.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The SARS-CoV-2 pandemic has caused unparalleled disruption of global behavior and significant loss of life. To minimize SARS-CoV-2 spread, understanding the mechanisms of infection from all possible routes of entry is essential. While aerosol transmission is thought to be the primary route of spread, viral particles have been detected in ocular fluid, suggesting that the eye may be a vulnerable point of viral entry. To this end, we confirmed SARS-CoV-2 entry factor and antigen expression in post-mortem COVID-19 patient ocular surface tissue and observed productive viral replication in cadaver samples and eye organoid cultures, most notably in limbal regions. Transcriptional analysis of ex vivo infected ocular surface cells and hESC-derived eye cultures revealed robust induction of NF-κB in infected cells as well as diminished type I/III interferon signaling. Together these data suggest that the eye can be directly infected by SARS-CoV-2 and implicate limbus as a portal for viral entry.
Collapse
Affiliation(s)
- Anne Z Eriksen
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bar Makovoz
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Skyler A Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Timothy A Blenkinsop
- Department of Cell Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
218
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
219
|
Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nat Commun 2021; 12:2642. [PMID: 33976134 PMCID: PMC8113528 DOI: 10.1038/s41467-021-22905-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
Despite its clinical importance, the SARS-CoV-2 gene set remains unresolved, hindering dissection of COVID-19 biology. We use comparative genomics to provide a high-confidence protein-coding gene set, characterize evolutionary constraint, and prioritize functional mutations. We select 44 Sarbecovirus genomes at ideally-suited evolutionary distances, and quantify protein-coding evolutionary signatures and overlapping constraint. We find strong protein-coding signatures for ORFs 3a, 6, 7a, 7b, 8, 9b, and a novel alternate-frame gene, ORF3c, whereas ORFs 2b, 3d/3d-2, 3b, 9c, and 10 lack protein-coding signatures or convincing experimental evidence of protein-coding function. Furthermore, we show no other conserved protein-coding genes remain to be discovered. Mutation analysis suggests ORF8 contributes to within-individual fitness but not person-to-person transmission. Cross-strain and within-strain evolutionary pressures agree, except for fewer-than-expected within-strain mutations in nsp3 and S1, and more-than-expected in nucleocapsid, which shows a cluster of mutations in a predicted B-cell epitope, suggesting immune-avoidance selection. Evolutionary histories of residues disrupted by spike-protein substitutions D614G, N501Y, E484K, and K417N/T provide clues about their biology, and we catalog likely-functional co-inherited mutations. Previously reported RNA-modification sites show no enrichment for conservation. Here we report a high-confidence gene set and evolutionary-history annotations providing valuable resources and insights on SARS-CoV-2 biology, mutations, and evolution.
Collapse
Affiliation(s)
- Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
220
|
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Front Mol Biosci 2021; 8:653148. [PMID: 34041264 PMCID: PMC8141814 DOI: 10.3389/fmolb.2021.653148] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Jose Abi Saad
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Fabio C. L. Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisele Cardoso de Amorim
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Thomas K. Anderson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cristiane D. Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chelsea Anorma
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Bax
- LCP, NIDDK, NIH, Bethesda, MD, United States
| | | | - Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Louis Brigandat
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Anna Bula
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Matthias Bütikofer
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Teresa Carlomagno
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Icaro Putinhon Caruso
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Marquise G. Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthikeyan Dhamotharan
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Isabella C. Felli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yanick Fleischmann
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Juan Atilio Gerez
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Dhiman Ghosh
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | - Sabine Häfner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - K. Henzler-Wildman
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie T. Hutchison
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Katarina Jović
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Kaņepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert N. Kirchdoerfer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - John Kirkpatrick
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felicitas Kutz
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne zur Lage
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roderick Lambertz
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andras Lang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Douglas Laurents
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Seth W. McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Nathane Cunha Mebus-Antunes
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beat H. Meier
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Celine Moser
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Thais Cristtina Neves-Martins
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xiamonin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Roberta Pierattelli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Riek
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chad M. Rienstra
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anderson S. Pinheiro
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Linda Schulte
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Schiavina
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mara Silber
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcius da Silva Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sabrina Töws
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Á. Treviño
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ying Wang
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Marco E. Weber
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Julia E. Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Zehnder
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
221
|
Hoque MN, Rahman MS, Ahmed R, Hossain MS, Islam MS, Islam T, Hossain MA, Siddiki AZ. Diversity and genomic determinants of the microbiomes associated with COVID-19 and non-COVID respiratory diseases. GENE REPORTS 2021; 23:101200. [PMID: 33977168 PMCID: PMC8102076 DOI: 10.1016/j.genrep.2021.101200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) is a rapidly emerging and highly transmissible disease caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Understanding the microbiomes associated with the upper respiratory tract infection (URTI), chronic obstructive pulmonary disease (COPD) and COVID-19 diseases has clinical interest. We hypothesize that microbiome diversity and composition, and their genomic features are associated with different pathological conditions of these human respiratory tract diseases. To test this hypothesis, we analyzed 21 RNASeq metagenomic data including eleven COVID-19 (BD = 6 and China = 5), six COPD (UK = 6) and four URTI (USA = 4) samples to unravel the microbiome diversity and related genomic metabolic functions. The metagenomic data mapped to 534 bacterial, 60 archaeal and 61 viral genomes with distinct variation in the microbiome composition across the samples (COVID-19 > COPD > URTI). Notably, 94.57%, 80.0% and 24.59% bacterial, archaeal and viral genera shared between the COVID-19 and non-COVID samples, respectively. However, the COVID-19 related samples had sole association with 16 viral genera other than SARS-CoV-2. Strain-level virome profiling revealed 660 and 729 strains in COVID-19 and non-COVID samples, respectively, and of them 34.50% strains shared between the conditions. Functional annotation of the metagenomic data identified the association of several biochemical pathways related to basic metabolism (amino acid and energy), ABC transporters, membrane transport, virulence, disease and defense, regulation of virulence, programmed cell death, and primary immunodeficiency. We also detected 30 functional gene groups/classes associated with resistance to antibiotics and toxic compounds (RATC) in both COVID-19 and non-COVID microbiomes. Furthermore, we detected comparatively higher abundance of cobalt-zinc-cadmium resistance (CZCR) and multidrug resistance to efflux pumps (MREP) genes in COVID-19 metagenome. The profiles of microbiome diversity and associated microbial genomic features found in both COVID-19 and non-COVID (COPD and URTI) samples might be helpful in developing microbiome-based diagnostics and therapeutics for COVID-19 and non-COVID respiratory diseases. However, future studies might be carried out to explore the microbiome dynamics and the cross-talk between host and microbiomes employing larger volume of samples from different ethnic groups and geoclimatic conditions.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur 1706, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rasel Ahmed
- Bangladesh Jute Research Institute, Dhaka 1207, Bangladesh
| | | | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur 1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh.,Vice-Chancellor, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Amam Zonaed Siddiki
- Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram 4202, Bangladesh
| |
Collapse
|
222
|
Kasuga Y, Zhu B, Jang KJ, Yoo JS. Innate immune sensing of coronavirus and viral evasion strategies. Exp Mol Med 2021; 53:723-736. [PMID: 33953325 PMCID: PMC8099713 DOI: 10.1038/s12276-021-00602-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses. Understanding how the innate immune system senses coronaviruses and how coronaviruses can escape detection could provide novel approaches to tackle infections. Coronaviruses, including SARS-CoV-2, constantly evolve to manipulate, obstruct and evade host immune responses. A team led by Ji-Seung Yoo, Hokkaido University, Sapporo, Japan, reviewed understanding of innate immune responses to coronaviruses and viral evasion strategies. Two major receptor families recognise RNA viruses upon infection, but how they respond to SARS-CoV-2 is unclear. One receptor, TLR7, plays a critical role in sensing coronavirus infections, and mutations in the TLR7 gene are associated with severe illness and mortality in young Covid-19 patients. Activating host TLR pathways may prove a useful therapeutic approach. Further in-depth investigations are needed into specific coronavirus proteins and viral mechanisms that suppress host immunity.
Collapse
Affiliation(s)
- Yusuke Kasuga
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Baohui Zhu
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, 27478, Republic of Korea.
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
223
|
Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med 2021; 53:750-760. [PMID: 33953323 PMCID: PMC8099704 DOI: 10.1038/s12276-021-00592-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), the current pandemic disease, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Type I and III interferons (IFNs) are innate cytokines that are important in the first-line defense against viruses. Similar to many other viruses, SARS-CoV-2 has evolved mechanisms for evading the antiviral effects of type I and III IFNs at multiple levels, including the induction of IFN expression and cellular responses to IFNs. In this review, we describe the innate sensing mechanisms of SARS-CoV-2 and the mechanisms used by SARS-CoV-2 to evade type I and III IFN responses. We also discuss contradictory reports regarding impaired and robust type I IFN responses in patients with severe COVID-19. Finally, we discuss how delayed but exaggerated type I IFN responses can exacerbate inflammation and contribute to the severe progression of COVID-19. Extensive studies into how SARS-CoV-2 manipulates the immune system and influences the activity of host proteins are needed to improve treatments for COVID-19. SARS-CoV-2 evades or blocks elements of the immune system, including the antiviral activity of type I and type III interferons (IFN). You-Me Kim and Eui-Cheol Shin at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea, reviewed understanding of how SARS-CoV-2 inhibits IFN responses. In infected cells, SARS-CoV-2 proteins use diverse methods to inhibit host IFN pathways, but type I IFN responses are still triggered in non-infected immune cells. The researchers believe this may explain the delayed but exaggerated type I IFN responses that contribute to the hyper-inflammation seen in critically ill patients. They call for further investigations into IFN and inflammatory responses in SARS-CoV-2 infection.
Collapse
|
224
|
Choi H, Shin EC. Roles of Type I and III Interferons in COVID-19. Yonsei Med J 2021; 62:381-390. [PMID: 33908208 PMCID: PMC8084697 DOI: 10.3349/ymj.2021.62.5.381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Type I and III interferon (IFN) responses act as the first line of defense against viral infection and are activated by the recognition of viruses by infected cells and innate immune cells. Dysregulation of host IFN responses has been known to be associated with severe disease progression in COVID-19 patients. However, the reported results are controversial and the roles of IFN responses in COVID-19 need to be investigated further. In the absence of a highly efficacious antiviral drug, clinical studies have evaluated recombinant type I and III IFNs, as they have been successfully used for the treatment of infections caused by two other epidemic coronaviruses, SARS-CoV-1 and Middle East respiratory syndrome (MERS)-CoV. In this review, we describe the strategies by which SARS-CoV-2 evades IFN responses and the dysregulation of host IFN responses in COVID-19 patients. In addition, we discuss the therapeutic potential of type I and III IFNs in COVID-19.
Collapse
Affiliation(s)
- Hojun Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Eui Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Daejeon, Korea.
| |
Collapse
|
225
|
Majumdar P, Niyogi S. SARS-CoV-2 mutations: the biological trackway towards viral fitness. Epidemiol Infect 2021; 149:e110. [PMID: 33928885 PMCID: PMC8134885 DOI: 10.1017/s0950268821001060] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
The outbreak of pneumonia-like respiratory disorder at China and its rapid transmission world-wide resulted in public health emergency, which brought lineage B betacoronaviridae SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) into spotlight. The fairly high mutation rate, frequent recombination and interspecies transmission in betacoronaviridae are largely responsible for their temporal changes in infectivity and virulence. Investigation of global SARS-CoV-2 genotypes revealed considerable mutations in structural, non-structural, accessory proteins as well as untranslated regions. Among the various types of mutations, single-nucleotide substitutions are the predominant ones. In addition, insertion, deletion and frame-shift mutations are also reported, albeit at a lower frequency. Among the structural proteins, spike glycoprotein and nucleocapsid phosphoprotein accumulated a larger number of mutations whereas envelope and membrane proteins are mostly conserved. Spike protein and RNA-dependent RNA polymerase variants, D614G and P323L in combination became dominant world-wide. Divergent genetic variants created serious challenge towards the development of therapeutics and vaccines. This review will consolidate mutations in different SARS-CoV-2 proteins and their implications on viral fitness.
Collapse
Affiliation(s)
| | - Sougata Niyogi
- Dinabandhu Andrews Institute of Technology and Management, Block-S, 1/406A, Patuli, Kolkata, West Bengal700094, India
| |
Collapse
|
226
|
Fung SY, Siu KL, Lin H, Yeung ML, Jin DY. SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. Int J Biol Sci 2021; 17:1547-1554. [PMID: 33907518 PMCID: PMC8071772 DOI: 10.7150/ijbs.59943] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Suppression of type I interferon (IFN) response is one pathological outcome of the infection of highly pathogenic human coronaviruses. To effect this, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 encode multiple IFN antagonists. In this study, we reported on the IFN antagonism of SARS-CoV-2 main protease NSP5. NSP5 proteins of both SARS-CoV and SARS-CoV-2 counteracted Sendai virus-induced IFN production. NSP5 variants G15S and K90R commonly seen in circulating strains of SARS-CoV-2 retained the IFN-antagonizing property. The suppressive effect of NSP5 on IFN-β gene transcription induced by RIG-I, MAVS, TBK1 and IKKϵ suggested that NSP5 likely acts at a step downstream of IRF3 phosphorylation in the cytoplasm. NSP5 did not influence steady-state expression or phosphorylation of IRF3, suggesting that IRF3, regardless of its phosphorylation state, might not be the substrate of NSP5 protease. However, nuclear translocation of phosphorylated IRF3 was severely compromised in NSP5-expressing cells. Taken together, our work revealed a new mechanism by which NSP5 proteins encoded by SARS-CoV and SARS-CoV-2 antagonize IFN production by retaining phosphorylated IRF3 in the cytoplasm. Our findings have implications in rational design and development of antiviral agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kam-Leung Siu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huayue Lin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Man Lung Yeung
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
227
|
Vrints CJM, Krychtiuk KA, Van Craenenbroeck EM, Segers VF, Price S, Heidbuchel H. Endothelialitis plays a central role in the pathophysiology of severe COVID-19 and its cardiovascular complications. Acta Cardiol 2021; 76:109-124. [PMID: 33208052 PMCID: PMC7682384 DOI: 10.1080/00015385.2020.1846921] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
This clinical review paper discusses the pathophysiology of the pulmonary and cardiovascular manifestations of a SARS-CoV-2 infection and the ensuing implications on acute cardiovascular care in patients presenting with a severe COVID-19 syndrome admitted to an intensive acute cardiac care unit. The high prevalence of old age, obesity, diabetes, hypertension, heart failure, and ischaemic heart disease in patients who develop a severe to critical COVID-19 syndrome suggests shared pathophysiological mechanisms. Pre-existing endothelial dysfunction and an impaired innate immune response promote the development by the viral infection of an acute endothelialitis in the pulmonary microcirculation complicated by abnormal vasoconstrictor responses, luminal plugging by inflammatory cells, and intravascular thrombosis. This endothelialitis extends into the systemic circulation what may lead to acute myocardial injury, myocarditis, and thromboembolic complications both in the arterial and venous circulation.
Collapse
Affiliation(s)
- Christiaan J. M. Vrints
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Konstantin A. Krychtiuk
- Department of Internal Medicine II - Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Vincent F. Segers
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Susanna Price
- Department of Cardiology and Department of Adult Critical Care, Royal Brompton Hospital, London, UK
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, Department GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| |
Collapse
|
228
|
Parker MD, Lindsey BB, Leary S, Gaudieri S, Chopra A, Wyles M, Angyal A, Green LR, Parsons P, Tucker RM, Brown R, Groves D, Johnson K, Carrilero L, Heffer J, Partridge DG, Evans C, Raza M, Keeley AJ, Smith N, Filipe ADS, Shepherd JG, Davis C, Bennett S, Sreenu VB, Kohl A, Aranday-Cortes E, Tong L, Nichols J, Thomson EC, Wang D, Mallal S, de Silva TI. Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data. Genome Res 2021; 31:645-658. [PMID: 33722935 PMCID: PMC8015849 DOI: 10.1101/gr.268110.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022]
Abstract
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
Collapse
Affiliation(s)
- Matthew D. Parker
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Benjamin B. Lindsey
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA;,School of Human Sciences, University of Western Australia, Crawley WA 6009, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Adrienn Angyal
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Luke R. Green
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Paul Parsons
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rachel M. Tucker
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Rebecca Brown
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Danielle Groves
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie Johnson
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Laura Carrilero
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Joe Heffer
- IT Services, The University of Sheffield, Sheffield S10 2FN, United Kingdom
| | - David G. Partridge
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Cariad Evans
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Mohammad Raza
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom
| | - Alexander J. Keeley
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Nikki Smith
- The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ana Da Silva Filipe
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - James G. Shepherd
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Chris Davis
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sahan Bennett
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Vattipally B. Sreenu
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Alain Kohl
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Elihu Aranday-Cortes
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Lily Tong
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jenna Nichols
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Emma C. Thomson
- Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom
| | | | - Dennis Wang
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom;,Sheffield Biomedical Research Centre, The University of Sheffield, Sheffield S10 2JF, United Kingdom;,Department of Computer Science, The University of Sheffield, Sheffield S1 4DP, United Kingdom
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch WA 6150, Western Australia, Australia;,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Thushan I. de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Department of Virology/Microbiology, Sheffield S10 2JF, United Kingdom;,The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
229
|
Mishra S, Bassi G, Nyomba BLG. Inter-proteomic posttranslational modifications of the SARS-CoV-2 and the host proteins ‒ A new frontier. Exp Biol Med (Maywood) 2021; 246:749-757. [PMID: 33467896 PMCID: PMC8719024 DOI: 10.1177/1535370220986785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Posttranslational modification of proteins, which include both the enzymatic alterations of protein side chains and main-chain peptide bond connectivity, is a fundamental regulatory process that is crucial for almost every aspects of cell biology, including the virus-host cell interaction and the SARS-CoV-2 infection. The posttranslational modification of proteins has primarily been studied in cells and tissues in an intra-proteomic context (where both substrates and enzymes are part of the same species). However, the inter-proteomic posttranslational modifications of most of the SARS-CoV-2 proteins by the host enzymes and vice versa are largely unexplored in virus pathogenesis and in the host immune response. It is now known that the structural spike (S) protein of the SARS-CoV-2 undergoes proteolytic priming by the host serine proteases for entry into the host cells, and N- and O-glycosylation by the host cell enzymes during virion packaging, which enable the virus to spread. New evidence suggests that both SARS-CoV-2 and the host proteins undergo inter-proteomic posttranslational modifications, which play roles in virus pathogenesis and infection-induced immune response by hijacking the host cell signaling. The purpose of this minireview is to bring attention of the scientific community to recent cutting-edge discoveries in this understudied area. It is likely that a better insight into the molecular mechanisms involved may open new research directions, and thereby contribute to novel therapeutic modality development against the SARS-CoV-2. Here we briefly discuss the rationale and touch upon some unanswered questions in this context, especially those that require attention from the scientific community.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Manitoba R3E 3P4, Canada
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Manitoba R3E 3P4, Canada
| | - Geetika Bassi
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Manitoba R3E 3P4, Canada
| | - BL Grégoire Nyomba
- Department of Internal Medicine, College of Medicine, Faculty of Health Sciences, University of Manitoba, Manitoba R3E 3P4, Canada
| |
Collapse
|
230
|
Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune system. Cell 2021; 184:1671-1692. [PMID: 33743212 PMCID: PMC7885626 DOI: 10.1016/j.cell.2021.02.029] [Citation(s) in RCA: 443] [Impact Index Per Article: 147.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
The introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the human population represents a tremendous medical and economic crisis. Innate immunity-as the first line of defense of our immune system-plays a central role in combating this novel virus. Here, we provide a conceptual framework for the interaction of the human innate immune system with SARS-CoV-2 to link the clinical observations with experimental findings that have been made during the first year of the pandemic. We review evidence that variability in innate immune system components among humans is a main contributor to the heterogeneous disease courses observed for coronavirus disease 2019 (COVID-19), the disease spectrum induced by SARS-CoV-2. A better understanding of the pathophysiological mechanisms observed for cells and soluble mediators involved in innate immunity is a prerequisite for the development of diagnostic markers and therapeutic strategies targeting COVID-19. However, this will also require additional studies addressing causality of events, which so far are lagging behind.
Collapse
Affiliation(s)
- Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.
| | - Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
231
|
Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, Sato K. Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Rep 2021; 34:108916. [PMID: 33765414 PMCID: PMC7953434 DOI: 10.1016/j.celrep.2021.108916] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Kristina Hopfensperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
232
|
Sposito B, Broggi A, Pandolfi L, Crotta S, Ferrarese R, Sisti S, Clementi N, Ambrosi A, Liu E, Frangipane V, Saracino L, Marongiu L, Facchini FA, Bottazzi A, Fossali T, Colombo R, Clementi M, Tagliabue E, Pontiroli AE, Meloni F, Wack A, Mancini N, Zanoni I. Severity of SARS-CoV-2 infection as a function of the interferon landscape across the respiratory tract of COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.30.437173. [PMID: 33821280 PMCID: PMC8020981 DOI: 10.1101/2021.03.30.437173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 outbreak driven by SARS-CoV-2 has caused more than 2.5 million deaths globally, with the most severe cases characterized by over-exuberant production of immune-mediators, the nature of which is not fully understood. Interferons of the type I (IFN-I) or type III (IFN-III) families are potent antivirals, but their role in COVID-19 remains debated. Our analysis of gene and protein expression along the respiratory tract shows that IFNs, especially IFN-III, are over-represented in the lower airways of patients with severe COVID-19, while high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity; also, IFN expression varies with abundance of the cell types that produce them. Our data point to a dynamic process of inter- and intra-family production of IFNs in COVID-19, and suggest that IFNs play opposing roles at distinct anatomical sites.
Collapse
Affiliation(s)
- Benedetta Sposito
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Achille Broggi
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
| | - Laura Pandolfi
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Roberto Ferrarese
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sofia Sisti
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Enju Liu
- Harvard Medical School, Boston Children’s Hospital, Division of Gastroenterology, Boston, US
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA, USA
| | - Vanessa Frangipane
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Laura Saracino
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Laura Marongiu
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Fabio A Facchini
- Dep. of Biotechnology and Biosciences and Ph.D. program in Molecular and Translational Medicine (DIMET), University of Milano - Bicocca, Milan, Italy
| | - Andrea Bottazzi
- Department of Anesthesia and Critical Care Medicine, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Tommaso Fossali
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Riccardo Colombo
- Division of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Massimo Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Federica Meloni
- Respiratory Disease Unit IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine and Pharmacology, University of Pavia, Pavia, Italy
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Hospital, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children’s Hospital, Division of Immunology, Boston, US
- Harvard Medical School, Boston Children’s Hospital, Division of Gastroenterology, Boston, US
| |
Collapse
|
233
|
Zhang Y, Gargan S, Lu Y, Stevenson NJ. An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses 2021; 13:560. [PMID: 33810391 PMCID: PMC8066579 DOI: 10.3390/v13040560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a large family of zoonotic RNA viruses, whose infection can lead to mild or lethal respiratory tract disease. Severe Acute Respiratory Syndrome-Coronavirus-1 (SARS-CoV-1) first emerged in Guangdong, China in 2002 and spread to 29 countries, infecting 8089 individuals and causing 774 deaths. In 2012, Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) emerged in Saudi Arabia and has spread to 27 countries, with a mortality rate of ~34%. In 2019, SARS-CoV-2 emerged and has spread to 220 countries, infecting over 100,000,000 people and causing more than 2,000,000 deaths to date. These three human coronaviruses cause diseases of varying severity. Most people develop mild, common cold-like symptoms, while some develop acute respiratory distress syndrome (ARDS). The success of all viruses, including coronaviruses, relies on their evolved abilities to evade and modulate the host anti-viral and pro-inflammatory immune responses. However, we still do not fully understand the transmission, phylogeny, epidemiology, and pathogenesis of MERS-CoV and SARS-CoV-1 and -2. Despite the rapid application of a range of therapies for SARS-CoV-2, such as convalescent plasma, remdesivir, hydroxychloroquine and type I interferon, no fully effective treatment has been determined. Remarkably, COVID-19 vaccine research and development have produced several offerings that are now been administered worldwide. Here, we summarise an up-to-date understanding of epidemiology, immunomodulation and ongoing anti-viral and immunosuppressive treatment strategies. Indeed, understanding the interplay between coronaviruses and the anti-viral immune response is crucial to identifying novel targets for therapeutic intervention, which may even prove invaluable for the control of future emerging coronavirus.
Collapse
Affiliation(s)
- Yamei Zhang
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland; (Y.Z.); (S.G.)
- Viral Immunology Group, Royal College of Surgeons in Ireland—Medical University of Bahrain, Adliya 15503, Bahrain
| |
Collapse
|
234
|
SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol 2021; 95:JVI.02415-20. [PMID: 33514628 PMCID: PMC8103705 DOI: 10.1128/jvi.02415-20] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to acute respiratory distress syndrome, and death in the most severe cases. Immune dysregulation with altered innate cytokine responses is thought to contribute to disease severity. Here, we characterized in depth host cell responses against SARS-CoV-2 in primary human airway epithelia (HAE) and immortalized cell lines. Our results demonstrate that primary HAE and model cells elicit a robust induction of type I and III interferons (IFNs). Importantly, we show for the first time that melanoma differentiation associated gene (MDA)-5 is the main sensor of SARS-CoV-2 in lung cells. IFN exposure strongly inhibited viral replication and de novo production of infectious virions. However, despite high levels of IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication in lung cells, contrary to what was previously reported in intestinal epithelial cells. Altogether, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.IMPORTANCE Mammalian cells express sensors able to detect specific features of pathogens and induce the interferon response, which is one of the first line of defenses against viruses and help controlling viral replication. The mechanisms and impact of SARS-CoV-2 sensing in lung epithelial cells remained to be deciphered. In this study, we report that despite a high production of type I and III interferons specifically induced by MDA-5-mediated sensing of SARS-CoV-2, primary and immortalized lung epithelial cells are unable to control viral replication. However, exogenous interferons potently inhibited replication, if provided early upon viral exposure. A better understanding of the ambiguous interplay between the interferon response and SARS-CoV-2 replication is essential to guide future therapeutical interventions.
Collapse
|
235
|
Lugito NPH. Is procalcitonin a part of human immunological response to SARS-CoV-2 infection or "just" a marker of bacterial coinfection? Curr Res Transl Med 2021; 69:103289. [PMID: 33845428 PMCID: PMC7988438 DOI: 10.1016/j.retram.2021.103289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/21/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Elevated PCT level in COVID-19 was associated with higher risk of severe disease and higher risk of overall mortality. An increased PCT level of PCT in COVID-19 patients especially in severe cases would be assumed as bacterial coinfection. Could PCT level increase in SARS-CoV-2 infection without bacterial coinfection? Several SARS-CoV-2 proteins activate STAT3-dependent transcriptional pathways particularly in monocytes, that could lead to increased PCT production. STAT3α isoform could cause increased ACE2 expression, resulting more SARS-CoV-2 infected cells and further production of PCT.
Collapse
Affiliation(s)
- Nata Pratama Hardjo Lugito
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman, Lippo Karawaci, Tangerang, Banten 15811, Indonesia.
| |
Collapse
|
236
|
Márquez S, Prado-Vivar B, Guadalupe JJ, Becerra-Wong M, Gutierrez B, Fernández-Cadena JC, Andrade-Molina D, Morey-Leon G, Moncayo M, Guevara R, Coloma J, Trueba G, Grunauer M, Barragán V, Rojas-Silva P, Cárdenas P. SARS-CoV-2 genome sequencing from COVID-19 in Ecuadorian patients: a whole country analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.19.21253620. [PMID: 33791722 PMCID: PMC8010754 DOI: 10.1101/2021.03.19.21253620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2, the etiological agent of COVID-19, was first described in Wuhan, China in December 2019 and has now spread globally. Ecuador was the second country in South America to confirm cases and Guayaquil was one of the first cities in the world to experience high mortality due to COVID-19. The aim of this study was to describe the lineages circulating throughout the country and to compare the mutations in local variants, to the reference strain. In this work we used the MinION platform (Oxford Nanopore Technologies) to sequence the whole SARS-CoV-2 genomes of 119 patients from all provinces of Ecuador, using the ARTIC network protocols. Our data from lineage assignment of the one hundred and nineteen whole genomes revealed twenty different lineages. All genomes presented differences in the S gene compared to the Wuhan reference strain, being the D614G amino acid replacement the most common change. The B.1.1.119 lineage was the most frequent and was found in several locations in the Coast and Andean region. Three sequences were assigned to the new B.1.1.7 lineage. Our work is an important contribution to the understanding of the epidemiology of SARS-CoV-2 in Ecuador and South America.
Collapse
Affiliation(s)
- Sully Márquez
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
| | - Belén Prado-Vivar
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
- Universidad San Francisco de Quito, Centro de Bioinformática
| | - Juan José Guadalupe
- Universidad San Francisco de Quito, COCIBA, Laboratorio de Biotecnología Vegetal
| | | | - Bernardo Gutierrez
- Universidad San Francisco de Quito, COCIBA, Laboratorio de Biotecnología Vegetal
- Departament of Zoology, University of Oxford
| | | | | | | | | | - Miguel Moncayo
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
| | - Rommel Guevara
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
| | | | - Gabriel Trueba
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
| | - Michelle Grunauer
- Universidad San Francisco de Quito, COCSA, Escuela de Medicina
- Unidad de Cuidados Intensivos, Hospital de los Valles, Quito
| | - Verónica Barragán
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
| | | | - Paúl Cárdenas
- Universidad San Francisco de Quito, COCIBA, Instituto de Microbiología
- Universidad San Francisco de Quito, Centro de Bioinformática
| |
Collapse
|
237
|
Iwasaki Y, Abe T, Ikemura T. Human cell-dependent, directional, time-dependent changes in the mono- and oligonucleotide compositions of SARS-CoV-2 genomes. BMC Microbiol 2021; 21:89. [PMID: 33757449 PMCID: PMC7987243 DOI: 10.1186/s12866-021-02158-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background When a virus that has grown in a nonhuman host starts an epidemic in the human population, human cells may not provide growth conditions ideal for the virus. Therefore, the invasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is usually prevalent in the bat population, into the human population is thought to have necessitated changes in the viral genome for efficient growth in the new environment. In the present study, to understand host-dependent changes in coronavirus genomes, we focused on the mono- and oligonucleotide compositions of SARS-CoV-2 genomes and investigated how these compositions changed time-dependently in the human cellular environment. We also compared the oligonucleotide compositions of SARS-CoV-2 and other coronaviruses prevalent in humans or bats to investigate the causes of changes in the host environment. Results Time-series analyses of changes in the nucleotide compositions of SARS-CoV-2 genomes revealed a group of mono- and oligonucleotides whose compositions changed in a common direction for all clades, even though viruses belonging to different clades should evolve independently. Interestingly, the compositions of these oligonucleotides changed towards those of coronaviruses that have been prevalent in humans for a long period and away from those of bat coronaviruses. Conclusions Clade-independent, time-dependent changes are thought to have biological significance and should relate to viral adaptation to a new host environment, providing important clues for understanding viral host adaptation mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02158-6.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Takashi Abe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan.
| |
Collapse
|
238
|
Schwarz T, Heiss K, Mahendran Y, Casilag F, Kurth F, Sander LE, Wendtner CM, Hoechstetter MA, Müller MA, Sekul R, Drosten C, Stadler V, Corman VM. SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Front Immunol 2021; 12:629185. [PMID: 33833755 PMCID: PMC8021850 DOI: 10.3389/fimmu.2021.629185] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS−CoV−2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies.
Collapse
Affiliation(s)
- Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | | | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens-Martin Wendtner
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Manuela A Hoechstetter
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians University (LMU), Munich, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, Associated Partner Charité, Berlin, Germany
| | | | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Centre for Infection Research, Associated Partner Charité, Berlin, Germany
| |
Collapse
|
239
|
Saksena N, Bonam SR, Miranda-Saksena M. Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Front Genet 2021; 12:581726. [PMID: 33828579 PMCID: PMC8019793 DOI: 10.3389/fgene.2021.581726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
In <20 years, we have witnessed three different epidemics with coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2 in human populations, causing widespread mortality. SARS-CoV-2, through its rapid global spread, has led to the pandemic that we call COVID-19. As of February 1, 2021, the global infections linked to SARS-CoV-2 stand at 103,503,340, with 2,236,960 deaths, and 75,108,099 recoveries. This review attempts to highlight host-pathogen interaction with particular emphasis on the role of epigenetic machinery in regulating the disease. Although researchers, since the start of the pandemic, have been intensely engaged in diverse areas to understand the mechanisms involved in SARS-CoV-2 infection to find answers that can bring about innovative ways to swiftly treat and prevent disease progression, this review provides an overview on how the host epigenetics is modulated and subverted by SARS-CoV-2 to enter the host cells and drive immunopathogenesis. Epigenetics is the study that combines genetic and non-genetic factors controlling phenotypic variation, which are primarily a consequence of external and environmental stimuli. These stimuli alter the activity of a gene without impinging on the DNA code. In viral-host interactions, DNA/RNA methylation, non-coding RNAs, chromatin remodeling, and histone modifications are known to regulate and modulate host gene expression patterns. Viruses such as Coronaviruses (an RNA virus) show intrinsic association with these processes. They have evolved the ability to tamper with host epigenetic machinery to interfere with immune sensing pathways to evade host immune response, thereby enhancing its replication and pathogenesis post-entry. These epigenetic alterations allow the virus to weaken the host's immune response to successfully spread infection. How this occurs, and what epigenetic mechanisms are altered is poorly understood both for coronaviruses and other respiratory RNA viruses. The review highlights several cutting-edge aspects of epigenetic work primarily pertinent to SARS-CoV-2, which has been published between 2019 and 2020 to showcase the current knowledge both in terms of success and failures and take lessons that will assist us in understanding the disease to develop better treatments suited to kill SARS-CoV-2.
Collapse
Affiliation(s)
- Nitin Saksena
- EPIGENES Australia Pty Ltd, Melbourne, VIC, Australia
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immuno-pathologie et Immuno-intervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Monica Miranda-Saksena
- Herpes Neuropathogenesis Research Group, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
240
|
Belizário J. Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines. Braz J Med Biol Res 2021; 54:e10725. [PMID: 33729394 PMCID: PMC7959154 DOI: 10.1590/1414-431x202010725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
Phylogenetic and pathogenesis studies of the severe acute respiratory syndrome-related coronaviruses (SARS-CoVs) strains have highlighted some specific mutations that could confer the RNA genome fitness advantages and immunological resistance for their rapid spread in the human population. The analyses of 30 kb RNA SARS-CoVs genome sequences, protein structures, and functions have provided us a perspective of how host-virus protein-protein complexes act to mediate virus infection. The open reading frame (ORF)1a and ORF1b translation yields 16 non-structural (nsp1-16) and 6 accessory proteins (p6, p7a, p8ab, p9b) with multiple functional domains. Viral proteins recruit over 300 host partners forming hetero-oligomeric complexes enabling the viral RNA synthesis, packing, and virion release. Many cellular host factors and the innate immune cells through pattern-recognition receptors and intracellular RNA sensor molecules act to inhibit virus entry and intracellular replication. However, non-structural ORF proteins hijack them and suppress interferon synthesis and its antiviral effects. Pro-inflammatory chemokines and cytokines storm leads to dysfunctional inflammation, lung injury, and several clinical symptoms in patients. During the global pandemic, COVID-19 patients were identified with non-synonymous substitution of G614D in the spike protein, indicating virus co-evolution in host cells. We review findings that suggest that host RNA editing and DNA repair systems, while carrying on recombination, mutation, and repair of viral RNA intermediates, may facilitate virus evolution. Understanding how the host cell RNA replication process may be driven by SARS-CoV-2 RNA genome fitness will help the testing of vaccines effectiveness to multiple independent mutated coronavirus strains that will emerge.
Collapse
Affiliation(s)
- J.E. Belizário
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
241
|
Nemudryi A, Nemudraia A, Wiegand T, Nichols J, Snyder DT, Hedges JF, Cicha C, Lee H, Vanderwood KK, Bimczok D, Jutila M, Wiedenheft B. SARS-CoV-2 genomic surveillance identifies naturally occurring truncations of ORF7a that limit immune suppression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.02.22.21252253. [PMID: 33655280 PMCID: PMC7924305 DOI: 10.1101/2021.02.22.21252253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over 200,000 whole genome sequences of SARS-CoV-2 have been determined for viruses isolated from around the world. These sequences have been critical for understanding the spread and evolution of SARS-CoV-2. Using global phylogenomics, we show that mutations frequently occur in the C-terminal end of ORF7a. We have isolated one of these mutant viruses from a patient sample and used viral challenge experiments to demonstrate that Δ115 mutation results in a growth defect. ORF7a has been implicated in immune modulation, and we show that the C-terminal truncation results in distinct changes in interferon stimulated gene expression. Collectively, this work indicates that ORF7a mutations occur frequently and that these changes affect viral mechanisms responsible for suppressing the immune response.
Collapse
Affiliation(s)
- Artem Nemudryi
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Twitter: @artemnemudryi
- Lead contact
| | - Anna Nemudraia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Tanner Wiegand
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Nichols
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Deann T Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jodi F Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Calvin Cicha
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Helen Lee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Mark Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Twitter: @WiedenheftLab
| |
Collapse
|
242
|
Dobrindt K, Hoagland DA, Seah C, Kassim B, O'Shea CP, Murphy A, Iskhakova M, Fernando MB, Powell SK, Deans PJM, Javidfar B, Peter C, Møller R, Uhl SA, Garcia MF, Kimura M, Iwasawa K, Crary JF, Kotton DN, Takebe T, Huckins LM, tenOever BR, Akbarian S, Brennand KJ. Common Genetic Variation in Humans Impacts In Vitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports 2021; 16:505-518. [PMID: 33636110 PMCID: PMC7881728 DOI: 10.1016/j.stemcr.2021.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
The host response to SARS-CoV-2, the etiologic agent of the COVID-19 pandemic, demonstrates significant interindividual variability. In addition to showing more disease in males, the elderly, and individuals with underlying comorbidities, SARS-CoV-2 can seemingly afflict healthy individuals with profound clinical complications. We hypothesize that, in addition to viral load and host antibody repertoire, host genetic variants influence vulnerability to infection. Here we apply human induced pluripotent stem cell (hiPSC)-based models and CRISPR engineering to explore the host genetics of SARS-CoV-2. We demonstrate that a single-nucleotide polymorphism (rs4702), common in the population and located in the 3' UTR of the protease FURIN, influences alveolar and neuron infection by SARS-CoV-2 in vitro. Thus, we provide a proof-of-principle finding that common genetic variation can have an impact on viral infection and thus contribute to clinical heterogeneity in COVID-19. Ongoing genetic studies will help to identify high-risk individuals, predict clinical complications, and facilitate the discovery of drugs.
Collapse
Affiliation(s)
- Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daisy A Hoagland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carina Seah
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bibi Kassim
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Callan P O'Shea
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aleta Murphy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marina Iskhakova
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B Fernando
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samuel K Powell
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P J Michael Deans
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ben Javidfar
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cyril Peter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rasmus Møller
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Skyler A Uhl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meilin Fernandez Garcia
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Center for Stem Cell and Organoid Medicine (CuSTOM), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Center for Stem Cell and Organoid Medicine (CuSTOM), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John F Crary
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Center for Stem Cell and Organoid Medicine (CuSTOM), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
243
|
Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Pharmacotherapeutics of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2021; 16:12-37. [PMID: 33403500 PMCID: PMC7785334 DOI: 10.1007/s11481-020-09968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Pb, India
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | | | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - St Patrick M Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and the Institute of Health and Biomedical Innovation, Queensland University of Technology and the Translational Research Institute, Brisbane, Australia
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
244
|
Padhan K, Parvez MK, Al-Dosari MS. Comparative sequence analysis of SARS-CoV-2 suggests its high transmissibility and pathogenicity. Future Virol 2021. [PMCID: PMC7938774 DOI: 10.2217/fvl-2020-0204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: Because the highly pathogenic SARS-CoV-2 is newly introduced to humans, we aimed to understand the unique features of its genome and proteins, crucial for high transmissibility and disease severity. Materials & methods: The available genome and protein sequences of SARS-CoV-2 with known human and nonhuman CoV were analyzed using multiple sequence alignment programs. Results: Our analysis revealed some unique mutations in SARS-CoV-2 spike, ORF1a/b, ORF3a/3b and ORF8. The most interesting ones were in the spike angiotensin-converting enzyme 2 receptor binding-motif and generation of a furin-like cleavage site as well as deletions of ORF3a ‘diacidic motif’ and the entire ORF3b. Conclusion: Our data suggest that SARS-CoV-2 has diverged from SARS-CoV-1 but is most close to bat-SL-CoV. Unique mutations in spike and ORF3a/b proteins strongly endorse its adaptive evolution, enhanced infectivity and severe pathogenesis in humans.
Collapse
Affiliation(s)
- Kartika Padhan
- Center for Advanced Tissue Imaging, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
245
|
MacLean OA, Lytras S, Weaver S, Singer JB, Boni MF, Lemey P, Kosakovsky Pond SL, Robertson DL. Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biol 2021; 19:e3001115. [PMID: 33711012 PMCID: PMC7990310 DOI: 10.1371/journal.pbio.3001115] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Virus host shifts are generally associated with novel adaptations to exploit the cells of the new host species optimally. Surprisingly, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has apparently required little to no significant adaptation to humans since the start of the Coronavirus Disease 2019 (COVID-19) pandemic and to October 2020. Here we assess the types of natural selection taking place in Sarbecoviruses in horseshoe bats versus the early SARS-CoV-2 evolution in humans. While there is moderate evidence of diversifying positive selection in SARS-CoV-2 in humans, it is limited to the early phase of the pandemic, and purifying selection is much weaker in SARS-CoV-2 than in related bat Sarbecoviruses. In contrast, our analysis detects evidence for significant positive episodic diversifying selection acting at the base of the bat virus lineage SARS-CoV-2 emerged from, accompanied by an adaptive depletion in CpG composition presumed to be linked to the action of antiviral mechanisms in these ancestral bat hosts. The closest bat virus to SARS-CoV-2, RmYN02 (sharing an ancestor about 1976), is a recombinant with a structure that includes differential CpG content in Spike; clear evidence of coinfection and evolution in bats without involvement of other species. While an undiscovered "facilitating" intermediate species cannot be discounted, collectively, our results support the progenitor of SARS-CoV-2 being capable of efficient human-human transmission as a consequence of its adaptive evolutionary history in bats, not humans, which created a relatively generalist virus.
Collapse
Affiliation(s)
- Oscar A. MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Steven Weaver
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Maciej F. Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sergei L. Kosakovsky Pond
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, Pennsylvania, United States of America
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
246
|
Kumar A, Prasoon P, Kumari C, Pareek V, Faiq MA, Narayan RK, Kulandhasamy M, Kant K. SARS-CoV-2-specific virulence factors in COVID-19. J Med Virol 2021; 93:1343-1350. [PMID: 33085084 DOI: 10.1002/jmv.26615] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
The paucity of knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific virulence factors has greatly hampered the therapeutic management of patients with coronavirus disease 2019 (COVID-19). Recently, a cluster of studies appeared, which presented empirical evidence for SARS-CoV-2-specific virulence factors that can explain key elements of COVID-19 pathology. These studies unravel multiple structural and nonstructural specifics of SARS-CoV-2, such as a unique FURIN cleavage site, papain-like protease (SCoV2-PLpro), ORF3b and nonstructural proteins, and dynamic conformational changes in the structure of spike protein during host cell fusion, which give it an edge in infectivity and virulence over previous coronaviruses causing pandemics. Investigators provided robust evidence that SARS-CoV-2-specific virulence factors may have an impact on viral infectivity and transmissibility and disease severity as well as the development of immunity against the infection, including response to the vaccines. In this article, we are presenting a summarized account of the newly reported studies.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- National Brain Research Center, Manesar, Haryana, India
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- New York University (NYU) Langone Health Center, NYU Robert I Grossman School of Medicine, New York, New York, USA
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
247
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
248
|
Trevisan M, Riccetti S, Sinigaglia A, Barzon L. SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. Int J Mol Sci 2021; 22:ijms22052356. [PMID: 33652988 PMCID: PMC7956599 DOI: 10.3390/ijms22052356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.
Collapse
|
249
|
Tomić S, Đokić J, Stevanović D, Ilić N, Gruden-Movsesijan A, Dinić M, Radojević D, Bekić M, Mitrović N, Tomašević R, Mikić D, Stojanović D, Čolić M. Reduced Expression of Autophagy Markers and Expansion of Myeloid-Derived Suppressor Cells Correlate With Poor T Cell Response in Severe COVID-19 Patients. Front Immunol 2021; 12:614599. [PMID: 33692788 PMCID: PMC7937809 DOI: 10.3389/fimmu.2021.614599] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Widespread coronavirus disease (COVID)-19 is causing pneumonia, respiratory and multiorgan failure in susceptible individuals. Dysregulated immune response marks severe COVID-19, but the immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, which is hampering the development of efficient treatments. Here we analyzed ~140 parameters of cellular and humoral immune response in peripheral blood of 41 COVID-19 patients and 16 age/gender-matched healthy donors by flow-cytometry, quantitative PCR, western blot and ELISA, followed by integrated correlation analyses with ~30 common clinical and laboratory parameters. We found that lymphocytopenia in severe COVID-19 patients (n=20) strongly affects T, NK and NKT cells, but not B cells and antibody production. Unlike increased activation of ICOS-1+ CD4+ T cells in mild COVID-19 patients (n=21), T cells in severe patients showed impaired activation, low IFN-γ production and high functional exhaustion, which correlated with significantly down-regulated HLA-DR expression in monocytes, dendritic cells and B cells. The latter phenomenon was followed by lower interferon responsive factor (IRF)-8 and autophagy-related genes expressions, and the expansion of myeloid derived suppressor cells (MDSC). Intriguingly, PD-L1-, ILT-3-, and IDO-1-expressing monocytic MDSC were the dominant producers of IL-6 and IL-10, which correlated with the increased inflammation and accumulation of regulatory B and T cell subsets in severe COVID-19 patients. Overall, down-regulated IRF-8 and autophagy-related genes expression, and the expansion of MDSC subsets could play critical roles in dysregulating T cell response in COVID-19, which could have large implications in diagnostics and design of novel therapeutics for this disease.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dejan Stevanović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dušan Radojević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Nebojša Mitrović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ratko Tomašević
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Mikić
- Clinics for Infectious and Tropical Diseases, Military Medical Academy, Belgrade, Serbia
| | - Dragoš Stojanović
- Clinical Hospital Center Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Department for Medical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
250
|
Ziegler CGK, Miao VN, Owings AH, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, George M, Drake RS, Christian T, Parker A, Sindel CB, Burger MW, Pride Y, Hasan M, Abraham GE, Senitko M, Robinson TO, Shalek AK, Glover SC, Horwitz BH, Ordovas-Montanes J. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.20.431155. [PMID: 33619488 PMCID: PMC7899452 DOI: 10.1101/2021.02.20.431155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ "hillock"-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.
Collapse
Affiliation(s)
- Carly G. K. Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vincent N. Miao
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna H. Owings
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Andrew W. Navia
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Microbiology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Lotfy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Meredith Sloan
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hannah Laird
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Haley B. Williams
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Micayla George
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Riley S. Drake
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Taylor Christian
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Adam Parker
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Campbell B. Sindel
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Molly W. Burger
- Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yilianys Pride
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mohammad Hasan
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - George E. Abraham
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tanya O. Robinson
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alex K. Shalek
- Program in Health Sciences & Technology, Harvard Medical School & MIT, Boston, MA 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sarah C. Glover
- Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bruce H. Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|