1
|
Cano-Manuel A, Granados JE, Álvarez-García G, Huertas-López A, Diezma-Díaz C, Cano-Manuel FJ, Ortega-Mora LM, Fandos P, Mentaberre G, López-Olvera JR, Martínez-Carrasco C. Seronegativity of Iberian ibex (Capra pyrenaica) against Toxoplasma gondii and Neospora caninum is consistent with eco-epidemiological and environmental features in Mediterranean mountainous areas. Res Vet Sci 2025; 184:105530. [PMID: 39798541 DOI: 10.1016/j.rvsc.2025.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Knowledge of pathogen epidemiological dynamics and habitat ecological features is essential for wildlife population and health monitoring and management. Toxoplasma gondii and Neospora caninum are two broadly distributed multi-host parasites that affect both wild and domestic animals and, in the case of T. gondii, cause zoonosis. This study reports the seroprevalence of both parasites in Iberian ibex (Capra pyrenaica), a mountain wild ruminant native to the Iberian Peninsula, from the Natural Space of Sierra Nevada (NSSN) in southeastern Spain. Serum from 146 Iberian ibexes were analysed using two in-house ELISA techniques. The positive and doubtful sera were further checked by Western Blot (WB). Seventeen ibexes (11.6 %; 95 % confidence interval 6.4-16.7) were positive for T. gondii and seven (4.8 %; 95 % confidence interval 1.3-8.2) for N. caninum. However, no sera were positive to T. gondii nor to N. caninum by WB. Using at least two different serological techniques is recommended when they are not validated for the target host species. The NSSN is a hypoendemic area for T. gondii and N. caninum, probably determined by the reduced abundance and restricted distribution of their definitive hosts. This would explain the hypoendemic situation in the NSSN and the lack of specific antibodies against these two parasites in the Iberian ibex population. This eco-epidemiological scenario can be challenged by climate and anthropogenic changes, recommending long-term monitoring Iberian ibex population and health, both as a conservation measure for the species and as an indicator of the potential impact of global change on high mountain ecosystems.
Collapse
Affiliation(s)
- Alejandro Cano-Manuel
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - José Enrique Granados
- Research group RNM118 (Especies cinegéticas y plagas) and Parque Nacional y Parque Natural Sierra Nevada, Carretera Antigua Sierra Nevada km 7, 18071 Pinos Genil (Granada), Spain
| | - Gema Álvarez-García
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Huertas-López
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain; Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Diezma-Díaz
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Javier Cano-Manuel
- Research group RNM118 (Especies cinegéticas y plagas) and Parque Nacional y Parque Natural Sierra Nevada, Carretera Antigua Sierra Nevada km 7, 18071 Pinos Genil (Granada), Spain
| | - Luis Miguel Ortega-Mora
- Grupo SALUVET, Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Gregorio Mentaberre
- Wildlife Ecology & Health group (WE&H) and Departament de Ciència Animal, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Jorge Ramón López-Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS) and Wildlife Ecology & Health group (WE&H), Departament de Medicina i Cirurgia Animals, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Carlos Martínez-Carrasco
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
2
|
Leopardi S, Dacheux L, Serra-Cobo J, Ábrahám Á, Bajić B, Bourhy H, Bücs SL, Budinski I, Castellan M, Drzewniokova P, Dundarova H, Festa F, Kergoat L, Leuchtmann M, López-Roig M, Pontier D, Priore MF, Robardet E, Scaravelli D, Zecchin B, Lanszki Z, Görföl T, Kemenesi G, De Benedictis P. European distribution and intramuscular pathogenicity of divergent lyssaviruses West Caucasian bat virus and Lleida bat lyssavirus. iScience 2025; 28:111738. [PMID: 39898037 PMCID: PMC11787528 DOI: 10.1016/j.isci.2024.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Among lyssaviruses, West Caucasian bat virus (WCBV) and Lleida bat lyssavirus (LLEBV) raise concern as their divergence from rabies virus leads to the inefficacy of available prophylactic agents. Both viruses were described in the bat Miniopterus schreibersii. We investigated the European distribution of WCBV and LLEBV by screening sera from Miniopterus schreibersii across eight countries, finding widespread serological evidence and positivity up to 70%. We evaluated the intramuscular lethality of wild type isolates in Syrian hamsters. WCBV induced 100% lethality and a clinical disease compatible with furious rabies. All animals infected with LLEBV remained healthy for 40 days, despite one individual testing positive in the brain. We confirmed LLEBV's intramuscular a-pathogenicity using mice. Infected hamsters developed antibodies by day seven, regardless the virus and the clinical outcome. This study highlights the widespread circulation of WCBV and LLEBV in Europe and suggests differences in neuro-invasiveness and/or pathogenesis that are crucial for risk assessment.
Collapse
Affiliation(s)
- Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Laurent Dacheux
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
- Unit Environment and Infectious Risks, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Ágota Ábrahám
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Branka Bajić
- Department of Genetic Research, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hervé Bourhy
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
| | | | - Ivana Budinski
- Department of Genetic Research, Institute for Biological Research “Siniša Stanković” – National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Martina Castellan
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Petra Drzewniokova
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Francesca Festa
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
- Department of Biology and Biotechnology "Charles Darwin", University of Rome "La Sapienza", Roma, Italy
| | - Lauriane Kergoat
- Unit Lyssavirus, Epidemiology and Neuropathology, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Maxime Leuchtmann
- Nature Environnement 17, Surgères, France
- France Nature Environnement Nouvelle-Aquitaine, Angoulême, France
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Dominique Pontier
- CNRS Laboratoire de Biométrie et Biologie Évolutive UMR5558, Université de Lyon Université, Lyon, France
- LabEx ECOFECT Ecoevolutionary Dynamics of Infectious Diseases, Université de Lyon, Lyon, France
| | - Maria Francesca Priore
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Emmanuelle Robardet
- Anses, Nancy Laboratory for Rabies and Wildlife, EURL for Rabies, ANSES, Malzéville Cedex, France
| | | | - Barbara Zecchin
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| |
Collapse
|
3
|
Nyamota R, Middlebrook EA, Abkallo HM, Akoko J, Gakuya F, Wambua L, Ronoh B, Lekolool I, Mwatondo A, Muturi M, Bett B, Fair JM, Bartlow AW. The Bacterial and pathogenic landscape of African buffalo (Syncerus caffer) whole blood and serum from Kenya. Anim Microbiome 2025; 7:6. [PMID: 39800778 PMCID: PMC11725222 DOI: 10.1186/s42523-024-00374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance. This study investigated the blood microbiome of clinically healthy wild buffaloes in Kenya to determine its applicability in agnostic testing for bacteria in apparently healthy wild animals. METHODS Whole blood and serum samples were collected from 46 wild African buffalos from Meru National Park (30), Buffalo Springs (6) and Shaba (10) National Reserves in upper eastern Kenya. Total deoxyribonucleic acid (DNA) was extracted from these samples and subjected to amplicon-based sequencing targeting the 16 S rRNA gene. The bacteria operational taxonomic units (OTU) were identified to species levels by mapping the generated V12 and V45 regions of 16 S rRNA gene to the SILVA database. These OTU tables were used to infer the microbial abundance in each sample type and at the individual animal level. The sequences for the corresponding OTUs were also used to generate phylogenetic trees and thus infer evolution for the OTUs of interest. RESULTS Here, we demonstrate that buffaloes harbor many bacteria in their blood. We also report a diversity of 16 S rRNA gene sequences for Anaplasma and Mycoplasma from individual animals. By sequencing both whole blood and serum in triplicate for each animal, we provide evidence of the differences in detecting bacteria in both sample types. CONCLUSIONS Diverse bacteria, including some potential pathogens, can be found in the blood of clinically healthy wild African buffalo. Agnostic surveillance for such pathogens can be achieved through blood microbiome sequencing. However, considerations for the question being asked for the blood microbiome in wildlife will impact the choice for using whole blood or serum for sequencing.
Collapse
Affiliation(s)
- Richard Nyamota
- International Livestock Research Institute, Nairobi, Kenya.
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Earl A Middlebrook
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| | | | - James Akoko
- International Livestock Research Institute, Nairobi, Kenya
| | - Francis Gakuya
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Lillian Wambua
- World Organization for Animal Health, Sub-Regional Representation for Eastern Africa, Nairobi, Kenya
| | | | | | - Athman Mwatondo
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Medical Microbiology and Immunology, Faculty of Health, University of Nairobi, Nairobi, Kenya
| | - Mathew Muturi
- International Livestock Research Institute, Nairobi, Kenya
- Zoonotic Disease Unit, Nairobi, Kenya
- Department of Veterinary Medicine, Dahlem Research School of Biomedical Sciences (DRS), Freie Universität Berlin, Berlin, Germany
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - Jeanne M Fair
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| | - Andrew W Bartlow
- Genomics & Bioanalytics, Los Alamos National Laboratory, Los Alamos, NM, 87506, USA
| |
Collapse
|
4
|
Villalobos-Segura MDC, Rico-Chávez O, Suzán G, Chaves A. Influence of Host and Landscape-Associated Factors in the Infection and Transmission of Pathogens: The Case of Directly Transmitted Virus in Mammals. Vet Med Sci 2025; 11:e70160. [PMID: 39692054 DOI: 10.1002/vms3.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Among pathogens associated with mammals, numerous viruses with a direct transmission route impact human, domestic and wild species health. Host and landscape factors affect viral infection and transmission dynamics of these viruses, along with barriers to host dispersal and gene exchange. However, studies show biases toward certain locations, hosts and detected pathogens, with regional variations in similar host-virus associations. METHODS Using a systematic review, in two electronic repositories for articles published until December 2022, we analysed the available information on host- and landscape-associated factors influencing the infection and transmission of directly transmitted viruses in mammals. RESULTS In the analysis, about 50% of papers examined either host traits, landscape composition or configuration measures, while approximately 24% combined host and landscape-associated factors. Additionally, approximately 17% of the articles included climatic data and 30% integrated factors related to anthropogenic impact, as these variables have a role in host density, distribution and virus persistence. The most significant and frequent host traits used as predictor variables were sex, age, body weight, host density and species identity. Land cover was the most evaluated landscape attribute, while some explored configuration variables like edge density and fragmentation indexes. Finally, temperature, precipitation and features such as human population density and human footprint index were also typically measured and found impactful. CONCLUSION Given the many contributions host- and landscape-related factors have in pathogen dynamics, this systematic study contributes to a better knowledge of host-virus dynamics and the identification of variables and gaps that can be used for disease prevention.
Collapse
Affiliation(s)
- María Del Carmen Villalobos-Segura
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Chaves
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Clancey E, Nuismer S, Seifert S. Using serosurveys to optimize surveillance for zoonotic pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581274. [PMID: 38562792 PMCID: PMC10983876 DOI: 10.1101/2024.02.22.581274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Thus, we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive pathogens by predicting time windows of peak prevalence. Using simulated data sets, we show that our methodology reliably identifies times when pathogen prevalence is expected to peak. Then, we demonstrate an implementation of our method using publicly available data from two putative Ebolavirus reservoirs, straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus). We envision our method being used to guide the planning of field sampling to maximize the probability of detecting active infections, and in cases when longitudinal data is available, our method can also yield predictions for the times of year that are most likely to produce future spillover events. The generality and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where seasonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence.
Collapse
Affiliation(s)
- E. Clancey
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| | - S.L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - S.N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
7
|
Michalska-Smith M, Clements E, Rasmussen E, Culhane MR, Craft ME. Location, Age, and Antibodies Predict Avian Influenza Virus Shedding in Ring-Billed and Franklin's Gulls in Minnesota. Animals (Basel) 2024; 14:2781. [PMID: 39409730 PMCID: PMC11475586 DOI: 10.3390/ani14192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Influenza A virus (IAV) is a multi-host pathogen maintained in water birds and capable of spillover into humans, wildlife, and livestock. Prior research has focused on dabbling ducks as a known IAV reservoir species, yet our understanding of influenza dynamics in other water birds, including gulls, is lacking. Here, we quantify morphological and environmental drivers of serological (antibody detection by ELISA) and virological (viral RNA detection by PCR) prevalence in two gull species: ring-billed (Larus delawarensis) and Franklin's (Leucophaeus pipixcan) gulls. Across 12 months and 10 locations, we tested over 1500 gulls for influenza viral RNA, and additionally tested antibody levels in nearly 1000 of these. We find substantial virus prevalence and a large, nonoverlapping seroprevalence, with significant differences across age and species classifications. The body condition index had minimal explanatory power to predict (sero)positivity, and the effect of the surrounding environment was idiosyncratic. Our results hint at a nontrivial relationship between virus and seropositivity, highlighting serological surveillance as a valuable counterpoint to PCR. By providing indication of both past infections and susceptibility to future infections, serosurveillance can help inform the distribution of limited resources to maximize surveillance effectiveness for a disease of high human, wildlife, and livestock concern.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; (M.M.-S.); (M.E.C.)
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Eva Clements
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Elizabeth Rasmussen
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; (M.M.-S.); (M.E.C.)
| |
Collapse
|
8
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
9
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
10
|
Rojas A, Germitsch N, Oren S, Sazmand A, Deak G. Wildlife parasitology: sample collection and processing, diagnostic constraints, and methodological challenges in terrestrial carnivores. Parasit Vectors 2024; 17:127. [PMID: 38481271 PMCID: PMC10938792 DOI: 10.1186/s13071-024-06226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Wild terrestrial carnivores play a crucial role as reservoir, maintenance, and spillover hosts for a wide parasite variety. They may harbor, shed, and transmit zoonotic parasites and parasites of veterinary importance for domestic hosts. Although wild carnivores are globally distributed and comprise many different species, some living in close proximity to human settlements, only a few studies have investigated parasites of wild terrestrial carnivores using non-specific techniques. Access to samples of wild carnivores may be challenging as some species are protected, and others are secretive, possibly explaining the data paucity. Considering the importance of wild carnivores' health and ecological role, combined with the lack of specific diagnostic methodologies, this review aims to offer an overview of the diagnostic methods for parasite investigation in wild terrestrial carnivores, providing the precise techniques for collection and analysis of fecal, blood, and tissue samples, the environmental impact on said samples, and the limitations researchers currently face in analyzing samples of wild terrestrial carnivores. In addition, this paper offers some crucial information on how different environmental factors affect parasite detection postmortem and how insects can be used to estimate the time of death with a specific highlight on insect larvae. The paper contains a literature review of available procedures and emphasizes the need for diagnostic method standardization in wild terrestrial carnivores.
Collapse
Affiliation(s)
- Alicia Rojas
- Laboratory of Helminthology, Faculty of Microbiology, University of Costa Rica, San José, 11501-2060, Costa Rica.
- Centro de Investigación en Enfermedades Tropicales, University of Costa Rica, San José, 11501-2060, Costa Rica.
| | - Nina Germitsch
- Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PEI, C1A 4P3, Canada.
| | - Stephanie Oren
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, 6517658978, Iran.
| | - Georgiana Deak
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca, Romania.
| |
Collapse
|
11
|
Lamb JS, Tornos J, Lejeune M, Boulinier T. Rapid loss of maternal immunity and increase in environmentally mediated antibody generation in urban gulls. Sci Rep 2024; 14:4357. [PMID: 38388645 PMCID: PMC10884025 DOI: 10.1038/s41598-024-54796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Monitoring pathogen circulation in wildlife sentinel populations can help to understand and predict the spread of disease at the wildlife-livestock-human interface. Immobile young provide a useful target population for disease surveillance, since they can be easily captured for sampling and their levels of antibodies against infectious agents can provide an index of localized circulation. However, early-life immune responses include both maternally-derived antibodies and antibodies resulting from exposure to pathogens, and disentangling these two processes requires understanding their individual dynamics. We conducted an egg-swapping experiment in an urban-nesting sentinel seabird, the yellow-legged gull, and measured antibody levels against three pathogens of interest (avian influenza virus AIV, Toxoplasma gondii TOX, and infectious bronchitis virus IBV) across various life stages, throughout chick growth, and between nestlings raised by biological or non-biological parents. We found that levels of background circulation differed among pathogens, with AIV antibodies widely present across all life stages, TOX antibodies rarer, and IBV antibodies absent. Antibody titers declined steadily from adult through egg, nestling, and chick stages. For the two circulating pathogens, maternal antibodies declined exponentially after hatching at similar rates, but the rate of linear increase due to environmental exposure was significantly higher in the more prevalent pathogen (AIV). Differences in nestling antibody levels due to parental effects also persisted longer for AIV (25 days, vs. 14 days for TOX). Our results suggest that yellow-legged gulls can be a useful sentinel population of locally transmitted infectious agents, provided that chicks are sampled at ages when environmental exposure outweighs maternal effects.
Collapse
Affiliation(s)
- Juliet S Lamb
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France.
- The Nature Conservancy, Cold Spring Harbor, NY, USA.
| | - Jérémy Tornos
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Mathilde Lejeune
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| | - Thierry Boulinier
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE), UMR CNRS 5175, University of Montpellier, EPHE, University Paul Valéry Montpellier 3, IRD, Montpellier, France
| |
Collapse
|
12
|
Hidalgo-Hermoso E, Verasay Caviedes S, Pizarro-Lucero J, Cabello J, Vicencio R, Celis S, Ortiz C, Kemec I, Abuhadba-Mediano N, Asencio R, Vera F, Valencia C, Lagos R, Moreira-Arce D, Salinas F, Ramirez-Toloza G, Muñoz-Quijano R, Neira V, Salgado R, Abalos P, Parra B, Cárdenas-Cáceres S, Muena NA, Tischler ND, Del Pozo I, Aduriz G, Esperon F, Muñoz-Leal S, Aravena P, Alegría-Morán R, Cuadrado-Matías R, Ruiz-Fons F. High Exposure to Livestock Pathogens in Southern Pudu ( Pudu puda) from Chile. Animals (Basel) 2024; 14:526. [PMID: 38396494 PMCID: PMC10886221 DOI: 10.3390/ani14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
A significant gap in exposure data for most livestock and zoonotic pathogens is common for several Latin America deer species. This study examined the seroprevalence against 13 pathogens in 164 wild and captive southern pudu from Chile between 2011 and 2023. Livestock and zoonotic pathogen antibodies were detected in 22 of 109 wild pudus (20.18%; 95% CI: 13.34-29.18) and 17 of 55 captive pudus (30.91%; 95% CI: 19.52-44.96), including five Leptospira interrogans serovars (15.38% and 10.71%), Toxoplasma gondii (8.57% and 37.50%), Chlamydia abortus (3.03% and 12.82%), Neospora caninum (0.00% and 9.52%), and Pestivirus (8.00% and 6.67%). Risk factors were detected for Leptospira spp., showing that fawn pudu have statistically significantly higher risk of positivity than adults. In the case of T. gondii, pudu living in "free-range" have a lower risk of being positive for this parasite. In under-human-care pudu, a Pestivirus outbreak is the most strongly suspected as the cause of abortions in a zoo in the past. This study presents the first evidence of Chlamydia abortus in wildlife in South America and exposure to T. gondii, L. interrogans, and N. caninum in wild ungulate species in Chile. High seroprevalence of livestock pathogens such as Pestivirus and Leptospira Hardjo in wild animals suggests a livestock transmission in Chilean template forest.
Collapse
Affiliation(s)
| | - Sebastián Verasay Caviedes
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
- Laboratorio Clínico, Hospital Veterinario SOS Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile;
| | - Jose Pizarro-Lucero
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Javier Cabello
- Centro de Conservación de la Biodiversidad Chiloé-Silvestre, Nal Bajo, Ancud 5710000, Chile; (J.C.); (R.A.)
| | - Rocio Vicencio
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
- Centro de Conservación de la Biodiversidad Chiloé-Silvestre, Nal Bajo, Ancud 5710000, Chile; (J.C.); (R.A.)
| | - Sebastián Celis
- Departamento de Veterinaria, Parque Zoológico Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile; (S.C.); (C.O.); (I.K.)
| | - Carolina Ortiz
- Departamento de Veterinaria, Parque Zoológico Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile; (S.C.); (C.O.); (I.K.)
| | - Ignacio Kemec
- Departamento de Veterinaria, Parque Zoológico Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile; (S.C.); (C.O.); (I.K.)
| | - Nour Abuhadba-Mediano
- Escuela de Medicina Veterinaria, Universidad Mayor, Camino La Pirámide 5750, Santiago 7580506, Chile;
| | - Ronie Asencio
- Centro de Conservación de la Biodiversidad Chiloé-Silvestre, Nal Bajo, Ancud 5710000, Chile; (J.C.); (R.A.)
| | - Frank Vera
- School of Veterinary Medicine, Facultad de Ciencias de la Naturaleza, Universidad San Sebastian, Patagonia Campus, Puerto Montt 5480000, Chile; (F.V.); (C.V.)
| | - Carola Valencia
- School of Veterinary Medicine, Facultad de Ciencias de la Naturaleza, Universidad San Sebastian, Patagonia Campus, Puerto Montt 5480000, Chile; (F.V.); (C.V.)
| | - Rocio Lagos
- Laboratorio Clínico, Hospital Veterinario SOS Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile;
| | - Dario Moreira-Arce
- Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile;
- Institute of Ecology and Biodiversity (IEB), Santiago 7750000, Chile
| | - Fernanda Salinas
- Fundacion Buin Zoo, Panamericana Sur Km 32, Buin 9500000, Chile;
- Escuela de Geografia, Universidad de Chile, Santiago 8820808, Chile
| | - Galia Ramirez-Toloza
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Raul Muñoz-Quijano
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Victor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Rodrigo Salgado
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Pedro Abalos
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Barbara Parra
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa, Santiago 8820808, Chile; (S.V.C.); (J.P.-L.); (R.V.); (G.R.-T.); (R.M.-Q.); (V.N.); (R.S.); (P.A.); (B.P.)
| | - Simone Cárdenas-Cáceres
- Laboratorio de Virología Molecular, Fundación Ciencia & Vida, Av. del Valle Nte. 725, Huechuraba, Santiago 8580704, Chile; (S.C.-C.); (N.A.M.); (N.D.T.)
| | - Nicolás A. Muena
- Laboratorio de Virología Molecular, Fundación Ciencia & Vida, Av. del Valle Nte. 725, Huechuraba, Santiago 8580704, Chile; (S.C.-C.); (N.A.M.); (N.D.T.)
| | - Nicole D. Tischler
- Laboratorio de Virología Molecular, Fundación Ciencia & Vida, Av. del Valle Nte. 725, Huechuraba, Santiago 8580704, Chile; (S.C.-C.); (N.A.M.); (N.D.T.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 8420524, Chile
| | - Itziar Del Pozo
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160 Derio, Spain; (I.D.P.); (G.A.)
| | - Gorka Aduriz
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160 Derio, Spain; (I.D.P.); (G.A.)
| | - Fernando Esperon
- Veterinary Department, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3812120, Chile; (S.M.-L.); (P.A.)
| | - Paula Aravena
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3812120, Chile; (S.M.-L.); (P.A.)
| | - Raúl Alegría-Morán
- Escuela de Medicina Veterinaria, Sede Santiago, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Ejercito Libertador 146, Santiago 8370003, Chile;
| | - Raul Cuadrado-Matías
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain; (R.C.-M.)
| | - Francisco Ruiz-Fons
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain; (R.C.-M.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Muñoz-Hernández C, Wipf A, Ortega N, Barberá GG, Salinas J, Gonzálvez M, Martínez-Carrasco C, Candela MG. Serological and molecular survey of canine distemper virus in red foxes (Vulpes vulpes): Exploring cut-off values and the use of protein A in ELISA tests. Prev Vet Med 2023; 221:106075. [PMID: 37984159 DOI: 10.1016/j.prevetmed.2023.106075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The wide distribution and ecological plasticity of the red fox (Vulpes vulpes) make it a potential reservoir for many infectious diseases shared with domestic and wild carnivores. One of such diseases is canine distemper, which is caused by an RNA virus and its main domestic reservoir is the dog. However, other carnivores can also participate in its maintenance, as shown by the recent upsurge of reported cases in wildlife in many parts of the world, and by the fact that red foxes may act as true reservoirs for canine distemper virus (CDV). The lack of validated serological tests for wildlife or other non-target species may be a handicap for monitoring this virus. In this study, serological assays were compared in 147 red fox sera using a commercial ELISA validated for its use in dogs and a non-specific modified ELISA with Protein A peroxidase conjugate to detect bound antibodies. In addition, the presence of CDV RNA in brain, spleen, lung, and liver samples from 144 foxes was investigated by a RT-qPCR. Through the comparison of the results of both ELISAs and the use of a finite mixture model of the optical density values obtained by both techniques, we adjusted the cut-off point of the commercial ELISA to obtain the seroprevalence in foxes. The overall seroprevalence detected was 53.7% (79/147) and 57.1% (84/147) by the commercial and modified ELISA, respectively, with a moderate agreement according to Cohen's Kappa statistic (κ = 0.491, z = 5.97, p < 0.0001). CDV RNA was detected in 30 out of 144 foxes, which resulted in 20.8% of CDV-infected foxes. At individual level, the results obtained by relating the serological status and the presence/absence of RNA in different organs were explained in terms of the pathogenesis of the infection. Our results highlight the convenience of adjusting the cut-off point when using an ELISA assay developed in domestic dogs for its use in foxes. Moreover, Protein A is confirmed to be a good alternative to be used in red foxes, presenting a good reactivity towards its IgG.
Collapse
Affiliation(s)
- C Muñoz-Hernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain; Grupo Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain.
| | - A Wipf
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - N Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - G G Barberá
- Department of Water and Soil Conservation, CEBAS-CSIC, Campus Universitario, Espinardo 30100, Spain.
| | - J Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - M Gonzálvez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain; Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Universidad de Córdoba, 14014 Córdoba, Spain.
| | - C Martínez-Carrasco
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| | - M G Candela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| |
Collapse
|
14
|
Hayman DT, Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, Bukachi SA, Casas N, Becerra NC, Charron DF, Chaudhary A, Ciacci Zanella JR, Cunningham AA, Dar O, Debnath N, Dungu B, Farag E, Gao GF, Khaitsa M, Machalaba C, Mackenzie JS, Markotter W, Mettenleiter TC, Morand S, Smolenskiy V, Zhou L, Koopmans M. Developing One Health surveillance systems. One Health 2023; 17:100617. [PMID: 38024258 PMCID: PMC10665171 DOI: 10.1016/j.onehlt.2023.100617] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023] Open
Abstract
The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system.
Collapse
Affiliation(s)
- One Health High-Level Expert Panel (OHHLEP)
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- University of Indonesia, West Java, Indonesia
- National Emergency Crisis and Disasters Management Authority, Abu Dhabi, United Arab Emirates
- Centres for Disease Control and Prevention, Atlanta, GA, United States of America
- World Health Organization, Guinea Country Office, Conakry, Guinea
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
- National Ministry of Health, Autonomous City of Buenos Aires, Argentina
- School of Agricultural Sciences, Universidad de La Salle, Bogotá, Colombia
- Visiting Professor, One Health Institute, University of Guelph, Guelph Ontario, Canada
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, India
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Swine and Poultry, Santa Catarina, Brazil
- Institute of Zoology, Zoological Society of London, United Kingdom
- Global Operations Division, United Kingdom Health Security Agency, London, United Kingdom
- Global Health Programme, Chatham House, Royal Institute of International Affairs, London, United Kingdom
- Fleming Fund Country Grant to Bangladesh, DAI Global, Dhaka, Bangladesh
- One Health, Bangladesh
- Afrivet B M, Pretoria, South Africa
- Qatar Ministry of Public Health (MOPH), Health Protection & Communicable Diseases Division, Doha, Qatar
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Mississippi State University, Starkville, MS, United States of America
- EcoHealth Alliance, New York, United States of America
- Faculty of Health Sciences, Curtin University, Perth, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Germany
- MIVEGEC, CNRS-IRD-Montpellier, Montpellier University, Montpelier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| | - David T.S. Hayman
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | | | - Salama Almuhairi
- National Emergency Crisis and Disasters Management Authority, Abu Dhabi, United Arab Emirates
| | | | - Pépé Bilivogui
- World Health Organization, Guinea Country Office, Conakry, Guinea
| | - Salome A. Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Natalia Casas
- National Ministry of Health, Autonomous City of Buenos Aires, Argentina
| | | | - Dominique F. Charron
- Visiting Professor, One Health Institute, University of Guelph, Guelph Ontario, Canada
| | - Abhishek Chaudhary
- Department of Civil Engineering, Indian Institute of Technology (IIT) Kanpur, India
| | - Janice R. Ciacci Zanella
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Swine and Poultry, Santa Catarina, Brazil
| | | | - Osman Dar
- Global Operations Division, United Kingdom Health Security Agency, London, United Kingdom
- Global Health Programme, Chatham House, Royal Institute of International Affairs, London, United Kingdom
| | - Nitish Debnath
- Fleming Fund Country Grant to Bangladesh, DAI Global, Dhaka, Bangladesh
- One Health, Bangladesh
| | | | - Elmoubasher Farag
- Qatar Ministry of Public Health (MOPH), Health Protection & Communicable Diseases Division, Doha, Qatar
| | - George F. Gao
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Margaret Khaitsa
- Mississippi State University, Starkville, MS, United States of America
| | | | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, South Africa
| | | | - Serge Morand
- MIVEGEC, CNRS-IRD-Montpellier, Montpellier University, Montpelier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Vyacheslav Smolenskiy
- Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russian Federation
| | - Lei Zhou
- Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Marion Koopmans
- Erasmus MC, Department of Viroscience, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Weber N, Nagy M, Markotter W, Schaer J, Puechmaille SJ, Sutton J, Dávalos LM, Dusabe MC, Ejotre I, Fenton MB, Knörnschild M, López-Baucells A, Medellin RA, Metz M, Mubareka S, Nsengimana O, O'Mara MT, Racey PA, Tuttle M, Twizeyimana I, Vicente-Santos A, Tschapka M, Voigt CC, Wikelski M, Dechmann DK, Reeder DM. Robust evidence for bats as reservoir hosts is lacking in most African virus studies: a review and call to optimize sampling and conserve bats. Biol Lett 2023; 19:20230358. [PMID: 37964576 PMCID: PMC10646460 DOI: 10.1098/rsbl.2023.0358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.
Collapse
Affiliation(s)
- Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juliane Schaer
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Sébastien J. Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Liliana M. Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, USA
| | | | - Imran Ejotre
- Institute of Biology, Humboldt University, Berlin, Germany
- Muni University, Arua, Uganda
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Rodrigo A. Medellin
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samira Mubareka
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - M. Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Bat Conservation International Austin, TX, USA
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Paul A. Racey
- Centre for Ecology and Conservation, University of Exeter, Exeter, UK
| | - Merlin Tuttle
- Merlin Tuttle's Bat Conservation, Austin, TX USA
- Department of Integrative Biology, University of Texas, Austin, USA
| | | | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Emory University, Atlanta, GA, USA
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Marco Tschapka
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dina K.N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
16
|
Esson C, Samelius G, Strand TM, Lundkvist Å, Michaux JR, Råsbäck T, Wahab T, Mijiddorj TN, Berger L, Skerratt LF, Low M. The prevalence of rodent-borne zoonotic pathogens in the South Gobi desert region of Mongolia. Infect Ecol Epidemiol 2023; 13:2270258. [PMID: 37867606 PMCID: PMC10588514 DOI: 10.1080/20008686.2023.2270258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.
Collapse
Affiliation(s)
- Carol Esson
- One Health Research Group, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Gustaf Samelius
- Snow Leopard Trust, Seattle, Washington, USA
- Nordens Ark, Åby Säteri, Hunnebostrand, Sweden
| | - Tanja M. Strand
- Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan R. Michaux
- Laboratoire de génétique de la conservation, Institut de Botanique, Université de Liège, Liège, Belgium
- Animal Sante Territoire Risque Environnement, Centre International de Recherche Agronomique pour le Developpement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France
| | | | - Tara Wahab
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Lee F. Skerratt
- One Health Research Group, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D. Nipah Virus: An Overview of the Current Status of Diagnostics and Their Role in Preparedness in Endemic Countries. Viruses 2023; 15:2062. [PMID: 37896839 PMCID: PMC10612039 DOI: 10.3390/v15102062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.
Collapse
Affiliation(s)
- Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (D.L.); (S.P.)
| | - Hervé Raoul
- French National Agency for Research on AIDS—Emerging Infectious Diseases (ANRS MIE), Maladies Infectieuses Émergentes, 75015 Paris, France;
| | - Delphine Pannetier
- Institut National de la Santé et de la Recherche Médicale, Jean Mérieux BSL4 Laboratory, 69002 Lyon, France;
| |
Collapse
|
18
|
Hayes BH, Vergne T, Andraud M, Rose N. Mathematical modeling at the livestock-wildlife interface: scoping review of drivers of disease transmission between species. Front Vet Sci 2023; 10:1225446. [PMID: 37745209 PMCID: PMC10511766 DOI: 10.3389/fvets.2023.1225446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Modeling of infectious diseases at the livestock-wildlife interface is a unique subset of mathematical modeling with many innate challenges. To ascertain the characteristics of the models used in these scenarios, a scoping review of the scientific literature was conducted. Fifty-six studies qualified for inclusion. Only 14 diseases at this interface have benefited from the utility of mathematical modeling, despite a far greater number of shared diseases. The most represented species combinations were cattle and badgers (for bovine tuberculosis, 14), and pigs and wild boar [for African (8) and classical (3) swine fever, and foot-and-mouth and disease (1)]. Assessing control strategies was the overwhelming primary research objective (27), with most studies examining control strategies applied to wildlife hosts and the effect on domestic hosts (10) or both wild and domestic hosts (5). In spatially-explicit models, while livestock species can often be represented through explicit and identifiable location data (such as farm, herd, or pasture locations), wildlife locations are often inferred using habitat suitability as a proxy. Though there are innate assumptions that may not be fully accurate when using habitat suitability to represent wildlife presence, especially for wildlife the parsimony principle plays a large role in modeling diseases at this interface, where parameters are difficult to document or require a high level of data for inference. Explaining observed transmission dynamics was another common model objective, though the relative contribution of involved species to epizootic propagation was only ascertained in a few models. More direct evidence of disease spill-over, as can be obtained through genomic approaches based on pathogen sequences, could be a useful complement to further inform such modeling. As computational and programmatic capabilities advance, the resolution of the models and data used in these models will likely be able to increase as well, with a potential goal being the linking of modern complex ecological models with the depth of dynamics responsible for pathogen transmission. Controlling diseases at this interface is a critical step toward improving both livestock and wildlife health, and mechanistic models are becoming increasingly used to explore the strategies needed to confront these diseases.
Collapse
Affiliation(s)
- Brandon H. Hayes
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Ploufragan-Plouzané-Niort Laboratory, The French Agency for Food, Agriculture and the Environment (ANSES), Ploufragan, France
| | | | - Mathieu Andraud
- Ploufragan-Plouzané-Niort Laboratory, The French Agency for Food, Agriculture and the Environment (ANSES), Ploufragan, France
| | - Nicolas Rose
- Ploufragan-Plouzané-Niort Laboratory, The French Agency for Food, Agriculture and the Environment (ANSES), Ploufragan, France
| |
Collapse
|
19
|
Moinet M, Oosterhof H, Nisa S, Haack N, Wilkinson DA, Aberdein D, Russell JC, Vallée E, Collins-Emerson J, Heuer C, Benschop J. A cross-sectional investigation of Leptospira at the wildlife-livestock interface in New Zealand. PLoS Negl Trop Dis 2023; 17:e0011624. [PMID: 37672535 PMCID: PMC10506710 DOI: 10.1371/journal.pntd.0011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/18/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
There has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.
Collapse
Affiliation(s)
- Marie Moinet
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Hedwich Oosterhof
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Shahista Nisa
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Neville Haack
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science & Research Centre, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Danielle Aberdein
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - James C. Russell
- School of Biological Sciences and Department of Statistics, University of Auckland, New Zealand
| | - Emilie Vallée
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Julie Collins-Emerson
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Cord Heuer
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- Tāwharau Ora School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Coelho J, Pacheco H, Rafael M, Jiménez-Ruiz S, Alves PC, Santos N. Dynamics of Humoral Immunity to Myxoma and Rabbit Hemorrhagic Disease Viruses in Wild European Rabbits Assessed by Longitudinal Semiquantitative Serology. Microbiol Spectr 2023; 11:e0005023. [PMID: 37314328 PMCID: PMC10434053 DOI: 10.1128/spectrum.00050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
Myxoma virus (MYXV) and rabbit hemorrhagic disease virus (RHDV) are important drivers of the population decline of the European rabbit, an endangered keystone species. Both viruses elicit strong immune responses, but the long-term dynamics of humoral immunity are imperfectly known. This study aimed to assess the determinants of the long-term dynamics of antibodies to each virus based on a longitudinal capture-mark-recapture of wild European rabbits and semiquantitative serological data of MYXV and RHDV GI.2-specific IgG. The study included 611 indirect enzyme-linked immunosorbent assay (iELISA) normalized absorbance ratios for each MYXV and RHDV GI.2 from 505 rabbits from 2018 to 2022. Normalized absorbance ratios were analyzed using log-linear mixed models, showing a significant positive relationship with the time since the first capture of individual rabbits, with monthly increases of 4.1% for antibodies against MYXV and 2.0% against RHDV GI.2. Individual serological histories showed fluctuations over time, suggesting that reinfections boosted the immune response and likely resulted in lifelong immunity. Normalized absorbance ratios significantly increased with the seroprevalence in the population, probably because of recent outbreaks, and with body weight, highlighting the role of MYXV and RHDV GI.2 in determining survival to adulthood. Juvenile rabbits seropositive for both viruses were found, and the dynamics of RHDV GI.2 normalized absorbance ratios suggest the presence of maternal immunity up to 2 months of age. Semiquantitative longitudinal serological data provide epidemiological information, otherwise lost when considering only qualitative data, and support a lifelong acquired humoral immunity to RHDV GI.2 and MYXV upon natural infection. IMPORTANCE This study addresses the long-term dynamics of humoral immunity to two major viral pathogens of the European rabbit, an endangered keystone species of major ecological relevance. Such studies are particularly challenging in free-ranging species, and a combination of longitudinal capture-mark-recapture and semiquantitative serology was used to address this question. Over 600 normalized absorbance ratios of iELISA, obtained from 505 individual rabbits in 7 populations over 5 years, were analyzed using linear mixed models. The results support a lifelong acquired humoral immunity to myxoma virus and rabbit hemorrhagic disease virus upon natural infection and suggest the presence of maternal immunity to the latter in wild juvenile rabbits. These results contribute to understanding the epidemiology of two viral diseases threatening this keystone species and assist in developing conservation programs.
Collapse
Affiliation(s)
- Joana Coelho
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Henrique Pacheco
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Marta Rafael
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- SABIO-IREC, Research Group in Health and Biotechnology, Institute for Game and Wildlife Research, University of Castilla-La Mancha, Castilla-La Mancha, Spain
| | - Saúl Jiménez-Ruiz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- SABIO-IREC, Research Group in Health and Biotechnology, Institute for Game and Wildlife Research, University of Castilla-La Mancha, Castilla-La Mancha, Spain
- GISAZ-ENZOEM, Animal Health and Zoonoses Research Group, Competitive Research Unit on Zoonoses and Emerging Diseases, University of Cordoba, Cordoba, Spain
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Estação Biológica de Mértola (EBM), CIBIO, Mértola, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Estação Biológica de Mértola (EBM), CIBIO, Mértola, Portugal
| |
Collapse
|
21
|
Hanley KA, Cecilia H, Azar SR, Moehn B, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Immunologically mediated trade-offs shaping transmission of sylvatic dengue and Zika viruses in native and novel non-human primate hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547187. [PMID: 37425901 PMCID: PMC10327119 DOI: 10.1101/2023.06.30.547187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| |
Collapse
|
22
|
Colella JP, Cobos ME, Salinas I, Cook JA. Advancing the central role of non-model biorepositories in predictive modeling of emerging pathogens. PLoS Pathog 2023; 19:e1011410. [PMID: 37319170 PMCID: PMC10270337 DOI: 10.1371/journal.ppat.1011410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Jocelyn P. Colella
- University of Kansas Biodiversity Institute and Department of Ecology & Evolutionary Biology, Lawrence, Kansas, United States of America
| | - Marlon E. Cobos
- University of Kansas Biodiversity Institute and Department of Ecology & Evolutionary Biology, Lawrence, Kansas, United States of America
| | - Irene Salinas
- University of New Mexico, Department of Biology, Albuquerque, New Mexico, United States of America
- Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Joseph A. Cook
- University of New Mexico, Department of Biology, Albuquerque, New Mexico, United States of America
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | |
Collapse
|
23
|
Dugovich BS, Beechler BR, Dolan BP, Crowhurst RS, Gonzales BJ, Powers JG, Hughson DL, Vu RK, Epps CW, Jolles AE. Population connectivity patterns of genetic diversity, immune responses and exposure to infectious pneumonia in a metapopulation of desert bighorn sheep. J Anim Ecol 2023. [PMID: 36637333 DOI: 10.1111/1365-2656.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.
Collapse
Affiliation(s)
- Brian S Dugovich
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Brianna R Beechler
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Brian P Dolan
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Rachel S Crowhurst
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Ben J Gonzales
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Jenny G Powers
- National Park Service, Biological Resources Division, Fort Collins, Colorado, USA
| | - Debra L Hughson
- National Park Service, Mojave National Preserve, Barstow, California, USA
| | - Regina K Vu
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Anna E Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA.,Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
24
|
Kim K, Ito K. Targeted sampling reduces the uncertainty in force of infection estimates from serological surveillance. Front Vet Sci 2022; 9:754255. [PMID: 35968015 PMCID: PMC9366556 DOI: 10.3389/fvets.2022.754255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Age bins are frequently used in serological studies of infectious diseases in wildlife to deal with uncertainty in the age of sampled animals. This study analyzed how age binning and targeted sampling in serological surveillance affect the width of the 95% confidence interval (CI) of the estimated force of infection (FOI) of infectious diseases. We indicate that the optimal target population with the narrowest 95% CI differs depending on the expected FOI using computer simulations and mathematical models. In addition, our findings show that we can substantially reduce the number of animals required to infer transmission risk by tailoring targeted, age-based sampling to specific epidemiological situations.
Collapse
|
25
|
Identification of Dobrava-Belgrade Virus in Apodemus flavicollis from North-Eastern Italy during Enhanced Mortality. Viruses 2022; 14:v14061241. [PMID: 35746712 PMCID: PMC9229784 DOI: 10.3390/v14061241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Hantaviruses include several zoonotic pathogens that cause different syndromes in humans, with mortality rates ranging from 12 to 40%. Most commonly, humans get infected through the inhalation of aerosols or dust particles contaminated with virus-containing rodent excreta. Hantaviruses are specifically associated with the host species, and human cases depend on the presence and the dynamics of reservoir hosts. In this letter, we report the identification of Dobrava-Belgrade virus (DOBV) in the yellow-necked mouse (Apodemus flavicollis) from Italy. The virus was detected in the mountainous area of the province of Udine, bordering Austria and Slovenia, during an event of enhanced mortality in wild mice and voles. Despite serological evidence in rodents and humans that suggested the circulation of hantaviruses in Italy since 2000, this is the first virological confirmation of the infection. Phylogenetic analyses across the whole genome of the two detected viruses confirmed the host-specificity of DOBV sub-species and showed the highest identity with viruses identified in Slovenia and Croatia from both A. flavicollis and humans, with no signs of reassortment. These findings highlight the need for ecologists, veterinarians and medical doctors to come together in a coordinated approach in full compliance with the One Health concept.
Collapse
|
26
|
Mull N, Carlson CJ, Forbes KM, Becker DJ. Virus isolation data improve host predictions for New World rodent orthohantaviruses. J Anim Ecol 2022; 91:1290-1302. [PMID: 35362148 DOI: 10.1111/1365-2656.13694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Identifying reservoir host species is crucial for understanding the ecology of multi-host pathogens and predicting risks of pathogen spillover from wildlife to people. Predictive models are increasingly used for identifying ecological traits and prioritizing surveillance of likely zoonotic reservoirs, but these often employ different types of evidence for establishing host associations. Comparisons between models with different infection evidence are necessary to guide inferences about the trait profiles of likely hosts and identify which hosts and geographical regions are likely sources of spillover. Here, we use New World rodent-orthohantavirus associations to explore differences in the performance and predictions of models trained on two types of evidence for infection and onward transmission: RT-PCR and live virus isolation data, representing active infections versus host competence, respectively. Orthohantaviruses are primarily carried by muroid rodents and cause the diseases haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) in humans. We show that although boosted regression tree (BRT) models trained on RT-PCR and live virus isolation data both performed well and capture generally similar trait profiles, rodent phylogeny influenced previously collected RT-PCR data, and BRTs using virus isolation data displayed a narrower list of predicted reservoirs than those using RT-PCR data. BRT models trained on RT-PCR data identified 138 undiscovered hosts and virus isolation models identified 92 undiscovered hosts, with 27 undiscovered hosts identified by both models. Distributions of predicted hosts were concentrated in several different regions for each model, with large discrepancies between evidence types. As a form of validation, virus isolation models independently predicted several orthohantavirus-rodent host associations that had been previously identified through empirical research using RT-PCR. Our model predictions provide a priority list of species and locations for future orthohantavirus sampling. More broadly, these results demonstrate the value of multiple data types for predicting zoonotic pathogen hosts. These methods can be applied across a range of systems to improve our understanding of pathogen maintenance and increase efficiency of pathogen surveillance.
Collapse
Affiliation(s)
- Nathaniel Mull
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Kristian M Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
27
|
Tiu CK, Zhu F, Wang LF, de Alwis R. Phage ImmunoPrecipitation Sequencing (PhIP-Seq): The Promise of High Throughput Serology. Pathogens 2022; 11:pathogens11050568. [PMID: 35631089 PMCID: PMC9143919 DOI: 10.3390/pathogens11050568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Determining the exposure or infection history of a person to a multitude of viruses is not an easy task. Typically, antibody tests detect antibodies against proteins (antigens) to only one or a few viruses. Here, we review an emerging technology called Phage ImmunoPrecipitation Sequencing (PhIP-Seq), that allows us to study the infection history of individuals to large numbers of viruses simultaneously. This technology uses bacteriophages to express and display viral antigens of choice, which are then bound by antigen-specific antibodies in patient samples. Antibody-bound bacteriophages are pulled down and identified through molecular techniques. This technology has been used in various infectious disease scenarios, including assessing exposure to different viruses, studying vaccine responses, and identifying viral cause of diseases. Despite inherent limitations in presenting only peptides, this technology holds great promise for future application in identifying novel pathogens, one health and pandemic preparedness. Abstract Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a high throughput serological technology that is revolutionizing the manner in which we track antibody profiles. In this review, we mainly focus on its application to viral infectious diseases. Through the pull-down of patient antibodies using peptide-tile-expressing T7 bacteriophages and detection using next-generation sequencing (NGS), PhIP-Seq allows the determination of antibody repertoires against peptide targets from hundreds of proteins and pathogens. It differs from conventional serological techniques in that PhIP-Seq does not require protein expression and purification. It also allows for the testing of many samples against the whole virome. PhIP-Seq has been successfully applied in many infectious disease investigations concerning seroprevalence, risk factors, time trends, etiology of disease, vaccinology, and emerging pathogens. Despite the inherent limitations of this technology, we foresee the future expansion of PhIP-Seq in both investigative studies and tracking of current, emerging, and novel viruses. Following the review of PhIP-Seq technology, its limitations, and applications, we recommend that PhIP-Seq be integrated into national surveillance programs and be used in conjunction with molecular techniques to support both One Health and pandemic preparedness efforts.
Collapse
Affiliation(s)
- Charles Kevin Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; (C.K.T.); (F.Z.); (L.-F.W.)
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|
28
|
Seroprevalence of IgG Antibodies Against Multiple Arboviruses in Bats from Cameroon, Guinea, and the Democratic Republic of Congo. Vector Borne Zoonotic Dis 2022; 22:252-262. [DOI: 10.1089/vbz.2021.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Bouchard É, Sharma R, Hernández-Ortiz A, Buhler K, Al-Adhami B, Su C, Fenton H, G.-Gouin G, Roth JD, Rodrigues CW, Pamak C, Simon A, Bachand N, Leighton P, Jenkins E. Are foxes (Vulpes spp.) good sentinel species for Toxoplasma gondii in northern Canada? Parasit Vectors 2022; 15:115. [PMID: 35365191 PMCID: PMC8972674 DOI: 10.1186/s13071-022-05229-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In changing northern ecosystems, understanding the mechanisms of transmission of zoonotic pathogens, including the coccidian parasite Toxoplasma gondii, is essential to protect the health of vulnerable animals and humans. As high-level predators and scavengers, foxes represent a potentially sensitive indicator of the circulation of T. gondii in environments where humans co-exist. The objectives of our research were to compare serological and molecular assays to detect T. gondii, generate baseline data on T. gondii antibody and tissue prevalence in foxes in northern Canada, and compare regional seroprevalence in foxes with that in people from recently published surveys across northern Canada. METHODS Fox carcasses (Vulpes vulpes/Vulpes lagopus, n = 749) were collected by local trappers from the eastern (Labrador and Québec) and western Canadian Arctic (northern Manitoba, Nunavut, and the Northwest Territories) during the winters of 2015-2019. Antibodies in heart fluid were detected using a commercial enzyme-linked immunosorbent assay. Toxoplasma gondii DNA was detected in hearts and brains using a magnetic capture DNA extraction and real-time PCR assay. RESULTS Antibodies against T. gondii and DNA were detected in 36% and 27% of foxes, respectively. Detection of antibodies was higher in older (64%) compared to younger foxes (22%). More males (36%) than females (31%) were positive for antibodies to T. gondii. Tissue prevalence in foxes from western Nunavik (51%) was higher than in eastern Nunavik (19%). At the Canadian scale, T. gondii exposure was lower in western Inuit regions (13%) compared to eastern Inuit regions (39%), possibly because of regional differences in fox diet and/or environment. Exposure to T. gondii decreased at higher latitude and in foxes having moderate to little fat. Higher mean infection intensity was observed in Arctic foxes compared to red foxes. Fox and human seroprevalence showed similar trends across Inuit regions of Canada, but were less correlated in the eastern sub-Arctic, which may reflect regional differences in human dietary preferences. CONCLUSIONS Our study sheds new light on the current status of T. gondii in foxes in northern Canada and shows that foxes serve as a good sentinel species for environmental circulation and, in some regions, human exposure to this parasite in the Arctic.
Collapse
Affiliation(s)
- Émilie Bouchard
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada
- Research Group On Epidemiology of Zoonoses and Public Health (GREZOSP), Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Rajnish Sharma
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada
| | | | - Kayla Buhler
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada
| | - Batol Al-Adhami
- Centre for Food-Borne and Animal Parasitology, Saskatoon, SK Canada
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN USA
| | - Heather Fenton
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | | | - James D. Roth
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB Canada
| | | | - Carla Pamak
- Nunatsiavut Research Centre, Nain, NL Canada
| | - Audrey Simon
- Research Group On Epidemiology of Zoonoses and Public Health (GREZOSP), Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Nicholas Bachand
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada
| | - Patrick Leighton
- Research Group On Epidemiology of Zoonoses and Public Health (GREZOSP), Université de Montréal, Saint-Hyacinthe, QC Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
30
|
Sanyal A, Agarwal S, Ramakrishnan U, Garg KM, Chattopadhyay B. Using Environmental Sampling to Enable Zoonotic Pandemic Preparedness. J Indian Inst Sci 2022; 102:711-730. [PMID: 36093274 PMCID: PMC9449264 DOI: 10.1007/s41745-022-00322-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
The current pandemic caused by the SARS CoV-2, tracing back its origin possibly to a coronavirus associated with bats, has ignited renewed interest in understanding zoonotic spillovers across the globe. While research is more directed towards solving the problem at hand by finding therapeutic strategies and novel vaccine techniques, it is important to address the environmental drivers of pathogen spillover and the complex biotic and abiotic drivers of zoonoses. The availability of cutting-edge genomic technologies has contributed enormously to preempt viral emergence from wildlife. However, there is still a dearth of studies from species-rich South Asian countries, especially from India. In this review, we outline the importance of studying disease dynamics through environmental sampling from wildlife in India and how ecological parameters of both the virus and the host community may play a role in mediating cross-species spillovers. Non-invasive sampling using feces, urine, shed hair, saliva, shed skin, and feathers has been instrumental in providing genetic information for both the host and their associated pathogens. Here, we discuss the advances made in environmental sampling protocols and strategies to generate genetic data from such samples towards the surveillance and characterization of potentially zoonotic pathogens. We primarily focus on bat-borne or small mammal-borne zoonoses and propose a conceptual framework for non-invasive strategies to tackle the threat of emerging zoonotic infections.
Collapse
|
31
|
Martelli P, St-Hilaire S, Hui WS, Krishnasamy K, Magouras I, Nekouei O. Evaluation of Vaccination Strategy Against Rabies in Hong Kong Macaques. Front Vet Sci 2022; 9:859338. [PMID: 35372557 PMCID: PMC8971790 DOI: 10.3389/fvets.2022.859338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to assess the serological response to rabies vaccination in Hong Kong macaques and provide evidence-based recommendations for the vaccination interval implemented by the Government of Hong Kong. An inactivated rabies vaccine was administered subcutaneously to captured macaques under a mass sterilization program in Hong Kong. Blood samples from the animals were collected in a 2015 field survey and stored in −80°C freezer. In 2021, the frozen sera from vaccinated animals were prepared and tested for antibodies against the rabies virus using a commercial blocking enzyme-linked immunosorbent assay (ELISA) test. Sixty-five samples were available from the vaccinated macaques that had received at least one dose of the vaccine between 2008 and 2015. The interval between the first vaccination and blood sampling ranged from 21 to 2,779 days (median: 990). Only five macaques had a second vaccination record at the sampling time, all with high antibody levels. Among the remaining macaques, 77% (46/60) were positive for rabies antibodies. No specific association was observed between the post-vaccination period and the antibody titer of these macaques, and no adverse reactions were reported. Although the precise level of protection against a potential challenge with the rabies virus cannot be ascertained, the vaccination elicited rabies antibodies in 87% (21/24) of the macaques tested within 2.5 years of their first vaccination. Our findings indicate the potential benefits of the current vaccination strategy to protect the population from rabies and consequential mandatory culling of all macaques if a natural infection occurs.
Collapse
Affiliation(s)
- Paolo Martelli
- Ocean Park Corporation Hong Kong, Aberdeen, Hong Kong SAR, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Wai-Suk Hui
- Ocean Park Corporation Hong Kong, Aberdeen, Hong Kong SAR, China
| | | | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Omid Nekouei
| |
Collapse
|
32
|
Paz LN, Hamond C, Pinna MH. Detection of Leptospira interrogans in Wild Sambar Deer (Rusa unicolor), Brazil. ECOHEALTH 2022; 19:15-21. [PMID: 35182280 DOI: 10.1007/s10393-022-01577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Leptospirosis is an emerging zoonotic disease caused by bacteria of the genus Leptospira. Wild animals may present acute disease or become chronic hosts. The present study aimed to identify Leptospira spp. infection and determine circulating serogroups in free-ranging sambar deer (Rusa unicolor) in a fragment of peri-urban tropical forest in northeastern Brazil. Blood samples were collected and subjected to microscopic agglutination testing (MAT) and PCR analysis (genes lipL32 and secY). Anti-Leptospira antibodies were detected in 60% of the animals tested, with serogroups Cynopteri (33.4%), Hebdomadis (22.2%) and Grippotyphosa (22.2%) identified as most prevalent. DNA corresponding to the pathogenic species Leptospira interrogans was detected in 2/15 (13.3%) of the samples tested. Sambar deer experience a high level of exposure to Leptospira spp. in our epidemiological setting. It is important to emphasize the implementation of effective measures (i.e., maintaining habitats and reducing human contact) for the conservation of endangered species.
Collapse
Affiliation(s)
- Lucas Nogueira Paz
- Bacterial Disease Laboratory (LABAC), School of Veterinary Medicine and Zootechny, Federal University of Bahia, Adhemar de Barros - AV, 500, Ondina, Salvador, BA, 40170-11, Brazil
| | - Camila Hamond
- Bacterial Disease Laboratory (LABAC), School of Veterinary Medicine and Zootechny, Federal University of Bahia, Adhemar de Barros - AV, 500, Ondina, Salvador, BA, 40170-11, Brazil
| | - Melissa Hanzen Pinna
- Bacterial Disease Laboratory (LABAC), School of Veterinary Medicine and Zootechny, Federal University of Bahia, Adhemar de Barros - AV, 500, Ondina, Salvador, BA, 40170-11, Brazil.
- Department of Preventive Veterinary Medicine and Animal Production, Universidade Federal da Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
33
|
Ciconello FN, Katz ISS, Fernandes ER, Guedes F, Silva SR. A comparative review of serological assays for the detection of rabies virus-specific antibodies. Acta Trop 2022; 226:106254. [PMID: 34808119 DOI: 10.1016/j.actatropica.2021.106254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Rabies is a major public health problem with a fatality rate close to 100%, caused by a virus of the Lyssavirus genus, of which rabies virus (RABV) is the prototype. Nonetheless, the complete prevention can be achieved by the induction of neutralizing antibodies by pre- or post-exposure prophylaxis. According to the world health organization (WHO) and World Organization for animal health (OIE), serum titers of rabies virus neutralizing antibodies (RVNA) that are higher or equal to 0.5 international units (IU)/ml indicate adequate immune response after vaccination against rabies. Currently, RFFIT and FAVN are the gold standard tests recommended by both WHO and OIE for detecting and quantitating RVNA in biological samples from individuals or animals previously vaccinated and/or subjects suspected of having been infected by RABV. Although the tests RFFIT and FAVN are efficient, they are time-consuming, labor-intensive manual tests and not cost-effective for routine use. Following the previously mentioned, approaches with alternative methods have been developed to detect RVNA or rabies-specific antibodies in human or animal serum, but with variable success. This work summarizes the advances in the serological assays for the detection of neutralizing antibodies or rabies antibodies and assesses the individual immune status after vaccination against rabies, as well as the mechanisms of RABV neutralization mediated by antibodies. Therefore, the main alternative methods for the determination of RABV or rabies-specific antibodies are exposed, with promising results, besides being easy to execute, of low cost, and representing a possibility of being applied, according to the proposal of each test to the network of Rabies Surveillance Laboratories.
Collapse
|
34
|
Combining seroprevalence and capture-mark-recapture data to estimate the force of infection of brucellosis in a managed population of Alpine ibex. Epidemics 2022; 38:100542. [DOI: 10.1016/j.epidem.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/04/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
|
35
|
Graziosi G, Catelli E, Fanelli A, Lupini C. Infectious bursal disease virus in free-living wild birds: A systematic review and meta-analysis of its sero-viroprevalence on a global scale. Transbound Emerg Dis 2021; 69:2800-2815. [PMID: 34918482 DOI: 10.1111/tbed.14433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Infectious bursal disease virus (IBDV) is an economically important pathogen for poultry, whereas knowledge of its occurrence in non-poultry hosts is limited. The objective of this systematic review and meta-analysis is to summarize the up-to-date knowledge about the sero-viroprevalence of IBDV in wild birds on a global scale. A computerized literature research was performed on PubMed, Scopus, CAB Direct and Web of Science to find relevant publications, along with the screening of reference lists. Journal articles, book chapters, scientific correspondences, conference proceedings and short communications on IBDV virological and/or serological surveys in free-living wild birds published between 1970 and 2021 were considered as eligible. Among 184 studies found, 36 original contributions met the pre-established criteria. A random-effect model was applied to calculate pooled seroprevalence estimates with 95% confidence intervals, whereas the paucity of virological studies (n = 6) only allowed a qualitative description of the data. The pooled seroprevalence was estimated to be 6% (95% CI: 3%-9%) and a high heterogeneity was detected (I2 = 96%). Sub-group analyses were not performed due to the scarcity of available information about hypothetical moderators. With respect to virological studies, IBDV was detected in Anseriformes, Columbiformes, Galliformes, Passeriformes and Pelecaniformes and different strains related to poultry infection were isolated. Our estimates of serological data showed a moderate exposure of wild birds to IBDV. The susceptibility of different species to IBDV infection underlines their potential role in its epidemiology at least as carriers or spreaders. Indeed, the isolation of IBDV in healthy wild birds with a migratory attitude might contribute to a long-distance spread of the virus and to strain diversity. While a wild reservoir host could not be clearly identified, we believe our work provides useful insights for conducting future surveys which are needed to broaden our knowledge of IBDV occurrence in wild birds.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia (BO), Italy
| |
Collapse
|
36
|
Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC, Cohen LE, Dallas TA, Eskew EA, Fagre A, Farrell MJ, Glennon E, Guth S, Joseph MB, Mollentze N, Neely BA, Poisot T, Rasmussen AL, Ryan SJ, Seifert S, Sjodin AR, Sorrell EM, Carlson CJ. The science of the host-virus network. Nat Microbiol 2021; 6:1483-1492. [PMID: 34819645 DOI: 10.1038/s41564-021-00999-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Liam Brierley
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emma Glennon
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maxwell B Joseph
- Earth Lab, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, USA
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC - University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, SC, USA
| | - Timothée Poisot
- Québec Centre for Biodiversity Sciences, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Stephanie Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
37
|
Spillover of West Caucasian Bat Lyssavirus (WCBV) in a Domestic Cat and Westward Expansion in the Palearctic Region. Viruses 2021; 13:v13102064. [PMID: 34696493 PMCID: PMC8540014 DOI: 10.3390/v13102064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
In June 2020, a cat from Arezzo (Italy) that died from a neurological disease was diagnosed with West Caucasian Bat Lyssavirus (WCBV). The virus retained high identity across the whole-genome with the reference isolate found in 2002 from a Russian bent-winged bat. We applied control measures recommended by national regulations, investigated a possible interface between cats and bats using visual inspections, bioacoustics analyses and camera trapping and performed active and passive surveillance in bats to trace the source of infection. People that were exposed to the cat received full post-exposure prophylaxis while animals underwent six months of quarantine. One year later, they are all healthy. In a tunnel located near the cat’s house, we identified a group of bent-winged bats that showed virus-neutralizing antibodies to WCBV across four sampling occasions, but no virus in salivary swabs. Carcasses from other bat species were all negative. This description of WCBV in a non-flying mammal confirms that this virus can cause clinical rabies in the absence of preventive and therapeutic measures, and highlights the lack of international guidelines against divergent lyssaviruses. We detected bent-winged bats as the most probable source of infection, testifying the encroachment between these bats and pets/human in urban areas and confirming free-ranging cats as potential hazard for public health and conservation.
Collapse
|
38
|
Bevins SN, Chandler JC, Barrett N, Schmit BS, Wiscomb GW, Shriner SA. Plague Exposure in Mammalian Wildlife Across the Western United States. Vector Borne Zoonotic Dis 2021; 21:667-674. [PMID: 34191632 PMCID: PMC8563452 DOI: 10.1089/vbz.2020.2765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plague is caused by a bacterial pathogen (Yersinia pestis) that can infect a wide range of mammal species, but its presence in wildlife is often underappreciated. Using a large-scale data set (n = 44,857) that details the extent of Y. pestis exposure in wildlife, we document exposure in 18 wildlife species, including coyotes (Canis latrans), bobcats (Lynx rufus), and black bears (Ursus americanus). Evidence of plague activity is widespread, with seropositive animals detected in every western state in the contiguous United States. Pathogen monitoring systems in wildlife that are both large scale and long-term are rare, yet they open the door for analyses on potential shifts in distribution that have occurred over time because of climate or land use changes. The data generated by these long-term monitoring programs, combined with recent advances in our understanding of pathogen ecology, offer a clearer picture of zoonotic pathogens and the risks they pose.
Collapse
Affiliation(s)
- Sarah N. Bevins
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Jeffrey C. Chandler
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Nicole Barrett
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Brandon S. Schmit
- USDA APHIS WS National Wildlife Disease Program, Fort Collins, Colorado, USA
| | | | - Susan A. Shriner
- USDA APHIS WS National Wildlife Research Center, Fort Collins, Colorado, USA
| |
Collapse
|
39
|
Gibb R, Albery GF, Becker DJ, Brierley L, Connor R, Dallas TA, Eskew EA, Farrell MJ, Rasmussen AL, Ryan SJ, Sweeny A, Carlson CJ, Poisot T. Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. Bioscience 2021. [DOI: 10.1093/biosci/biab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The fields of viral ecology and evolution are rapidly expanding, motivated in part by concerns around emerging zoonoses. One consequence is the proliferation of host–virus association data, which underpin viral macroecology and zoonotic risk prediction but remain fragmented across numerous data portals. In the present article, we propose that synthesis of host–virus data is a central challenge to characterize the global virome and develop foundational theory in viral ecology. To illustrate this, we build an open database of mammal host–virus associations that reconciles four published data sets. We show that this offers a substantially richer view of the known virome than any individual source data set but also that databases such as these risk becoming out of date as viral discovery accelerates. We argue for a shift in practice toward the development, incremental updating, and use of synthetic data sets in viral ecology, to improve replicability and facilitate work to predict the structure and dynamics of the global virome.
Collapse
Affiliation(s)
- Rory Gibb
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, England, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman Oklahoma, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Liam Brierley
- Department of Health Data Science, University of Liverpool, Liverpool, England, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Ryan Connor
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Tad A Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, Washington, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Angela L Rasmussen
- Vaccine Infectious Disease Organization and International Vaccine Centre, University of Saskatchewan, Saskatchewan, Saskatoon, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation Lab, Department of Geography and with the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States, and with the College of Life Sciences, University of KwaZulu Natal, Durban, South Africa
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of Edinburgh, in Edinburgh, Scotland, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Colin J Carlson
- Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, and with the Québec Centre for Biodiversity Sciences, both in Montréal, Québec, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| |
Collapse
|
40
|
A metapopulation model of social group dynamics and disease applied to Yellowstone wolves. Proc Natl Acad Sci U S A 2021; 118:2020023118. [PMID: 33649227 DOI: 10.1073/pnas.2020023118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The population structure of social species has important consequences for both their demography and transmission of their pathogens. We develop a metapopulation model that tracks two key components of a species' social system: average group size and number of groups within a population. While the model is general, we parameterize it to mimic the dynamics of the Yellowstone wolf population and two associated pathogens: sarcoptic mange and canine distemper. In the initial absence of disease, we show that group size is mainly determined by the birth and death rates and the rates at which groups fission to form new groups. The total number of groups is determined by rates of fission and fusion, as well as environmental resources and rates of intergroup aggression. Incorporating pathogens into the models reduces the size of the host population, predominantly by reducing the number of social groups. Average group size responds in more subtle ways: infected groups decrease in size, but uninfected groups may increase when disease reduces the number of groups and thereby reduces intraspecific aggression. Our modeling approach allows for easy calculation of prevalence at multiple scales (within group, across groups, and population level), illustrating that aggregate population-level prevalence can be misleading for group-living species. The model structure is general, can be applied to other social species, and allows for a dynamic assessment of how pathogens can affect social structure and vice versa.
Collapse
|
41
|
Moore SM. Challenges of Rabies Serology: Defining Context of Interpretation. Viruses 2021; 13:1516. [PMID: 34452381 PMCID: PMC8402924 DOI: 10.3390/v13081516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The case fatality rate of rabies, nearly 100%, is one of the most unique characteristic of this ancient virus infection. The crucial role rabies virus neutralizing antibody plays in protection is both well established and explanation of why rabies serology is important. Various laboratory methods can and have been used but serum neutralization methods have long been the gold standard due to the ability to measure function (neutralization), however these methods can be difficult to perform for several reasons. Assays such as enzyme linked absorbance assays (ELISA), indirect fluorescence antibody (IFA) and more recently lateral flow methods are in use. Interpretation of results can be problematic, not only between methods but also due to modifications of the same method that can lead to misinterpretations. A common assumption in review of laboratory test results is that different methods for the same component produce comparable results under all conditions or circumstances. Assumptions and misinterpretations provide the potential for detrimental decisions, ranging from regulatory to clinically related, and most importantly what 'level' is protective. Review of the common challenges in performance and interpretation of rabies serology and specific examples illuminate critical issues to consider when reviewing and applying results of rabies serological testing.
Collapse
Affiliation(s)
- Susan M Moore
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
42
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
43
|
Simon JA, Aubert D, Geers R, Villena I, Poulle ML. Validation of the Use of Dried Blood Samples for the Detection of Toxoplasma gondii Antibodies in Stray Cats ( Felis s. catus). Pathogens 2021; 10:pathogens10070864. [PMID: 34358014 PMCID: PMC8308602 DOI: 10.3390/pathogens10070864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/23/2023] Open
Abstract
If validated beforehand, the analysis of dried blood on blotting paper (BP samples) is very useful for monitoring free-ranging animals. We aimed to validate this method for the detection of antibodies against Toxoplasma gondii in stray cats. We used the modified agglutination test (MAT) in 199 sample pairs of sera and BP samples from 54, 39, 56, and 50 cats trapped during four periods in five dairy farms. Screening was at 1:6, 1:12, and 1:24 dilutions. The cut-off value was at MAT titre ≥ 24, but MAT titre ≥ 12 was also considered for BP samples that often have a higher dilution level. Depending on the period, sample type, and cut-off value, sensitivity of the analysis of the BP sample vs. serum varied from 87.1% to 100% and specificity ranged from 72.22% to 100%. The concordance values and Kappa coefficient showed a substantial to excellent agreement between the results of the two methods, whatever the cut-off value. These findings quantifiably validate the use of MAT on BP samples for the detection of antibodies to T. gondii in stray cats, but we recommend expressing results from BP samples with several cut-off values as the MAT titres tend to be lower than those of sera.
Collapse
Affiliation(s)
- Julie Alice Simon
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, CEDEX, 51095 Reims, France; (J.A.S.); (D.A.); (R.G.); (I.V.)
- Centre de Recherche et de Formation en Eco-éthologie (CERFE), Université de Reims Champagne-Ardenne, 08240 Boult-aux-Bois, France
| | - Dominique Aubert
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, CEDEX, 51095 Reims, France; (J.A.S.); (D.A.); (R.G.); (I.V.)
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, CEDEX, 51092 Reims, France
| | - Régine Geers
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, CEDEX, 51095 Reims, France; (J.A.S.); (D.A.); (R.G.); (I.V.)
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, CEDEX, 51092 Reims, France
| | - Isabelle Villena
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, CEDEX, 51095 Reims, France; (J.A.S.); (D.A.); (R.G.); (I.V.)
- Laboratoire de Parasitologie-Mycologie, Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, CHU Reims, CEDEX, 51092 Reims, France
| | - Marie-Lazarine Poulle
- Epidémio-Surveillance et Circulation des Parasites dans les Environnements (ESCAPE), EA 7510, CAP SANTE, Université de Reims Champagne Ardenne, CEDEX, 51095 Reims, France; (J.A.S.); (D.A.); (R.G.); (I.V.)
- Centre de Recherche et de Formation en Eco-éthologie (CERFE), Université de Reims Champagne-Ardenne, 08240 Boult-aux-Bois, France
- Correspondence:
| |
Collapse
|
44
|
Gold S, Donnelly CA, Woodroffe R, Nouvellet P. Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs. PLoS Negl Trop Dis 2021; 15:e0009581. [PMID: 34283827 PMCID: PMC8330898 DOI: 10.1371/journal.pntd.0009581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/03/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
A number of mathematical models have been developed for canine rabies to explore dynamics and inform control strategies. A common assumption of these models is that naturally acquired immunity plays no role in rabies dynamics. However, empirical studies have detected rabies-specific antibodies in healthy, unvaccinated domestic dogs, potentially due to immunizing, non-lethal exposure. We developed a stochastic model for canine rabies, parameterised for Laikipia County, Kenya, to explore the implications of different scenarios for naturally acquired immunity to rabies in domestic dogs. Simulating these scenarios using a non-spatial model indicated that low levels of immunity can act to limit rabies incidence and prevent depletion of the domestic dog population, increasing the probability of disease persistence. However, incorporating spatial structure and human response to high rabies incidence allowed the virus to persist in the absence of immunity. While low levels of immunity therefore had limited influence under a more realistic approximation of rabies dynamics, high rates of exposure leading to immunizing non-lethal exposure were required to produce population-level seroprevalences comparable with those reported in empirical studies. False positives and/or spatial variation may contribute to high empirical seroprevalences. However, if high seroprevalences are related to high exposure rates, these findings support the need for high vaccination coverage to effectively control this disease.
Collapse
Affiliation(s)
- Susannah Gold
- Institute of Zoology, Zoological Society of London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christl A. Donnelly
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Department of Statistics, University of Oxford, Oxfordshire, United Kingdom
| | - Rosie Woodroffe
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Pierre Nouvellet
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
45
|
Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses 2021; 13:v13050936. [PMID: 34070175 PMCID: PMC8158508 DOI: 10.3390/v13050936] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/13/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had devastating health and socio-economic impacts. Human activities, especially at the wildlife interphase, are at the core of forces driving the emergence of new viral agents. Global surveillance activities have identified bats as the natural hosts of diverse coronaviruses, with other domestic and wildlife animal species possibly acting as intermediate or spillover hosts. The African continent is confronted by several factors that challenge prevention and response to novel disease emergences, such as high species diversity, inadequate health systems, and drastic social and ecosystem changes. We reviewed published animal coronavirus surveillance studies conducted in Africa, specifically summarizing surveillance approaches, species numbers tested, and findings. Far more surveillance has been initiated among bat populations than other wildlife and domestic animals, with nearly 26,000 bat individuals tested. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%. In addition to a large undescribed diversity, sequences related to four of the seven human coronaviruses have been reported from African bats. The review highlights research gaps and the disparity in surveillance efforts between different animal groups (particularly potential spillover hosts) and concludes with proposed strategies for improved future biosurveillance.
Collapse
|
46
|
Neely BA, Janech MG, Fenton MB, Simmons NB, Bland AM, Becker DJ. Surveying the Vampire Bat ( Desmodus rotundus) Serum Proteome: A Resource for Identifying Immunological Proteins and Detecting Pathogens. J Proteome Res 2021; 20:2547-2559. [PMID: 33840197 PMCID: PMC9812275 DOI: 10.1021/acs.jproteome.0c00995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bats are increasingly studied as model systems for longevity and as natural hosts for some virulent viruses. Yet the ability to characterize immune mechanisms of viral tolerance and to quantify infection dynamics in wild bats is often limited by small sample volumes and few species-specific reagents. Here, we demonstrate how proteomics can overcome these limitations by using data-independent acquisition-based shotgun proteomics to survey the serum proteome of 17 vampire bats (Desmodus rotundus) from Belize. Using just 2 μL of sample and relatively short separations of undepleted serum digests, we identified 361 proteins across 5 orders of magnitude. Levels of immunological proteins in vampire bat serum were then compared to human plasma via published databases. Of particular interest were antiviral and antibacterial components, circulating 20S proteasome complex and proteins involved in redox activity. Lastly, we used known virus proteomes to putatively identify Rh186 from Macacine herpesvirus 3 and ORF1a from Middle East respiratory syndrome-related coronavirus, indicating that mass spectrometry-based techniques show promise for pathogen detection. Overall, these results can be used to design targeted mass-spectrometry assays to quantify immunological markers and detect pathogens. More broadly, our findings also highlight the application of proteomics in advancing wildlife immunology and pathogen surveillance.
Collapse
Affiliation(s)
- Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina 29412, United States
| | - Michael G Janech
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York 10024, United States
| | - Alison M Bland
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
47
|
Coertse J, Geldenhuys M, le Roux K, Markotter W. Lagos Bat Virus, an Under-Reported Rabies-Related Lyssavirus. Viruses 2021; 13:576. [PMID: 33805487 PMCID: PMC8067007 DOI: 10.3390/v13040576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lagos bat virus (LBV), one of the 17 accepted viral species of the Lyssavirus genus, was the first rabies-related virus described in 1956. This virus is endemic to the African continent and is rarely encountered. There are currently four lineages, although the observed genetic diversity exceeds existing lyssavirus species demarcation criteria. Several exposures to rabid bats infected with LBV have been reported; however, no known human cases have been reported to date. This review provides the history of LBV and summarizes previous knowledge as well as new detections. Genetic diversity, pathogenesis and prevention are re-evaluated and discussed.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham 2192, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Kevin le Roux
- Epidemiology Unit, Allerton Veterinary Laboratory, Pietermaritzburg, KwaZulu-Natal 3200, South Africa;
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
48
|
Pepin KM, Miller RS, Wilber MQ. A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Prev Vet Med 2021; 188:105281. [PMID: 33530012 PMCID: PMC7839430 DOI: 10.1016/j.prevetmed.2021.105281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the framework using data from the United States. We then discuss variables to consider in refining when and how to conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating serology samples into infection times provide promising directions for extracting spatio-temporal estimates of disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow surveillance plans to be updated in space and time based on new information (adaptive surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk assessment insight.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80526, United States.
| | - Ryan S Miller
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 2150 Center Ave., Fort Collins, CO, 80526, United States
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, United States
| |
Collapse
|
49
|
Interface between Bats and Pigs in Heavy Pig Production. Viruses 2020; 13:v13010004. [PMID: 33375071 PMCID: PMC7822039 DOI: 10.3390/v13010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat–pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.
Collapse
|
50
|
Sauvé CC, Hernández-Ortiz A, Jenkins E, Mavrot F, Schneider A, Kutz S, Saliki JT, Daoust PY. Exposure of the Gulf of St. Lawrence grey seal Halichoerus grypus population to potentially zoonotic infectious agents. DISEASES OF AQUATIC ORGANISMS 2020; 142:105-118. [PMID: 33269722 DOI: 10.3354/dao03536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The population of grey seals Halichoerus grypus in Canadian waters is currently used as a commercial source of meat for human consumption. As with domestic livestock, it is important to understand the occurrence in these seals of infectious agents that may be of public health significance and thus ensure appropriate measures are in place to avoid zoonotic transmission. This study examined the prevalence of antibodies against Brucella spp., Erysipelothrix rhusiopathiae, 6 serovars of Leptospira interrogans, and Toxoplasma gondii in 59 grey seals and determined by polymerase chain reaction (PCR) the presence of these potentially zoonotic agents in specific organs and tissues of seropositive animals. The presence of encysted Trichinella spp. larvae was also investigated by digestion of tongue, diaphragm and other muscle samples, but none were detected. Seroprevalence against Brucella spp. and E. rhusiopathiae was low (5 and 3%, respectively). All 59 seals tested had antibodies against L. interrogans, but no carrier of this bacterium was detected by PCR. Seroprevalence against T. gondii was 53%, and DNA of this protozoan was detected by PCR in 11/30 (37%) seropositive animals. Standard sanitary measures mandatory for commercialization of meat products for human consumption should greatly reduce the potential for exposure to these infectious agents. However, special consideration should be given to freezing seal meat for at least 3 d to ensure destruction of tissue cysts of T. gondii.
Collapse
Affiliation(s)
- Caroline C Sauvé
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | | | | | | | | | | | | |
Collapse
|