1
|
Guan T, Zhang W, Li M, Wang Q, Guo L, Guo B, Luo X, Li Z, Lu M, Dong Z, Xu M, Liu M, Liu Y, Feng J. D-Ala2-GIP (1-30) promotes angiogenesis by facilitating endothelial cell migration via the Epac/Rap1/Cdc42 signaling pathway. Cell Signal 2025; 127:111615. [PMID: 39855534 DOI: 10.1016/j.cellsig.2025.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Angiogenesis, a meticulously regulated process essential for both normal development and pathological conditions, necessitates a comprehensive understanding of the endothelial mechanisms governing its progression. Leveraging the zebrafish model and NgAgo knockdown system to identify target genes influencing angiogenesis, our study highlights the significant role of gastric inhibitory polypeptide (GIP) and its receptor (GIPR) in this process. While GIP has been extensively studied for its insulinotropic and glucagonotropic effects, its role in angiogenesis remains unexplored. This study demonstrated that GIPR knockdown induced developmental delays, morphological abnormalities, and pronounced angiogenic impairments in zebrafish embryos. Conversely, exogenous D-Ala2-GIP administration enhanced blood vessel formation in the yolk sac membrane of chick embryos. Consistent with these findings, D-Ala2-GIP treatment promoted microvessel formation in the tube formation assays and rat aortic ring models. Further investigation revealed that D-Ala2-GIP facilitated human umbilical vein endothelial cell (HUVEC) migration, a key step in angiogenesis, through the cyclic adenosine monophosphate (cAMP)-mediated activation of the Epac/Rap1/Cdc42 signaling pathway. This study provides novel insights into the angiogenic functions of GIP and its potential implications for cardiovascular biology.
Collapse
Affiliation(s)
- Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qing Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Muxing Lu
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
2
|
Shang R, Rodrigues B. Cardioprotective effects of a 'twincretin' drug tirzepatide in heart failure following myocardial infarction. Cardiovasc Res 2025:cvaf006. [PMID: 39902650 DOI: 10.1093/cvr/cvaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde St, Toronto, ON, Canada M5T 3H7
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
3
|
Lee JE, Kim BG, Won JC. Molecular Pathways in Diabetic Cardiomyopathy and the Role of Anti-hyperglycemic Drugs Beyond Their Glucose Lowering Effect. J Lipid Atheroscler 2025; 14:54-76. [PMID: 39911956 PMCID: PMC11791414 DOI: 10.12997/jla.2025.14.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 02/07/2025] Open
Abstract
Epidemiological evidence has shown that diabetes is associated with overt heart failure (HF) and worse clinical outcomes. However, the presence of a distinct primary diabetic cardiomyopathy (DCM) has not been easy to prove because the association between diabetes and HF is confounded by hypertension, obesity, microvascular dysfunction, and autonomic neuropathy. In addition, the molecular mechanisms underlying DCM are not yet fully understood, DCM usually remains asymptomatic in the early stage, and no specific biomarkers have been identified. Nonetheless, several mechanistic associations at the systemic, cardiac, and cellular/molecular levels explain different aspects of myocardial dysfunction, including impaired cardiac relaxation, compliance, and contractility. In this review, we focus on recent clinical and preclinical advances in our understanding of the molecular mechanisms of DCM and the role of anti-hyperglycemic agents in preventing DCM beyond their glucose lowering effect.
Collapse
Affiliation(s)
- Jie-Eun Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Byung Gyu Kim
- Division of Cardiology, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jong Chul Won
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Grandl G, Novikoff A, Liu X, Müller TD. Recent achievements and future directions of anti-obesity medications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 47:101100. [PMID: 39582489 PMCID: PMC11585837 DOI: 10.1016/j.lanepe.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
Pharmacological management of obesity long suffered from a reputation of a 'Mission Impossible,' with inefficient weight loss and/or unacceptable tolerability. However, the tide has turned with recent progress in biochemical engineering and the development of long-acting agonists at the receptor for glucagon-like peptide-1 (GLP-1), and with unimolecular peptides that simultaneously possess activity at the receptors for GLP-1, the glucose-dependent insulinotropic polypeptide (GIP) and glucagon. Some of these novel therapeutics not only improve body weight and glycemic control in individuals with obesity and type 2 diabetes with hitherto unmet efficacy and tolerable safety, but also exhibit potential therapeutic value in diverse areas such as neurodegenerative diseases, fatty liver disease, dyslipidemia, atherosclerosis, and cardiovascular diseases. In this review, we highlight recent advances in incretin-based therapies and discuss their pharmacological potential within and beyond the treatment of obesity and diabetes, as well as their limitations in use, side effects, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
5
|
Liu Y, Jia Y, Wu Y, Zhang H, Ren F, Zhou S. Review on mechanisms of hypoglycemic effects of compounds from highland barley and potential applications. Food Funct 2024; 15:11365-11382. [PMID: 39495067 DOI: 10.1039/d4fo00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The rising prevalence of metabolic diseases, such as diabetes and obesity, presents a significant global health challenge. Dietary interventions, with their minimal side effects, hold great promise as effective strategies for blood sugar management. Highland barley (HB) boasts a comprehensive and unique nutritional composition, characterized by high protein, high fiber, high vitamins, low fat, low sugar, and diverse bioactive components. These attributes make it a promising candidate for alleviating high blood sugar. This review explores the mechanisms underlying the glucose-lowering properties of HB, emphasizing its nutritional profile and bioactive constituents. Additionally, it examines the impact of common HB processing techniques on its nutrient composition and highlights its applications in food products. By advancing the understanding of HB's value and mechanisms in diabetes prevention, this review aims to facilitate the development of HB-based foods suitable for diabetic patients.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Tran DT, Yeung ESH, Hong LYQ, Kaur H, Advani SL, Liu Y, Syeda MZ, Batchu SN, Advani A. Finerenone attenuates downregulation of the kidney GLP-1 receptor and glucagon receptor and cardiac GIP receptor in mice with comorbid diabetes. Diabetol Metab Syndr 2024; 16:283. [PMID: 39582036 PMCID: PMC11587750 DOI: 10.1186/s13098-024-01525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Several new treatments have recently been shown to have heart and kidney protective benefits in people with diabetes. Because these treatments were developed in parallel, it is unclear how the different molecular pathways affected by the therapies may overlap. Here, we examined the effects of the mineralocorticoid receptor antagonist finerenone in mice with comorbid diabetes, focusing on the regulation of expression of the glucagon-like peptide-1 receptor (GLP-1R), gastric inhibitory polypeptide receptor (GIPR) and glucagon receptor (GCGR), which are targets of approved or investigational therapies in diabetes. METHODS Male C57BL/6J mice were fed a high fat diet for 26 weeks. Twelve weeks into the high fat diet feeding period, mice received an intraperitoneal injection of streptozotocin before being followed for the remaining 14 weeks (DMHFD mice). After 26 weeks, mice were fed a high fat diet containing finerenone (100 mg/kg diet) or high fat diet alone for a further 2 weeks. Cell culture experiments were performed in primary vascular smooth muscle cells (VSMCs), NRK-49 F fibroblasts, HK-2 cells, and MDCK cells. RESULTS DMHFD mice developed albuminuria, glomerular mesangial expansion, and diastolic dysfunction (decreased E/A ratio). Glp1r and Gcgr were predominantly expressed in arteriolar VSMCs and distal nephron structures of mouse kidneys respectively, whereas Gipr was the predominant of the three transcripts in mouse hearts. Kidney Glp1r and Gcgr and cardiac Gipr mRNA levels were reduced in DMHFD mice and this reduction was negated or attenuated with finerenone. Mechanistically, finerenone attenuated upregulation of the profibrotic growth factor Ccn2 in DMHFD kidneys, whereas recombinant CCN2 downregulated Glp1r and Gcgr in VSMCs and MDCK cells respectively. CONCLUSIONS Through its anti-fibrotic actions, finerenone reverses Glp1r and Gcgr downregulation in the diabetic kidney. Both finerenone and GLP-1R agonists have proven cardiorenal benefits, whereas receptor co-agonists are approved or under development. The current findings provide preclinical rationale for the combined use of finerenone with the GLP-1R agonist family. They also provide mechanism of action insights into the potential benefit of finerenone in people with diabetes for whom GLP-1R agonists or co-agonists may not be indicated.
Collapse
Affiliation(s)
- Duc Tin Tran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Emily S H Yeung
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Lisa Y Q Hong
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Madiha Zahra Syeda
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 6-151 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
7
|
Deis T, Goetze JP, Kistorp C, Gustafsson F. Gut Hormones in Heart Failure. Circ Heart Fail 2024; 17:e011813. [PMID: 39498569 DOI: 10.1161/circheartfailure.124.011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Heart failure (HF) is a syndrome affecting all organ systems. While some organ interactions have been studied intensively in HF (such as the cardiorenal interaction), the endocrine gut has to some degree been overlooked. However, there is growing evidence of direct cardiac effects of several hormones secreted from the gastrointestinal tract. For instance, GLP-1 (glucagon-like peptide-1), an incretin hormone secreted from the distal intestine following food intake, has notable effects on the heart, impacting heart rate and contractility. GLP-1 may even possess cardioprotective abilities, such as inhibition of myocardial ischemia and cardiac remodeling. While other gut hormones have been less studied, there is evidence suggesting cardiostimulatory properties of several hormones. Moreover, it has been reported that patients with HF have altered bioavailability of numerous gastrointestinal hormones, which may have prognostic implications. This might indicate an important role of gut hormones in cardiac physiology and pathology, which may be of particular importance in the failing heart. We present an overview of the current knowledge on gut hormones in HF, focusing on HF with reduced ejection fraction, and discuss how these hormones may be regulators of cardiac function and central hemodynamics. Potential therapeutic perspectives are discussed, and knowledge gaps are highlighted herein.
Collapse
Affiliation(s)
- Tania Deis
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry (J.P.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences (J.P.G.), University of Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology (C.K.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology (T.D., F.G.), Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine (C.K., F.G.), University of Copenhagen, Denmark
| |
Collapse
|
8
|
Simmons AD, Baumann C, Zhang X, Kamp TJ, De La Fuente R, Palecek SP. Integrated multi-omics analysis identifies features that predict human pluripotent stem cell-derived progenitor differentiation to cardiomyocytes. J Mol Cell Cardiol 2024; 196:52-70. [PMID: 39222876 PMCID: PMC11534572 DOI: 10.1016/j.yjmcc.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.
Collapse
Affiliation(s)
- Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, and Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Lee DSM, Cardone KM, Zhang DY, Tsao NL, Abramowitz S, Sharma P, DePaolo JS, Conery M, Aragam KG, Biddinger K, Dilitikas O, Hoffman-Andrews L, Judy RL, Khan A, Kulo I, Puckelwartz MJ, Reza N, Satterfield BA, Singhal P, Arany ZP, Cappola TP, Carruth E, Day SM, Do R, Haggarty CM, Joseph J, McNally EM, Nadkarni G, Owens AT, Rader DJ, Ritchie MD, Sun YV, Voight BF, Levin MG, Damrauer SM. Common- and rare-variant genetic architecture of heart failure across the allele frequency spectrum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.07.16.23292724. [PMID: 37503172 PMCID: PMC10371173 DOI: 10.1101/2023.07.16.23292724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Heart failure (HF) is a complex trait, influenced by environmental and genetic factors, which affects over 30 million individuals worldwide. Historically, the genetics of HF have been studied in Mendelian forms of disease, where rare genetic variants have been linked to familial cardiomyopathies. More recently, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with risk of HF. However, the relative importance of genetic variants across the allele-frequency spectrum remains incompletely characterized. Here, we report the results of common- and rare-variant association studies of all-cause heart failure, applying recently developed methods to quantify the heritability of HF attributable to different classes of genetic variation. We combine GWAS data across multiple populations including 207,346 individuals with HF and 2,151,210 without, identifying 176 risk loci at genome-wide significance (P-value < 5×10-8). Signals at newly identified common-variant loci include coding variants in Mendelian cardiomyopathy genes (MYBPC3, BAG3) and in regulators of lipoprotein (LPL) and glucose metabolism (GIPR, GLP1R). These signals are enriched in myocyte and adipocyte cell types and can be clustered into 5 broad modules based on pleiotropic associations with anthropomorphic traits/obesity, blood pressure/renal function, atherosclerosis/lipids, immune activity, and arrhythmias. Gene burden studies across three biobanks (PMBB, UKB, AOU), including 27,208 individuals with HF and 349,126 without, uncover exome-wide significant (P-value < 1.57×10-6) associations for HF and rare predicted loss-of-function (pLoF) variants in TTN, MYBPC3, FLNC, and BAG3. Total burden heritability of rare coding variants (2.2%, 95% CI 0.99-3.5%) is highly concentrated in a small set of Mendelian cardiomyopathy genes, while common variant heritability (4.3%, 95% CI 3.9-4.7%) is more diffusely spread throughout the genome. Finally, we show that common-variant background, in the form of a polygenic risk score (PRS), significantly modifies the risk of HF among carriers of pathogenic truncating variants in the Mendelian cardiomyopathy gene TTN. Together, these findings provide a genetic link between dysregulated metabolism and HF, and suggest a significant polygenic component to HF exists that is not captured by current clinical genetic testing.
Collapse
Affiliation(s)
- David S M Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathleen M Cardone
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - David Y Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Noah L Tsao
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah Abramowitz
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Pranav Sharma
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - John S DePaolo
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mitchell Conery
- Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Kiran Biddinger
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ozan Dilitikas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Lily Hoffman-Andrews
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Renae L Judy
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Iftikhar Kulo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Megan J Puckelwartz
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nosheen Reza
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Pankhuri Singhal
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zoltan P Arany
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Thomas P Cappola
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Eric Carruth
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA
| | - Sharlene M Day
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Mount Sinai Icahn School of Medicine, New York, NY
- Biome Phenomics Center, Mount Sinai Icahn School of Medicine, New York, NY
- Department of Genetics and Genomic Sciences, Mount Sinai Icahn School of Medicine, New York, NY
| | | | - Jacob Joseph
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Girish Nadkarni
- Division of Nephrology, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY
| | - Anjali T Owens
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marylyn D Ritchie
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA
- Atlanta VA Health Care System, Decatur, GA
| | - Benjamin F Voight
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Michael G Levin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Scott M Damrauer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| |
Collapse
|
10
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Dardano A, Bianchi C, Garofolo M, Del Prato S. The current landscape for diabetes treatment: Preventing diabetes-associated CV risk. Atherosclerosis 2024; 394:117560. [PMID: 38688748 DOI: 10.1016/j.atherosclerosis.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Despite the risk of atherosclerosis has progressively declined over the past few decades, subjects with type 2 diabetes mellitus (T2DM) continue to experience substantial excess of atherosclerotic cardiovascular disease (ASCVD)-related events. Therefore, there is urgent need to treat ASCVD disease in T2DM earlier, more intensively, and with greater precision. Many factors concur to increase the risk of atherosclerosis, and multifactorial intervention remains the basis for effective prevention or reduction of atherosclerotic events. The role of anti-hyperglycemic medications in reducing the risk of ASCVD in subjects with T2DM has evolved over the past few years. Multiple cardiovascular outcome trials (CVOTs) with new and emerging glucose-lowering agents, namely SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RA), have demonstrated significant reductions of major cardiovascular events and additional benefits. This robust evidence has changed the landscape for managing people with T2DM. In addition to glycemic and ancillary extra-glycemic properties, SGLT2i and GLP1-RA might exert favorable effects on subclinical and clinical atherosclerosis. Therefore, the objective of this review is to discuss the available evidence supporting anti-atherosclerotic properties of SGLT2i and GLP1-RA, with a quick nod to sotagliflozin and tirzepatide.
Collapse
Affiliation(s)
- Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy; Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
14
|
Capone F, Nambiar N, Schiattarella GG. Beyond Weight Loss: the Emerging Role of Incretin-Based Treatments in Cardiometabolic HFpEF. Curr Opin Cardiol 2024; 39:148-153. [PMID: 38294187 DOI: 10.1097/hco.0000000000001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
PURPOSE OF REVIEW Incretin-based drugs are potent weight-lowering agents, emerging as potential breakthrough therapy for the treatment of obesity-related phenotype of heart failure with preserved ejection fraction (HFpEF). In this review article, we will discuss the contribution of weight loss as part of the benefits of incretin-based medications in obese patients with HFpEF. Furthermore, we will describe the potential effects of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists on the heart, particularly in relation to HFpEF pathophysiology. RECENT FINDINGS In the STEP-HFpEF trial, the GLP-1 receptor agonist semaglutide significantly improved quality of life outcomes in obese HFpEF patients. Whether the beneficial effects of semaglutide in obese patients with HFpEF are merely a consequence of body weight reduction is unclear. Considering the availability of other weight loss strategies (e.g., caloric restriction, exercise training, bariatric surgery) to be used in obese HFpEF patients, answering this question is crucial to provide tailored therapeutic options in these subjects. SUMMARY Incretin-based drugs may represent a milestone in the treatment of obesity in HFpEF. Elucidating the contribution of weight loss in the overall benefit observed with these drugs is critical in the management of obese HFpEF patients, considering that other weight-lowering strategies are available and might represent potential alternative options for these patients.
Collapse
Affiliation(s)
- Federico Capone
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Division of Internal Medicine, Department of Medicine, University of Padua, Padua, Italy
| | - Natasha Nambiar
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité -Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
15
|
Akindehin S, Liskiewicz A, Liskiewicz D, Bernecker M, Garcia-Caceres C, Drucker DJ, Finan B, Grandl G, Gutgesell R, Hofmann SM, Khalil A, Liu X, Cota P, Bakhti M, Czarnecki O, Bastidas-Ponce A, Lickert H, Kang L, Maity G, Novikoff A, Parlee S, Pathak E, Schriever SC, Sterr M, Ussar S, Zhang Q, DiMarchi R, Tschöp MH, Pfluger PT, Douros JD, Müller TD. Loss of GIPR in LEPR cells impairs glucose control by GIP and GIP:GLP-1 co-agonism without affecting body weight and food intake in mice. Mol Metab 2024; 83:101915. [PMID: 38492844 PMCID: PMC10973979 DOI: 10.1016/j.molmet.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the β-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.
Collapse
Affiliation(s)
- Seun Akindehin
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Diabetes School, Helmholtz Diabetes Center, Munich, Germany
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Poland
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Miriam Bernecker
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Diabetes School, Helmholtz Diabetes Center, Munich, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Cristina Garcia-Caceres
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; Medical Clinic and Polyclinic IV, Ludwig-Maximilians University of München, Munich, Germany
| | - Ahmed Khalil
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Perla Cota
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Oliver Czarnecki
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Lingru Kang
- German Center for Diabetes Research (DZD), Neuherberg, Germany; RU Adipocytes & Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Gandhari Maity
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Parlee
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Ekta Pathak
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany
| | - Michael Sterr
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany; RU Adipocytes & Metabolism, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany; Helmholtz Munich, Neuherberg, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; Neurobiology of Diabetes Research Unit, Germany; Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludgwig-Maximilians-University Munich, Germany.
| |
Collapse
|
16
|
Nicholls SJ, Bhatt DL, Buse JB, Prato SD, Kahn SE, Lincoff AM, McGuire DK, Nauck MA, Nissen SE, Sattar N, Zinman B, Zoungas S, Basile J, Bartee A, Miller D, Nishiyama H, Pavo I, Weerakkody G, Wiese RJ, D'Alessio D. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. Am Heart J 2024; 267:1-11. [PMID: 37758044 DOI: 10.1016/j.ahj.2023.09.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Tirzepatide, a once-weekly GIP/GLP-1 receptor agonist, reduces blood glucose and body weight in people with type 2 diabetes. The cardiovascular (CV) safety and efficacy of tirzepatide have not been definitively assessed in a cardiovascular outcomes trial. METHODS Tirzepatide is being studied in a randomized, double-blind, active-controlled CV outcomes trial. People with type 2 diabetes aged ≥40 years, with established atherosclerotic CV disease, HbA1c ≥7% to ≤10.5%, and body mass index ≥25 kg/m2 were randomized 1:1 to once weekly subcutaneous injection of either tirzepatide up to 15 mg or dulaglutide 1.5 mg. The primary outcome is time to first occurrence of any major adverse cardiovascular event (MACE), defined as CV death, myocardial infarction, or stroke. The trial is event-driven and planned to continue until ≥1,615 participants experience an adjudication-confirmed component of MACE. The primary analysis is noninferiority for time to first MACE of tirzepatide vs dulaglutide by demonstrating an upper confidence limit <1.05, which will also confirm superiority vs a putative placebo, and also to determine whether tirzepatide produces a greater CV benefit than dulaglutide (superiority analysis). RESULTS Over 2 years, 13,299 people at 640 sites in 30 countries across all world regions were randomized. The mean age of randomized participants at baseline was 64.1 years, diabetes duration 14.7 years, HbA1c 8.4%, and BMI 32.6 kg/m2. Overall, 65.0% had coronary disease, of whom 47.3% reported prior myocardial infarction and 57.4% had prior coronary revascularization. 19.1% of participants had a prior stroke and 25.3% had peripheral artery disease. The trial is fully recruited and ongoing. CONCLUSION SURPASS-CVOT will provide definitive evidence as to the CV safety and efficacy of tirzepatide as compared with dulaglutide, a GLP-1 receptor agonist with established CV benefit.
Collapse
Affiliation(s)
- Stephen J Nicholls
- Victorian Heart Institute, Monash University, VIC, Melbourne, Australia.
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY
| | - John B Buse
- University of North Carolina, Chapel Hill, NC
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases and Diabetes, University of Pisa, Pisa, and Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - A Michael Lincoff
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research) and Department of Cardiovascular Medicine, Cleveland, OH
| | - Darren K McGuire
- University of Texas Southwestern Medical Center and Parkland Health and Hospital System, Dallas, TX
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Medicine I, St. Josef-Hospital, Katholisches Klinikum Bochum gGmbH, Ruhr University of Bochum, Bochum, Germany
| | - Steven E Nissen
- Cleveland Clinic Coordinating Center for Clinical Research (C5Research) and Department of Cardiovascular Medicine, Cleveland, OH
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom
| | - Bernard Zinman
- University of Toronto, Lunenfeld-Tanenbaum Research Institute and Mount Sinai Hospital, Toronto, ON, Canada
| | - Sophia Zoungas
- Victorian Heart Institute, Monash University, VIC, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, VIC, Melbourne, Australia
| | - Jan Basile
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC
| | | | | | | | - Imre Pavo
- Eli Lilly and Company, Indianapolis, IN
| | | | | | | |
Collapse
|
17
|
Liskiewicz A, Khalil A, Liskiewicz D, Novikoff A, Grandl G, Maity-Kumar G, Gutgesell RM, Bakhti M, Bastidas-Ponce A, Czarnecki O, Makris K, Lickert H, Feuchtinger A, Tost M, Coupland C, Ständer L, Akindehin S, Prakash S, Abrar F, Castelino RL, He Y, Knerr PJ, Yang B, Hogendorf WFJ, Zhang S, Hofmann SM, Finan B, DiMarchi RD, Tschöp MH, Douros JD, Müller TD. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice. Nat Metab 2023; 5:2075-2085. [PMID: 37946085 PMCID: PMC10730394 DOI: 10.1038/s42255-023-00931-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.
Collapse
Affiliation(s)
- Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ahmed Khalil
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gandhari Maity-Kumar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert M Gutgesell
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Czarnecki
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Konstantinos Makris
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Monica Tost
- Core Facility Pathology & Tissue Analytics, Helmholtz Munich, Neuherberg, Germany
| | - Callum Coupland
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Ständer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Seun Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sneha Prakash
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Faiyaz Abrar
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Russell L Castelino
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Shiqi Zhang
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
18
|
Gasbjerg LS, Rosenkilde MM, Meier JJ, Holst JJ, Knop FK. The importance of glucose-dependent insulinotropic polypeptide receptor activation for the effects of tirzepatide. Diabetes Obes Metab 2023; 25:3079-3092. [PMID: 37551549 DOI: 10.1111/dom.15216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 07/02/2023] [Indexed: 08/09/2023]
Abstract
Tirzepatide is a unimolecular co-agonist of the glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors recently approved for the treatment of type 2 diabetes by the US Food and Drug Administration and the European Medicine Agency. Tirzepatide treatment results in an unprecedented improvement of glycaemic control and lowering of body weight, but the contribution of the GIP receptor-activating component of tirzepatide to these effects is uncertain. In this review, we present the current knowledge about the physiological roles of the incretin hormones GLP-1 and GIP, their receptors, and previous results of co-targeting the two incretin hormone receptors in humans. We also analyse the molecular pharmacological, preclinical and clinical effects of tirzepatide to discuss the role of GIP receptor activation for the clinical effects of tirzepatide. Based on the available literature on the combination of GLP-1 and GIP receptor activation, tirzepatide does not seem to have a classical co-activating mode of action in humans. Rather, in vitro studies of the human GLP-1 and GIP receptors reveal a biased GLP-1 receptor activation profile and GIP receptor downregulation. Therefore, we propose three hypotheses for the mode of action of tirzepatide, which can be addressed in future, elaborate clinical trials.
Collapse
Affiliation(s)
- Laerke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juris J Meier
- Department of Internal Medicine, Gastroenterology and Diabetology, Augusta Clinic, Bochum, Germany
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 2023; 66:1765-1779. [PMID: 36976349 DOI: 10.1007/s00125-023-05906-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Solini A, Tricò D, Del Prato S. Incretins and cardiovascular disease: to the heart of type 2 diabetes? Diabetologia 2023; 66:1820-1831. [PMID: 37542009 PMCID: PMC10473999 DOI: 10.1007/s00125-023-05973-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Major cardiovascular outcome trials and real-life observations have proven that glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs), regardless of structural GLP-1 homology, exert clinically relevant cardiovascular protection. GLP-1RAs provide cardioprotective benefits through glycaemic and non-glycaemic effects, including improved insulin secretion and action, body-weight loss, blood-pressure lowering and improved lipid profile, as well as via direct effects on the heart and vasculature. These actions are likely combined with anti-inflammatory and antioxidant properties that translate into robust and consistent reductions in atherothrombotic events, particularly in people with type 2 diabetes and established atherosclerotic CVD. GLP-1RAs may also have an impact on obesity and chronic kidney disease, conditions for which cardiovascular risk-reducing options are limited. The available evidence has prompted professional and medical societies to recommend GLP-1RAs for mitigation of the cardiovascular risk in people with type 2 diabetes. This review summarises the clinical evidence for cardiovascular protection with use of GLP-1RAs and the main mechanisms underlying this effect. Moreover, it looks into how the availability of upcoming dual and triple incretin receptor agonists might expand the possibility for cardiovascular protection in people with type 2 diabetes.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
21
|
Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 2023; 20:463-474. [PMID: 36977782 DOI: 10.1038/s41569-023-00849-3] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders characterized by excess cardiovascular risk. Glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce body weight, glycaemia, blood pressure, postprandial lipaemia and inflammation - actions that could contribute to the reduction of cardiovascular events. Cardiovascular outcome trials (CVOTs) have demonstrated that GLP1R agonists reduce the rates of major adverse cardiovascular events in patients with T2DM. Separate phase III CVOTs of GLP1R agonists are currently being conducted in people living with heart failure with preserved ejection fraction and in those with obesity. Mechanistically, GLP1R is expressed at low levels in the heart and vasculature, raising the possibility that GLP1 might have both direct and indirect actions on the cardiovascular system. In this Review, we summarize the data from CVOTs of GLP1R agonists in patients with T2DM and describe the actions of GLP1R agonists on the heart and blood vessels. We also assess the potential mechanisms that contribute to the reduction in major adverse cardiovascular events in individuals treated with GLP1R agonists and highlight the emerging cardiovascular biology of novel GLP1-based multi-agonists currently in development. Understanding how GLP1R signalling protects the heart and blood vessels will optimize the therapeutic use and development of next-generation GLP1-based therapies with improved cardiovascular safety.
Collapse
Affiliation(s)
- John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Hammoud R, Drucker DJ. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat Rev Endocrinol 2023; 19:201-216. [PMID: 36509857 DOI: 10.1038/s41574-022-00783-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP1) exhibit incretin activity, meaning that they potentiate glucose-dependent insulin secretion. The emergence of GIP receptor (GIPR)-GLP1 receptor (GLP1R) co-agonists has fostered growing interest in the actions of GIP and GLP1 in metabolically relevant tissues. Here, we update concepts of how these hormones act beyond the pancreas. The actions of GIP and GLP1 on liver, muscle and adipose tissue, in the control of glucose and lipid homeostasis, are discussed in the context of plausible mechanisms of action. Both the GIPR and GLP1R are expressed in the central nervous system, wherein receptor activation produces anorectic effects enabling weight loss. In preclinical studies, GIP and GLP1 reduce atherosclerosis. Furthermore, GIPR and GLP1R are expressed within the heart and immune system, and GLP1R within the kidney, revealing putative mechanisms linking GIP and GLP1R agonism to cardiorenal protection. We interpret the clinical and mechanistic data obtained for different agents that enable weight loss and glucose control for the treatment of obesity and type 2 diabetes mellitus, respectively, by activating or blocking GIPR signalling, including the GIPR-GLP1R co-agonist tirzepatide, as well as the GIPR antagonist-GLP1R agonist AMG-133. Collectively, we update translational concepts of GIP and GLP1 action, while highlighting gaps, areas of uncertainty and controversies meriting ongoing investigation.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
24
|
McLean BA, Wong CK, Kabir MG, Drucker DJ. Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol Metab 2022; 66:101641. [PMID: 36396031 PMCID: PMC9706177 DOI: 10.1016/j.molmet.2022.101641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain. METHODS Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation. RESULTS In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1rTie2-/- mice. Nevertheless, the cardioprotective actions of liraglutide to reduce infarct size, augment ejection fraction, and improve survival after experimental myocardial infarction (MI), were attenuated in Glp1rTie2-/- mice. CONCLUSIONS These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.
Collapse
|
25
|
Yang G, Liang X, Jiang Y, Li C, Zhang Y, Zhang X, Chang X, Shen Y, Meng X. Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression. AQUACULTURE NUTRITION 2022; 2022:4330251. [PMID: 36860432 PMCID: PMC9973162 DOI: 10.1155/2022/4330251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanle Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
26
|
Bulum T. Nephroprotective Properties of the Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) Receptor Agonists. Biomedicines 2022; 10:biomedicines10102586. [PMID: 36289848 PMCID: PMC9599125 DOI: 10.3390/biomedicines10102586] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is the leading cause of chronic kidney disease, and about 30–40% of patients with diabetes will develop kidney disease. Incretin hormones have received attention during the past three decades not only as a pharmacotherapy for the treatment of type 2 diabetes, but also for their cardiorenometabolic effects. The main incretins are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Additional to the pancreas, receptors for GLP-1 are widely distributed in various organs, causing positive effects on endothelial function and vascular atherogenesis. Along with glycemic control and weight reduction, GLP-1 receptor agonists also strongly improve cardiovascular and renal outcomes in patients with type 2 diabetes. Recently, a dual GIP and GLP-1 receptor agonist has been approved for the treatment of type 2 diabetes. Compared to GLP-1 receptor agonist semaglutide, dual GIP and GLP-1 receptor agonist tirzepatide showed a superior reduction in hemoglobin A1c and body weight. Preliminary results also suggest that tirzepatide improves kidney outcomes in adults with type 2 diabetes with increased cardiovascular risk. In this review, we present the nephroprotective properties of dual GIP and GLP-1 receptor agonists as a new drug to treat type 2 diabetes.
Collapse
Affiliation(s)
- Tomislav Bulum
- Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic Diseases, University Hospital Merkur, Dugi dol 4a, 10000 Zagreb, Croatia;
- Medical School, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Posch MG, Walther N, Ferrannini E, Powell DR, Banks P, Wason S, Dahmen R. Metabolic, Intestinal, and Cardiovascular Effects of Sotagliflozin Compared With Empagliflozin in Patients With Type 2 Diabetes: A Randomized, Double-Blind Study. Diabetes Care 2022; 45:2118-2126. [PMID: 35817022 PMCID: PMC9472498 DOI: 10.2337/dc21-2166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/21/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Inhibiting sodium-glucose cotransporters (SGLTs) improves glycemic and cardiovascular outcomes in patients with type 2 diabetes (T2D). We investigated the differential impact of selective SGLT2 inhibition and dual inhibition of SGLT1 and SGLT2 on multiple parameters. RESEARCH DESIGN AND METHODS Using a double-blind, parallel-group design, we randomized 40 patients with T2D and hypertension to receive the dual SGLT1 and SGLT2 inhibitor sotagliflozin 400 mg or the selective SGLT2 inhibitor empagliflozin 25 mg, with preexisting antihypertensive treatment, for 8 weeks. In an in-house testing site, mixed-meal tolerance tests (MMTTs) and other laboratory and clinical evaluations were used to study metabolic, intestinal, cardiovascular, and urinary parameters over 24 h. RESULTS Changes from baseline in glycemic and blood pressure control; intestinal, urine, and metabolic parameters; and cardiovascular biomarkers were generally similar with sotagliflozin and empagliflozin. During the breakfast MMTT, sotagliflozin significantly reduced incremental area under the curve (AUC) values for postprandial glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) and significantly increased incremental AUCs for postprandial glucagon-like peptide 1 (GLP-1) relative to empagliflozin, consistent with sotagliflozin-mediated inhibition of intestinal SGLT1. These changes waned during lunch and dinner MMTTs. Both treatments significantly lowered GIP incremental AUCs relative to baseline over the 14 h MMTT interval; the most vigorous effect was seen with sotagliflozin soon after start of the first meal of the day. No serious or severe adverse events were observed. CONCLUSIONS Changes from baseline in glycemic and blood pressure control, cardiovascular biomarkers, and other parameters were comparable between sotagliflozin and empagliflozin. However, sotagliflozin but not empagliflozin inhibited intestinal SGLT1 after breakfast as shown by larger changes in postprandial glucose, insulin, GIP, and GLP-1 AUCs, particularly after breakfast. Additional study is warranted to assess the clinical relevance of transient SGLT1 inhibition and differences in incretin responses (NCT03462069).
Collapse
Affiliation(s)
| | | | - Ele Ferrannini
- National Research Council Institute of Clinical Physiology, Pisa, Italy
| | | | | | - Suman Wason
- Lexicon Pharmaceuticals, Inc., The Woodlands, TX
| | | |
Collapse
|
28
|
Pujadas G, Baggio LL, Kaur KD, McLean BA, Cao X, Drucker DJ. Genetic disruption of the Gipr in Apoe -/- mice promotes atherosclerosis. Mol Metab 2022; 65:101586. [PMID: 36055579 PMCID: PMC9478451 DOI: 10.1016/j.molmet.2022.101586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain. METHODS Atherosclerosis and related metabolic phenotypes were studied in Apoe-/-:Gipr-/- mice and in Gipr+/+ and Gipr-/- mice treated with an adeno-associated virus expressing PCSK9 (AAV-PCSK9). Bone marrow transplantation (BMT) studies were carried out using donor marrow from Apoe-/-:Gipr-/-and Apoe-/-:Gipr+/+mice transplanted into Apoe-/-:Gipr-/- recipient mice. Experimental endpoints included the extent of aortic atherosclerosis and inflammation, body weight, glucose tolerance, and circulating lipid levels, the proportions and subsets of circulating leukocytes, and tissue gene expression profiles informing lipid and glucose metabolism, and inflammation. RESULTS Body weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe-/-:Gipr-/- mice and trended higher in Gipr-/- mice with atherosclerosis induced by AAV-PCSK9. Levels of mRNA transcripts for genes contributing to inflammation were increased in the aortae of Apoe-/-:Gipr-/- mice and expression of a subset of inflammation-related hepatic genes were increased in Gipr-/- mice treated with AAV-PCSK9. BMT experiments did not reveal marked atherosclerosis, failing to implicate bone marrow derived GIPR + cells in the control of atherosclerosis or aortic inflammation. CONCLUSIONS Loss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel J. Drucker
- Corresponding author. LTRI, Mt. Sinai Hospital 600 University Ave Mailbox 39, TCP5-1004 Toronto ON M5G 1X5 Canada.
| |
Collapse
|
29
|
Madsbad S, Holst JJ. Cardiovascular effects of incretins - focus on GLP-1 receptor agonists. Cardiovasc Res 2022; 119:886-904. [PMID: 35925683 DOI: 10.1093/cvr/cvac112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
GLP-1 receptor agonists (GLP-1 RAs) have been used to treat patients with type 2 diabetes since 2005 and have become popular because of the efficacy and durability in relation to glycaemic control in combination with weight loss in most patients. Today in 2022, seven GLP-1 RAs, including oral semaglutide are available for treatment of type 2 diabetes. Since the efficacy in relation to reduction of HbA1c and body weight as well as tolerability and dosing frequency vary between agents, the GLP-1 RAs cannot be considered equal. The short acting lixisenatide showed no cardiovascular benefits, while once daily liraglutide and the weekly agonists, subcutaneous semaglutide, dulaglutide, and efpeglenatide, all lowered the incidence of cardiovascular events. Liraglutide, oral semaglutide and exenatide once weekly also reduced mortality. GLP-1 RAs reduce the progression of diabetic kidney disease. In the 2019 consensus report from EASD/ADA, GLP-1 RAs with demonstrated cardio-renal benefits (liraglutide, semaglutide and dulaglutide) are recommended after metformin to patients with established cardiovascular diseases or multiple cardiovascular risk factors. European Society of Cardiology (ESC) suggests starting with a SGLT-2 inhibitor or a GLP-1 RA in drug naïve patients with type 2 diabetes and atherosclerotic CVD or high CV Risk. However, the results from cardiovascular outcome trials (CVOT) are very heterogeneous suggesting that some GLP-1RA are more suitable to prevent CVD than others. The CVOTs provide a basis upon which individual treatment decisions for patients with T2D and CVD can be made.
Collapse
Affiliation(s)
- Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Exogenous ANP Treatment Ameliorates Myocardial Insulin Resistance and Protects against Ischemia-Reperfusion Injury in Diet-Induced Obesity. Int J Mol Sci 2022; 23:ijms23158373. [PMID: 35955507 PMCID: PMC9369294 DOI: 10.3390/ijms23158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence suggests natriuretic peptides (NPs) coordinate interorgan metabolic crosstalk. We recently reported exogenous ANP treatment ameliorated systemic insulin resistance by inducing adipose tissue browning and attenuating hepatic steatosis in diet-induced obesity (DIO). We herein investigated whether ANP treatment also ameliorates myocardial insulin resistance, leading to cardioprotection during ischemia-reperfusion injury (IRI) in DIO. Mice fed a high-fat diet (HFD) or normal-fat diet for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. Left ventricular BNP expression was substantially reduced in HFD hearts. Intraperitoneal-insulin-administration-induced Akt phosphorylation was impaired in HFD hearts, which was restored by ANP treatment, suggesting that ANP treatment ameliorated myocardial insulin resistance. After ischemia-reperfusion using the Langendorff model, HFD impaired cardiac functional recovery with a corresponding increased infarct size. However, ANP treatment improved functional recovery and reduced injury while restoring impaired IRI-induced Akt phosphorylation in HFD hearts. Myocardial ultrastructural analyses showed increased peri-mitochondrial lipid droplets with concomitantly decreased ATGL and HSL phosphorylation levels in ANP-treated HFD, suggesting that ANP protects mitochondria from lipid overload by trapping lipids. Accordingly, ANP treatment attenuated mitochondria cristae disruption after IRI in HFD hearts. In summary, exogenous ANP treatment ameliorates myocardial insulin resistance and protects against IRI associated with mitochondrial ultrastructure modifications in DIO. Replenishing biologically active NPs substantially affects HFD hearts in which endogenous NP production is impaired.
Collapse
|
31
|
Campbell JE, Beaudry JL, Svendsen B, Baggio LL, Gordon AN, Ussher JR, Wong CK, Gribble FM, D’Alessio DA, Reimann F, Drucker DJ. GIPR Is Predominantly Localized to Nonadipocyte Cell Types Within White Adipose Tissue. Diabetes 2022; 71:1115-1127. [PMID: 35192688 PMCID: PMC7612781 DOI: 10.2337/db21-1166] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 02/02/2023]
Abstract
The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) augments glucose-dependent insulin secretion through its receptor expressed on islet β-cells. GIP also acts on adipose tissue; yet paradoxically, both enhanced and reduced GIP receptor (GIPR) signaling reduce adipose tissue mass and attenuate weight gain in response to nutrient excess. Moreover, the precise cellular localization of GIPR expression within white adipose tissue (WAT) remains uncertain. We used mouse genetics to target Gipr expression within adipocytes. Surprisingly, targeting Cre expression to adipocytes using the adiponectin (Adipoq) promoter did not produce meaningful reduction of WAT Gipr expression in Adipoq-Cre:Giprflx/flx mice. In contrast, adenoviral expression of Cre under the control of the cytomegalovirus promoter, or transgenic expression of Cre using nonadipocyte-selective promoters (Ap2/Fabp4 and Ubc) markedly attenuated WAT Gipr expression. Analysis of single-nucleus RNA-sequencing, adipose tissue data sets localized Gipr/GIPR expression predominantly to pericytes and mesothelial cells rather than to adipocytes. Together, these observations reveal that adipocytes are not the major GIPR+ cell type within WAT-findings with mechanistic implications for understanding how GIP and GIP-based co-agonists control adipose tissue biology.
Collapse
Affiliation(s)
- Jonathan E. Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| | - Jacqueline L. Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Berit Svendsen
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Laurie L. Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Andrew N. Gordon
- Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - John R. Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Fiona M. Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - David A. D’Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, U.K
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Jonathan E. Campbell, , or Daniel J. Drucker,
| |
Collapse
|
32
|
Jonik S, Marchel M, Grabowski M, Opolski G, Mazurek T. Gastrointestinal Incretins-Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease-State of the Art. BIOLOGY 2022; 11:biology11020288. [PMID: 35205155 PMCID: PMC8869592 DOI: 10.3390/biology11020288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary The presented manuscript contains the most current and extensive summary of the role of the most predominant gastrointestinal hormones—GIP and GLP-1 in the pathophysiology of atherosclerosis and coronary artery disease both in animals and humans. We have described GIP and GLP-1 as (1) expressed in many human tissues, (2) emphasized relationship between GIP and GLP-1 and inflammation, (3) highlighted importance of GIP and GLP-1-dependent pathways in atherosclerosis and coronary artery disease and (4) proved that GIP and GLP-1 could be used as markers of incidence, clinical course and recurrence of coronary artery disease, and related to extent and severity of atherosclerosis and myocardial ischemia. Our initial review may state a cornerstone for the future, however, there are still many unknowns and understatements on this topic. Due to the widespread growing interest for the potential use of incretins in cardiovascular diseases, we think that further research in this direction is desirable. For the future, we would like to recognize GIP and GLP-1 as widely implemented into clinical practice as new biomarkers of atherosclerosis and coronary artery disease. Abstract Coronary artery disease (CAD), which is the manifestation of atherosclerosis in coronary arteries, is the most common single cause of death and is responsible for disabilities of millions of people worldwide. Despite numerous dedicated clinical studies and an enormous effort to develop diagnostic and therapeutic methods, coronary atherosclerosis remains one of the most serious medical problems of the modern world. Hence, new markers are still being sought to identify and manage CAD optimally. Trying to face this problem, we have raised the question of the most predominant gastrointestinal hormones; glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), mainly involved in carbohydrates disorders, could be also used as new markers of incidence, clinical course, and recurrence of CAD and are related to extent and severity of atherosclerosis and myocardial ischemia. We describe GIP and GLP-1 as expressed in many animal and human tissues, known to be connected to inflammation and related to enormous noncardiac and cardiovascular (CV) diseases. In animals, GIP and GLP-1 improve endothelial function and lead to reduced atherosclerotic plaque macrophage infiltration and stabilize atherosclerotic lesions by directly blocking monocyte migration. Moreover, in humans, GIPR activation induces the pro-atherosclerotic factors ET-1 (endothelin-1) and OPN (osteopontin) but also has anti-atherosclerotic effects through secretion of NO (nitric oxide). Furthermore, four large clinical trials showed a significant reduction in composite of CV death, MI, and stroke in long-term follow-up using GLP-1 analogs for DM 2 patients: liraglutide in LEADER, semaglutide in SUSTAIN-6, dulaglutide in REWIND and albiglutide in HARMONY. However, very little is known about GIP metabolism in the acute phase of myocardial ischemia or for stable patients with CAD, which constitutes a direction for future research. This review aims to comprehensively discuss the impact of GIP and GLP-1 on atherosclerosis and CAD and its potential therapeutic implications.
Collapse
|
33
|
He X. Glucose-dependent insulinotropic polypeptide and tissue inflammation: Implications for atherogenic cardiovascular disease. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) has pleiotropic actions on pancreatic endocrine function, adipose tissue lipid metabolism, and skeletal calcium metabolism. Recent data indicate a potential new role for GIP in the pathogenesis of cardiovascular disease. This review focuses on the emerging literature that highlights GIP’s role in inflammation—an established process in the initiation and progression of atherosclerosis. In vasculature tissue, GIP may reduce concentrations of circulating inflammatory cytokines, attenuate vascular endothelial inflammation, and directly limit atherosclerotic vascular damage. Important to recognize is that evidence exists to support both pro- and anti-inflammatory effects of GIP even within the same tissue/cell type. Therefore, future study designs must account for factors such as model heterogeneity, physiological relevance of doses/exposures, potential indirect effects on inflammatory pathways, and the glucose-dependent insulinotropic polypeptide receptor (GIPR) agonist form. Elucidating the specific effects of enhanced GIP signaling in vascular inflammation and atherosclerosis is crucial given the existing widespread use of DPP4 inhibitors and the emergence of dual-incretin receptor agonists for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Xiaoming He
- Department of General Surgery, First Affiliated Hospital of Dali University, Dali City, China
| |
Collapse
|
34
|
Muzurović EM, Volčanšek Š, Tomšić KZ, Janež A, Mikhailidis DP, Rizzo M, Mantzoros CS. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J Cardiovasc Pharmacol Ther 2022; 27:10742484221146371. [PMID: 36546652 DOI: 10.1177/10742484221146371] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The obesity pandemic is accompanied by increased risk of developing metabolic syndrome (MetS) and related conditions: non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), type 2 diabetes mellitus (T2DM) and cardiovascular (CV) disease (CVD). Lifestyle, as well as an imbalance of energy intake/expenditure, genetic predisposition, and epigenetics could lead to a dysmetabolic milieu, which is the cornerstone for the development of cardiometabolic complications. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RAs promote positive effects on most components of the "cardiometabolic continuum" and consequently help reduce the need for polypharmacy. In this review, we highlight the main pathophysiological mechanisms and risk factors (RFs), that could be controlled by GLP-1 and dual GIP/GLP-1 RAs independently or through synergism or differences in their mode of action. We also address the evidence on the use of GLP-1 and dual GIP/GLP-1 RAs in the treatment of obesity, MetS and its related conditions (prediabetes, T2DM and NAFLD/NASH). In conclusion, GLP-1 RAs have already been established for the treatment of T2DM, obesity and cardioprotection in T2DM patients, while dual GIP/GLP-1 RAs appear to have the potential to possibly surpass them for the same indications. However, their use in the prevention of T2DM and the treatment of complex cardiometabolic metabolic diseases, such as NAFLD/NASH or other metabolic disorders, would benefit from more evidence and a thorough clinical patient-centered approach. There is a need to identify those patients in whom the metabolic component predominates, and whether the benefits outweigh any potential harm.
Collapse
Affiliation(s)
- Emir M Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Podgorica, Montenegro.,Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Špela Volčanšek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Karin Zibar Tomšić
- Department of Endocrinology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.,Medical Faculty Ljubljana, Ljubljana, Slovenia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom.,Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Rizvi AA, Rizzo M. The Emerging Role of Dual GLP-1 and GIP Receptor Agonists in Glycemic Management and Cardiovascular Risk Reduction. Diabetes Metab Syndr Obes 2022; 15:1023-1030. [PMID: 35411165 PMCID: PMC8994606 DOI: 10.2147/dmso.s351982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/18/2022] [Indexed: 12/11/2022] Open
Abstract
The incretin pathway is a self-regulating feedback system connecting the gut with the brain, pancreas, and liver. Its predominant action is on the postprandial glucose levels, with extraglycemic effects on fat metabolism and endovascular function. Of the two main incretin hormones released with food ingestion, the actions of glucagon-like peptide-1 (GLP-1) have been exploited for therapeutic benefit. However, little attention has been paid to glucose-dependent insulinotropic polypeptide (GIP) until the recent experimental introduction of dual agonists, or "twincretins". Interestingly, simultaneous activation of both receptors is not only replicative of normal physiology, it seems to be an innovative way to enhance their mutual salubrious actions. In patients with type 2 diabetes, dual agonists can have powerful benefits for glucose control and weight reduction. Additionally, there is mounting evidence of their favorable cardiovascular impact, making them potentially appealing pharmacologic agents of choice in the future. Although we seem to be poised on the horizons of exciting new breakthroughs, much knowledge has yet to be gained before these novel agents are ready for prime time.
Collapse
Affiliation(s)
- Ali A Rizvi
- Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
- Correspondence: Ali A Rizvi, Department of Medicine, University of Central Florida College of Medicine, 3400 Quadrangle Blvd, Orlando, Florida, 32817, USA, Tel +1 803-609-1935, Fax +1 407-882-4799, Email
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| |
Collapse
|
36
|
Ast J, Broichhagen J, Hodson DJ. Reagents and models for detecting endogenous GLP1R and GIPR. EBioMedicine 2021; 74:103739. [PMID: 34911028 PMCID: PMC8669301 DOI: 10.1016/j.ebiom.2021.103739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP1R) agonists target the GLP1R, whereas dual GLP1R/ gastric inhibitory polypeptide receptor (GIPR) agonists target both the GLP1R and GIPR. Despite the importance of these drug classes for the treatment of diabetes and obesity, still very little is known about the localization of GLP1R and GIPR themselves. Complicating matters is the low abundance of GLP1R and GIPR mRNA/protein, as well as a lack of specific and validated reagents for their detection. Without knowing where GLP1R and GIPR are located, it is difficult to propose mechanisms of action in the various target organs, and whether this is indirect or direct. In the current review, we will explain the steps needed to properly validate reagents for endogenous GLP1R/GIPR detection, describe the available approaches to visualize GLP1R/GIPR, and provide an update on the state-of-art. The overall aim is to provide a reference resource for researchers interested in GLP1R and GIPR signaling.
Collapse
Affiliation(s)
- Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | | | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
37
|
Bowker N, Hansford R, Burgess S, Foley CN, Auyeung VPW, Erzurumluoglu AM, Stewart ID, Wheeler E, Pietzner M, Gribble F, Reimann F, Bhatnagar P, Coghlan MP, Wareham NJ, Langenberg C. Genetically Predicted Glucose-Dependent Insulinotropic Polypeptide (GIP) Levels and Cardiovascular Disease Risk Are Driven by Distinct Causal Variants in the GIPR Region. Diabetes 2021; 70:2706-2719. [PMID: 34426508 PMCID: PMC8564402 DOI: 10.2337/db21-0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
There is considerable interest in GIPR agonism to enhance the insulinotropic and extrapancreatic effects of GIP, thereby improving glycemic and weight control in type 2 diabetes (T2D) and obesity. Recent genetic epidemiological evidence has implicated higher GIPR-mediated GIP levels in raising coronary artery disease (CAD) risk, a potential safety concern for GIPR agonism. We therefore aimed to quantitatively assess whether the association between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via GIPR or is instead the result of linkage disequilibrium (LD) confounding between variants at the GIPR locus. Using Bayesian multitrait colocalization, we identified a GIPR missense variant, rs1800437 (G allele; E354), as the putatively causal variant shared among fasting GIP levels, glycemic traits, and adiposity-related traits (posterior probability for colocalization [PPcoloc] > 0.97; PP explained by the candidate variant [PPexplained] = 1) that was independent from a cluster of CAD and lipid traits driven by a known missense variant in APOE (rs7412; distance to E354 ∼770 Kb; R 2 with E354 = 0.004; PPcoloc > 0.99; PPexplained = 1). Further, conditioning the association between E354 and CAD on the residual LD with rs7412, we observed slight attenuation in association, but it remained significant (odds ratio [OR] per copy of E354 after adjustment 1.03; 95% CI 1.02, 1.04; P = 0.003). Instead, E354's association with CAD was completely attenuated when conditioning on an additional established CAD signal, rs1964272 (R 2 with E354 = 0.27), an intronic variant in SNRPD2 (OR for E354 after adjustment for rs1964272: 1.01; 95% CI 0.99, 1.03; P = 0.06). We demonstrate that associations with GIP and anthropometric and glycemic traits are driven by genetic signals distinct from those driving CAD and lipid traits in the GIPR region and that higher E354-mediated fasting GIP levels are not associated with CAD risk. These findings provide evidence that the inclusion of GIPR agonism in dual GIPR/GLP1R agonists could potentiate the protective effect of GLP-1 agonists on diabetes without undue CAD risk, an aspect that has yet to be assessed in clinical trials.
Collapse
Affiliation(s)
- Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Robert Hansford
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Stephen Burgess
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, U.K
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Christopher N Foley
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, U.K
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Victoria P W Auyeung
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - A Mesut Erzurumluoglu
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Fiona Gribble
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science, and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, U.K
| | - Frank Reimann
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science, and MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, U.K
| | - Pallav Bhatnagar
- Diabetes and Complications Therapy Area, Eli Lilly & Company, Indianapolis, IN
| | - Matthew P Coghlan
- Diabetes and Complications Therapy Area, Eli Lilly & Company, Indianapolis, IN
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, U.K.
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Jia Y, Cai S, Muhoza B, Qi B, Li Y. Advance in dietary polyphenols as dipeptidyl peptidase-IV inhibitors to alleviate type 2 diabetes mellitus: aspects from structure-activity relationship and characterization methods. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34652225 DOI: 10.1080/10408398.2021.1989659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dietary polyphenols with great antidiabetic effects are the most abundant components in edible products. Dietary polyphenols have attracted attention as dipeptidyl peptidase-IV (DPP-IV) inhibitors and indirectly improve insulin secretion. The DPP-IV inhibitory activities of dietary polyphenols depend on their structural diversity. Screening methods that can be used to rapidly and accurately identify potential polyphenol DPP-IV inhibitors are urgently needed. This review focuses on the relationship between the structures of dietary polyphenols and their DPP-IV inhibitory effects. Different characterization methods used for polyphenols as DPP-IV inhibitors have been summarized and compared. We conclude that the position and number of hydroxyl groups, methoxy groups, glycosylated groups, and the extent of conjugation influence the efficiency of inhibition of DPP-IV. Various combinations of methods, such as in-vitro enzymatic inhibition, ex-vivo/in-vivo enzymatic inhibition, cell-based in situ, and in-silico virtual screening, are used to evaluate the DPP-IV inhibitory effects of dietary polyphenols. Further investigations of polyphenol DPP-IV inhibitors will improve the bioaccessibility and bioavailability of these bioactive compounds. Exploration of (i) dietary polyphenols derived from multiple targets, that can prevent diabetes, and (ii) actual binding interactions via multispectral analysis, to understand the binding interactions in the complexes, is required.
Collapse
Affiliation(s)
- Yijia Jia
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China.,Heilongjiang Green Food Science Research Institute, Harbin, China.,National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
39
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
40
|
Zhang Q, Delessa CT, Augustin R, Bakhti M, Colldén G, Drucker DJ, Feuchtinger A, Caceres CG, Grandl G, Harger A, Herzig S, Hofmann S, Holleman CL, Jastroch M, Keipert S, Kleinert M, Knerr PJ, Kulaj K, Legutko B, Lickert H, Liu X, Luippold G, Lutter D, Malogajski E, Medina MT, Mowery SA, Blutke A, Perez-Tilve D, Salinno C, Sehrer L, DiMarchi RD, Tschöp MH, Stemmer K, Finan B, Wolfrum C, Müller TD. The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 2021; 33:833-844.e5. [PMID: 33571454 PMCID: PMC8035082 DOI: 10.1016/j.cmet.2021.01.015] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 01/04/2023]
Abstract
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
Collapse
Affiliation(s)
- Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Challa Tenagne Delessa
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Robert Augustin
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Gustav Colldén
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alexandra Harger
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany; Molecular Metabolic Control, Technical University of Munich, Munich, Germany
| | - Susanna Hofmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der LMU, München, Germany
| | - Cassie Lynn Holleman
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Konxhe Kulaj
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | - Xue Liu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gerd Luippold
- Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Emilija Malogajski
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Marta Tarquis Medina
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | | | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ciro Salinno
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, School of Medicine, Klinikum Rechts der Isar, 81675 München, Germany
| | - Laura Sehrer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Helmholtz Zentrum München, Neuherberg, Germany; Technische Universität München, München, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, 72076 Tübingen, Germany.
| |
Collapse
|
41
|
Gasbjerg LS, Bari EJ, Stensen S, Hoe B, Lanng AR, Mathiesen DS, Christensen MB, Hartmann B, Holst JJ, Rosenkilde MM, Knop FK. Dose-dependent efficacy of the glucose-dependent insulinotropic polypeptide (GIP) receptor antagonist GIP(3-30)NH 2 on GIP actions in humans. Diabetes Obes Metab 2021; 23:68-74. [PMID: 32886401 DOI: 10.1111/dom.14186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
The glucose-dependent insulinotropic polypeptide (GIP) fragment GIP(3-30)NH2 is a selective, competitive GIP receptor antagonist, and doses of 800 to 1200 pmol/kg/min inhibit GIP-induced potentiation of glucose-stimulated insulin secretion by >80% in humans. We evaluated the effects of GIP(3-30)NH2 across a wider dose range in eight healthy men undergoing six separate and randomized 10-mmol/L hyperglycaemic clamps (A-F) with concomitant intravenous infusion of GIP (1.5 pmol/kg/min; A-E) or saline (F). Clamps A to E involved double-blinded, infusions of saline (A) and GIP(3-30)NH2 at four rates: 2 (B), 20 (C), 200 (D) and 2000 pmol/kg/min (E), respectively. Mean plasma concentrations of glucose (A-F) and GIP (A-E) were similar. GIP-induced potentiation of glucose-stimulated insulin secretion was reduced by 44 ± 10% and 84 ± 10% during clamps D and E, respectively. Correspondingly, the amounts of glucose required to maintain the clamp during D and E were not different from F. GIP-induced suppression of bone resorption and increase in heart rate were lowered by clamps D and E. In conclusion, GIP(3-30)NH2 provides extensive, dose-dependent inhibition of the GIP receptor in humans, with most pronounced effects of the doses 200 to 2000 pmol/kg/min within the tested range.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Emilie J Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Hoe
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
42
|
Campbell JE. Targeting the GIPR for obesity: To agonize or antagonize? Potential mechanisms. Mol Metab 2020; 46:101139. [PMID: 33290902 PMCID: PMC8085569 DOI: 10.1016/j.molmet.2020.101139] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic peptide (GIP) is one of two incretin hormones that communicate nutrient intake with systemic metabolism. Although GIP was the first incretin hormone to be discovered, the understanding of GIP's biology was quickly outpaced by research focusing on the other incretin hormone, glucagon-like peptide 1 (GLP-1). Early work on GIP produced the theory that GIP is obesogenic, limiting interest in developing GIPR agonists to treat type 2 diabetes. A resurgence of GIP research has occurred in the last five years, reinvigorating interest in this peptide. Two independent approaches have emerged for treating obesity, one promoting GIPR agonism and the other antagonism. In this report, evidence supporting both cases is discussed and hypotheses are presented to reconcile this apparent paradox. SCOPE OF THE REVIEW This review presents evidence to support targeting GIPR to reduce obesity. Most of the focus is on the effect of singly targeting the GIPR using both a gain- and loss-of-function approach, with additional sections that discuss co-targeting of the GIPR and GLP-1R. MAJOR CONCLUSIONS There is substantial evidence to support that GIPR agonism and antagonism can positively impact body weight. The long-standing theory that GIP drives weight gain is exclusively derived from loss-of-function studies, with no evidence to support that GIPR agonisms increases adiposity or body weight. There is insufficient evidence to reconcile the paradoxical observations that both GIPR agonism and antagonism can reduce body weight; however, two independent hypotheses centered on GIPR antagonism are presented based on new data in an effort to address this question. The first discusses the compensatory relationship between incretin receptors and how antagonism of the GIPR may enhance GLP-1R activity. The second discusses how chronic GIPR agonism may produce desensitization and ultimately loss of GIPR activity that mimics antagonism. Overall, it is clear that a deeper understanding of GIP biology is required to understand how modulating this system impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
43
|
Wilson JM, Nikooienejad A, Robins DA, Roell WC, Riesmeyer JS, Haupt A, Duffin KL, Taskinen M, Ruotolo G. The dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020; 22:2451-2459. [PMID: 33462955 PMCID: PMC7756479 DOI: 10.1111/dom.14174] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
AIM To better understand the marked decrease in serum triglycerides observed with tirzepatide in patients with type 2 diabetes, additional lipoprotein-related biomarkers were measured post hoc in available samples from the same study. MATERIALS AND METHODS Patients were randomized to receive once-weekly subcutaneous tirzepatide (1, 5, 10 or 15 mg), dulaglutide (1.5 mg) or placebo. Serum lipoprotein profile, apolipoprotein (apo) A-I, B and C-III and preheparin lipoprotein lipase (LPL) were measured at baseline and at 4, 12 and 26 weeks. Lipoprotein particle profile by nuclear magnetic resonance was assessed at baseline and 26 weeks. The lipoprotein insulin resistance (LPIR) score was calculated. RESULTS At 26 weeks, tirzepatide dose-dependently decreased apoB and apoC-III levels, and increased serum preheparin LPL compared with placebo. Tirzepatide 10 and 15 mg decreased large triglyceride-rich lipoprotein particles (TRLP), small low-density lipoprotein particles (LDLP) and LPIR score compared with both placebo and dulaglutide. Treatment with dulaglutide also reduced apoB and apoC-III levels but had no effect on either serum LPL or large TRLP, small LDLP and LPIR score. The number of total LDLP was also decreased with tirzepatide 10 and 15 mg compared with placebo. A greater reduction in apoC-III with tirzepatide was observed in patients with high compared with normal baseline triglycerides. At 26 weeks, change in apoC-III, but not body weight, was the best predictor of changes in triglycerides with tirzepatide, explaining up to 22.9% of their variability. CONCLUSIONS Tirzepatide treatment dose-dependently decreased levels of apoC-III and apoB and the number of large TRLP and small LDLP, suggesting a net improvement in atherogenic lipoprotein profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Axel Haupt
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | - Marja‐Riitta Taskinen
- Research Program for Clinical and Molecular Medicine UnitDiabetes and Obesity, University of HelsinkiHelsinkiFinland
| | | |
Collapse
|
44
|
Lynggaard MB, Gasbjerg LS, Christensen MB, Knop FK. GIP(3-30)NH 2 - a tool for the study of GIP physiology. Curr Opin Pharmacol 2020; 55:31-40. [PMID: 33053504 DOI: 10.1016/j.coph.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 12/25/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.
Collapse
Affiliation(s)
- Mads Bank Lynggaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bring Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
45
|
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab 2020; 46:101090. [PMID: 32987188 PMCID: PMC8085566 DOI: 10.1016/j.molmet.2020.101090] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved to treat type 2 diabetes and obesity. They elicit robust improvements in glycemic control and weight loss, combined with cardioprotection in individuals at risk of or with pre-existing cardiovascular disease. These attributes make GLP-1 a preferred partner for next-generation therapies exhibiting improved efficacy yet retaining safety to treat diabetes, obesity, non-alcoholic steatohepatitis, and related cardiometabolic disorders. The available clinical data demonstrate that the best GLP-1R agonists are not yet competitive with bariatric surgery, emphasizing the need to further improve the efficacy of current medical therapy. Scope of review In this article, we discuss data highlighting the physiological and pharmacological attributes of potential peptide and non-peptide partners, exemplified by amylin, glucose-dependent insulinotropic polypeptide (GIP), and steroid hormones. We review the progress, limitations, and future considerations for translating findings from preclinical experiments to competitive efficacy and safety in humans with type 2 diabetes and obesity. Major conclusions Multiple co-agonist combinations exhibit promising clinical efficacy, notably tirzepatide and investigational amylin combinations. Simultaneously, increasing doses of GLP-1R agonists such as semaglutide produces substantial weight loss, raising the bar for the development of new unimolecular co-agonists. Collectively, the available data suggest that new co-agonists with robust efficacy should prove superior to GLP-1R agonists alone to treat metabolic disorders. GLP-1 is a preferred partner for co-agonist development. Co-agonist combinations must exhibit improved weight loss beyond GLP-1 alone. Unimolecular coagonists must exhibit retained or improved cardioprotection. Obesity represents an optimal condition for the development of new GLP-1 co-agonists.
Collapse
Affiliation(s)
- Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada.
| |
Collapse
|
46
|
Pujadas G, Varin EM, Baggio LL, Mulvihill EE, Bang KWA, Koehler JA, Matthews D, Drucker DJ. The gut hormone receptor GIPR links energy availability to the control of hematopoiesis. Mol Metab 2020; 39:101008. [PMID: 32389828 PMCID: PMC7283165 DOI: 10.1016/j.molmet.2020.101008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Glucose-dependent insulinotropic polypeptide (GIP) conveys information from ingested nutrients to peripheral tissues, signaling energy availability. The GIP Receptor (GIPR) is also expressed in the bone marrow, notably in cells of the myeloid lineage. However, the importance of gain and loss of GIPR signaling for diverse hematopoietic responses remains unclear. METHODS We assessed the expression of the Gipr in bone marrow (BM) lineages and examined functional roles for the GIPR in control of hematopoiesis. Bone marrow responses were studied in (i) mice fed regular or energy-rich diets, (ii) mice treated with hematopoietic stressors including acute 5-fluorouracil (5-FU), pamsaccharide (LPS), and Pam3CysSerLys4 (Pam3CSK4), with or without pharmacological administration of a GIPR agonist, and (iii) mice with global (Gipr-/-) or selective deletion of the GIPR (GiprTie2-/-) with and without bone marrow transplantation (BMT). RESULTS Gipr is expressed within T cells, myeloid cells, and myeloid precursors; however, these cell populations were not different in peripheral blood, spleen, or BM of Gipr-/- and GiprTie2-/- mice. Nevertheless, gain and loss of function studies revealed that GIPR signaling controls the expression of BM Toll-like receptor (TLR) and Notch-related genes regulating hematopoiesis. Loss of the BM GIPR attenuates the extent of adipose tissue inflammation and dysregulates the hematopoietic response to BMT. GIPR agonism modified BM gene expression profiles following 5-FU and Pam3CSK4 whereas loss of the Gipr altered the hematopoietic responses to energy excess, two TLR ligands, and 5-FU. However, the magnitude of the cellular changes in hematopoiesis in response to gain or loss of GIPR signaling was relatively modest. CONCLUSION These studies identify a functional gut hormone-BM axis positioned for the transduction of signals linking nutrient availability to the control of TLR and Notch genes regulating hematopoiesis. Nevertheless, stimulation or loss of GIPR signaling has minimal impact on basal hematopoiesis or the physiological response to hematopoietic stress.
Collapse
Affiliation(s)
- Gemma Pujadas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - K W Annie Bang
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
47
|
Zeng G, Lian C, Yang P, Zheng M, Ren H, Wang H. E3-ubiquitin ligase TRIM6 aggravates myocardial ischemia/reperfusion injury via promoting STAT1-dependent cardiomyocyte apoptosis. Aging (Albany NY) 2020; 11:3536-3550. [PMID: 31171760 PMCID: PMC6594808 DOI: 10.18632/aging.101995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Cardiomyocyte apoptosis is a major cause of myocardial ischemia/reperfusion (MI/R) injury, in which the activation of the signal transducer and activator of transcription 1 (STAT1) plays an important role. The E3-ubiquitin ligase TRIM6 has been implicated in regulating STAT1 activity, however, whether it is associated with MI/R injury and the underlying mechanism are not determined. In this study, by investigating a mouse MI/R injury model, we show that TRIM6 expression is induced in mouse heart following MI/R injury. Additionally, TRIM6 depletion reduces and its overexpression increases myocardial infarct size, serum creatine phosphokinase (CPK) level and cardiomyocyte apoptosis in mice subjected to MI/R injury, indicating that TRIM6 functions to aggravate MI/R injury. Mechanistically, TRIM6 promotes IKKε-dependent STAT1 activation, and the inhibition of IKKε or STAT1 with the specific inhibitor, CAY10576 or fludarabine, abolishes TRIM6 effects on cardiomyocyte apoptosis and MI/R injury. Similarly, TRIM6 mutant lacking the ability to ubiquitinate IKKε and induce IKKε/STAT1 activation also fails to promote cardiomyocyte apoptosis and MI/R injury. Thus, these results suggest that TRIM6 aggravates MI/R injury through promoting IKKε/STAT1 activation-dependent cardiomyocyte apoptosis, and that TRIM6 might represent a novel therapeutic target for alleviating MI/R injury.
Collapse
Affiliation(s)
- Guangwei Zeng
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Chen Lian
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Pei Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China.,Jiajiang Oil Storage Warehouse, Xining Joint Service Centre, Xining, China
| | - Mingming Zheng
- Department of Health Economic Managment, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - He Ren
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Shaanxi, China
| |
Collapse
|
48
|
Jujić A, Atabaki-Pasdar N, Nilsson PM, Almgren P, Hakaste L, Tuomi T, Berglund LM, Franks PW, Holst JJ, Prasad RB, Torekov SS, Ravassa S, Díez J, Persson M, Melander O, Gomez MF, Groop L, Ahlqvist E, Magnusson M. Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study. Diabetologia 2020; 63:1043-1054. [PMID: 31974732 PMCID: PMC7145777 DOI: 10.1007/s00125-020-05093-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Evidence that glucose-dependent insulinotropic peptide (GIP) and/or the GIP receptor (GIPR) are involved in cardiovascular biology is emerging. We hypothesised that GIP has untoward effects on cardiovascular biology, in contrast to glucagon-like peptide 1 (GLP-1), and therefore investigated the effects of GIP and GLP-1 concentrations on cardiovascular disease (CVD) and mortality risk. METHODS GIP concentrations were successfully measured during OGTTs in two independent populations (Malmö Diet Cancer-Cardiovascular Cohort [MDC-CC] and Prevalence, Prediction and Prevention of Diabetes in Botnia [PPP-Botnia]) in a total of 8044 subjects. GLP-1 (n = 3625) was measured in MDC-CC. The incidence of CVD and mortality was assessed via national/regional registers or questionnaires. Further, a two-sample Mendelian randomisation (2SMR) analysis between the GIP pathway and outcomes (coronary artery disease [CAD] and myocardial infarction) was carried out using a GIP-associated genetic variant, rs1800437, as instrumental variable. An additional reverse 2SMR was performed with CAD as exposure variable and GIP as outcome variable, with the instrumental variables constructed from 114 known genetic risk variants for CAD. RESULTS In meta-analyses, higher fasting levels of GIP were associated with risk of higher total mortality (HR[95% CI] = 1.22 [1.11, 1.35]; p = 4.5 × 10-5) and death from CVD (HR[95% CI] 1.30 [1.11, 1.52]; p = 0.001). In accordance, 2SMR analysis revealed that increasing GIP concentrations were associated with CAD and myocardial infarction, and an additional reverse 2SMR revealed no significant effect of CAD on GIP levels, thus confirming a possible effect solely of GIP on CAD. CONCLUSIONS/INTERPRETATION In two prospective, community-based studies, elevated levels of GIP were associated with greater risk of all-cause and cardiovascular mortality within 5-9 years of follow-up, whereas GLP-1 levels were not associated with excess risk. Further studies are warranted to determine the cardiovascular effects of GIP per se.
Collapse
Affiliation(s)
- Amra Jujić
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Hämtställe HS 36, Box 50332, 202 13, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Inga Marie Nilssons gata 49, 20502, Malmö, Sweden
| | | | - Peter M Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter Almgren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Liisa Hakaste
- Folkhälsan Research Centre, Biomedicum, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Biomedicum, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Lisa M Berglund
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul W Franks
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Jens J Holst
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Rashmi B Prasad
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Susana Ravassa
- Program of Cardiovascular Diseases, CIMA, University of Navarra, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain
| | - Javier Díez
- Program of Cardiovascular Diseases, CIMA, University of Navarra, Pamplona, Spain
- CIBERCV, Carlos III Institute of Health, Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdisNA), Pamplona, Spain
- Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
- Department of Nephrology, University of Navarra Clinic, Pamplona, Spain
| | | | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Maria F Gomez
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Emma Ahlqvist
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Centre, Hämtställe HS 36, Box 50332, 202 13, Malmö, Sweden.
- Department of Cardiology, Skåne University Hospital, Inga Marie Nilssons gata 49, 20502, Malmö, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
49
|
Agra RM, Gago-Dominguez M, Paradela-Dobarro B, Torres-Español M, Alvarez L, Fernandez-Trasancos A, Varela-Roman A, Calaza M, Eiras S, Alvarez E, Carracedo A, Gonzalez-Juanatey JR. Obesity-Related Genetic Determinants of Heart Failure Prognosis. Cardiovasc Drugs Ther 2020; 33:415-424. [PMID: 31209632 DOI: 10.1007/s10557-019-06888-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Recent advances in genomics offer a smart option for predicting future risk of disease and prognosis. The objective of this study was to examine the prognostic value in heart failure (HF) patients, of a series of single nucleotide polymorphisms (SNPs). METHODS A selection of 192 SNPs found to be related with obesity, body mass index, circulating lipids or cardiovascular diseases were genotyped in 191 patients with HF. Anthropometrical and clinical variables were collected for each patient, and death and readmission by HF were registered as the primary endpoint. RESULTS A total of 53 events were registered during a follow-up period of 438 (263-1077) days (median (IQR)). Eight SNPs strongly related to obesity and HF prognosis were selected as possible prognostic variables. From these, rs10189761 and rs737337 variants were independently associated with HF prognosis (HR 2.295 (1.287-4.089, 95% CI); p = 0.005), whereas rs10423928, rs1800437, rs737337 and rs9351814 were related with bad prognosis only in obese patients (HR 2.142 (1.438-3.192, 95% CI); p = 0.00018). Combined scores of the genomic variants were highly predictive of poor prognosis. CONCLUSIONS SNPs rs10189761 and rs737337 were identified, for the first time, as independent predictors of major clinical outcomes in patients with HF. The data suggests an additive predictive value of these SNPs for a HF prognosis. In particular for obese patients, SNPs rs10423928, rs1800437, rs737337 and rs9351814 were related with a bad prognosis. Combined scores weighting the risk of each genomic variant could effect interesting new tools to stratify the prognostic risk of HF patients.
Collapse
Affiliation(s)
- R M Agra
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - M Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | - B Paradela-Dobarro
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - M Torres-Español
- Grupo de Medicina Xenómica, CeGen-PRB2, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - L Alvarez
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - A Fernandez-Trasancos
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - A Varela-Roman
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - M Calaza
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - S Eiras
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - E Alvarez
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
- CIBERCV, Madrid, Spain.
| | - A Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| | - J R Gonzalez-Juanatey
- Laboratorio no. 6. Edif. Consultas externas (planta -2), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain
- CIBERCV, Madrid, Spain
| |
Collapse
|
50
|
El K, Campbell JE. The role of GIP in α-cells and glucagon secretion. Peptides 2020; 125:170213. [PMID: 31785304 PMCID: PMC7580028 DOI: 10.1016/j.peptides.2019.170213] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an intestinally derived peptide that is secreted in response to feeding. The GIP receptor (GIPR) is expressed in many cell types involved in the regulation of metabolism, including α- and β-cells. Glucagon and insulin exert tremendous control over glucose metabolism. Thus, GIP action in islets strongly dictates metabolic control in the postprandial state. Loss of GIPR activity in β-cells is a characteristic of type 2 diabetes (T2D) which associates with reduced postprandial insulin secretion and hyperglycemia. Less is known about GIPR activity in α-cells or the control of glucagon secretion. GIP stimulates glucagon secretion in a glucose-dependent manner in healthy people, with enhanced activity at lower glycemia. However, GIP stimulates glucagon secretion even at hyperglycemia in people with T2D, suggesting that inappropriate GIPR activity in α-cells contributes to the pathogenesis of T2D. Here, we review the literature describing GIP action and GIPR activity in the α-cell, detailing the basic science that has shaped the view of how GIP regulates glucagon secretion. We also contrast the effects of GIP on glucagon secretion in healthy and T2D people. Finally, we contextualize these observations in light of recent work that redefines the role of glucagon in glucose homeostasis, suggesting that hyperglucagonemia per se does not drive hyperglycemia. As new medications for T2D that incorporate GIPR activity are being developed, it is clear that a better understanding of GIPR activity beyond the β-cell is necessary. This work highlights the importance of focusing on the GIPR in α-cells.
Collapse
Affiliation(s)
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|