1
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10365-6. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Yang Y, Yang L, Wu J, Hu J, Wan M, Bie J, Li J, Pan D, Sun G, Yang C. Optimal probiotic combinations for treating nonalcoholic fatty liver disease: A systematic review and network meta-analysis. Clin Nutr 2024; 43:1224-1239. [PMID: 38643738 DOI: 10.1016/j.clnu.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Probiotic administration is a promising therapy for improving conditions in NAFLD patients. This network meta-analysis aimed to compare and estimate the relative effects of probiotic interventions and identify the optimal probiotic species for the treatment of NAFLD (Nonalcoholic fatty liver disease) patients. METHODS The PubMed, Web of Science, Embase, and Cochrane databases were searched from inception to 29 January 2024 to identify RCTs that were published in English. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS A total of 35 RCTs involving 2212 NAFLD patients were included in the analysis. For primary outcomes, Lactobacillus + Bifidobacterium + Streptococcus exhibited the highest probability of being the finest probiotic combination in terms of enhancing acceptability as well as reducing AST (SMD: -1.95 95% CI: -2.90, -0.99), ALT (SMD = -1.67, 95% CI: -2.48, -0.85), and GGT levels (SMD = -2.17, 95% CI: -3.27, -1.06). In terms of the secondary outcomes, Lactobacillus + Bifidobacterium + Streptococcus was also the best probiotic combination for reducing BMI (SMD = -0.45, 95% CI: -0.86, -0.04), LDL levels (SMD = -0.45, 95% CI: -0.87, -0.02), TC levels (SMD = -1.09, 95% CI: -1.89, -0.29), and TNF-α levels (SMD = -1.73, 95% CI: -2.72, -0.74). CONCLUSION This network meta-analysis revealed that Lactobacillus + Bifidobacterium + Streptococcus may be the most effective probiotic combination for the treatment of liver enzymes, lipid profiles, and inflammation factors. These findings can be used to guide the development of a probiotics-based treatment guideline for NAFLD since there are few direct comparisons between different therapies.
Collapse
Affiliation(s)
- Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jing Hu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jindi Bie
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jiaxin Li
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
3
|
Chen Y, Xie C, Lei Y, Ye D, Wang L, Xiong F, Wu H, He Q, Zhou H, Li L, Xing J, Wang C, Zheng M. Theabrownin from Qingzhuan tea prevents high-fat diet-induced MASLD via regulating intestinal microbiota. Biomed Pharmacother 2024; 174:116582. [PMID: 38642504 DOI: 10.1016/j.biopha.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.
Collapse
Affiliation(s)
- Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Obstetrics and Gynecology of the Second Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Yining Lei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Le Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Fang Xiong
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Hui Wu
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ling Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Cai Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
4
|
Nemati M, Ebrahimi B, Montazeri-Najafabady N. Probiotics ameliorate endocrine disorders via modulating inflammatory pathways: a systematic review. GENES & NUTRITION 2024; 19:7. [PMID: 38504163 PMCID: PMC10953159 DOI: 10.1186/s12263-024-00743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
Probiotics has offered a new prospect to treat and manage a variety of endocrine disorders such as obesity, diabetes, non- alcoholic fatty liver disease and metabolic syndrome. The precise mechanisms by which probiotics exert their beneficial effects on endocrine disorders and its associated problems are still indecisive. It seems that regulating the immune system and suppressing pro-inflammatory pathways like tumor necrosis factor-α and interleukin-6 or triggering anti-inflammatory pathways like interleukin-4 and 10 may be one of the potential mechanisms in the managing of endocrine disorders. In this systematic review, we hypothesized that various probiotic strains (Lactobacillus, Biofidiobacteria, Streptococcus, Entrococcus, Clostridium, and Bacillus) alone or in combination with each other could manage endocrine disorders via modulating inflammatory pathways such as suppressing pro-inflammatory cytokines (IL-6, IL-12, TNF-α, TNF-β, NFκB, and MCP-1), stimulating anti-inflammatory cytokines (IL-4,IL-6, IL-22, IL-23, IL-33, and TGF-β) and maintaining other factors like C-reactive protein, Toll like receptors, LPS, and NK cells. Data source this search was performed in PubMed and Scopus. Both human and animal studies were included. Among more than 15,000 papers, 25 studies were identified as eligible for more assessments. Quality assessment of the studies was cheeked by two researchers independently by title and abstract screening, then article which have inclusion criteria were included, and data retrieved from the included full text studies as the authors had originally reported. Results specified that Lactobacillus has been the most widely used probiotic as well as which one exhibiting the extend of the therapeutic effects on endocrine disorders, especially obesity by modulating immune responses. Also, most studies have revealed that probiotics through suppressing pro-inflammatory pathways specially via reducing levels TNF-α cytokine exhibited protective or beneficial effects on endocrine diseases particularly obesity as well as through decreasing level of IL-6 induced therapeutic effects in diabetes. This systematic review suggests that probiotics could ameliorate endocrine disorders via their immunomodulatory effects.
Collapse
Affiliation(s)
- Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Ebrahimi
- Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nima Montazeri-Najafabady
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
6
|
Alam S, Datta PK, Alam M, Hasan MJ. Effect of probiotics supplementation on liver stiffness and steatosis in patients with NAFLD. HEPATOLOGY FORUM 2024; 5:18-24. [PMID: 38283265 PMCID: PMC10809339 DOI: 10.14744/hf.2022.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/30/2024]
Abstract
Background and Aim To compare the effects of probiotics on liver stiffness and steatosis in obese and non-obese patients with nonalcoholic fatty liver disease (NAFLD),the pragmatic clinical trial included 50 obese body mass index (BMI) ≥25 kg/m2 and 50 non-obese NAFLD BMI <25 kg/m2 age and sex-matched patients. Materials and Methods Fibroscan with controlled attenuated parameter (CAP) was done at day 0 and at the end of 6 months. Probiotics supplementation was provided for both groups for 6 months along with lifestyle modifications. Results At inclusion, both groups had comparable characteristics except BMI, metabolic syndrome and waist circumference (WC). Beneficial changes occurred in BMI (p=0.024), WC (p=0.045), ALT (p=0.024), total cholesterol (p=0.016), LDL (p=0.025) and triglyceride (p=0.021) of obese group, systolic blood pressure (p=0.003) and LDL level (p=0.018) in non-obese group. No significant change was observed in liver enzymes and glycemic profiles. Significant improvement in CAP was observed in both groups. But after adjusting for changes in BMI and WC, the change in CAP among non-obese participants were significantly higher compared to obese, mean change of 19.33±48.87 and 16.02±51.58 dB/m in non-obese and obese patients, respectively; p=0.044). Conclusion Probiotics improve CAP/ steatosis in both obese and non-obese NAFLD patients and improvement was higher in non-obese, irrespective of BMI change.
Collapse
Affiliation(s)
- Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Pallab Kumar Datta
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Mahabubul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|
8
|
Wang J, Liu A, Li A, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang J, Wang R. Lactobacillus fermentum CKCC1858 alleviates hyperlipidemia in golden hamsters on a high-fat diet via modulating gut microbiota. Food Funct 2023; 14:9580-9590. [PMID: 37823897 DOI: 10.1039/d3fo02618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
To investigate the effect of probiotic Lactobacillus fermentum CKCC1858, LF on the prevention of hyperlipidemia and its correlation with gut microbiota, golden hamsters were fed a high-fat diet alone or in combination with the probiotic for 6 weeks. The results showed that the LF intervention alleviated HFD-induced hyperlipidemia and liver damage, as evidenced by the reduced serum lipid profile levels and liver function markers. More importantly, the LF intervention attenuated HFD-induced microbiota dysbiosis by enhancing the abundance of SCFA-producing bacteria and reshaping the metabolic functions of the gut microbiota, likely contributing to its pronounced preventive effects on hyperlipidemia. This study elucidated the mechanism of the preventive effect of probiotics on hyperlipidemia in terms of regulating gut microbiota, and provided suggestions for regulating gut microbiota through probiotic interventions to improve lipid metabolism.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Aijie Liu
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | | | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | | | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Ruimin Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Hayashi H, Sawada K, Tanaka H, Muro K, Hasebe T, Nakajima S, Okumura T, Fujiya M. The effect of heat-killed Lactobacillus brevis SBL88 on improving selective hepatic insulin resistance in non-alcoholic fatty liver disease mice without altering the gut microbiota. J Gastroenterol Hepatol 2023; 38:1847-1854. [PMID: 37646384 DOI: 10.1111/jgh.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND AIM There have been several reports that some probiotics improve non-alcoholic fatty liver disease (NAFLD); however, many studies have involved cocktail therapies. We evaluated whether heat-killed Lactobacillus brevis SBL88 (L. brevis SBL88) monotherapy improves the clinical features of NAFLD. METHODS The NAFLD model was induced in mice fed a high-fat diet (HFD) (HFD mice) or HFD + 1% heat-killed L. brevis SBL88 (SBL mice) for 16 weeks. Histopathological liver findings were analyzed. To evaluate the gut microbiota, a modified terminal restriction fragment length polymorphism analysis of the feces was performed. RNA sequencing in the liver was performed with Ion Proton™. To investigate the direct effects of heat-killed L. brevis SBL88, an in vitro study was performed. RESULTS Histopathological findings revealed that fat droplets in the liver were significantly reduced in SBL mice; however, terminal restriction fragment length polymorphism did not show alterations in the gut microbiota between HFD mice and SBL mice. RNA sequencing and pathway analysis revealed that the regulation of lipid and insulin metabolism was affected. The mRNA expression of insulin receptor substrate 2 (IRS-2) was significantly higher in SBL mice, whereas the expression of IRS-1 was not significantly different. Phospho-IRS-2 expression was also significantly increased in SBL mice. In addition, an in vitro study revealed significant alterations in IRS-2 and forkhead box protein O1 expression levels. CONCLUSION SBL mice exhibited partially improved selective hepatic insulin resistance. Our data suggest that heat-killed L. brevis SBL88 could attenuate the clinical features of NAFLD that are not mediated by alterations in the gut microbiota.
Collapse
Affiliation(s)
- Hidemi Hayashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Koji Sawada
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kazuki Muro
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takumu Hasebe
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Shunsuke Nakajima
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mikihiro Fujiya
- Gastroenterology and Endoscopy, Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
10
|
Montemayor S, García S, Monserrat-Mesquida M, Tur JA, Bouzas C. Dietary Patterns, Foods, and Nutrients to Ameliorate Non-Alcoholic Fatty Liver Disease: A Scoping Review. Nutrients 2023; 15:3987. [PMID: 37764771 PMCID: PMC10534915 DOI: 10.3390/nu15183987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease without pharmacological treatment yet. There is also a lack of specific dietary recommendations and strategies to treat the negative health impacts derived from NAFLD. OBJECTIVE This scoping review aimed to compile dietary patterns, foods, and nutrients to ameliorate NAFLD. METHODS A literature search was performed through MEDLINE, Scopus, Web of Science, and Google Scholar. RESULTS Several guidelines are available through the literature. Hypocaloric Mediterranean diet is the most accepted dietary pattern to tackle NAFLD. Coffee consumption (sugar free) may have a protective effect for NAFLD. Microbiota also plays a role in NAFLD; hence, fibre intake should be guaranteed. CONCLUSIONS A high-quality diet could improve liver steatosis. Weight loss through hypocaloric diet together with physical activity and limited sugar intake are good strategies for managing NAFLD. Specific dietary recommendations and a Mediterranean plate have been proposed to ameliorate NAFLD.
Collapse
Affiliation(s)
- Sofía Montemayor
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Silvia García
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain (C.B.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Liu L, Deng L, Wei W, Li C, Lu Y, Bai J, Li L, Zhang H, Jin N, Li C, Zhao C. Lactiplantibacillus plantarum LPJZ-658 Improves Non-Alcoholic Steatohepatitis by Modulating Bile Acid Metabolism and Gut Microbiota in Mice. Int J Mol Sci 2023; 24:13997. [PMID: 37762300 PMCID: PMC10531215 DOI: 10.3390/ijms241813997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most prevalent diseases worldwide; it is characterized by hepatic lipid accumulation, inflammation, and progressive fibrosis. Here, a Western diet combined with low-dose weekly carbon tetrachloride was fed to C57BL/6J mice for 12 weeks to build a NASH model to investigate the attenuating effects and possible mechanisms of Lactiplantibacillus plantarum LPJZ-658. Hepatic pathology, lipid profiles, and gene expression were assessed. The metabolomic profiling of the serum was performed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. The results show that LPJZ-658 treatment significantly attenuated liver injury, steatosis, fibrosis, and inflammation in NASH mice. Metabolic pathway analysis revealed that several pathways, such as purine metabolism, glycerophospholipid metabolism, linoleic acid metabolism, and primary bile acid biosynthesis, were associated with NASH. Notably, we found that treatment with LPJZ-658 regulated the levels of bile acids (BAs) in the serum. Moreover, LPJZ-658 restored NASH-induced gut microbiota dysbiosis. The correlation analysis deduced obvious interactions between BAs and gut microbiota. The current study indicates that LPJZ-658 supplementation protects against NASH progression, which is accompanied by alternating BA metabolic and modulating gut microbiota.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Liquan Deng
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| | - Jieying Bai
- College of Future Technology, Peking University, Beijing 100871, China;
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (L.L.); (N.J.)
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China; (L.L.); (C.L.); (Y.L.)
| |
Collapse
|
12
|
Wu H, Tang T, Deng H, Chen D, Zhang C, Luo J, Chen S, Zhang P, Yang J, Dong L, Chang T, Tang ZH. Immune checkpoint molecule Tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in Sepsis. Clin Immunol 2023; 254:109249. [PMID: 36736642 DOI: 10.1016/j.clim.2023.109249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Sepsis is a leading cause of death among critically ill patients, which is defined as life-threatening organ dysfunction caused by a deregulated host immune response to infection. Immune checkpoint molecule Tim-3 plays important and complex roles in regulating immune responses and in inducing immune tolerance. Although immune checkpoint blockade would be expected as a promising therapeutic strategy for sepsis, but the underlying mechanism remain unknown, especially under clinical conditions. METHODS Tim-3 expression and apoptosis in NKT cells were compared in septic patients (27 patients with sepsis and 28 patients with septic shock). Phenotypic and functional characterization of Tim-3+ NKT cells were analysed, and then the relationship between Tim-3 + NKT cells and clinical prognosis were investigated in septic patients. α-lactose (Tim-3/Galectin-9 signalling inhibitor) and Tim-3 mutant mice (targeting mutation of the Tim-3 cytoplasmic domain) were utilized to evaluate the protective effect of Tim-3 signalling blockade following septic challenge. RESULTS There is a close correlation between Tim-3 expression and the functional status of NKT cells in septic patients, Upregulated Tim-3 expression promoted NKT cell activation and apoptosis during the early stage of sepsis, and it was associated with worse disease severity and poorer prognosis in septic patients. Blockade of the Tim-3/Galectin-9 signal axis using α-lactose inhibited in vitro apoptosis of NKT cells isolated from septic patients. Impaired activity of Tim-3 protected mice following septic challenge. CONCLUSIONS Overall, these findings demonstrated that immune checkpoint molecule Tim-3 in NKT cells plays a critical role in the immunopathogenesis of septic patients. Blockade of immune checkpoint molecule Tim-3 may be a promising immunomodulatory strategy in future clinical practice for the management of sepsis.
Collapse
Affiliation(s)
- Han Wu
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Thoracic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tingxuan Tang
- Class 1901, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hai Deng
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Orthopedic Trauma, Wuhan Fourth Hospital, Wuhan 430030, China
| | - Deng Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialiu Luo
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunyao Chen
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peidong Zhang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingzhi Yang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liming Dong
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Teding Chang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhao-Hui Tang
- Division of Trauma & Surgical Critical Care, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Song EJ, Lee ES, Kim YI, Shin DU, Eom JE, Shin HS, Lee SY, Nam YD. Gut microbial change after administration of Lacticaseibacillus paracasei AO356 is associated with anti-obesity in a mouse model. Front Endocrinol (Lausanne) 2023; 14:1224636. [PMID: 37705572 PMCID: PMC10496115 DOI: 10.3389/fendo.2023.1224636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The status of an impaired gut microbial community, known as dysbiosis, is associated with metabolic diseases such as obesity and insulin resistance. The use of probiotics has been considered an effective approach for the treatment and prevention of obesity and related gut microbial dysbiosis. The anti-obesity effect of Lacticaseibacillus paracasei AO356 was recently reported. However, the effect of L. paracasei AO356 on the gut microbiota has not yet been identified. This study aimed to elucidate the effect of L. paracasei AO356 on gut microbiota and ensure its safety for use as a probiotic. Methods Oral administration of L. paracasei AO356 (107 colony-forming units [CFU]/mg per day, 5 days a week, for 10 weeks) to mice fed a high-fat diet significantly suppressed weight gain and fat mass. We investigated the composition of gut microbiota and explored its association with obesity-related markers. Results Oral administration of L. paracasei AO356 significantly changed the gut microbiota and modified the relative abundance of Lactobacillus, Bacteroides, and Oscillospira. Bacteroides and Oscillospira were significantly related to the lipid metabolism pathway and obesity-related markers. We also confirmed the safety of L. paracasei AO356 using antibiotics resistance, hemolysis activity, bile salt hydrolase activity, lactate production, and toxicity tests following the safety assessment guidelines of the Ministry of Food and Drug Safety (MFDS). Discussion This study demonstrated that L. paracasei AO356 is not only associated with an anti-obesity effect but also with changes in the gut microbiota and metabolic pathways related to obesity. Furthermore, the overall safety assessment seen in this study could increase the potential use of new probiotic materials with anti-obesity effects.
Collapse
Affiliation(s)
- Eun-Ji Song
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Eun-Sook Lee
- Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Bio-medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young In Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Do Nam
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun, Republic of Korea
| |
Collapse
|
14
|
El-Baz AM, El-Ganiny AM, Hellal D, Anwer HM, El-Aziz HAA, Tharwat IE, El-Adawy MA, Helal SEDM, Mohamed MTA, Azb TM, Elshafaey HM, Shalata AA, Elmeligi SM, Abdelbary NH, El-Kott AF, Al-Saeed FA, Salem ET, El-Sokkary MMA, Shata A, Shabaan AA. Valuable effects of lactobacillus and citicoline on steatohepatitis: role of Nrf2/HO-1 and gut microbiota. AMB Express 2023; 13:57. [PMID: 37291355 DOI: 10.1186/s13568-023-01561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a more dangerous form of chronic non-alcoholic fatty liver disease (NAFLD). In the current investigation, the influence of citicoline on high-fat diet (HFD)-induced NASH was examined, both alone and in combination with Lactobacillus (probiotic). NASH was induced by feeding HFD (10% sugar, 10% lard stearin, 2% cholesterol, and 0.5% cholic acid) to rats for 13 weeks and received single i.p. injection of streptozotocin (STZ, 30 mg/kg) after 4 weeks. Citicoline was given at two dose levels (250 mg and 500 mg, i.p.) at the beginning of the sixth week, and in combination with an oral suspension of Lactobacillus every day for eight weeks until the study's conclusion. HFD/STZ induced steatohepatitis as shown by histopathological changes, elevated serum liver enzymes, serum hyperlipidemia and hepatic fat accumulation. Moreover, HFD convinced oxidative stress by increased lipid peroxidation marker (MDA) and decreased antioxidant enzymes (GSH and TAC). Upregulation of TLR4/NF-kB and the downstream inflammatory cascade (TNF-α, and IL-6) as well as Pentaraxin, fetuin-B and apoptotic markers (caspase-3 and Bax) were observed. NASH rats also had massive increase in Bacteroides spp., Fusobacterium spp., E. coli, Clostridium spp., Providencia spp., Prevotella interrmedia, and P. gingivalis while remarkable drop in Bifidobacteria spp. and Lactobacillus spp. Co-treatment with citicoline alone and with Lactobacillus improve histopathological NASH outcomes and reversed all of these molecular pathological alterations linked to NASH via upregulating the expression of Nrf2/HO-1 and downregulating TLR4/NF-kB signaling pathways. These results suggest that citicoline and lactobacillus may represent new hepatoprotective strategies against NASH progression.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt.
- Department of Microbiology and Biotechnology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Mansoura, Dakahlia, P.O. Box +11152, Egypt.
| | - Amira M El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, 44519, Zagazig, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Hala M Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hend A Abd El-Aziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Ibrahim E Tharwat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Mohamed A El-Adawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Shehab El-Din M Helal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Menna Tallah A Mohamed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Tassnim M Azb
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Hanya M Elshafaey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - AbdulRahman A Shalata
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Sahar M Elmeligi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Noran H Abdelbary
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, 22511, Damanhour, Egypt
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Eman T Salem
- Department of Basic Science, Faculty of Physical Therapy, Horus University-Egypt, 34518, Horus, New Damietta, Egypt
| | | | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 35516, Mansoura, Egypt
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
| | - Ahmed A Shabaan
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Gamasa, Egypt
- Department of Pharmacology and Toxicology, Faculty of pharmacy, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
15
|
Mirjalili M, Salari Sharif A, Sangouni AA, Emtiazi H, Mozaffari-Khosravi H. Effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with type 2 diabetes mellitus: A randomized controlled trial. Clin Nutr ESPEN 2023; 54:144-149. [PMID: 36963856 DOI: 10.1016/j.clnesp.2023.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus (T2DM) is a common endocrine disease. Altered gut microbiota (Dysbiosis) is closely associated with development of T2DM. Growing body of evidence hypothesized that probiotics intake may be useful for patients with T2DM. We investigated the effect of probiotic yogurt consumption on glycemic control and lipid profile in patients with T2DM. METHODS In this 12-week randomized controlled clinical trial, seventy-two patients with T2DM were randomly assigned to the intervention group (IG) that received 200 g/d probiotic yogurt containing 4.65 × 106 CFU/g Lactobacillus acidophilus and Bifidobacterium lactis) or placebo group (PG) that received 200 g/d conventional yogurt. RESULTS We found no difference between two groups in fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-c) and low density lipoprotein-cholesterol (LDL-c) after intervention. After adjusting for baseline values of covariate, a significant reduction in HbA1c (mean change: -0.76 ± 1.3 vs. -0.15 ± 1.3; P = 0.01), TC (mean change: -10.61 ± 27.8 vs. -2.97 ± 35.0; P = 0.02) and LDL-c (mean change: -8.62 ± 21.7 vs. 0.02 ± 25.8; P = 0.004) was observed in the IG compared to the PG. In addition, a non-significant trend to reduction was observed in term of FPG (mean change: -19.61 ± 29.1 vs. -4.19 ± 24.2; P = 0.13). TG and HDL-c remained unchanged. CONCLUSIONS Probiotic yogurt consumption may be useful for patients with T2DM. More well-designed clinical trials with longer intervention duration are required. Registered on 30 July 2022 at Iranian Registry of Clinical Trials (IRCT20220226054125N1) with URL: https://www.irct.ir/trial/62304.
Collapse
Affiliation(s)
- Mohammadreza Mirjalili
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Salari Sharif
- Research Center of Nursing and Midwifery Care, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbas Ali Sangouni
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamideh Emtiazi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
16
|
Shin JH, Lee Y, Song EJ, Lee D, Jang SY, Byeon HR, Hong MG, Lee SN, Kim HJ, Seo JG, Jun DW, Nam YD. Faecalibacterium prausnitzii prevents hepatic damage in a mouse model of NASH induced by a high-fructose high-fat diet. Front Microbiol 2023; 14:1123547. [PMID: 37007480 PMCID: PMC10060964 DOI: 10.3389/fmicb.2023.1123547] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionNonalcoholic steatohepatitis (NASH) is an advanced nonalcoholic fatty liver disease characterized by chronic inflammation and fibrosis. A dysbiosis of the gut microbiota has been associated with the pathophysiology of NASH, and probiotics have proven helpful in its treatment and prevention. Although both traditional and next-generation probiotics have the potential to alleviate various diseases, studies that observe the therapeutic effect of next-generation probiotics on NASH are lacking. Therefore, we investigated whether a next-generation probiotic candidate, Faecalibacterium prausnitzii, contributed to the mitigation of NASH.MethodsIn this study, we conducted 16S rRNA sequencing analyses in patients with NASH and healthy controls. To test F. prausnitzii could alleviate NASH symptoms, we isolated four F. prausnitzii strains (EB-FPDK3, EB-FPDK9, EB-FPDK11, and EB-FPYYK1) from fecal samples collected from four healthy individuals. Mice were maintained on a high-fructose high-fat diet for 16 weeks to induce a NASH model and received oral administration of the bacterial strains. Changes in characteristic NASH phenotypes were assessed via oral glucose tolerance tests, biochemical assays, and histological analyses.Results16S rRNA sequencing analyses confirmed that the relative abundance of F. prausnitzii reduced significantly in patients with NASH compared to healthy controls (p < 0.05). In the NASH mice, F. prausnitzii supplementation improved glucose homeostasis, prevented hepatic lipid accumulation, curbed liver damage and fibrosis, restored damaged gut barrier functions, and alleviated hepatic steatosis and liver inflammation. Furthermore, real-time PCR assays documented that the four F. prausnitzii strains regulated the expression of genes related to hepatic steatosis in these mice.DiscussionOur study, therefore, confirms that the administration of F. prausnitzii bacteria can alleviate NASH symptoms. We propose that F. prausnitzii has the potential to contribute to the next-generation probiotic treatment of NASH.
Collapse
Affiliation(s)
- Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonmi Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Dokyung Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Seo-Yul Jang
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hye Rim Byeon
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Moon-Gi Hong
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Sang-Nam Lee
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Jae-Gu Seo
- R&D Center, Enterobiome Inc., Goyang-si, Republic of Korea
- *Correspondence: Jae-Gu Seo,
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University, College of Medicine, Seoul, Republic of Korea
- Dae Won Jun,
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Young-Do Nam,
| |
Collapse
|
17
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
18
|
Li T, Lin X, Shen B, Zhang W, Liu Y, Liu H, Wang Y, Zheng L, Zhi F. Akkermansia muciniphila suppressing nonalcoholic steatohepatitis associated tumorigenesis through CXCR6 + natural killer T cells. Front Immunol 2022; 13:1047570. [PMID: 36531991 PMCID: PMC9755844 DOI: 10.3389/fimmu.2022.1047570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Gut microbiota plays a crucial role in the development and progression of nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Akkermansia muciniphila was reported to inhibit inflammation-associated cancer in the intestine. The anti-NASH ability of A. muciniphila has recently been found. Thus, we were to investigate whether supplementation of A. muciniphila could prevent NASH-associated HCC. Methods In a model we called STAM, male C57BL/6J mice were subcutaneously injected with 200 µg streptozotocin at 4 days after birth, and fed with high-fat diet at 4 weeks of age to induce NASH-associated HCC. Faeces from mice and patients with NASH-related HCC were collected for 16S rRNA sequencing. STAM mice were orally administered either saline or A. muciniphila twice a day starting at 4 or 10 weeks of age. The effects of A. muciniphila on the immune responses were also evaluated. Results Patients and mice with NASH-related HCC showed significantly reduced gut A. muciniphila in comparison to healthy controls. Administration of breast milk-isolated A. muciniphila (AM06) but not feces-isolated A. muciniphila (AM02) could improve NASH severity. Interestingly, breast milk-isolated A. muciniphila treatment suppressed the progression of NASH to HCC, accompanied with an increased hepatic CXCR6+ natural killer T (NKT) cell and decreased macrophage infiltration. The antitumor ability of A. muciniphila was not evident in NKT cell-deficient mice (CD1d-/- and CXCR6-/-). In vitro, A. muciniphila promoted the killing of hepG2 cells by NKT cells. Discussion Our study will provide the rationale for the application of A. muciniphila to treat NASH and for the prevention of its progression to HCC.
Collapse
Affiliation(s)
- Tao Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Binhai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wujian Zhang
- Department of General Surgery of the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, China
| | - Yangyang Liu
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Wang
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Lijun Zheng
- Guangzhou ZhiYi Biotechnology Co. Ltd., Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Zhang B, Ren D, Zhao A, Cheng Y, Liu Y, Zhao Y, Yang X. Eurotium cristatum reduces obesity by alleviating gut microbiota dysbiosis and modulating lipid and energy metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7039-7051. [PMID: 35690883 DOI: 10.1002/jsfa.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fuzhuan brick tea (FBT) has been shown to prevent obesity, but little is known about the effect of Eurotium cristatum, a critical fungus from FBT. This study examined the effects of live E. cristatum on lipid metabolism and gut microbiota composition in high-fat (HF) diet-induced obese mice. RESULTS Male HF diet-fed mice were treated with E. cristatum for 12 weeks. The results showed that E. cristatum administration caused strong inhibition against HF-induced body weight gain, dyslipidemia and liver oxidative stress damage. Additionally, Firmicutes and Bacteroidetes in phylum level and six types of bacterial including short-chain fatty acids (SCFAs) producing bacteria in genus level were found to be significantly changed in E. cristatum treated mice as compared to HF fed mice. As expected, E. cristatum could increase total SCFAs levels in feces. Interestingly, E. cristatum markedly increased the proportion of Akkermansia to resist obesity. Functional prediction analysis indicated that E. cristatum changed lipid and energy metabolism. Furthermore, E. cristatum ingestion can modulate hepatic acetyl-coa carboxylase (ACC), fatty acid synthase (FAS), sterol-regulatory element binding protein-1 (SREBP-1) and adipose uncoupling protein-1 (UCP-1) expression. CONCLUSION Conclusively, these findings suggest that E. cristatum can prevent the HF-induced lipid accumulation and other complications by modulating gut microbiota, lipid and energy metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Aiqing Zhao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yukun Cheng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
20
|
Zheng S, Yang W, Yao D, Tang S, Hou J, Chang X. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice. Ann Med 2022; 54:2233-2245. [PMID: 35950602 PMCID: PMC9377241 DOI: 10.1080/07853890.2022.2108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Immune responses are important in the progression of non-alcoholic fatty liver disease (NAFLD). Natural killer T (NKT) cells are main components of the innate immune system that modulate immunity. However, the role of NKT cells in NAFLD remains controversial. OBJECTIVE We aimed to investigate the role of NKT cells in non-alcoholic steatohepatitis (NASH)-related fibrosis in fast food diet (FFD)- and methionine choline-deficient (MCD) diet-induced mouse models. METHODS Hepatic NKT cells were analysed in wild-type (WT) and CD1d-/- mice fed FFD or MCD diets. Hepatic pathology, cytokine profiles and liver fibrosis were evaluated. Furthermore, the effect of chronic administration of α-galactosylceramide (α-GalCer) on liver fibrosis was investigated in both FFD- and MCD-treated mice. RESULTS FFD induced a significant depletion of hepatic NKT cells, thus leading to mild to moderate NASH and early-stage fibrosis, while mice fed MCD diets developed severe liver inflammation and progressive fibrosis without a significant change in hepatic NKT cell abundance. FFD induced a similar liver fibrogenic response in CD1d-/- and WT mice, while MCD induced a higher hepatic mRNA expression of Col1α1 and TIMP1 as well as relative fibrosis density in CD1d-/- mice than WT mice (31.8 vs. 16.3, p = .039; 40.0 vs. 22.6, p = .019; 2.24 vs. 1.59, p = .036). Chronic administration of α-GalCer induced a higher hepatic mRNA expression of TIMP1 in MCD-treated mice than controls (36.7 vs. 14.9, p = .005). CONCLUSION NKT cells have protective roles in NAFLD as the disease progresses. During diet-induced steatosis, mild to moderate NASH and the early stage of fibrosis, hepatic NKT cells are relatively depleted, leading to a proinflammatory status. In severe NASH and the advanced stage of liver fibrosis, NKT cells play a role in inhibiting the NASH-related fibrogenic response. Chronic administration of α-GalCer induces NKT cell anergy and tolerance, which may play a role in promoting the liver fibrogenic response.
Collapse
Affiliation(s)
- Shumei Zheng
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Shanghai Tongji University, Shanghai, China
| | - Dongmei Yao
- Department of Gastroenterology and Hepatology, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shanhong Tang
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Juanni Hou
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| | - Xing Chang
- Department of Gastroenterology and Hepatology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
21
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Effects of Dried Onion Powder and Quercetin on Obesity-Associated Hepatic Menifestation and Retinopathy. Int J Mol Sci 2022; 23:ijms231911091. [PMID: 36232387 PMCID: PMC9569566 DOI: 10.3390/ijms231911091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Onion (Allium cepa L.), rich in flavonoids (particularly quercetin), reportedly has anti-obesity properties, but the underlying mechanisms and associated health issues remain unclear. In this study, we compared the effects of dried onion powder (DO) with that of quercetin on high-fat diet (HFD)-induced obesity, nonalcoholic fatty liver disease, and retinal neovascularization. Briefly, rats (n = 9–10 per group) were divided into control, HFD alone (43% fat), HFD + DO (1% DO), HFD + 5DO (5% DO, w/w), and HFD + quercetin (180 mg/kg). After 12 weeks, body fat, markers of metabolism, fatty liver, steatohepatitis, and retinopathy were analyzed. The results revealed that DO and 5DO dose-dependently suppressed body weight, visceral and subcutaneous fat accumulation, and epididymal adipocyte in HFD-fed rats. DO also decreased HFD-induced ALT, AST, free fatty acid, glucose, proinflammatory cytokines, and oxidative stress. DO and 5DO groups had lower triglycerides, total cholesterol, proinflammatory cytokine levels, and ACC-α (a fatty acid synthesis–associated enzyme) expression but higher hepatic antioxidant enzyme activities and fecal lipids. 5DO exhibited better or similar efficacy to quercetin. Both 5DO and quercetin increased fecal levels of acetic acid and butyric acid similarly. They also reduced lipid peroxidation of the eye, retinal adiposity, and neovascularization. However, quercetin resulted in a more apparent decrease in regulation of the Raf/MAPK pathway than DO in eye specimens. Conclusively, DO suppresses visceral, subcutaneous, and liver fat accumulation better than quercetin likely due to higher fecal fat excretion and lower oxidative stress, proinflammatory cytokine levels, and ACC-α expression. Quercetin regulating signal pathways is better than DO at reducing retinal adiposity and neovascularization.
Collapse
|
23
|
Moreira GV, Araujo LCC, Murata GM, Matos SL, Carvalho CRO. Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomed Pharmacother 2022; 155:113660. [PMID: 36095960 DOI: 10.1016/j.biopha.2022.113660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.
Collapse
Affiliation(s)
- Gabriela V Moreira
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Layanne C C Araujo
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Gilson M Murata
- University of São Paulo, Department of Medicine, School of Medicine, São Paulo 01246-903, Brazil
| | - Sandro L Matos
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Carla R O Carvalho
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil.
| |
Collapse
|
24
|
Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells 2022; 11:cells11182827. [PMID: 36139402 PMCID: PMC9497179 DOI: 10.3390/cells11182827] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.
Collapse
|
25
|
The effect of probiotics/synbiotics supplementation on renal and liver biomarkers in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2022; 128:625-635. [PMID: 34544511 DOI: 10.1017/s0007114521003780] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the apparent beneficial effects of probiotics/synbiotics on glucose haemostasis, lipid profile and inflammatory responses, it is not clear whether these beneficial effects also impact renal and hepatic function in diabetes. Therefore, we sought to assess the effect of probiotics/synbiotics supplementation on renal and liver biomarkers in adults with type 2 diabetes mellitus (T2DM) using a systematic review and meta-analysis of randomised controlled trials (RCT). PubMed, Scopus, Web of Science and Cochrane Library were systematically searched, up to February 2021. The pooled weighted mean difference (WMD) was estimated using a random-effects model. The methodological quality of studies, as well as certainty of evidence, was assessed using standard scales. Fifteen related trials were identified. Meta-analysis of six trials, involving 426 participants, indicated that probiotics/synbiotics supplementation reduced serum levels of creatinine (WMD = -0·10 mg/dl, 95 % CI -0·20, -0·00; P = 0·01; I 2 = 87·7 %; P-heterogeneity < 0·001), without any significant effect on blood urea nitrogen (BUN), glomerular filtration rate or microalbuminuria. No significant improvement was found on liver biomarkers following probiotics/synbiotics supplementation. The subgroup analysis showed a significant improvement in BUN when follow-up duration lasted for 12 weeks or more (WMD = -1·215 mg/dl, 95 % CI -1·933, -0·496; P = 0·001) and in creatinine levels in patients with renal dysfunction (WMD = -0·209 mg/dl, 95 % CI -0·322, -0·096; P < 0·001). Our results are insufficient to advocate the use of probiotics/synbiotics for improving renal or liver function in patients with T2DM. Indeed, due to the low certainty of evidence, these findings need to be affirmed in further high-quality RCT.
Collapse
|
26
|
Zarezadeh M, Musazadeh V, Faghfouri AH, Sarmadi B, Jamilian P, Jamilian P, Tutunchi H, Dehghan P. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacol Res 2022; 183:106397. [PMID: 35981707 DOI: 10.1016/j.phrs.2022.106397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/16/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Probiotics exert several promoting effects on the glycemic status, however, the results of meta-analyses are inconsistent. we conducted an umbrella meta-analysis, across existing systematic reviews and meta-analyses of clinical trials to determine the definite effects of supplementation with probiotics on glycemic indices. METHODS A comprehensive systematic search of PubMed/Medline, Scopus, EMBASE, and Web of Science was carried out till August 2021. The random-effects model was employed to conduct meta-analysis. Meta-analysis studies of randomized clinical trials examining the impacts of probiotics supplementation on glycemic indices were qualified in the current umbrella meta-analysis. RESULTS 48 articles out of 693 in the literature search qualified for inclusion in the umbrella meta-analysis. Pooled effects of probiotics on fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), homeostatic model assessment for insulin resistance (HOMA-IR), and insulin levels were reported in articles 45, 21, 35, and 33, respectively. The analysis indicated a significant decrease of FPG (ES= -0.51 mg/dL; 95% CI: -0.63, -0.38, p < 0.001), HbA1c (ES = -0.32 mg/dL; 95% CI: -0.44, -0.20, p < 0.001), HOMA-IR (ES= -0.56; 95% CI: -0.66, -0.47, p < 0.001), and insulin levels (ES= -1.09 IU/mL; 95% CI: -1.37, -0.81, p = 0.006) by probiotics supplementation. CONCLUSION Probiotics have amending effects on FPG, HbA1c, HOMA-IR, and insulin levels. A < 8-week period of probiotic supplementation in the moderate dosages (108 or 109 CFU) is an efficacious approach in improving glycemic parameters. Overall, probiotics could be recommended as an adjuvant anti-hyperglycemic agent.
Collapse
Affiliation(s)
- Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahareh Sarmadi
- Department of Nutrition sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parsa Jamilian
- Keele University School of Medicine, Keele University, Staffordshire, UK
| | - Parmida Jamilian
- School of Pharmacy and Bio Engineering, Keele University, Staffordshire, UK
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Sheng S, Yan S, Chen J, Zhang Y, Wang Y, Qin Q, Li W, Li T, Huang M, Ding S, Tang L. Gut microbiome is associated with metabolic syndrome accompanied by elevated gamma-glutamyl transpeptidase in men. Front Cell Infect Microbiol 2022; 12:946757. [PMID: 35967853 PMCID: PMC9373028 DOI: 10.3389/fcimb.2022.946757] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
It is predicted that by 2035, metabolic syndrome (MS) will be found in nearly more than half of our adult population, seriously affecting the health of our body. MS is usually accompanied by the occurrence of abnormal liver enzymes, such as elevated gamma-glutamyl transpeptidase (GGT). More and more studies have shown that the gut microbiota is involved in MS; however, the correlation between gut microbiota and MS with elevated GGT has not been studied comprehensively. Especially, there are few reports about its role in the physical examination of the population of men with MS and elevated GGT. By using the whole-genome shotgun sequencing technology, we conducted a genome-wide association study of the gut microbiome in 66 participants diagnosed as having MS accompanied by high levels of GGT (case group) and 66 participants with only MS and normal GGT level (control group). We found that the number of gut microbial species was reduced in participants in the case group compared to that of the control group. The overall microbial composition between the two groups is of significant difference. The gut microbiota in the case group is characterized by increased levels of “harmful bacteria” such as Megamonas hypermegale, Megamonas funiformis, Megamonas unclassified, Klebsiella pneumoniae, and Fusobacterium mortiferum and decreased levels of “beneficial bacteria” such as Faecalibacterium prausnitzii, Eubacterium eligens, Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bacteroides dorei, and Alistipes putredinis. Moreover, the pathways of POLYAMSYN-PWY, ARG+POLYAMINE-SYN, PWY-6305, and GOLPDLCAT-PWY were also increased in the case group, which may play a role in the elevation of GGT by producing amine, polyamine, putrescine, and endogenous alcohol. Taken together, there are apparent changes in the composition of the gut microbiome in men with MS and abnormal GGT levels, and it is high time to discover specific gut microbiome as a potential therapeutic target in that population. More in-depth studies of relevant mechanism could offer some new methods for the treatment of MS with elevated GGT.
Collapse
Affiliation(s)
- Shifeng Sheng
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuheng Zhang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youxiang Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Qin
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weikang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Huang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
- *Correspondence: Lin Tang, ; Suying Ding,
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Lin Tang, ; Suying Ding,
| |
Collapse
|
28
|
Zhang C, Fang R, Lu X, Zhang Y, Yang M, Su Y, Jiang Y, Man C. Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food Funct 2022; 13:6688-6701. [PMID: 35647914 DOI: 10.1039/d1fo04387k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is closely related to metabolic syndromes such as hyperlipidemia and diabetes and has become a global public health problem. Probiotics are now used as a treatment for obesity, but the mechanism by which probiotics treat obesity remains unclear. Herein, we investigated the effects of Lactobacillus reuteri J1 ( L. reuteri J1) on obese mice with the strain being administered at 1010, 109 and 108 CFU mL-1 and explored the possible underlying molecular mechanism. The results revealed that L. reuteri J1 prevented weight gain, lowered fat mass and relieved dyslipidemia, and improved glucose homeostasis and insulin sensitivity. Moreover, the effect of obesity reversal exhibited dose-dependence to some extent. More importantly, mice treated with L. reuteri J1 altered the gut microbiota and bile acid (BA) composition. Analysis of the gut microbiome showed that L. reuteri J1 increased the relative abundances of Lactobacillus, Akkermansia and Clostridium, which strongly correlated with ursodeoxycholic acid (UDCA) and lithocholic acid (LCA). UDCA and LCA are thought to inhibit farnesoid X receptor (FXR) and activate transmembrane G protein-coupled receptor 5 (TGR5) expression, respectively. Consistent with the increase in the BA pool, L. reuteri J1 treatment inhibited the ileum FXR/FGF15 signaling pathway but activated the hepatic FXR/SHP signaling pathway, resulting in reduced hepatic triglyceride accumulation. In addition, L. reuteri J1 treatment promoted adipose browning by upregulating the expression of uncoupling protein 1 (UCP1), which was mainly due to the BA receptor TGR5. These results demonstrated that L. reuteri J1 could treat obesity by inhibiting the FXR signaling pathways and remodeling white adipose tissue, linked with UDCA and LCA which are affected by intestinal microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ruxue Fang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xingru Lu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Mo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin, 150030, China. .,Nantong Chunze Nutrition Food Co., Ltd, Nantong, 226100, China
| |
Collapse
|
29
|
Loy MH, Usseglio J, Lasalandra D, Gold MA. Probiotic Use in Children and Adolescents with Overweight or Obesity: A Scoping Review. Child Obes 2022; 19:145-159. [PMID: 35723657 DOI: 10.1089/chi.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Context: Probiotics have been proposed as a prevention or treatment for pediatric overweight and obesity. Objective: Conduct a scoping review on probiotic use in children and adolescents with overweight or obesity and those with weight-related conditions and to identify knowledge gaps and research priorities. Data Sources: Seven databases using keywords and medical subject heading terms for articles reporting probiotic use in children or adolescents with overweight or obesity published from database conception until initiation of the study. Study Selection: Articles reporting primary data on probiotics use in children or adolescents with overweight or obesity. Data Extraction: We utilized the Arksey and O'Malley framework, PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, followed a predetermined study protocol for level-one abstract and level-two full-text screenings, synthesized information into subject-area domains, and identified research gaps. Limitations: Heterogeneity of probiotic interventions, host factors, and genomics. Results: Database search yielded 1356 unique articles with 19 randomized placebo-controlled studies, 945 participants, duration of interventions from 8 weeks to 9 months. Disease indications included Nonalcoholic Fatty Liver Disease, insulin resistance, hypercholesterolemia, Prader-Willi Syndrome, metabolic syndrome, and obesity. Limited and heterogeneous evidence for probiotic use in children and adolescents with weight-related conditions noted. Heterogeneity among published articles in probiotic strains, doses, design, biomarkers, confirmation, and outcomes observed. Conclusions: Despite complex existing and limited data, studies to date of children and adolescents with overweight and obesity demonstrate potential beneficial treatment effects of probiotics on BMI, adiposity, metabolic parameters, inflammatory markers, fatty liver, transaminase levels, and glucose metabolism. Clinical trials to address heterogeneous results are needed.
Collapse
Affiliation(s)
- Michelle H Loy
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Integrative Health and Well-Being, Weill Cornell Medicine/New York Presbyterian Hospital, New York, New York, USA
| | - John Usseglio
- Health Sciences Library, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Melanie A Gold
- Heilbrunn Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, New York, USA.,Section of Adolescent Medicine, Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA.,Center for Community Health and Education, School-Based Health Centers, NewYork Presbyterian, New York, New York, USA
| |
Collapse
|
30
|
Fong FLY, El-Nezami H, Mykkänen O, Kirjavainen PV. The Effects of Single Strains and Mixtures of Probiotic Bacteria on Immune Profile in Liver, Spleen, and Peripheral Blood. Front Nutr 2022; 9:773298. [PMID: 35495948 PMCID: PMC9039324 DOI: 10.3389/fnut.2022.773298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria have potential use as immunomodulators but comparative data on their immunological effects are very limited. The aim of this study was to characterize the effect of oral administration of probiotic strains, alone or as mixtures, on systemic and organ-specific immune responses. For this purpose, healthy C57BL/6 mice were perorally administered probiotics for 3 weeks. A total of five common probiotic strains, Lactobacillus rhamnosus species GG (LGG) and LC705, Bifidobacterium breve 99 (Bb99), Propionibacterium freudenreichii Shermanii JS (PJS), and Escherichia coli Nissle 1917 (EcN), and two of their mixtures, were tested. Livers, spleens, and blood were collected for investigation. A number of five treatments increased the abundance of the natural killer (NK) cells. Bb99 had the most prominent effect on hepatic NK cells (20.0 ± 1.8%). LGG (liver: 5.8 ± 1.0%; spleen: 1.6 ± 0.4%), Bb99 (liver: 13.9 ± 4.3%; spleen: 10.3 ± 3.7%), and EcN (liver: 8.5 ± 3.2%; spleen: 1.0 ± 0.2%) increased the percentage of both the hepatic and splenic T-helper 17 cells. Moreover, LGG (85.5 ± 3.0%) and EcN (89.6 ± 1.2%) increased the percentage of splenic regulatory T-cells. The tested mixtures of the probiotics had different immunological effects from their individual components on cell-mediated responses and cytokine production. In conclusion, our results confirm that the immunomodulatory potential of the probiotics is strain- and organ/tissue-specific, and the effects of probiotic mixtures cannot be predicted based on their single constituents.
Collapse
Affiliation(s)
- Fiona Long Yan Fong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR China.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Otto Mykkänen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Department of Environmental Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
31
|
Bacillus subtilis Supplementation in a High-Fat Diet Modulates the Gut Microbiota and Ameliorates Hepatic Lipid Accumulation in Grass Carp (Ctenopharyngodon idella). FISHES 2022. [DOI: 10.3390/fishes7030094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To study the effects of Bacillus subtilis supplementation in a high-fat diet on the gut microbiota and nonalcoholic fatty liver disease in grass carp (Ctenopharyngodon idella), juveniles (60 ± 5 g) were fed three diets: (a) a control diet (CON), (b) a high-fat diet (HFD) and (c) a high-fat diet supplemented with B. subtilis (HFD + BS). After 8 weeks of feeding, fish growth, serum biochemical indices and total liver lipid content were measured, and gut microbiota analysis was performed using the MiSeq250 high-throughput sequencing platform. The results of this study showed that B. subtilis could improve growth and blood serum indices and reduce lipid deposition in the fish liver, preventing fatty liver disease. A grass carp model of fatty liver induced by a high-fat diet was successfully established. Moreover, B. subtilis altered the intestinal microbiota of HFD-fed grass carp, making it more similar to that of the control group. This study revealed the important effects of B. subtilis on grass carp with fatty liver induced by a high-fat diet and provides the foundation for the application of probiotics in grass carp farming.
Collapse
|
32
|
Tang Q, Zhong Y, Xu C, Li W, Wang H, Hou Y. Effectiveness of five interventions used for prevention of gestational diabetes: A network meta-analysis. Medicine (Baltimore) 2022; 101:e29126. [PMID: 35475799 PMCID: PMC9276162 DOI: 10.1097/md.0000000000029126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with short- and long-term health issues for mother and child; preventing these complications is crucially important. This study aimed to perform a systematic review and network meta-analysis of the relationships among 5 interventions used to prevent GDM. MATERIALS AND METHODS A comprehensive literature search was performed to pool evidence from inception to June 30, 2020. The type of studies was confined to randomized control trials and quasi-randomized control trials published in English investigating the interventions for preventing GDM, including physical activity, dietary intervention, probiotic intervention, mixed intervention, and inositol supplementation. The data were pooled together to report the odds ratio (OR) of GDM with a corresponding 95% credible interval (CrI) and generate a network plot, the surface under the cumulative ranking curve plot, and contribution plot. In addition, loop inconsistency was examined, and a funnel plot combined with Egger test was used to measure heterogeneity. RESULTS The network meta-analysis included 46 randomized control trials involving 16,545 patients. Compared with placebo, physical activity (OR: 0.64, 95% CrI: 0.46-0.88) and probiotic intervention (OR: 0.57, 95% CrI: 0.34-0.96) reduced the incidence of GDM significantly. However, dietary intervention, a combination of physical activity and diet intervention, and inositol supplementation did not significantly alter GDM risk. CONCLUSIONS Physical activity and probiotic intervention are more effective than placebo in reducing the risk of developing GDM. Future work should focus on the type, duration, frequency, and timing of physical activity and probiotic intervention.
Collapse
Affiliation(s)
- Qiongyao Tang
- Operating Theatre, Haikou Maternal, and Child Health Hospital, Haikou, Hainan, China
| | - Ying Zhong
- Operating Theatre, Haikou Maternal, and Child Health Hospital, Haikou, Hainan, China
| | - Chenyun Xu
- Longhua Outpatient Department, Hainan General Hospital, Haikou, Hainan, China
| | - Wangya Li
- Operating Theatre, Haikou Maternal, and Child Health Hospital, Haikou, Hainan, China
| | - Haiyan Wang
- Operating Theatre, Haikou Maternal, and Child Health Hospital, Haikou, Hainan, China
| | - Yu Hou
- Department of Critical Care Medicine, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| |
Collapse
|
33
|
Vitacolonna E, Masulli M, Palmisano L, Stuppia L, Franzago M. Inositols, Probiotics, and Gestational Diabetes: Clinical and Epigenetic Aspects. Nutrients 2022; 14:1543. [PMID: 35458105 PMCID: PMC9028601 DOI: 10.3390/nu14081543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing interest in the potential role of different stereoisomers of inositol or their combination as well as probiotics supplementation in healthy glucose metabolism during pregnancy and in promoting offspring health. The aim of this review is to clarify the effects of several inositol and probiotics-based supplements in the prevention and treatment of gestational diabetes (GDM). Moreover, we will discuss the epigenetic aspects and their short- and long-term effects in response to probiotic intervention as well as the possible implications of these findings in guiding appropriate supplementation regimens in pregnancy.
Collapse
Affiliation(s)
- Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Luisa Palmisano
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy; (M.M.); (L.P.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy
| | - Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
34
|
Shao Y, Evers SS, Shin JH, Ramakrishnan SK, Bozadjieva-Kramer N, Yao Q, Shah YM, Sandoval DA, Seeley RJ. Vertical sleeve gastrectomy increases duodenal Lactobacillus spp. richness associated with the activation of intestinal HIF2α signaling and metabolic benefits. Mol Metab 2022; 57:101432. [PMID: 34998940 PMCID: PMC8790500 DOI: 10.1016/j.molmet.2022.101432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Vertical Sleeve Gastrectomy (VSG) is one of the most efficacious treatments for obesity and its comorbidities. Although a range of evidence suggests that alterations of the microbiota in the distal gut following VSG are pivotal to these metabolic improvements, the effect of surgery to alter the microbiota of the proximal intestine and its effect on host physiology remain largely unknown. As the main bacteria in the upper small intestine, Lactobacillus subspecies have been appreciated as important regulators of gut function. These bacteria also regulate intestinal Hypoxia- Inducible Factor 2α (HIF2α) signaling that plays an integral role in gut physiology and iron absorption. In the present study, we sought to determine the impact of VSG on Lactobacillus spp. in the small intestine and potential downstream impacts of Lactobacillus spp. on HIF2α, specifically in the duodenum. METHODS To determine the effects of VSG on the microbiota and HIF2α signaling in the duodenum, VSG surgeries were performed on diet-induced obese mice. To further probe the relationship between Lactobacillus spp. and HIF2α signaling in the duodenum, we applied a customized high-fat but iron-deficient diet on mice to increase duodenal HIF2α signaling and determined alterations of gut bacteria. To explore the causal role of Lactobacillus spp. in duodenal HIF2α signaling activation, we chronically administered probiotics containing Lactobacillus spp. to high-fat-fed obese mice. Lastly, we studied the effect of lactate, the major metabolite of Lactobacilli, on HIF2α in ex vivo duodenal organoids. RESULTS There were pronounced increases in the abundance of Lactobacillus spp. in samples isolated from duodenal epithelium in VSG-operated mice as compared to sham-operated mice. This was accompanied by an increase in the expression of genes that are targets of HIF2α in the duodenum of VSG-treated mice. Activating HIF2α signaling with a high-fat but iron-deficient diet resulted in weight loss, improvements in glucose regulation, and increased Lactobacillus spp. richness in the duodenum as compared to mice on an iron-replete diet. Chronic administration of probiotics containing Lactobacillus spp. not only increased HIF2α signaling in the duodenum such as occurs after VSG but also resulted in reduced weight gain and improved glucose tolerance in high-fat-fed mice. Furthermore, lactate was able to activate HIF2α in ex vivo duodenal organoids. CONCLUSIONS These results support a model whereby VSG increases duodenal Lactobacillus richness and potentially stimulates intestinal HIF2α signaling via increased lactate production.
Collapse
Affiliation(s)
- Yikai Shao
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Simon S Evers
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Qiyuan Yao
- Center for Obesity and Metabolic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yatrik M Shah
- Departments of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Darleen A Sandoval
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Kizilaslan N, Zekiye Erdem N, Katar M, Gevrek F. The Effects of Probiotics and Omega-3 Fatty Acids in Liver Steatosis Induced in Rats by High-Fructose Corn Syrup. Int J Clin Pract 2022; 2022:7172492. [PMID: 35685520 PMCID: PMC9159191 DOI: 10.1155/2022/7172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS This study was designed to reveal the effect of probiotics and omega-3 fatty acids in a fatty liver model in rats induced by high-fructose corn syrup (HFCS). METHODS In the study, 40 male Wistar Albino rats were used, and these rats were divided into five groups. HFCS was added to the drinking water (30% solution) of four groups (Groups 2, 3, 4, and 5) for three weeks, and the animals were fed ad libitum. At the end of three weeks, the rats in Groups 3, 4, and 5 were administered omega-3 fatty acids (400 mg/kg) and probiotics (1.5 × 109 cfu/mL/day) with the gavage method for four weeks. The body weights of rats were weighed and recorded before starting the experiment, at the end of the third week, and before the animals were sacrificed at the last week, all at the same hour. By subtracting the remaining amount of food and water from the daily food and water amount, the amount of food and water consumed was calculated. These values were recorded for seven weeks. At the end of the seven weeks, the rats were sacrificed after blood specimens and tissues were taken. RESULTS Analyzing the changes in the food intake of each group within itself throughout the experiment, it was observed that there was an increase in the food intake in the control group; from the starting week to the last week, the food intake amount of the HFCS group began to decrease particularly after the second week; and it began to decrease after the third week in the groups that were administered probiotics and omega-3 fatty acids. The changes in the sacrifice weights in the HFCS + omega-3 fatty acid, HFCS + probiotic, and HFCS + probiotic + omega-3 fatty acid groups were found to be lower than that in the HFCS group. The maximum levels of glucose, ALT, ALP, serum cholesterol, triglyceride and AST were found to be in the HFCS group. It was determined that the minimum mean steatosis level was in the control group, while the maximum steatosis level was in the HFCS group. CONCLUSIONS As a result, there was a protective effect of probiotic and omega-3 fatty acid.
Collapse
Affiliation(s)
- Nildem Kizilaslan
- Tokat Gaziosmanpasa University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Tokat, Turkey
| | - Nihal Zekiye Erdem
- Istanbul Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Istanbul, Turkey
| | - Muzaffer Katar
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Biochemistry, Tokat, Turkey
| | - Fikret Gevrek
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Histology, Tokat, Turkey
| |
Collapse
|
36
|
Chu N, Ling J, Jie H, Leung K, Poon E. The potential role of lactulose pharmacotherapy in the treatment and prevention of diabetes. Front Endocrinol (Lausanne) 2022; 13:956203. [PMID: 36187096 PMCID: PMC9519995 DOI: 10.3389/fendo.2022.956203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The non-absorbable disaccharide lactulose is mostly used in the treatment of various gastrointestinal disorders such as chronic constipation and hepatic encephalopathy. The mechanism of action of lactulose remains unclear, but it elicits more than osmotic laxative effects. As a prebiotic, lactulose may act as a bifidogenic factor with positive effects in preventing and controlling diabetes. In this review, we summarized the current evidence for the effect of lactulose on gut metabolism and type 2 diabetes (T2D) prevention. Similar to acarbose, lactulose can also increase the abundance of the short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Bifidobacterium as well as suppress the potentially pathogenic bacteria Escherichia coli. These bacterial activities have anti-inflammatory effects, nourishing the gut epithelial cells and providing a protective barrier from microorganism infection. Activation of peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP1) can influence secondary bile acids and reduce lipopolysaccharide (LPS) endotoxins. A low dose of lactulose with food delayed gastric emptying and increased the whole gut transit times, attenuating the hyperglycemic response without adverse gastrointestinal events. These findings suggest that lactulose may have a role as a pharmacotherapeutic agent in the management and prevention of type 2 diabetes via actions on the gut microbiota.
Collapse
|
37
|
Xie M, Xie Y, Li Y, Zhou W, Zhang Z, Yang Y, Olsen RE, Ringø E, Ran C, Zhou Z. Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish. FISH & SHELLFISH IMMUNOLOGY 2022; 120:56-66. [PMID: 34780975 DOI: 10.1016/j.fsi.2021.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Probiotics are widely used in aquafeeds and exhibited beneficial effects on fish by improving host health and resisting pathogens. However, probiotics applied to aquaculture are mainly from terrestrial sources instead of the host animal. The purpose of the work was to evaluate the effects of stabilized fermentation product of commensal Cetobacterium somerae XMX-1 on gut, liver health and antiviral immunity of zebrafish. A total of 240 zebrafish were assigned to the control (fed a basal diet) and XMX-1 group (fed a basal diet with 10 g XMX-1/kg diet). After four weeks feeding, growth performance, feed utilization, hepatic steatosis score, TAG, lipid metabolism related genes and serum ALT were evaluated. Furthermore, serum LPS, the expression of Hif-1α, intestinal inflammation score, antioxidant capability and gut microbiota were tested. The survival rate and the expression of antiviral genes were analyzed after challenge by spring viremia of carp virus (SVCV). Results showed that dietary XMX-1 did not affect growth of zebrafish. However, dietary XMX-1 significantly decreased the level of serum LPS, intestinal inflammation score and intestinal MDA, as well as increased T-AOC and the expression of Hif-1α in zebrafish intestine (p < 0.05). Furthermore, XMX-1 supplementation decreased the relative abundance of Proteobacteria and increased Firmicutes and Actinobacteria. Additionally, XMX-1 supplementation significantly decreased hepatic steatosis score, hepatic TAG, serum ALT and increased the expression of lipolysis genes versus control (p < 0.05). Zebrafish fed XMX-1 diet exhibited higher survival rate after SVCV challenge. Consistently, dietary XMX-1 fermentation product increased the expression of IFNφ2 and IFNφ3 after 2 days of SVCV challenge and the expression of IFNφ1, IFNφ2 and MxC after 4 days of SVCV challenge in the spleen in zebrafish versus control (p < 0.05). In conclusion, our results indicate that dietary XMX-1 can improve liver and gut health, while enhancing antiviral immunity of zebrafish.
Collapse
Affiliation(s)
- Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Yadong Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
38
|
El-Sahhar S, Varga-Weisz P. The gut microbiome in health and disease: Inflammatory bowel diseases. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Zeighamy Alamdary S, Afifirad R, Asgharzadeh S, Asadollahi P, Mahdizade Ari M, Dashtibin S, Sabaghan M, Shokouhamiri MR, Ghanavati R, Darbandi A. The Influence of Probiotics Consumption on Management of Prediabetic State: A Systematic Review of Clinical Trials. Int J Clin Pract 2022; 2022:5963679. [PMID: 36160290 PMCID: PMC9484983 DOI: 10.1155/2022/5963679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prediabetes consists of the intermediary stage between normal glucose regulation and overt diabetes mellitus and develops when blood glucose levels are higher than normal but not high enough to confirm a type 2 diabetes mellitus diagnosis (T2DM). Recent evidence suggests that probiotics could be promising approaches to improve this state. In this study, we performed a systematic review to compile the results of clinical trials investigating the effects of pro-/pre-/synbiotics on prediabetes subjects from 2010 to 2020. The article search was carried out in Medline, Embase, Scopus, Web of Science, The Cochrane Library, Clinical trials.gov, ProQuest, Open Grey, and Google Scholar. Search filters were developed using 2 parameters: "prestate diabetes" and "probiotics." Of the 418 studies that were screened, 15 original articles reached the inclusion criteria. Pooling data from these trials showed positive and significant effects of probiotics in the reduction of hyperglycemia, insulin concentration levels, lipid profile, and BMI (Body mass index). Administration of probiotics may provide beneficial and healthful effects in the clinical management of patients with prediabetes and metabolic syndrome. Different probiotics compositions have shown beneficial and noticeable effects on glucose homeostasis, lipid profiles, BMI, and inflammatory markers in subjects with prediabetes, metabolic syndrome, and healthy individuals and could be advantageous in recomposing the gut microbiota back into the normal state during the prediabetic state.
Collapse
Affiliation(s)
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Asgharzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Asadollahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtibin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Lee S, You H, Lee Y, Baik H, Paik J, Lee H, Park S, Shim J, Lee J, Hyun S. Intake of MPRO3 over 4 Weeks Reduces Glucose Levels and Improves Gastrointestinal Health and Metabolism. Microorganisms 2021; 10:microorganisms10010088. [PMID: 35056536 PMCID: PMC8780283 DOI: 10.3390/microorganisms10010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human gut microbiota are involved in different metabolic processes, such as digestion and nutrient synthesis, among others. For the elderly, supplements are a major means of maintaining health and improving intestinal homeostasis. In this study, 51 elderly women were administered MPRO3 (n = 17), a placebo (n = 16), or both (MPRO3: 1 week, placebo: 3 weeks; n = 18) for 4 weeks. The fecal microbiota were analyzed by sequencing the 16S rRNA gene V3–V4 super-variable region. The dietary fiber intake increased, and glucose levels decreased with 4-week MPRO3 intake. Reflux, indigestion, and diarrhea syndromes gradually improved with MPRO3 intake, whereas constipation was maintained. The stool shape also improved. Bifidobacterium animalis, B. pseudolongum, Lactobacillus plantarum, and L. paracasei were relatively more abundant after 4 weeks of MPRO3 intake than in those subjects after a 1-week intake. Bifidobacterium and B. longum abundances increased after 1 week of MPRO3 intake but decreased when the intake was discontinued. Among different modules and pathways, all 10 modules analyzed showed a relatively high association with 4-week MPRO3 intake. The mineral absorption pathway and cortisol biosynthesis and secretion pathways correlated with the B. animalis and B. pseudolongum abundances at 4 weeks. Therefore, 4-week MPRO3 intake decreased the fasting blood glucose level and improved intestinal health and metabolism.
Collapse
Affiliation(s)
- Songhee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Heesang You
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
| | - Yeongju Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Haingwoon Baik
- Department of Biochemistry and Molecular Biology, Graduate School, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Jeankyung Paik
- Department of Food and Nutrition, Graduate School, Eulji University, Seongnam 13135, Korea;
| | - Hayera Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Soodong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Jaejung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Junglyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Sunghee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
- Correspondence: ; Tel.: +82-10-9412-8853
| |
Collapse
|
41
|
Spooner HC, Derrick SA, Maj M, Manjarín R, Hernandez GV, Tailor DS, Bastani PS, Fanter RK, Fiorotto ML, Burrin DG, La Frano MR, Sikalidis AK, Blank JM. High-Fructose, High-Fat Diet Alters Muscle Composition and Fuel Utilization in a Juvenile Iberian Pig Model of Non-Alcoholic Fatty Liver Disease. Nutrients 2021; 13:nu13124195. [PMID: 34959747 PMCID: PMC8705774 DOI: 10.3390/nu13124195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious metabolic condition affecting millions of people worldwide. A “Western-style diet” has been shown to induce pediatric NAFLD with the potential disruption of skeletal muscle composition and metabolism. To determine the in vivo effect of a “Western-style diet” on pediatric skeletal muscle fiber type and fuel utilization, 28 juvenile Iberian pigs were fed either a control diet (CON) or a high-fructose, high-fat diet (HFF), with or without probiotic supplementation, for 10 weeks. The HFF diets increased the total triacylglycerol content of muscle tissue but decreased intramyocellular lipid (IMCL) content and the number of type I (slow oxidative) muscle fibers. HFF diets induced autophagy as assessed by LC3I and LC3II, and inflammation, as assessed by IL-1α. No differences in body composition were observed, and there was no change in insulin sensitivity, but HFF diets increased several plasma acylcarnitines and decreased expression of lipid oxidation regulators PGC1α and CPT1, suggesting disruption of skeletal muscle metabolism. Our results show that an HFF diet fed to juvenile Iberian pigs produces a less oxidative skeletal muscle phenotype, similar to a detraining effect, and reduces the capacity to use lipid as fuel, even in the absence of insulin resistance and obesity.
Collapse
Affiliation(s)
- Heather C. Spooner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Stefani A. Derrick
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
| | - Magdalena Maj
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Rodrigo Manjarín
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (R.M.); (G.V.H.)
| | - Gabriella V. Hernandez
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (R.M.); (G.V.H.)
| | - Deepali S. Tailor
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Parisa S. Bastani
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
| | - Rob K. Fanter
- College of Agriculture Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Marta L. Fiorotto
- United States Department of Agriculture-Agricultural Research Services, Children’s Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (M.L.F.); (D.G.B.)
| | - Douglas G. Burrin
- United States Department of Agriculture-Agricultural Research Services, Children’s Nutrition Research Center, Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (M.L.F.); (D.G.B.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Angelos K. Sikalidis
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (S.A.D.); (M.R.L.F.); (A.K.S.)
| | - Jason M. Blank
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA; (H.C.S.); (M.M.); (D.S.T.); (P.S.B.)
- Correspondence: ; Tel.: +1-805-756-5629
| |
Collapse
|
42
|
Bruneau A, Hundertmark J, Guillot A, Tacke F. Molecular and Cellular Mediators of the Gut-Liver Axis in the Progression of Liver Diseases. Front Med (Lausanne) 2021; 8:725390. [PMID: 34650994 PMCID: PMC8505679 DOI: 10.3389/fmed.2021.725390] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gut-liver axis covers the bidirectional communication between the gut and the liver, and thus includes signals from liver-to-gut (e.g., bile acids, immunoglobulins) and from gut-to-liver (e.g., nutrients, microbiota-derived products, and recirculating bile acids). In a healthy individual, liver homeostasis is tightly controlled by the mostly tolerogenic liver resident macrophages, the Kupffer cells, capturing the gut-derived antigens from the blood circulation. However, disturbances of the gut-liver axis have been associated to the progression of varying chronic liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and primary sclerosing cholangitis. Notably, changes of the gut microbiome, or intestinal dysbiosis, combined with increased intestinal permeability, leads to the translocation of gut-derived bacteria or their metabolites into the portal vein. In the context of concomitant or subsequent liver inflammation, the liver is then infiltrated by responsive immune cells (e.g., monocytes, neutrophils, lymphoid, or dendritic cells), and microbiota-derived products may provoke or exacerbate innate immune responses, hence perpetuating liver inflammation and fibrosis, and potentiating the risks of developing cirrhosis. Similarly, food derived antigens, bile acids, danger-, and pathogen-associated molecular patterns are able to reshape the liver immune microenvironment. Immune cell intracellular signaling components, such as inflammasome activation, toll-like receptor or nucleotide-binding oligomerization domain-like receptors signaling, are potent targets of interest for the modulation of the immune response. This review describes the current understanding of the cellular landscape and molecular pathways involved in the gut-liver axis and implicated in chronic liver disease progression. We also provide an overview of innovative therapeutic approaches and current clinical trials aiming at targeting the gut-liver axis for the treatment of patients with chronic liver and/or intestinal diseases.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
43
|
Natural Killer T (NKT) Cells and Periodontitis: Potential Regulatory Role of NKT10 Cells. Mediators Inflamm 2021; 2021:5573937. [PMID: 34594157 PMCID: PMC8478603 DOI: 10.1155/2021/5573937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.
Collapse
|
44
|
Liu L, Wang Y, Zhang J, Wang C, Li Y, Dai W, Piao C, Liu J, Yu H, Li X, Wang Y, Liu J. Probiotics in treating with alcoholic liver disease and nonalcoholic fatty liver disease. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lingchong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Chao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Youbao Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Weichang Dai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- Department of Food Science and Engineering, National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- Department of Food Science and Engineering, National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
45
|
Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
|
47
|
Nagashimada M, Honda M. Effect of Microbiome on Non-Alcoholic Fatty Liver Disease and the Role of Probiotics, Prebiotics, and Biogenics. Int J Mol Sci 2021; 22:ijms22158008. [PMID: 34360773 PMCID: PMC8348401 DOI: 10.3390/ijms22158008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.
Collapse
|
48
|
Probiotics and Prebiotics as a Strategy for Non-Alcoholic Fatty Liver Disease, a Narrative Review. Foods 2021; 10:foods10081719. [PMID: 34441497 PMCID: PMC8394424 DOI: 10.3390/foods10081719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic non-communicable disease, with a prevalence of 25% worldwide. This pathology is a multifactorial illness, and is associated with different risks factors, including hypertension, hyperglycemia, dyslipidemia, and obesity. Beside these predisposing features, NAFLD has been related to changes in the microbiota, which favor the disease progression. In this context, the modulation of the gut microbiota has emerged as a new therapeutic target for the prophylaxis and treatment of NAFLD. This review describes the changes in the gut microbiota associated with NAFLD and the effect of probiotics, prebiotics, and synbiotics on the gut microbiota, liver damage, anthropometric parameters, blood lipids, inflammation markers and insulin resistance in these patients.
Collapse
|
49
|
Castro-Rodríguez DC, Reyes-Castro LA, Vega CC, Rodríguez-González GL, Yáñez-Fernández J, Zambrano E. Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet-Induced Obesity in Male Mice. Probiotics Antimicrob Proteins 2021; 12:505-516. [PMID: 31129870 DOI: 10.1007/s12602-019-09556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fat diet (HFD) consumption induces obesity and increases blood glucose, insulin resistance, and metabolic disorders. Recent studies suggest that probiotics might be a novel approach to counteract these effects in the treatment of obesity. Here, we evaluated the effect of Leuconostoc mesenteroides subsp. mesenteroides SD23 on obesity-related metabolic dysfunction. In the present study, mice were randomly divided into four dietary groups: standard diet (C), HFD (OB), standard diet with L. mesenteroides SD23 (CP), and HFD with L. mesenteroides SD23 (OBP). Diets were maintained for 14 weeks. Animal weight was monitored and biochemical and histological analyses were performed after intervention. OB showed metabolic dysfunction, and increased the number of larger adipocytes compared to C. OB induced liver tumor necrosis factor-α (TNF-α) expression, increased cholesterol, leptin, and glucose levels compared to C. OBP reduced body weight, glucose, cholesterol, and leptin levels and improved glucose tolerance compared to OB. OBP also reduced liver steatosis, the number of larger adipocytes in adipose tissue, and reduced the villus height in the small intestine. OBP decreased expression of TNF-α and increased expression of IL-10 in liver. The parameters evaluated in the CP were similar to the C. This study provides novel evidence that dietary intervention with L. mesenteroides SD23 improves metabolic dysfunction related to obesity in HFD-fed mice.
Collapse
Affiliation(s)
- Diana C Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Bioprocess Department, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Claudia C Vega
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Yáñez-Fernández
- Bioprocess Department, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
50
|
Wang G, Zhu G, Chen C, Zheng Y, Ma F, Zhao J, Lee YK, Zhang H, Chen W. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Benef Microbes 2021; 12:267-281. [PMID: 34109894 DOI: 10.3920/bm2020.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulation on gut microbiota and short-chain fatty acids (SCFAs) are believed to be a pathway to suppress the development of metabolic syndrome. In this study, three Lactobacillus strains derived from the human gut were investigated for their effects on alleviation of metabolic disorders. These strains were individually administered to metabolic disorder rats induced by high-fat-high-sucrose (HFHS) diet. Each strain exhibited its own characteristics in attenuating the impaired glucose-insulin homeostasis, hepatic oxidative damage and steatosis. Correlation analysis between SCFAs and host metabolic parameters suggested that Lactobacillus protective effects on metabolic disorders are partly mediated by recovery of SCFAs production, especially the faecal acetic acid. Correspondingly, it indicated that probiotics restore the gut microbiota dysbiosis in different extent, thereby protect against metabolic disorders in a manner that is associated with microbiota, but not totally reverse the changed composition of microbiota to the normal state. Thus, Lactobacillus strains partly protect against diet-induced metabolic syndrome by microbiota modulation and acetate elevation.
Collapse
Affiliation(s)
- G Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - G Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - C Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - Y Zheng
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - F Ma
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R
| | - Y-K Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|