1
|
Chen J, Nouzová M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin, and juvenile hormone. Proc Natl Acad Sci U S A 2024; 121:e2411987121. [PMID: 39413128 PMCID: PMC11513968 DOI: 10.1073/pnas.2411987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Dietary restriction (DR) slows aging in many animals, while in some cases, the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here, we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by EEC and find that specific EEC differentially respond to dietary sugar and yeast. Female lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by DR. Depletion of NPF receptors at insulin-producing neurons of the brain also increases female lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan in both males and females, while this longevity is restored to wild type by treating adults with a JH analog. Overall, EEC of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| | - Marcela Nouzová
- Institute of Parasitology, Laboratory of Molecular Biology and Physiology of Mosquitoes, Biology Centre Czech Academy of Sciences, České Budějovice37005, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL33199
- Department of Parasitology, University of South Bohemia, České Budějovice37005, Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI02912
| |
Collapse
|
2
|
Chen J, Nouzova M, Noriega FG, Tatar M. Gut-to-brain regulation of Drosophila aging through neuropeptide F, insulin and juvenile hormone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600832. [PMID: 38979180 PMCID: PMC11230353 DOI: 10.1101/2024.06.26.600832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure how Drosophila neuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adult corpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut-brain-corpora allata axis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.
Collapse
Affiliation(s)
- Jiangtian Chen
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic, 37005
| | - Fernando G. Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199 USA
- Department of Parasitology, University of South Bohemia, České Budějovice, 37005 Czech Republic
| | - Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912 USA
| |
Collapse
|
3
|
Bui G, Torres-Fuentes C, Pusceddu MM, Gareau MG, Marco ML. Milk and Lacticaseibacillus paracasei BL23 effects on intestinal responses in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G659-G675. [PMID: 38591132 PMCID: PMC11376982 DOI: 10.1152/ajpgi.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.
Collapse
Affiliation(s)
- Glory Bui
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| | - Cristina Torres-Fuentes
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, Davis, California, United States
| |
Collapse
|
4
|
Yu M, Yu B, Chen D. The effects of gut microbiota on appetite regulation and the underlying mechanisms. Gut Microbes 2024; 16:2414796. [PMID: 39501848 PMCID: PMC11542600 DOI: 10.1080/19490976.2024.2414796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 11/09/2024] Open
Abstract
Appetite, a crucial aspect regulated by both the central nervous system and peripheral hormones, is influenced by the composition and dynamics of the intestinal microbiota, as evidenced by recent research. This review highlights the role of intestinal microbiota in appetite regulation, elucidating the involvement of various pathways. Notably, the metabolites generated by intestinal microorganisms, including short-chain fatty acids, bile acids, and amino acid derivatives, play a pivotal role in this intricate process. Furthermore, intestinal microorganisms contribute to appetite regulation by modulating nutritional perception, neural signal transmission, and hormone secretion within the digestive system. Consequently, manipulating and modulating the intestinal microbiota represent innovative strategies for ameliorating appetite-related disorders. This paper provides a comprehensive review of the effects of gut microbes and their metabolites on the central nervous system and host appetite. By exploring their potential regulatory pathways and mechanisms, this study aims to enhance our understanding of how gut microbes influence appetite regulation in the host.
Collapse
Affiliation(s)
- Miao Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- DadHank(Chengdu)Biotech Corp, Chengdu, Sichuan Province, China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
6
|
Zhang L, Koller J, Gopalasingam G, Herzog H. NPFF signalling is critical for thermosensory and dietary regulation of thermogenesis. Neuropeptides 2022; 96:102292. [PMID: 36155087 DOI: 10.1016/j.npep.2022.102292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Thermogenesis is a centrally regulated physiological process integral for thermoregulation and energy homeostasis. However, the mechanisms and pathways involved remain poorly understood. Importantly, in this study we uncovered that in an environment of 28 °C that is within the mouse thermoneutral zone, lack of NPFF signalling leads to significant increases in energy expenditure, resting metabolic rate and brown adipose tissue (BAT) thermogenesis, which is associated with decreased body weight gain and lean tissue mass. Interestingly, when exposed to a high-fat diet (HFD) at 28 °C, Npff-/- mice lost the high energy expenditure phenotype observed under chow condition and exhibited an impaired diet-induced thermogenesis. On the other hand, under conditions of increasing levels of thermal demands, Npff-/- mice exhibited an elevated BAT thermogenesis at mild cold condition (22 °C), but initiated comparable BAT thermogenic responses as WT mice when thermal demand increased, such as an exposure to 4 °C. Together, these results reveal NPFF signalling as a novel and critical player in the control of thermogenesis, where it regulates thermosensory thermogenesis at warm condition and adjusts thermoregulation under positive energy balance to regulate diet-induced thermogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia.
| | - Julia Koller
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical Campus, School of Clinical Medicine, UNSW Medicine and Health, UNSW SYDNEY, NSW 2052, Australia
| |
Collapse
|
7
|
L’intestin un organe endocrine : de la physiologie aux implications thérapeutiques en nutrition. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.12.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Hild B, Dreier MS, Oh JH, McCulloch JA, Badger JH, Guo J, Thefaine CE, Umarova R, Hall KD, Gavrilova O, Rosshart SP, Trinchieri G, Rehermann B. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab 2021; 3:1042-1057. [PMID: 34417593 PMCID: PMC9969744 DOI: 10.1038/s42255-021-00439-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Obesity and its consequences are among the greatest challenges in healthcare. The gut microbiome is recognized as a key factor in the pathogenesis of obesity. Using a mouse model, we show here that a wild-derived microbiome protects against excessive weight gain, severe fatty liver disease and metabolic syndrome during a 10-week course of high-fat diet. This phenotype is transferable only during the first weeks of life. In adult mice, neither transfer nor severe disturbance of the wild-type microbiome modifies the metabolic response to a high-fat diet. The protective phenotype is associated with increased secretion of metabolic hormones and increased energy expenditure through activation of brown adipose tissue. Thus, we identify a microbiome that protects against weight gain and its negative consequences through metabolic programming in early life. Translation of these results to humans may identify early-life therapeutics that protect against obesity.
Collapse
Affiliation(s)
- Benedikt Hild
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Matthew S Dreier
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Ji Hoon Oh
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - John A McCulloch
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Jonathan H Badger
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Juen Guo
- Integrative Physiology Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Claire E Thefaine
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Regina Umarova
- Liver Diseases Virology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kevin D Hall
- Integrative Physiology Section, Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
- Translational Microbiome Research Laboratory, Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Freiburg, Germany
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
9
|
Zhang L, Clark T, Gopalasingam G, Neely GG, Herzog H. Ninjin'yoeito modulates feeding and activity under negative energy balance conditions via the NPY system. Neuropeptides 2021; 87:102149. [PMID: 33882337 DOI: 10.1016/j.npep.2021.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
The central and peripheral neuropeptide Y (NPY) system is critically involved in feeding and energy homeostasis control. Disease conditions as well as aging can lead to reduced functionality of the NPY system and boosting it represents a promising option to improve health outcomes in these situations. Here we show that Ninjin-yoeito (NYT), a Japanese kampo medicine comprising twelve herbs, and known to be effective to treat anorexia and frailty, mediates part of its action via NPY/peptide YY (PYY) related pathways. Especially under negative energy homeostasis conditions NYT is able to promote feeding and reduces activity to conserve energy. These effects are in part mediated via signalling through the NPY system since lack of Y4 receptors or PYY leading to modification in these responses highlighting the possibility for combination treatment to improve aging related conditions on energy homeostasis control.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; St. Vincent's Clinical School, University of NSW, Sydney, Australia.
| | - Tereli Clark
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Gopana Gopalasingam
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | - G Gregory Neely
- The Charles Perkins Centre, School of Life & Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia; School of Medical Sciences, University of NSW, Sydney, NSW, Australia; Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
10
|
Hansen HH, Grønlund RV, Baader-Pagler T, Haebel P, Tammen H, Larsen LK, Jelsing J, Vrang N, Klein T. Characterization of combined linagliptin and Y2R agonist treatment in diet-induced obese mice. Sci Rep 2021; 11:8060. [PMID: 33850212 PMCID: PMC8044192 DOI: 10.1038/s41598-021-87539-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 02/01/2023] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitors improve glycemic control by prolonging the action of glucagon-like peptide-1 (GLP-1). In contrast to GLP-1 analogues, DPP-IV inhibitors are weight-neutral. DPP-IV cleavage of PYY and NPY gives rise to PYY3-36 and NPY3-36 which exert potent anorectic action by stimulating Y2 receptor (Y2R) function. This invites the possibility that DPP-IV inhibitors could be weight-neutral by preventing conversion of PYY/NPY to Y2R-selective peptide agonists. We therefore investigated whether co-administration of an Y2R-selective agonist could unmask potential weight lowering effects of the DDP-IV inhibitor linagliptin. Male diet-induced obese (DIO) mice received once daily subcutaneous treatment with linagliptin (3 mg/kg), a Y2R-selective PYY3-36 analogue (3 or 30 nmol/kg) or combination therapy for 14 days. While linagliptin promoted marginal weight loss without influencing food intake, the PYY3-36 analogue induced significant weight loss and transient suppression of food intake. Both compounds significantly improved oral glucose tolerance. Because combination treatment did not further improve weight loss and glucose tolerance in DIO mice, this suggests that potential negative modulatory effects of DPP-IV inhibitors on endogenous Y2R peptide agonist activity is likely insufficient to influence weight homeostasis. Weight-neutrality of DPP-IV inhibitors may therefore not be explained by counter-regulatory effects on PYY/NPY responses.
Collapse
Affiliation(s)
| | | | - Tamara Baader-Pagler
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | - Peter Haebel
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| | | | | | - Jacob Jelsing
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, 2970, Hørsholm, Denmark
| | - Thomas Klein
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co., Biberach, Germany
| |
Collapse
|
11
|
Mylroie JE, Wilbanks MS, Kimble AN, To KT, Cox CS, McLeod SJ, Gust KA, Moore DW, Perkins EJ, Garcia‐Reyero N. Perfluorooctanesulfonic Acid-Induced Toxicity on Zebrafish Embryos in the Presence or Absence of the Chorion. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:780-791. [PMID: 33044770 PMCID: PMC7984204 DOI: 10.1002/etc.4899] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 05/07/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a perfluorinated compound used in many industrial and consumer products. It has been linked to a broad range of adverse effects in several species, including zebrafish (Danio rerio). The zebrafish embryo is a widely used vertebrate model to elucidate potential adverse effects of chemicals because it is amenable to medium and high throughput. However, there is limited research on the full extent of the impact the chorion has on those effects. Results from the present study indicate that the presence of the chorion affected the timing and incidence of mortality as well as morphometric endpoints such as spinal curvature and swim bladder inflation in zebrafish embryos exposed to PFOS. Furthermore, removal of the chorion prior to exposure resulted in a lower threshold of sensitivity to PFOS for effects on transcriptional expression within the peroxisome proliferator-activated receptor (PPAR) nuclear signaling pathway. Perturbation of PPAR pathway gene expression can result in disruption of metabolic signaling and regulation, which can adversely affect development, energy availability, and survival. It can be concluded that removal of the chorion has significant effects on the timing and incidence of impacts associated with PFOS exposure, and more research is warranted to fully elucidate the protective role of the chorion and the critical timing of these events. Environ Toxicol Chem 2021;40:780-791. Published 2020. This article is a US Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Mitchell S. Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Ashley N. Kimble
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kimberly T. To
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Catherine S. Cox
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Sheila J. McLeod
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kurt A. Gust
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - David W. Moore
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Edward J. Perkins
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Natàlia Garcia‐Reyero
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| |
Collapse
|
12
|
Altashina MV, Ivannikova EV, Troshina EA. High protein diet: benefits and risks. OBESITY AND METABOLISM 2020; 17:393-400. [DOI: 10.14341/omet12662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The nature of human nutrition has become increasingly important as an effective element in the prevention and treatment of many pathologies, especially obesity, type 2 diabetes and cardiovascular diseases. High protein diets are some of the most popular eating patterns and the Dukan diet has taken the lead in popularity among the diets of this type. An increase of protein in the diet is effective in reducing body weight, primarily due to the loss of adipose tissue, without a significant effect on muscle mass. Another advantage of a high-protein diet is earlier and longer satiety compared to other diets, which makes it comfortable for use. Besides obesity, high protein diets are presumably effective for treating such diseases as nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular diseases However, despite the important advantages, this nutritional model is not universal and is contraindicated in patients with diseases of liver, kidneys and osteoporosis. Besides, the prolonged use of a high protein diet may increase the risks of urolithiasis and reduced mineral bone density even for healthy individuals. Thus, the increase in the proportion of protein in the diet should take place exclusively under the supervision of a physician.
Collapse
|
13
|
Binenbaum I, Atamni HAT, Fotakis G, Kontogianni G, Koutsandreas T, Pilalis E, Mott R, Himmelbauer H, Iraqi FA, Chatziioannou AA. Container-aided integrative QTL and RNA-seq analysis of Collaborative Cross mice supports distinct sex-oriented molecular modes of response in obesity. BMC Genomics 2020; 21:761. [PMID: 33143653 PMCID: PMC7640698 DOI: 10.1186/s12864-020-07173-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. RESULTS We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. CONCLUSION Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.
Collapse
Affiliation(s)
- Ilona Binenbaum
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biology, University of Patras, Patras, Greece
| | - Hanifa Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Georgios Fotakis
- Division of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- e-NIOS PC, Kallithea, Athens, Greece
| | - Georgia Kontogianni
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros Koutsandreas
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pilalis
- e-NIOS PC, Kallithea, Athens, Greece
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Richard Mott
- Department of Genetics, University College of London, London, UK
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Life Sciences and Natural Resources, Vienna (BOKU), Vienna, Austria
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Aristotelis A Chatziioannou
- e-NIOS PC, Kallithea, Athens, Greece.
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
15
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
16
|
Rockwood S, Mason D, Lord R, Lamar P, Prozialeck W, Al-Nakkash L. Genistein diet improves body weight, serum glucose and triglyceride levels in both male and female ob/ob mice. Diabetes Metab Syndr Obes 2019; 12:2011-2021. [PMID: 31686880 PMCID: PMC6783398 DOI: 10.2147/dmso.s216312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic obesity in the leptin-deficient ob/ob mouse is associated with weight gain, and hyperglycemia, along with hyperinsulinemia. We have previously examined the effects of genistein (a naturally occurring isoflavone found in soy) on metabolic disturbances in the ob/ob mouse and demonstrated beneficial effects of genistein (600 mg genistein/kg diet, for 4-weeks) on T3 production and corticosterone status. The goal of this study was to examine whether dietary genistein could prevent, or at least lessen, the typical phenotype in this murine model of diabetic-obesity, and to assess potential sex-differences. PATIENTS AND METHODS The ob/ob mice (male and female) aged 4-5 weeks were randomly assigned to one of two diets for a period of 4-weeks: standard rodent diet, or genistein-containing diet (600 mg genistein/kg diet). Comparisons were made to a lean control group. RESULTS Genistein diet significantly reduced body weight by 12% in females and 9% in males. Genistein significantly lowered serum glucose levels by 18% in females and 43% in males, yet had no effect on serum insulin. Genistein diet significantly lowered serum triglyceride levels in both ob/ob male and female mice returning them to lean levels. In females only, genistein significantly reduced serum pancreatic polypeptide levels by 56% and increased serum GIP levels 2.3-fold. Genistein had sex-dependent effects on hepatic steatosis: in females, genistein further increased the % fat area and the fat droplet diameter 2.6-fold, along with additionally increasing hepatic TBARS. CONCLUSION The results from this study indicate interesting beneficial effects of genistein diet for both male and female ob/ob mice.
Collapse
Affiliation(s)
- Schuyler Rockwood
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Daniel Mason
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Ryan Lord
- Arizona College of Osteopathic Medicine, Midwestern University
, Glendale, AZ, USA
| | - Peter Lamar
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Walter Prozialeck
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
- Correspondence: Layla Al-Nakkash Department of Physiology, College of Graduate Studies, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ85308, USATel +1 623 572 3719Fax +1 623 572 3673 Email
| |
Collapse
|
17
|
A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun 2018; 9:4630. [PMID: 30425247 PMCID: PMC6234216 DOI: 10.1038/s41467-018-07019-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres. Gluten-free diets are increasingly common in the general population. Here, the authors report the results of a randomised cross-over trial involving middle-aged, healthy Danish adults, showing evidence that a low-gluten diet leads to gut microbiome changes, possibly due to variations in dietary fibres.
Collapse
|
18
|
Andrew CA, Umashanker D, Aronne LJ, Shukla AP. Intestinal and Gastric Origins for Diabetes Resolution After Bariatric Surgery. Curr Obes Rep 2018; 7:139-146. [PMID: 29637413 DOI: 10.1007/s13679-018-0302-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This paper will review the intestinal and gastric origins for diabetes resolution after bariatric surgery. RECENT FINDINGS In addition to the known metabolic effects of changes in the gut hormonal milieu, more recent studies investigating the role of the microbiome and bile acids and changes in nutrient sensing mechanisms have been shown to have glycemic effects in human and animal models. Independent of weight loss, there are multiple mechanisms that may lead to amelioration or resolution of diabetes following bariatric surgery. There is abundant evidence pointing to changes in gut hormones, bile acids, gut microbiome, and intestinal nutrient sensing; more research is needed to clearly delineate their role in regulating energy and glucose homeostasis after bariatric surgery.
Collapse
MESH Headings
- Animals
- Bariatric Surgery
- Bile Acids and Salts/metabolism
- Biomarkers/blood
- Biomarkers/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/therapy
- Diet, Reducing
- Dysbiosis/complications
- Dysbiosis/etiology
- Dysbiosis/microbiology
- Dysbiosis/prevention & control
- Gastrointestinal Microbiome
- Humans
- Insulin Resistance
- Intestinal Mucosa/innervation
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/physiopathology
- Intestines/innervation
- Intestines/microbiology
- Intestines/physiopathology
- Neurons, Afferent/metabolism
- Neurons, Efferent/metabolism
- Obesity, Morbid/complications
- Obesity, Morbid/diet therapy
- Obesity, Morbid/physiopathology
- Obesity, Morbid/surgery
- Weight Loss
- Weight Reduction Programs
Collapse
Affiliation(s)
- Caroline A Andrew
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA
| | - Devika Umashanker
- Comprehensive Medical Weight Management, Department of Bariatric Surgery, Hartford HealthCare Medical Group, Hartford, CT, USA
| | - Louis J Aronne
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA
| | - Alpana P Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medical College, 1165 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Zapata RC, Singh A, Chelikani PK. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats. FASEB J 2018; 32:850-861. [PMID: 29042449 DOI: 10.1096/fj.201700519rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dairy proteins-whey protein, in particular-are satiating and often recommended for weight control; however, little is known about the mechanisms by which whey protein and its components promote satiety and weight loss. We used diet-induced obese rats to determine whether the hypophagic effects of diets that are enriched with whey and its fractions, lactalbumin and lactoferrin, are mediated by the gut hormone, peptide YY (PYY). We demonstrate that high protein diets that contain whey, lactalbumin, and lactoferrin decreased food intake and body weight with a concurrent increase in PYY mRNA abundance in the colon and/or plasma PYY concentrations. Of importance, blockade of PYY neuropeptide Y receptor subtype 2 (Y2) receptors with a peripherally restricted antagonist attenuated the hypophagic effects of diets that are enriched with whey protein fractions. Diets that are enriched with whey fractions were less preferred; however, in a modified conditioned taste preference test, PYY Y2 receptor blockade induced hyperphagia of a lactoferrin diet, but caused a reduction in preference for Y2 antagonist-paired flavor, which suggested that PYY signaling is important for lactoferrin-induced satiety, but not essential for preference for lactoferrin-enriched diets. Taken together, these data provide evidence that the satiety of diets that are enriched with whey protein components is mediated, in part, via enhanced PYY secretion and action in obese male rats.-Zapata, R. C., Singh, A., Chelikani, P. K. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Nguyen AD, Lee NJ, Wee NKY, Zhang L, Enriquez RF, Khor EC, Nie T, Wu D, Sainsbury A, Baldock PA, Herzog H. Uncoupling protein-1 is protective of bone mass under mild cold stress conditions. Bone 2018; 106:167-178. [PMID: 26055106 DOI: 10.1016/j.bone.2015.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022]
Abstract
Brown adipose tissue (BAT), largely controlled by the sympathetic nervous system (SNS), has the ability to dissipate energy in the form of heat through the actions of uncoupling protein-1 (UCP-1), thereby critically influencing energy expenditure. Besides BAT, the SNS also strongly influences bone, and recent studies have demonstrated a positive correlation between BAT activity and bone mass, albeit the interactions between BAT and bone remain unclear. Here we show that UCP-1 is critical for protecting bone mass in mice under conditions of permanent mild cold stress for this species (22°C). UCP-1-/- mice housed at 22°C showed significantly lower cancellous bone mass, with lower trabecular number and thickness, a lower bone formation rate and mineralising surface, but unaltered osteoclast number, compared to wild type mice housed at the same temperature. UCP-1-/- mice also displayed shorter femurs than wild types, with smaller cortical periosteal and endocortical perimeters. Importantly, these altered bone phenotypes were not observed when UCP-1-/- and wild type mice were housed in thermo-neutral conditions (29°C), indicating a UCP-1 dependent support of bone mass and bone formation at the lower temperature. Furthermore, at 22°C UCP-1-/- mice showed elevated hypothalamic expression of neuropeptide Y (NPY) relative to wild type, which is consistent with the lower bone formation and mass of UCP-1-/- mice at 22°C caused by the catabolic effects of hypothalamic NPY-induced SNS modulation. The results from this study suggest that during mild cold stress, when BAT-dependent thermogenesis is required, UCP-1 activity exerts a protective effect on bone mass possibly through alterations in central NPY pathways known to regulate SNS activity.
Collapse
Affiliation(s)
- Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ee Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510663, China
| | - Amanda Sainsbury
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
21
|
Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne) 2018; 9:754. [PMID: 30662430 PMCID: PMC6328484 DOI: 10.3389/fendo.2018.00754] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Enteroendocrine cells lining the gut epithelium constitute the largest endocrine organ in the body and secrete over 20 different hormones in response to cues from ingested foods and changes in nutritional status. Not only do these hormones convey signals from the gut to the brain via the gut-brain axis, they also act directly on metabolically important peripheral targets in a highly concerted fashion to maintain energy balance and glucose homeostasis. Gut-derived hormones released during fasting tend to be orexigenic and have hyperglycaemic potential. Conversely, gut hormones secreted postprandially generally promote satiety and facilitate glucose clearance. Although some of the metabolic benefits conferred by bariatric surgeries have been ascribed to changes in the secretory profiles of various gut hormones, the therapeutic potential of the enteroendocrine system as a viable target against metabolic diseases remain largely underexploited, except for incretin-mimetics. This review provides a brief overview of the physiological importance and highlights the therapeutic potential of the following gut hormones: serotonin, glucose-dependent insulinotropic peptide, glucagon-like peptide 1, oxyntomodulin, peptide YY, insulin-like peptide 5, and ghrelin.
Collapse
Affiliation(s)
- Emily W. L. Sun
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Alyce M. Martin
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Richard L. Young
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Damien J. Keating
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- *Correspondence: Damien J. Keating
| |
Collapse
|
22
|
Shi YC, Ip CK, Reed F, Sarruf DA, Wulff BS, Herzog H. Y5 receptor signalling counteracts the anorectic effects of PYY3-36 in diet-induced obese mice. J Neuroendocrinol 2017; 29. [PMID: 28485050 DOI: 10.1111/jne.12483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022]
Abstract
Peptide YY 3-36 (PYY3-36) is known as a critical satiety factor that reduces food intake both in rodents and humans. Although the anorexic effect of PYY3-36 is assumed to be mediated mainly by the Y2 receptor, the involvement of other Y-receptors in this process has never been conclusively resolved. Amongst them, the Y5 receptor (Y5R) is the most likely candidate to also be a target for PYY3-36, which is considered to counteract the anorectic effects of Y2R activation. In the present study, we show that short-term treatment of diet-induced obese wild-type (WT) and Y5R knockout mice (Y5KO) with PYY3-36 leads to a significantly reduced food intake in both genotypes, which is more pronounced in Y5R KO mice. Interestingly, chronic PYY3-36 infusion via minipumps to WT mice causes an increased cumulative food intake, which is associated with increased body weight gain. By contrast, lack of Y5R reversed this effect. Consistent with the observed increased body weight and fat mass in WT-treated mice, glucose tolerance was also impaired by chronic PYY3-36 treatment. Again, this was less affected in Y5KO mice, suggestive of a role of Y5R in the regulation of glucose homeostasis. Taken together, our data suggest that PYY3-36 mediated signalling via Y5 receptors may counteract the anorectic effects that it mediates via the Y2 receptor (Y2R), consequently lowering bodyweight in the absence of Y5 signalling. These findings open the potential of combination therapy using PYY3-36 and Y5R antagonists to enhance the food intake reducing effects of PYY3-36.
Collapse
Affiliation(s)
- Y-C Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | - C K Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - F Reed
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - D A Sarruf
- Incretin and Obesity Research, Novo Nordisk, Maaloev, Denmark
| | - B S Wulff
- Incretin and Obesity Research, Novo Nordisk, Maaloev, Denmark
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
23
|
Abstract
The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.
Collapse
|
24
|
Inhibition of Y1 receptor signaling improves islet transplant outcome. Nat Commun 2017; 8:490. [PMID: 28887564 PMCID: PMC5591241 DOI: 10.1038/s41467-017-00624-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.
Collapse
|
25
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
26
|
Morales FE, Tinsley GM, Gordon PM. Acute and Long-Term Impact of High-Protein Diets on Endocrine and Metabolic Function, Body Composition, and Exercise-Induced Adaptations. J Am Coll Nutr 2017; 36:295-305. [PMID: 28443785 DOI: 10.1080/07315724.2016.1274691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND High-protein diets have been shown to improve body composition through alterations in satiety, muscle protein synthesis, and the thermic effect of food. AIM Given these findings, the purpose of this review is to discuss the integration of the specific hormonal and metabolic effects of high-protein diets following both acute and long-term usage, especially with regard to body composition. METHODS Full-text articles were obtained through PubMed by using the terms "high-protein diet and body composition," "high-protein diet and exercise," "high-protein diet risk," "high-protein diet side effects," "protein quality PDCAAS," "RDA for protein," and "daily protein recommendation." Articles were initially screened according to their title and abstract; careful evaluation of the full manuscripts was then used to identify relevant articles. RESULTS The higher satiety exerted by high-protein diets is generated through increments in anorexigenic, as well as decrements in orexigenic hormones. Improvements in muscle mass are achieved by activation of muscle protein synthesis acting through the mTOR pathway. High thermic effect of food is caused due to necessary deamination, gluconeogenesis, and urea synthesis caused by high-protein diets. Interestingly, high-protein diets in both hypo- and normocaloric conditions have shown to improve body composition, whereas in combination with hypercaloric conditions does not seem to increase fat mass, when the excess energy comes from protein. CONCLUSIONS High protein diets effectively improve body composition by acting through different pathways.
Collapse
Affiliation(s)
- Flor E Morales
- a Department of Health , Human Performance, and Recreation, Baylor University , Waco , Texas , USA
| | - Grant M Tinsley
- b Department of Kinesiology and Sport Management , Texas Tech University , Lubbock , Texas , USA
| | - Paul M Gordon
- a Department of Health , Human Performance, and Recreation, Baylor University , Waco , Texas , USA
| |
Collapse
|
27
|
Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis 2015; 14:121. [PMID: 26415887 PMCID: PMC4587882 DOI: 10.1186/s12944-015-0123-1] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/21/2015] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is a multi-faceted disruption of the communication between insulin and the interior of a target cell. The underlying cause of insulin resistance appears to be inflammation that can either be increased or decreased by the fatty acid composition of the diet. However, the molecular basis for insulin resistance can be quite different in various organs. This review deals with various types of inflammatory inputs mediated by fatty acids, which affect the extent of insulin resistance in various organs.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, 200 Corporate Place, Peabody, MA, 01960, USA.
| | - Mary Perry
- Inflammation Research Foundation, 200 Corporate Place, Peabody, MA, 01960, USA.
| |
Collapse
|
28
|
Shi YC, Loh K, Bensellam M, Lee K, Zhai L, Lau J, Cantley J, Luzuriaga J, Laybutt DR, Herzog H. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice. Endocrinology 2015; 156:3122-36. [PMID: 26125465 DOI: 10.1210/en.2015-1168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin secretion is tightly controlled through coordinated actions of a number of systemic and local factors. Peptide YY (PYY) is expressed in α-cells of the islet, but its role in control of islet function such as insulin release is not clear. In this study, we generated a transgenic mouse model (Pyy(tg/+)/Rip-Cre) overexpressing the Pyy gene under the control of the rat insulin 2 gene promoter and assessed the impact of islet-released PYY on β-cell function, insulin release, and glucose homeostasis in mice. Our results show that up-regulation of PYY in islet β-cells leads to an increase in serum insulin levels as well as improved glucose tolerance. Interestingly, PYY-overproducing mice show increased lean mass and reduced fat mass with no significant changes in food intake or body weight. Energy expenditure is also increased accompanied by increased respiratory exchange ratio. Mechanistically, the enhanced insulin levels and improved glucose tolerance are primarily due to increased β-cell mass and secretion. This is associated with alterations in the expression of genes important for β-cell proliferation and function as well as the maintenance of the β-cell phenotype. Taken together, these data demonstrate that pancreatic islet-derived PYY plays an important role in controlling glucose homeostasis through the modulation of β-cell mass and function.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kim Loh
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Mohammed Bensellam
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kailun Lee
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Lei Zhai
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jackie Lau
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - James Cantley
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jude Luzuriaga
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - D Ross Laybutt
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Herbert Herzog
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| |
Collapse
|
29
|
Abstract
The gastrointestinal hormone peptide tyrosine tyrosine 3-36 (PYY(3-36)) has attained broad recognition with respect to its involvement in energy homeostasis and the control of food intake. It is mainly secreted by distal intestinal enteroendocrine L-cells in response to eating and exerts neurally mediated, paracrine and endocrine effects on various target organs. In addition to its gastrointestinal effects, PYY(3-36) has long been known to inhibit food intake. Recent closer examination of the effects of PYY(3-36) revealed that this gut-derived peptide also influences a wide spectrum of behavioral and cognitive functions that are pivotal for basic processes of perception and judgment, including central information processing, salience learning, working memory, and behavioral responding to novelty. Here, we review the effects of PYY(3-36) that go beyond food intake and provide a conceptual framework suggesting that several apparently unrelated behavioral actions of PYY(3-36) may actually reflect different manifestations of modulating the central dopamine system.
Collapse
|
30
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|
31
|
Sears B. The Role of Diet in Inflammation and Metabolic Syndrome. METABOLIC SYNDROME AND COMPLICATIONS OF PREGNANCY 2015:3-22. [DOI: 10.1007/978-3-319-16853-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Park HK, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 2015; 64:24-34. [PMID: 25199978 PMCID: PMC4267898 DOI: 10.1016/j.metabol.2014.08.004] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/01/2014] [Accepted: 08/08/2014] [Indexed: 12/24/2022]
Abstract
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Hyeong-Kyu Park
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Abstract
Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Collapse
Affiliation(s)
- Jang H Youn
- Department of Physiology and Biophysics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA,
| |
Collapse
|
34
|
Abstract
Crude extracts from ginseng demonstrated anti-obesity properties. Ginsenoside Rb1 is the main component of ginseng, however, there are only few studies examining its effects in obesity. In the present study, we evaluated its potential anti-obesity effects in the murine model of diet-induced obesity. Seventy male C57BL/6 mice were randomly divided to consume for 12 weeks either chow diet (N = 8) or high-fat (HF) diet (N = 62). The latter mice were then divided into four groups: diet-induced obesity group (DIO; N = 10), obesity-resistant group (OR; N = 10), HF group (N = 5), and the group whose diet was changed from HF to normal diet (DC; N = 5). Intraperitoneal injections of Rb-1 were administered daily to mice in the DIO and OR groups for 3 weeks. Body weight and energy intake were monitored, and fasting blood glucose, lipids, neuropeptide Y, Y2 receptor, and peptide YY were quantified. Compared with HF group, weight gain and food intake of DIO mice with Rb-1 injection was significantly decreased (p < 0.05). Further, levels of blood glucose and some lipids were also decreased in DIO-Rb1 group compared with HF group. Furthermore, Rb1 was also found to modulate serum levels of PYY and NPY, and mRNA expression of NPY, Y2 receptor and PYY in tissue samples of DIO mice. Taken together, ginsenoside Rb1 may be useful in the treatment of obesity via modifying the serum content and mRNA expression of NPY, Y2 receptor and PYY.
Collapse
|
35
|
Germain N, Galusca B, Caron-Dorval D, Martin JF, Pujos-Guillot E, Boirie Y, Khalfallah Y, Ling Y, Minnion JS, Bloom SR, Epelbaum J, Estour B. Specific appetite, energetic and metabolomics responses to fat overfeeding in resistant-to-bodyweight-gain constitutional thinness. Nutr Diabetes 2014; 4:e126. [PMID: 25027794 PMCID: PMC5189928 DOI: 10.1038/nutd.2014.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/18/2014] [Indexed: 02/05/2023] Open
Abstract
Background: Contrasting with obesity, constitutional thinness (CT) is a rare condition of natural low bodyweight. CT exhibits preserved menstruation in females, no biological marker of undernutrition, no eating disorders but a bodyweight gain desire. Anorexigenic hormonal profile with high peptide tyrosine tyrosine (PYY) was shown in circadian profile. CT could be considered as the opposite of obesity, where some patients appear to resist diet-induced bodyweight loss. Objective: The objective of this study was to evaluate appetite regulatory hormones in CTs in an inverse paradigm of diet-induced weight loss. Methods: A 4-week fat overfeeding (2640 kJ excess) was performed to compare eight CT women (body mass index (BMI)<17.5 kg m−2) to eight female controls (BMI 18.5–25 kg m−2). Appetite regulatory hormones profile after test meal, food intake, bodyweight, body composition, energy expenditure and urine metabolomics profiles were monitored before and after overfeeding. Results: After overfeeding, fasting total and acylated ghrelin were significantly lower in CTs than in controls (P=0.01 and 0.03, respectively). After overfeeding, peptide tyrosine tyrosine (PYY) and glucagon-like-peptide 1 both presented earlier (T15 min vs T30 min) and higher post-meal responses (incremental area under the curve) in CTs compared with controls. CTs failed to increase bodyweight (+0.22±0.18 kg, P=0.26 vs baseline), contrasting with controls (+0.72±0.26 kg, P=0.03 vs baseline, P=0.01 vs CTs). Resting energy expenditure increased in CTs only (P=0.031 vs baseline). After overfeeding, a significant negative difference between total energy expenditure and food intake was noticed in CTs only (−2754±720 kJ, P=0.01). Conclusion: CTs showed specific adaptation to fat overfeeding: overall increase in anorexigenic hormonal profile, enhanced post prandial GLP-1 and PYY and inverse to controls changes in urine metabolomics. Overfeeding revealed a paradoxical positive energy balance contemporary to a lack of bodyweight gain, suggesting yet unknown specific energy expenditure pathways in CTs.
Collapse
Affiliation(s)
- N Germain
- 1] Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France [2] Laboratory of Exercise Physiology (LPE EA 4338), University of Lyon, Saint-Etienne Cedex 2, France
| | - B Galusca
- 1] Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France [2] Laboratory of Exercise Physiology (LPE EA 4338), University of Lyon, Saint-Etienne Cedex 2, France
| | - D Caron-Dorval
- 1] Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France [2] Laboratory of Exercise Physiology (LPE EA 4338), University of Lyon, Saint-Etienne Cedex 2, France
| | - J-F Martin
- UMR 1019, Human Nutrition Unit, INRA, Research Center Clermont-Ferrand, Clermont-Ferrand, France
| | - E Pujos-Guillot
- UMR 1019, Human Nutrition Unit, INRA, Research Center Clermont-Ferrand, Clermont-Ferrand, France
| | - Y Boirie
- UMR 1019, Human Nutrition Unit, INRA, Research Center Clermont-Ferrand, Clermont-Ferrand, France
| | - Y Khalfallah
- Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France
| | - Y Ling
- 1] Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France [2] Laboratory of Exercise Physiology (LPE EA 4338), University of Lyon, Saint-Etienne Cedex 2, France
| | - J S Minnion
- Division of Diabetes, Endocrinology and Metabolism, Imperial College, London, UK
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College, London, UK
| | - J Epelbaum
- UMR 894, INSERM, Psychiatry and Neurosciences Center, Paris Descartes University, Paris, France
| | - B Estour
- 1] Division of Endocrinology, Diabetes, Metabolism and Eating disorders, CHU Saint-Etienne, Saint-Etienne Cedex, France [2] Laboratory of Exercise Physiology (LPE EA 4338), University of Lyon, Saint-Etienne Cedex 2, France
| |
Collapse
|
36
|
Abstract
As obesity continues to be a global epidemic, research into the mechanisms of hunger and satiety and how those signals act to regulate energy homeostasis persists. Peptide YY (PYY) is an acute satiety signal released upon nutrient ingestion and has been shown to decrease food intake when administered exogenously. More recently, investigators have studied how different factors influence PYY release and circulating levels in humans. Some of these factors include exercise, macronutrient composition of the diet, body-weight status, adiposity levels, sex, race and ageing. The present article provides a succinct and comprehensive review of the recent literature published on the different factors that influence PYY release and circulating levels in humans. Where human data are insufficient, evidence in animal or cell models is summarised. Additionally, the present review explores the recent findings on PYY responses to different dietary fatty acids and how this new line of research will make an impact on future studies on PYY. Human demographics, such as sex and age, do not appear to influence PYY levels. Conversely, adiposity or BMI, race and acute exercise all influence circulating PYY levels. Both dietary fat and protein strongly stimulate PYY release. Furthermore, MUFA appear to result in a smaller PYY response compared with SFA and PUFA. PYY levels appear to be affected by acute exercise, macronutrient composition, adiposity, race and the composition of fatty acids from dietary fat.
Collapse
|
37
|
Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014; 9:e92618. [PMID: 24675731 PMCID: PMC3968027 DOI: 10.1371/journal.pone.0092618] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023] Open
Abstract
A low-grade pro-inflammatory state is at the pathogenic core of obesity and type 2 diabetes. We tested the hypothesis that the plant terpenoid compound ginsenoside Rb1 (Rb1), known to exert anti-inflammatory effects, would ameliorate obesity, obesity-associated inflammation and glucose intolerance in the high-fat diet-induced obese mouse model. Furthermore, we examined the effect of Rb1 treatment on central leptin sensitivity and the leptin signaling pathway in the hypothalamus. We found that intraperitoneal injections of Rb1 (14 mg/kg, daily) for 21 days significantly reduced body weight gain, fat mass accumulation, and improved glucose tolerance in obese mice on a HF diet compared to vehicle treatment. Importantly, Rb1 treatment also reduced levels of pro-inflammatory cytokines (TNF-α, IL-6 and/or IL-1β) and NF-κB pathway molecules (p-IKK and p-IκBα) in adipose tissue and liver. In the hypothalamus, Rb1 treatment decreased the expression of inflammatory markers (IL-6, IL-1β and p-IKK) and negative regulators of leptin signaling (SOCS3 and PTP1B). Furthermore, Rb1 treatment also restored the anorexic effect of leptin in high-fat fed mice as well as leptin pSTAT3 signaling in the hypothalamus. Ginsenoside Rb1 has potential for use as an anti-obesity therapeutic agent that modulates obesity-induced inflammation and improves central leptin sensitivity in HF diet-induced obesity.
Collapse
Affiliation(s)
- Yizhen Wu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yinghua Yu
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- * E-mail: (XFH); (YHY)
| | - Alexander Szabo
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia
| | - Mei Han
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
- Schizophrenia Research Institute, Sydney, New South Wales, Australia
- * E-mail: (XFH); (YHY)
| |
Collapse
|
38
|
|
39
|
Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol 2014; 220:T25-46. [PMID: 24222039 DOI: 10.1530/joe-13-0398] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alterations in adequate energy balance maintenance result in serious metabolic disturbances such as obesity. In mammals, this complex process is orchestrated by multiple and distributed neuronal circuits. Hypothalamic and brainstem neuronal circuits are critically involved in the sensing of circulating and local factors conveying information about the energy status of the organism. The integration of these signals culminates in the generation of specific and coordinated physiological responses aimed at regulating energy balance through the modulation of appetite and energy expenditure. In this article, we review current knowledge on the homeostatic regulation of energy balance, emphasizing recent advances in mouse genetics, electrophysiology, and optogenetic techniques that have greatly contributed to improving our understanding of this central process.
Collapse
Affiliation(s)
- Marc Schneeberger
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain Department of Endocrinology and Nutrition, School of Medicine, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain
| | | | | |
Collapse
|
40
|
Abstract
Over the past 30 years, it has been established that hormones produced by the gut, pancreas, and adipose tissue are key players in the control of body weight. These hormones act through a complex neuroendocrine system, including the hypothalamus, to regulate metabolism and energy homeostasis. In obesity, this homeostatic balance is disrupted, either through alterations in the levels of these hormones or through resistance to their actions. Alterations in gut hormone secretion following gastric bypass surgery are likely to underlie the dramatic and persistent loss of weight following this procedure, as well as the observed amelioration in type 2 diabetes mellitus. Medications based on the gut hormone GLP-1 are currently in clinical use to treat type 2 diabetes mellitus and have been shown to produce weight loss. Further therapies for obesity based on other gut hormones are currently in development.
Collapse
Affiliation(s)
- Rebecca Scott
- Division of Diabetes, Endocrinology, Metabolism, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
41
|
Ozeki J, Choi M, Endo-Umeda K, Sakurai K, Amano S, Makishima M. Enhanced transcription of pancreatic peptide YY by 1α-hydroxyvitamin D3 administration in streptozotocin-induced diabetic mice. Neuropeptides 2013; 47:329-32. [PMID: 23899497 DOI: 10.1016/j.npep.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/29/2013] [Accepted: 07/05/2013] [Indexed: 12/17/2022]
Abstract
Peptide YY (PYY) is a peptide hormone secreted from L cells in the intestine in response to food intake that regulates appetite and gastrointestinal function. PYY is also produced in the pancreatic islets. The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D3 that regulates numerous physiological processes. VDR is expressed in the pancreatic islets and pharmacological VDR activation increases PYY expression in mouse peripheral islet cells. Although VDR is present in insulin-producing β cells as well as non-β cells, the role of β cell VDR in Pyy transcription remains unknown. We treated mice with streptozotocin to ablate β cells in the pancreas. Pancreatic Vdr mRNA expression was decreased in streptozotocin-induced diabetic mice. Interestingly, streptozotocin-treated mice exhibited increased basal Pyy expression and 1α-hydroxyvitamin D3 treatment further increased expression. Moreover, 1α-hydroxyvitamin D3 increased mRNA expression of pancreatic polypeptide and decreased that of neuropeptide Y in streptozotocin-induced diabetic mice but not in control mice. 1α-Hydroxyvitamin D3 slightly increased mRNA expression of insulin but transcript levels were nearly undetectable in the pancreas of streptozotocin-treated mice. Thus, VDR in non-β islet cells is involved in Pyy expression in the mouse pancreas. The findings from this β cell ablation study suggest a hormone transcription regulatory network composed of β cells and non-β cells.
Collapse
Affiliation(s)
- Jun Ozeki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; Division of Breast and Endocrine Surgery, Department of Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Yu Y, Wu Y, Szabo A, Wu Z, Wang H, Li D, Huang XF. Teasaponin reduces inflammation and central leptin resistance in diet-induced obese male mice. Endocrinology 2013; 154:3130-40. [PMID: 23751875 DOI: 10.1210/en.2013-1218] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic inflammation is involved in the pathogenesis of obesity and type 2 diabetes. Recently teasaponin, an extract from tea, has been shown to have antiinflammatory effects. We examined the effect of teasaponin on obesity, inflammation, glucose metabolism, and central leptin sensitivity in obese mice fed a high-fat (HF) diet for 16 weeks. Intraperitoneal injections of teasaponin (10 mg/kg, daily) for 21 days significantly decreased the food intake and body weight of HF diet-induced obese mice. Teasaponin treatment also reduced the protein levels of proinflammatory cytokines (TNF-α, IL-6, and/or IL-1β) and nuclear factor-κB signaling (phosphorylated inhibitory-κB kinase and phosphorylated inhibitory-κBα) in adipose tissue and the liver. The antiinflammatory effects of teasaponin were associated with improved glycemic status in the treated animals, evidenced by improved glucose tolerance, homeostasis model assessment, and fasting plasma insulin. In the hypothalamus, teasaponin decreased both proinflammatory cytokines and inflammatory signaling in the mediobasal hypothalamus. Teasaponin treatment also enhanced the anorexigenic effect of central leptin administration, restored leptin phosphorylated signal transducer and activator of transcription-3 (p-STAT3) signaling in the arcuate nucleus, and increased hypothalamic expression of the anorexigenic peptide proopiomelanocortin. These results identify a potential novel application for teasaponin as an antiobesity and antiinflammatory agent.
Collapse
Affiliation(s)
- Yinghua Yu
- Illawarra Health and Medical Research Institute, School of Health Sciences, University of Wollongong, Northfields Avenue, New South Wales 2522, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Lin N, Li Y, Tang L, Shi J, Chen Y. In vivo effect of oat cereal β-glucan on metabolic indexes and satiety-related hormones in diet-induced obesity C57-Bl mice. Mol Nutr Food Res 2013; 57:1291-4. [PMID: 23512521 DOI: 10.1002/mnfr.201200695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/04/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Ning Lin
- Department of General Surgery; Chengdu Military General Hospital; Chengdu P. R. China
- Department of Clinical Nutrition; Chengdu Military General Hospital; Chengdu P. R. China
| | - Yunming Li
- Department of Neurosurgery; Chengdu Military General Hospital; Chengdu P. R. China
| | - Lijun Tang
- Department of General Surgery; Chengdu Military General Hospital; Chengdu P. R. China
| | - Jiaojiao Shi
- Department of Clinical Nutrition; Chengdu Military General Hospital; Chengdu P. R. China
| | - Yi Chen
- Department of Clinical Nutrition; Chengdu Military General Hospital; Chengdu P. R. China
| |
Collapse
|
44
|
Brzozowska MM, Sainsbury A, Eisman JA, Baldock PA, Center JR. Bariatric surgery, bone loss, obesity and possible mechanisms. Obes Rev 2013; 14:52-67. [PMID: 23094966 DOI: 10.1111/j.1467-789x.2012.01050.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 12/14/2022]
Abstract
Bariatric surgery remains the most effective treatment for severely obese patients. However, the potential long-term effects of bariatric surgical procedures on health, including bone health, are only partially understood. The goal of this review was to present data on the impact of bariatric surgery on bone metabolism and to analyse possible reasons for the loss of bone mass that frequently occurs after bariatric surgery. Such factors include nutritional deficiencies, rapid weight loss per se, effects of fat-derived adipokines and gut-derived appetite-regulatory hormones. However, the relative roles of these factors in skeletal regulation and the mechanisms by which they work are not yet fully defined. Our review was focussed on the complex relationship between body weight, fat mass and bone mass, as well as peripheral and central mediators potentially involved in the dual regulation of both energy and bone homeostasis. We also review the data on the inverse relationship between central obesity, bone marrow fat and osteoporosis. As the number of bariatric operations increases, it is imperative to recognize mechanisms responsible for bariatric surgery-induced bone loss, with careful monitoring of bone health including long-term fracture incidence in patients undergoing these procedures.
Collapse
Affiliation(s)
- M M Brzozowska
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | | | |
Collapse
|
45
|
Choi M, Ozeki J, Hashizume M, Kato S, Ishihara H, Makishima M. Vitamin D receptor activation induces peptide YY transcription in pancreatic islets. Endocrinology 2012; 153:5188-99. [PMID: 22962257 DOI: 10.1210/en.2012-1396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptide YY (PYY) is a peptide hormone secreted from L cells in the intestine after food intake and regulates appetite and intestinal function. PYY is also expressed in the pancreas, but the mechanisms of regulation of pancreatic PYY expression have not been elucidated. The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D(3) and regulates numerous physiological processes. Because VDR is expressed in the pancreas, we investigated the role of pancreatic VDR activation and found that Pyy is a VDR target gene in the mouse pancreas. Treatment of mice with 1α-hydroxyvitamin D(3) increased plasma PYY levels. VDR activation increased mRNA and protein expression of PYY in the pancreatic islets of mice and pancreatic endocrine cell lines but did not change intestinal PYY expression. 1α-Hydroxyvitamin D(3)-dependent induction of pancreatic and plasma PYY was abolished in VDR-null mice. We identified a functional vitamin D-responsive element in the mouse Pyy promoter using chromatin immunoprecipitation assay, EMSA, and luciferase promoter assay. Thus, Pyy is a tissue-specific VDR target gene. The pancreatic VDR-PYY pathway may mediate a regulatory function of vitamin D in the neuroendocrine system.
Collapse
Affiliation(s)
- Mihwa Choi
- Division of Biochemistry, Department of Medicine, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Shi YC, Hämmerle CM, Lee ICJ, Turner N, Nguyen AD, Riepler SJ, Lin S, Sainsbury A, Herzog H, Zhang L. Adult-onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides 2012; 46:173-82. [PMID: 22575886 DOI: 10.1016/j.npep.2012.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022]
Abstract
Peptide YY (PYY) is best known for its important role in appetite regulation, but recent pharmacological studies have suggested that PYY is also involved in regulating energy balance and glucose homeostasis. However, the mechanism behind the regulation of these parameters by PYY is less clear. Here, by utilising an inducible transgenic mouse model where PYY overexpression is induced in adult animals (PYYtg) and release of mature PYY peptides is controlled by endogenous machineries, we show that elevating PYY levels leads to reduced food intake after a 24-h fast. Furthermore, PYYtg mice, although not significantly different from WT with respect to body weight, adiposity, lean mass, physical activity or energy expenditure, exhibited a significantly increased respiratory exchange ratio (RER), indicating decreased lipid oxidation and/or increased lipogenesis. Importantly, PYYtg mice showed a 25% reduction in liver protein levels of phosphorylated acetyl-CoA carboxylase (pACC) in the absence of changes in total ACC levels compared to those of WT mice. Moreover, liver protein levels of AMP-activated kinase (AMPK) in PYYtg mice were 25% lower than those of WT mice, consistent with a reduced pACC in these mice. These data suggest that elevation of PYY levels as seen after a meal can increase lipogenic capacity, which is likely a key contributor to the increased RER seen in PYYtg mice. In addition, PYYtg mice exhibited comparable insulin tolerance and oral glucose tolerance to those of WT, but showed a trend towards decreased insulin levels in response to an oral glucose challenge, indicating that PYY could improve insulin action. Taken together, these findings demonstrate that under physiological conditions, PYY reduces food intake while enhancing lipogenic capacity and insulin action, likely contributing to fuel assimilation in the postprandial state.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg 2012; 22:740-8. [PMID: 22354457 PMCID: PMC3319900 DOI: 10.1007/s11695-012-0622-3] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The mechanisms of amelioration of glycemic control early after laparoscopic Roux-en-Y gastric bypass (LRYGB) or laparoscopic sleeve gastrectomy (LSG) are not fully understood. METHODS In this prospective, randomized 1-year trial, outcomes of LRYGB and LSG patients were compared, focusing on possibly responsible mechanisms. Twelve patients were randomized to LRYGB and 11 to LSG. These non-diabetic patients were investigated before and 1 week, 3 months, and 12 months after surgery. A standard test meal was given after an overnight fast, and blood samples were collected before, during, and after food intake for hormone profiles (cholecystokinin (CCK), ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY)). RESULTS In both groups, body weight and BMI decreased markedly and comparably leading to an identical improvement of abnormal glycemic control (HOMA index). Post-surgery, patients had markedly increased postprandial plasma GLP-1 and PYY levels (p < 0.05) with ensuing improvement in glucose homeostasis. At 12 months, LRYGB ghrelin levels approached preoperative values. The postprandial, physiologic fluctuation returned, however, while LSG ghrelin levels were still markedly attenuated. One year postoperatively, CCK concentrations after test meals increased less in the LRYGB group than they did in the LSG group, with the latter showing significantly higher maximal CCK concentrations (p < 0.012 vs. LRYGB). CONCLUSIONS Bypassing the foregut is not the only mechanism responsible for improved glucose homeostasis. The balance between foregut (ghrelin, CCK) and hindgut (GLP-1, PYY) hormones is a key to understanding the underlying mechanisms.
Collapse
|
48
|
Nguyen AD, Mitchell NF, Lin S, Macia L, Yulyaningsih E, Baldock PA, Enriquez RF, Zhang L, Shi YC, Zolotukhin S, Herzog H, Sainsbury A. Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS One 2012; 7:e40191. [PMID: 22768253 PMCID: PMC3387009 DOI: 10.1371/journal.pone.0040191] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/02/2012] [Indexed: 01/30/2023] Open
Abstract
Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake.
Collapse
Affiliation(s)
- Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Bone and Mineral Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Serge Zolotukhin
- Division of Cell and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Pereira-Lancha LO, Campos-Ferraz PL, Lancha AH. Obesity: considerations about etiology, metabolism, and the use of experimental models. Diabetes Metab Syndr Obes 2012; 5:75-87. [PMID: 22570558 PMCID: PMC3346207 DOI: 10.2147/dmso.s25026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies have been conducted in order to identify the main factors that contribute to the development of obesity. The role of genetics has also been extensively studied. However, the substantial augmentation of obesity prevalence in the last 20 years cannot be justified only by genetic alterations that, theoretically, would have occurred in such a short time. Thus, the difference in obesity prevalence in various population groups is also related to environmental factors, especially diet and the reduction of physical activity. These aspects, interacting or not with genetic factors, could explain the excess of body fat in large proportions worldwide. This article will focus on positive energy balance, high-fat diet, alteration in appetite control hormones, insulin resistance, amino acids metabolism, and the limitation of the experimental models to address this complex issue.
Collapse
Affiliation(s)
| | | | - Antonio H Lancha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
50
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|