1
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
4
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Peeples ES, Mirnics K, Korade Z. Chemical Inhibition of Sterol Biosynthesis. Biomolecules 2024; 14:410. [PMID: 38672427 PMCID: PMC11048061 DOI: 10.3390/biom14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.
Collapse
Affiliation(s)
- Eric S. Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Division of Neonatology, Children’s Nebraska, Omaha, NE 68114, USA
| | - Karoly Mirnics
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Child Health Research Institute, Omaha, NE 68198, USA;
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Li B, Gu Z, Wang W, Du B, Wu C, Li B, Wang T, Yin G, Gao X, Chen J, Bi X, Zhang H, Sun X. The associations between peripheral inflammatory and lipid parameters, white matter hyperintensity, and cognitive function in patients with non-disabling ischemic cerebrovascular events. BMC Neurol 2024; 24:86. [PMID: 38438839 PMCID: PMC10910845 DOI: 10.1186/s12883-024-03591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The global prevalence of VCI has increased steadily in recent years, but diagnostic biomarkers for VCI in patients with non-disabling ischemic cerebrovascular incidents (NICE) remain indefinite. The primary objective of this research was to investigate the relationship between peripheral serological markers, white matter damage, and cognitive function in individuals with NICE. METHODS We collected clinical data, demographic information, and medical history from 257 patients with NICE. Using the MoCA upon admission, patients were categorized into either normal cognitive function (NCF) or VCI groups. Furthermore, they were classified as having mild white matter hyperintensity (mWMH) or severe WMH based on Fazekas scores. We then compared the levels of serological markers between the cognitive function groups and the WMH groups. RESULTS Among 257 patients with NICE, 165 were male and 92 were female. Lymphocyte count (OR = 0.448, P < 0.001) and LDL-C/HDL-C (OR = 0.725, P = 0.028) were protective factors for cognitive function in patients with NICE. The sWMH group had a higher age and inflammation markers but a lower MoCA score, and lymphocyte count than the mWMH group. In the mWMH group, lymphocyte count (AUC = 0.765, P < 0.001) and LDL-C/HDL-C (AUC = 0.740, P < 0.001) had an acceptable diagnostic value for the diagnosis of VCI. In the sWMH group, no significant differences were found in serological markers between the NCF and VCI groups. CONCLUSION Lymphocyte count, LDL-C/HDL-C were independent protective factors for cognitive function in patients with NICE; they can be used as potential biological markers to distinguish VCI in patients with NICE and are applicable to subgroups of patients with mWMH.
Collapse
Affiliation(s)
- Binghan Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhengsheng Gu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Weisen Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bingying Du
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chenghao Wu
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bin Li
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Tianren Wang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Ge Yin
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xin Gao
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjing Chen
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| | - Xu Sun
- Department of Neurology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Gliozzi M, Coppoletta AR, Cardamone A, Musolino V, Carresi C, Nucera S, Ruga S, Scarano F, Bosco F, Guarnieri L, Macrì R, Mollace R, Belzung C, Mollace V. The dangerous "West Coast Swing" by hyperglycaemia and chronic stress in the mouse hippocampus: Role of kynurenine catabolism. Pharmacol Res 2024; 201:107087. [PMID: 38301816 DOI: 10.1016/j.phrs.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Nazeri Z, Abdeveiszadeh N, Zarezade V, Azizidoost S, Cheraghzadeh M, Aberumand M, Kheirollah A. Investigating the Effect of Aspirin on apoAI-Induced ATP Binding Cassette Transporter 1 Protein Expression and Cholesterol Efflux in Human Astrocytes. Adv Biomed Res 2024; 13:16. [PMID: 38525390 PMCID: PMC10958728 DOI: 10.4103/abr.abr_417_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 03/26/2024] Open
Abstract
Background Neurons need a high amount of cholesterol to maintain the stability of their membrane-rich structures. Astrocytes synthesize and distribute cholesterol to neurons, and ABCA1 is a key mediator of cholesterol efflux to generate HDL for cholesterol transport in the brain. Several studies imply the effect of aspirin on ABCA1 expression in peripheral cells such as macrophages. Here, we compared the effect of aspirin with apoA-I on ABCA1 protein expression and cholesterol efflux in human astrocytes. Materials and Methods Human astrocytes were cultured, and the effects of aspirin on the expression and protein levels of ABCA1 were investigated through RT-PCR and Western blot analysis. Additionally, the effect of co-treatment with apoA-I and aspirin on ABCA1 protein level and cholesterol efflux was evaluated. Results Dose and time-course experiments showed that the maximum effect of aspirin on ABCA1 expression occurred at a concentration of 0.5 mM after 12 h of incubation. RT-PCR and western blot data showed that aspirin upregulates ABCA1 expression by up to 4.7-fold and its protein level by 67%. Additionally, co-treatment with aspirin and apoA-I increased cholesterol release from astrocytes, indicating an additive effect of aspirin on apoAI-mediated cholesterol efflux. Conclusions The results suggest a potential role of aspirin in increasing ABCA1 expression and cholesterol efflux in astrocytes, similar to the effect of apoA-I. This indicates that aspirin could potentially regulate brain cholesterol balance and can be considered in certain neurological diseases, in particular in some neurological disorders related to cholesterol accumulation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Abdeveiszadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberumand
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
9
|
Hennegan J, Bryant AH, Griffiths L, Trigano M, Bartley OJ, Bartlett JJ, Minahan C, Abreu de Oliveira WA, Yutuc E, Ntikas S, Bartsocas CS, Markouri M, Antoniadou E, Laina I, Howell OW, Li M, Wang Y, Griffiths WJ, Lane EL, Lelos MJ, Theofilopoulos S. Inhibition of 7α,26-dihydroxycholesterol biosynthesis promotes midbrain dopaminergic neuron development. iScience 2024; 27:108670. [PMID: 38155767 PMCID: PMC10753067 DOI: 10.1016/j.isci.2023.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulated cholesterol metabolism has been linked to neurodegeneration. We previously found that free, non-esterified, 7α,(25R)26-dihydroxycholesterol (7α,26-diHC), was significantly elevated in the cerebrospinal fluid of patients with Parkinson's disease (PD). In this study we investigated the role of 7α,26-diHC in midbrain dopamine (mDA) neuron development and survival. We report that 7α,26-diHC induces apoptosis and reduces the number of mDA neurons in hESC-derived cultures and in mouse progenitor cultures. Voriconazole, an oxysterol 7α-hydroxylase (CYP7B1) inhibitor, increases the number of mDA neurons and prevents the loss of mDA neurons induced by 7α,26-diHC. These effects are specific since neither 7α,26-diHC nor voriconazole alter the number of Islet1+ oculomotor neurons. Furthermore, our results suggest that elevated 24(S),25-epoxycholesterol, which has been shown to promote mDA neurogenesis, may be partially responsible for the effect of voriconazole on mDA neurons. These findings suggest that voriconazole, and/or other azole CYP7B1 inhibitors may have implications in PD therapy development.
Collapse
Affiliation(s)
- James Hennegan
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Aled H. Bryant
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
| | - Lauren Griffiths
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
- Oxysterol Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
- Multiple Sclerosis Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Matthieu Trigano
- Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
| | - Oliver J.M. Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Joanna J. Bartlett
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
| | - Carys Minahan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Willy Antoni Abreu de Oliveira
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eylan Yutuc
- Oxysterol Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Sotirios Ntikas
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | - Owain W. Howell
- Multiple Sclerosis Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Meng Li
- Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Yuqin Wang
- Oxysterol Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - William J. Griffiths
- Oxysterol Research Group, Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Emma L. Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Mariah J. Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Spyridon Theofilopoulos
- Regenerative Neurobiology Laboratory, Swansea University Medical School, Institute of Life Science 1, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
10
|
Zubillaga M, Tau J, Rosa D, Bellini MJ, Arnal N. Sex-dependent effect of sublethal copper concentrations on de novo cholesterol synthesis in astrocytes and their possible links to variations in cholesterol and amyloid precursor protein levels in neuronal membranes. Biol Sex Differ 2024; 15:4. [PMID: 38191520 PMCID: PMC10775608 DOI: 10.1186/s13293-023-00578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Cholesterol (Cho) is an essential lipophilic molecule in cells; however, both its decrease and its increase may favor the development of neurological diseases such as Alzheimer's disease (AD). Although copper (Cu) is an essential trace metal for cells, the increased plasma concentration of its free form has been linked with AD development and severity. AD affects aged people, but its prevalence and severity are higher in women than in men. We have previously shown that Cu promotes Cho de novo synthesis in immature neurons as well as increased Cho in membrane rafts and Aβ levels in culture medium, but there are no results yet regarding sex differences in the effects of sublethal Cu exposure on Cho de novo synthesis. METHODS We examined the potential sex-specific impact of sublethal Cu concentrations on de novo Cho synthesis in primary cultures of male and female astrocytes. We also explored whether this had any correlation with variations in Cho and APP levels within neuronal membrane rafts. RESULTS Flow cytometry analysis demonstrated that Cu treatment leads to a greater increase in ROS levels in female astrocytes than in males. Furthermore, through RT-PCR analysis, we observed an upregulation of SREBP-2 and HMGCR. Consistently, we observed an increase in de novo Cho synthesis. Finally, western blot analysis indicated that the levels of ABCA1 increase after Cu treatment, accompanied by a higher release of radiolabeled Cho and an elevation in Cho and APP levels in neuronal membrane rafts. Importantly, all these results were significantly more pronounced in female astrocytes than in males. CONCLUSIONS Our findings confirm that Cu stimulates Cho synthesis in astrocytes, both in a ROS-dependent and -independent manner. Moreover, female astrocytes displayed elevated levels of HMGCR, and de novo Cho synthesis compared to males following TBH and Cu treatments. This corresponds with higher levels of Cho released into the culture medium and a more significant Cho and APP rise within neuronal rafts. We consider that the increased risk of AD in females partly arises from sex-specific responses to metals and/or exogenous substances, impacting key enzyme regulation in various biochemical pathways, including HMGCR.
Collapse
Affiliation(s)
- Marlene Zubillaga
- Laboratorio de Neurociencia, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calle 60 y 120, CP 1900, La Plata, Argentina
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calle 60 y 120, CP 1900, La Plata, Argentina
| | - Diana Rosa
- Laboratorio de Nutrición Mineral, Fac. Cs Veterinarias, UNLP (Universidad Nacional de La Plata), Calle 60, CP 1900, La Plata, Argentina
| | - M José Bellini
- Laboratorio de Neurobiología y Cognición en el Envejecimiento y Enfermedades Neurodegenerativas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calle 60 y 120, CP 1900, La Plata, Argentina
| | - Nathalie Arnal
- Laboratorio de Neurociencia, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Calle 60 y 120, CP 1900, La Plata, Argentina.
| |
Collapse
|
11
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
12
|
González-Domínguez Á, González-Domínguez R. How far are we from reliable metabolomics-based biomarkers? The often-overlooked importance of addressing inter-individual variability factors. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166910. [PMID: 37802155 DOI: 10.1016/j.bbadis.2023.166910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Metabolomics has proven great potential to unravel the molecular basis of diseases. However, most attempts aimed at identifying reliable metabolomics-based biomarkers for diagnosis, prediction, and prognosis of diseases have repeatedly failed because of inconsistent results and unsatisfactory replication in independent cohorts. This review article explores the possible causes behind this reproducibility crisis, with special focus on the role that inter-individual variability factors play in modulating the susceptibility to disease development. Furthermore, we provide future perspectives on the applicability of metabolomics in biomedical research and its translatability into clinical practice.
Collapse
Affiliation(s)
- Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11009 Cádiz, Spain
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11009 Cádiz, Spain.
| |
Collapse
|
13
|
de las Fuentes L, Schwander KL, Brown MR, Bentley AR, Winkler TW, Sung YJ, Munroe PB, Miller CL, Aschard H, Aslibekyan S, Bartz TM, Bielak LF, Chai JF, Cheng CY, Dorajoo R, Feitosa MF, Guo X, Hartwig FP, Horimoto A, Kolčić I, Lim E, Liu Y, Manning AK, Marten J, Musani SK, Noordam R, Padmanabhan S, Rankinen T, Richard MA, Ridker PM, Smith AV, Vojinovic D, Zonderman AB, Alver M, Boissel M, Christensen K, Freedman BI, Gao C, Giulianini F, Harris SE, He M, Hsu FC, Kühnel B, Laguzzi F, Li X, Lyytikäinen LP, Nolte IM, Poveda A, Rauramaa R, Riaz M, Robino A, Sofer T, Takeuchi F, Tayo BO, van der Most PJ, Verweij N, Ware EB, Weiss S, Wen W, Yanek LR, Zhan Y, Amin N, Arking DE, Ballantyne C, Boerwinkle E, Brody JA, Broeckel U, Campbell A, Canouil M, Chai X, Chen YDI, Chen X, Chitrala KN, Concas MP, de Faire U, de Mutsert R, de Silva HJ, de Vries PS, Do A, Faul JD, Fisher V, Floyd JS, Forrester T, Friedlander Y, Girotto G, Gu CC, Hallmans G, Heikkinen S, Heng CK, Homuth G, Hunt S, Ikram MA, Jacobs DR, Kavousi M, Khor CC, Kilpeläinen TO, Koh WP, Komulainen P, Langefeld CD, Liang J, Liu K, Liu J, Lohman K, Mägi R, Manichaikul AW, McKenzie CA, Meitinger T, Milaneschi Y, Nauck M, Nelson CP, O’Connell JR, Palmer ND, Pereira AC, Perls T, Peters A, Polašek O, Raitakari OT, Rice K, Rice TK, Rich SS, Sabanayagam C, Schreiner PJ, Shu XO, Sidney S, Sims M, Smith JA, Starr JM, Strauch K, Tai ES, Taylor KD, Tsai MY, Uitterlinden AG, van Heemst D, Waldenberger M, Wang YX, Wei WB, Wilson G, Xuan D, Yao J, Yu C, Yuan JM, Zhao W, Becker DM, Bonnefond A, Bowden DW, Cooper RS, Deary IJ, Divers J, Esko T, Franks PW, Froguel P, Gieger C, Jonas JB, Kato N, Lakka TA, Leander K, Lehtimäki T, Magnusson PKE, North KE, Ntalla I, Penninx B, Samani NJ, Snieder H, Spedicati B, van der Harst P, Völzke H, Wagenknecht LE, Weir DR, Wojczynski MK, Wu T, Zheng W, Zhu X, Bouchard C, Chasman DI, Evans MK, Fox ER, Gudnason V, Hayward C, Horta BL, Kardia SLR, Krieger JE, Mook-Kanamori DO, Peyser PA, Province MM, Psaty BM, Rudan I, Sim X, Smith BH, van Dam RM, van Duijn CM, Wong TY, Arnett DK, Rao DC, Gauderman J, Liu CT, Morrison AC, Rotter JI, Fornage M. Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci. Front Genet 2023; 14:1235337. [PMID: 38028628 PMCID: PMC10651736 DOI: 10.3389/fgene.2023.1235337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.
Collapse
Affiliation(s)
- Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Karen L. Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Amy R. Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Patricia B. Munroe
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, United Kingdom
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Biochemistry and Molecular Genetics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Hugo Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
- Département de Génomes et Génétique, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Stella Aslibekyan
- School of Public Health, Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Fernando P. Hartwig
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Andrea Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Ivana Kolčić
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Alisa K. Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Solomon K. Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Melissa A. Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Albert V. Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Icelandic Heart Association, Kopavogur, Iceland
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institutes of Health, Baltimore, MD, United States
| | - Maris Alver
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Mathilde Boissel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Barry I. Freedman
- Nephrology Division, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sarah E. Harris
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Federica Laguzzi
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoyin Li
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
- Department of Mathematics and Statistics, St. Cloud State University, St. Cloud, MN, United States
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alaitz Poveda
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Muhammad Riaz
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Antonietta Robino
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Tamar Sofer
- Biostatistics, Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bamidele O. Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Peter J. van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yiqiang Zhan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, United States
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, United States
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Ulrich Broeckel
- Section on Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Mickaël Canouil
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Xiaoran Chai
- Data Science Unit, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Ulf de Faire
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - H. Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ahn Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Virginia Fisher
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - James S. Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
| | - Terrence Forrester
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Yechiel Friedlander
- Braun School of Public Health, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Göran Hallmans
- Section for Nutritional Research, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald and University of Greifswald, Greifswald, Germany
| | - Steven Hunt
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Department of Genetic Medicine, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | | | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Kiang Liu
- Epidemiology, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Reedik Mägi
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
| | - Ani W. Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Colin A. McKenzie
- Tropical Medicine Research Institute, University of the West Indies, Mona, Jamaica
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | | | - Matthias Nauck
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, United States
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Thomas Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research, Neuherberg, Germany
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Algebra University College, Zagreb, Croatia
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Treva K. Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Sidney
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, United States
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Konstantin Strauch
- German Research Center for Environmental Health, Helmholtz Zentrum München, Institute of Genetic Epidemiology, Neuherberg, Germany
- Institute of Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Kent D. Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ya-Xing Wang
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Wen-Bin Wei
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
| | - Gregory Wilson
- Jackson Heart Study Graduate Training Center, School of Public, Jackson State University, Jackson, MS, United States
| | - Deng Xuan
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Jie Yao
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Min Yuan
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Diane M. Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amélie Bonnefond
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Richard S. Cooper
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States
| | - Ian J. Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jasmin Divers
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Tõnu Esko
- Estonian Genome Center, Insititute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Boston, MA, United States
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Nutrition, Harvard Chan School of Public Health, Boston, MA, United States
| | - Philippe Froguel
- European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Jost B. Jonas
- Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Karin Leander
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere, Tampere, Finland
- Finnish Cardiovascular Research Center, University of Tampere, Tampere, Finland
| | - Patrik K. E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ioanna Ntalla
- Clinical Pharmacology, Queen Mary University of London, London, United Kingdom
- Celgene, Bristol Myers Squibb, Mississauga, ON, Canada
| | | | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Harold Snieder
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Pim van der Harst
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Henry Völzke
- German Center for Cardiovascular Research, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lynne E. Wagenknecht
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, Cleveland, OH, United States
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Ervin R. Fox
- Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Bernardo L. Horta
- Postgraduate Programme in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Michael M. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, United States
- Department of Epidemiology, University of Washington, Seattle, WA, United States
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, United States
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rob M. van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Tien Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Medical School, Duke-National University of Singapore, Singapore, Singapore
| | - Donna K. Arnett
- College of Public Health, Dean’s Office, University of Kentucky, Lexington, KY, United States
| | - Dabeeru C. Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - James Gauderman
- Division of Biostatistics, Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jerome I. Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Los Angeles, CA, United States
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
14
|
Guo J, Wang Y, Li P, Wu W, Xu F, Zhou K, Xu B. The modulatory effects on enterohepatic cholesterol metabolism of novel cholesterol-lowering peptides from gastrointestinal digestion of Xuanwei ham. Food Res Int 2023; 173:113391. [PMID: 37803728 DOI: 10.1016/j.foodres.2023.113391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
The aim of this study was to investigate the effects and mechanism of in vitro protein digestive products of Xuanwei ham with different ripening periods on cholesterol metabolism and hypercholesterolemia. The results showed that compared with other gastrointestinal digestion (GID) groups, the GID group of Xuanwei ham with 3-year ripening period (XWH3-GID) inhibited the expression of Niemann-Pick C1-like 1 (NPC1L1) and acetyl-CoA acetyltransferase 2 (ACAT2) through hepatocyte nuclear factor 1-alpha (HNF-1α), which in turn effectively inhibited cholesterol absorption in Caco-2 cell monolayers. Following absorption by Caco-2 cell monolayers, the XWH3-GID group suppressed the expression and secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) via HNF-1α, which enhanced the protein expression and fluorescence intensity of low density lipoprotein receptor (LDLR) on the HepG2 cell membrane, and thus promoted the uptake of low density lipoprotein (LDL). Importantly, three novel peptides (LFP, PKF and VPFP) derived from titin were identified after intestinal epithelial transport in the XWH3-GID group, which could exert cholesterol-lowering effects through inhibiting intestinal cholesterol absorption and promoting peripheral hepatic LDL uptake, and effectively ameliorate western diet-induced hypercholesterolemia in ApoE-/- mice. These results suggest that Xuanwei ham with 3-year ripening period can be used as a source of cholesterol-lowering peptides and has potential to intervene in hypercholesterolemia.
Collapse
Affiliation(s)
- Jie Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Feiran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
15
|
Jiang J, Shi H, Jiang S, Wang A, Zou X, Wang Y, Li W, Zhang Y, Sun M, Ren Q, Xu J. Nutrition in Alzheimer's disease: a review of an underappreciated pathophysiological mechanism. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2257-2279. [PMID: 37058185 DOI: 10.1007/s11427-022-2276-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older individuals and is an escalating challenge to global public health. Pharmacy therapy of AD is one of the well-funded areas; however, little progress has been made due to the complex pathogenesis. Recent evidence has demonstrated that modifying risk factors and lifestyle may prevent or delay the incidence of AD by 40%, which suggests that the management should pivot from single pharmacotherapy toward a multipronged approach because AD is a complex and multifaceted disease. Recently, the gut-microbiota-brain axis has gained tremendous traction in the pathogenesis of AD through bidirectional communication with multiple neural, immune, and metabolic pathways, providing new insights into novel therapeutic strategies. Dietary nutrition is an important and profound environmental factor that influences the composition and function of the microbiota. The Nutrition for Dementia Prevention Working Group recently found that dietary nutrition can affect cognition in AD-related dementia directly or indirectly through complex interactions of behavioral, genetic, systemic, and brain factors. Thus, considering the multiple etiologies of AD, nutrition represents a multidimensional factor that has a profound effect on AD onset and development. However, mechanistically, the effect of nutrition on AD is uncertain; therefore, optimal strategies or the timing of nutritional intervention to prevent or treat AD has not been established.Thus, this review summarizes the current state of knowledge concerning nutritional disorders, AD patient and caregiver burden, and the roles of nutrition in the pathophysiology of AD. We aim to emphasize knowledge gaps to provide direction for future research and to establish optimal nutrition-based intervention strategies for AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
16
|
Bao C, Wu T, Zhu S, Wang X, Zhang Y, Wang X, Yang L, He C. Regulation of cholesterol homeostasis in osteoporosis mechanisms and therapeutics. Clin Sci (Lond) 2023; 137:1131-1143. [PMID: 37553962 DOI: 10.1042/cs20220752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023]
Abstract
Osteoporosis is a metabolic bone disease that affects hundreds of millions of people worldwide and is characterized by excessive loss of bone protein and mineral content. The incidence and mortality of osteoporosis increase with age, creating a significant medical and economic burden globally. The importance of cholesterol levels has been reported in the development of diseases including osteoporosis. It is important to note that key enzymes and molecules involved in cholesterol homeostasis are closely related to bone formation. Excessive cholesterol may cause osteoporosis, cholesterol and its metabolites affect bone homeostasis by regulating the proliferation and stimulation of osteoblasts and osteoclasts. Therefore, antagonism of elevated cholesterol levels may be a potential strategy to prevent osteoporosis. There is sufficient evidence to support the use of bisphosphonates and statin drugs for osteoporosis in the clinic. Therefore, in view of the aggravation of the aging problem, we summarize the intracellular mechanism of cholesterol homeostasis and its relationship with osteoporosis (including cholesterol and cholesterol oxidation products (COPs) in osteoporosis). Furthermore, the current clinical cholesterol-lowering drugs for osteoporosis were also summarized, as are new and promising therapies (cell-based therapies (e.g., stem cells) and biomaterial-delivered target drug therapies for osteoporosis as well).
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoyi Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yujia Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiangxiu Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
17
|
Qiu J, Wei L, Su Y, Tang Y, Peng G, Wu Y, He Y, Liu H, Guo W, Wu Z, Xu P, Mo M. Lipid Metabolism Disorder in Cerebrospinal Fluid Related to Parkinson's Disease. Brain Sci 2023; 13:1166. [PMID: 37626522 PMCID: PMC10452343 DOI: 10.3390/brainsci13081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Abnormal accumulation of lipids is found in dopamine neurons and resident microglia in the substantia nigra of patients with Parkinson's disease (PD). The accumulation of lipids is an important risk factor for PD. Previous studies have mainly focussed on lipid metabolism in peripheral blood, but little attention has been given to cerebrospinal fluid (CSF). We drew the lipidomic signature in CSF from PD patients and evaluated the role of lipids in CSF as biomarkers for PD diagnosis. METHODS Based on lipidomic approaches, we investigated and compared lipid metabolism in CSF from PD patients and healthy controls without dyslipidaemia in peripheral blood and explored the relationship of lipids between CSF and serum by Pearson correlation analysis. RESULTS A total of 231 lipid species were detected and classified into 13 families in the CSF. The lipid families, including phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol ester (CE), had significantly increased expression compared with the control. Hierarchical clustering was performed to distinguish PD patients based on the significantly changed expression of 34 lipid species. Unsupervised and supervised methods were used to refine this classification. A total of 12 lipid species, including 3-hydroxy-dodecanoyl-carnitine, Cer(d18:1/24:1), CE(20:4), CE(22:6), PC(14:0/18:2), PC(O-18:3/20:2), PC(O-20:2/24:3), SM(d18:0/16:0), SM(d18:2/14:0), SM(d18:2/24:1), SM(d18:1/20:1) and SM(d18:1/12:0), were selected to draw the lipidomic signature of PD. Correlation analysis was performed and showed that the CE family and CE (22:6) in CSF had a positive association with total cholesterol in the peripheral blood from PD patients but not from healthy controls. CONCLUSIONS Our results revealed that the lipidomic signature in CSF may be considered a potential biomarker for PD diagnosis, and increased CE, PC and SM in CSF may reveal pathological changes in PD patients, such as blood-brain barrier leakage.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Yimin Wu
- Department of General Medicine, Fengxian Community Health Service Center, Shanghai 210499, China;
| | - Yan He
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Zhuohu Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.Q.); (L.W.); (Y.S.); (Y.T.); (G.P.); (Y.H.); (H.L.); (W.G.); (Z.W.)
| |
Collapse
|
18
|
Lee M, Park J, Kim OK, Kim D, Han MJ, Kim SH, Kim TH, Lee J. Lactobacillus reuteri NCIMB 30242 (LRC) Inhibits Cholesterol Synthesis and Stimulates Cholesterol Excretion in Animal and Cell Models. J Med Food 2023; 26:529-539. [PMID: 37594559 DOI: 10.1089/jmf.2022.k.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
In this study, we evaluated the effects of Lactobacillus reuteri NCIMB (LRC™) supplementation on hypercholesterolemia by researching its effects on cellular cholesterol metabolism in hypercholesterolemic rats (KHGASP-22-170) and HepG2 cell line. Rats were separated into six groups after adaptation and were then fed a normal control (NC), a high-cholesterol diet (HC), or a HC supplemented with simvastatin 15 mg/kg body weight (positive control [PC]), LRC 1 × 109 colony-forming units (CFU)/rat/day, LRC 4 × 109 CFU/rat/day, or LRC 1 × 1010 CFU/rat/day (1 × 109, 4 × 109, or 1 × 1010). The rats were dissected to study the effects of LRC on cholesterol metabolism and intestinal excretion at the end of experimental period. We discovered that LRC mainly participated in the restraint of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the uptake of low-density lipoprotein (LDL) cholesterol into tissues, partially in the transport of cholesteryl esters into high density lipoprotein for maturation, and intestinal excretion of cholesterol. These results are supported by the expression of transcription factors and enzymes such as HMG-CoA reductase, SREBP2, CYP7A1, CETP, and LCAT in both messenger RNA (mRNA) and protein levels in serum and hepatic tissue. Furthermore, the LRC treatment in HepG2 significantly reduced the mRNA expression of HMG-CoA reductase, SREBP2, and CEPT and significantly increased the mRNA expression of LDL-receptor, LCAT, and CYP7A1 at all doses. Hence, we suggest that LRC supplementation could alleviate the serum cholesterol level by inhibiting the intracellular cholesterol synthesis, and augmenting excretion of intestinal cholesterol.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | | | | | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
19
|
Nazeri Z, Mohammadzadeh G, Rashidi M, Azizdoost S, Cheraghzadeh M, Kheirollah A. 24-Hydroxycholesterol Moderates the Effects of Amyloid-β on Expression of HMG-CoA Reductase and ABCA1 Proteins in Mouse Astrocytes. Adv Biomed Res 2023; 12:167. [PMID: 37564436 PMCID: PMC10410428 DOI: 10.4103/abr.abr_245_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 08/12/2023] Open
Abstract
Background Elevated brain cholesterol increases the risk of Alzheimer's disease. Production of 24-hydroxycholesterol (24s-OHC) by neurons prevents cholesterol accumulation in the brain. In this study, we investigated the effect of 24s-OHC on the HMG-COA reductase and ABCA1 which are involved in the brain cholesterol homeostasis with or without β-amyloid in astrocytes. Methods and Materials Astrocytes were treated with 24s-OHC with or without Aβ. Western blot and real-time polymerase chain reaction were done to detect protein and gene expression of β-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and ABCA1, respectively. Cholesterol release was determined using a quantitation kit. Results Protein levels of HMGCR and ABCA1 were significantly increased by Aβ; however, the 24s-OHC was able to restore their levels and diminish the effect of amyloid-β. Aβ did not have a significant effect on HMGCR expression, while 24s-OHC reduced it by 68%. Aβ-induced ABCA1 expression did not increase cholesterol efflux as the lower levels of cholesterol in conditioned medium of Aβ-treated cells were found. Conclusion Our novel findings show that Aβ affects two key elements in the brain cholesterol homeostasis, HMGCR and ABCA1, which are crucial in cholesterol synthesis and efflux. Since 24s-OHC could suppress the Aβ effects on enhancement of HMGCR and ABCA1, therefore the cytochrome P450 46A1 (Cyp46A1), which is exclusively expressed in the central nervous system and responsible for producing of 24s-OHC, could consider as a therapeutic target in the cholesterol-related neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammadzadeh
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizdoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
21
|
Semikasev E, Ahlemeyer B, Acker T, Schänzer A, Baumgart-Vogt E. Rise and fall of peroxisomes during Alzheimer´s disease: a pilot study in human brains. Acta Neuropathol Commun 2023; 11:80. [PMID: 37170361 PMCID: PMC10176950 DOI: 10.1186/s40478-023-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelination during development and their dysfunction is associated with age-related neurodegenerative diseases. Except for one study analysing ABCD3-positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, we quantified peroxisomes labelled with PEX14, a metabolism-independent peroxisome marker, in 13 different brain areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 control patients. Classification of patient samples was based on the official ABC score. During AD-stage progression, the peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and in later AD-stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, we investigated the density of catalase-positive peroxisomes in a subset of patients (> 80 years), focussing on regions with significant alterations of PEX14-positive peroxisomes. In hippocampal neurons, only one third of all peroxisomes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase-positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the response of peroxisomes to different stages of AD-associated pathologies.
Collapse
Affiliation(s)
- Eugen Semikasev
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany
- Department of Neurosurgery, University Hospital of Giessen, Klinikstr. 33, 35392, Giessen, Germany
| | - Barbara Ahlemeyer
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University, Arndtstr. 16, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Division of Medical Cell Biology, Institute for Anatomy and Cell Biology, Justus-Liebig University, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
22
|
Angeloni E, Germelli L, Marchetti L, Da Pozzo E, Tremolanti C, Wetzel CH, Baglini E, Taliani S, Da Settimo F, Martini C, Costa B. The human microglial surveillant phenotype is preserved by de novo neurosteroidogenesis through the control of cholesterol homeostasis: Crucial role of 18 kDa Translocator Protein. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166751. [PMID: 37169037 DOI: 10.1016/j.bbadis.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Neurodegenerative disease-associated microglia commonly exhibit harmful cholesterol accumulation that impairs their ability to resolve the neuroinflammatory response, contributing to disease onset and progression. Neurosteroids, whose levels have been often found significantly altered in brain diseases, are the most potent endogenous anti-inflammatory molecules exerting beneficial effects on activities of brain cells, including microglia. For the first time, the impact of neurosteroidogenesis on cholesterol homeostasis for the immune surveillance phenotype maintenance was investigated in a human microglia in vitro model. To enhance and inhibit neurosteroidogenesis, pharmacological stimulation and knock-down of 18 kDa Translocator Protein (TSPO), which is involved in the neurosteroidogenesis rate-limiting step, were used as experimental approaches, respectively. The obtained results point to an essential autocrine control of neurosteroidogenesis in orchestrating cholesterol trafficking in human microglia. TSPO pharmacological stimulation ensured cholesterol turnover by strengthening cholesterol efflux systems and preserving healthy immune surveillant phenotype. Conversely, TSPO knock-down induced an impairment of the controlled interplay among cholesterol synthesis, efflux, and metabolism mechanisms, leading to an excessive cholesterol accumulation and acquisition of a chronically activated dysfunctional phenotype. In this model, the exogenous neurosteroid administration restored proper the cholesterol clearance. The TSPO ability in promoting native neurosteroidogenesis opens the way to restore cholesterol homeostasis, and thus to maintain microglia proper functionality for the treatment of neuroinflammation-related brain diseases.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany.
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| |
Collapse
|
23
|
Pergolizzi J, Varrassi G, Coleman M, Breve F, Christo DK, Christo PJ, Moussa C. The Sigma Enigma: A Narrative Review of Sigma Receptors. Cureus 2023; 15:e35756. [PMID: 37020478 PMCID: PMC10069457 DOI: 10.7759/cureus.35756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.
Collapse
|
24
|
Qiu J, Peng G, Tang Y, Li S, Liu Z, Zheng J, Wang Y, Liu H, Wei L, Su Y, Lin Y, Dai W, Zhang Z, Chen X, Ding L, Guo W, Zhu X, Xu P, Mo M. Lipid profiles in the cerebrospinal fluid of rats with 6-hydroxydopamine-induced lesions as a model of Parkinson's disease. Front Aging Neurosci 2023; 14:1077738. [PMID: 36742201 PMCID: PMC9895836 DOI: 10.3389/fnagi.2022.1077738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayun Zheng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine, Huilai People’s Hospital, Jieyang, China
| |
Collapse
|
25
|
Perna L, Mons U, Stocker H, Beyer L, Beyreuther K, Trares K, Holleczek B, Schöttker B, Perneczky R, Gerwert K, Brenner H. High cholesterol levels change the association of biomarkers of neurodegenerative diseases with dementia risk: Findings from a population-based cohort. Alzheimers Dement 2023. [PMID: 36638231 DOI: 10.1002/alz.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION This study assessed whether in a population with comorbidity of neurodegenerative and cerebrovascular disease (mixed pathology) the association of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau181 (p-tau181) with dementia risk varied depending on levels of total cholesterol and apolipoprotein E (APOE) ε4 genotype. METHODS Plasma biomarkers were measured using Simoa technology in 768 participants of a nested case-control study embedded within an ongoing population-based cohort. Logistic and spline regression models, and receiver operating characteristic curves were calculated. RESULTS The strength of the association between GFAP and NfL with risk of a clinical diagnosis of dementia changed depending on cholesterol levels and on APOE ε4 genotype. No significant association was seen with p-tau181. DISCUSSION In individuals with mixed pathology blood GFAP and NfL are better predictors of dementia risk than p-tau181, and their associations with dementia risk are amplified by hypercholesterolemia, also depending on APOE ε4 genotype. HIGHLIGHTS Cholesterol levels changed the association of blood biomarkers with dementia risk. Blood biomarkers seem to perform differently in community- and clinic-based cohorts. Neurofilament light chain might be a biomarker candidate for dementia risk after stroke.
Collapse
Affiliation(s)
- Laura Perna
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
| | - Ute Mons
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Léon Beyer
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany.,Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | - Konrad Beyreuther
- Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Kira Trares
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| | - Robert Perneczky
- Division of Mental Health of Older Adults, Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Sheffield Institute for Translational Neurology (SITraN), University of Sheffield, Sheffield, UK
| | - Klaus Gerwert
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr-University Bochum, Bochum, Germany.,Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, Bochum, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Network Aging Research (NAR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Musolino V, Macrì R, Cardamone A, Serra M, Coppoletta AR, Tucci L, Maiuolo J, Lupia C, Scarano F, Carresi C, Nucera S, Bava I, Marrelli M, Palma E, Gliozzi M, Mollace V. Nocellara Del Belice ( Olea europaea L. Cultivar): Leaf Extract Concentrated in Phenolic Compounds and Its Anti-Inflammatory and Radical Scavenging Activity. PLANTS (BASEL, SWITZERLAND) 2022; 12:27. [PMID: 36616158 PMCID: PMC9824270 DOI: 10.3390/plants12010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Olea europaea L. is a plant belonging to the Oleaceae family, widely grown around the Mediterranean Basin and its leaves are a source of phenolic compounds with antioxidant and anti-inflammatory capacity. Among these, oleuropein and luteolin-7-O-glucoside represent two major polyphenolic compounds in olive-leaf extract. Herein, a polystyrene resin was used to recover the polyphenolic fraction from the acetone-water leaf extract from Nocellara del Belice cultivar, which showed the higher level of analysed bioactive compounds, compared to Carolea cultivar. The antioxidant activity of the extract concentrated in phenolic compounds (OLECp) was evaluated through a classical assay and electron paramagnetic resonance (EPR) for DPPH and hydroxyl radicals scavenging. Thus, the anti-inflammatory activity and the potential beneficial effects in reducing lipid accumulation in an in vitro model of NAFLD using McA-RH7777 cells exposed to oleic acid (OA) were evaluated. Nile Red and Oil Red O have been used to stain the lipid accumulation, while the inflammatory status was assessed by Cytokines Bioplex Assay. OLECp (TPC: 92.93 ± 9.35 mg GAE/g, TFC: 728.12 ± 16.04 mg RE/g; 1 g of extract contains 315.250 mg of oleuropein and 17.44 mg of luteolin-7-O-glucoside) exerted a good radical scavenging capability (IC50: 2.30 ± 0.18 mg/mL) with a neutralizing power against DPPH and hydroxyl radicals, as confirmed by the decreased signal area of the EPR spectra. Moreover, OLECp at concentration of 25, 50 and 100 μg/mL counteracted the intracellular inflammatory status, as result of decreased intracellular lipid content. Our results highlighted the multiple properties and applications of an O. europaea extract concentrated in polyphenols, and the possibility to formulate novel nutraceuticals with antioxidant properties, destined to ameliorate human health.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Luigi Tucci
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carmine Lupia
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Huang S, Liu X, Liu D, Zhang X, Zhang L, Le W, Zhang Y. Pyrylium-Based Derivatization for Rapid Labeling and Enhanced Detection of Cholesterol in Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2310-2318. [PMID: 36331251 DOI: 10.1021/jasms.2c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cholesterol in the central nervous system has been increasingly found to be closely related to neurodegenerative diseases. Defects in cholesterol metabolism can cause structural and functional disorders of the central nervous system. The detection of abnormal cholesterol is of great significance for the cognition of physiological and pathological states of organisms, and the spatial distribution of cholesterol can also provide more clues for our understanding of the complex mechanism of disease. Here, we developed a novel pyrylium-based derivatization reagent combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to visualize cholesterol in biological tissues. A new class of charged hydroxyl derivatization reagents was designed and synthesized, and finally 1-(carboxymethyl)-2,4,6-trimethylpyridinium (CTMP) was screened for tissue derivatization of cholesterol. Different from the shortcomings of traditional hydroxyl labeling methods such as harsh reaction conditions and long reaction time, in our study, we combined the advantages of CTMP itself and the EDCl/HOBt reaction system to achieve instant labeling of cholesterol on tissues through two-step activation. In addition, we also reported changes in cholesterol content in different stages and different brain regions during disease development in SOD1 mutant mouse model. The cholesterol derivatization method we developed provides an efficient way to explore the distribution and spatial metabolic network of cholesterol in biological tissues.
Collapse
Affiliation(s)
- Shuai Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Science, Beijing 100039, PR China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, PR China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
28
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
29
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
30
|
Blood Analytes as Biomarkers of Mechanisms Involved in Alzheimer’s Disease Progression. Int J Mol Sci 2022; 23:ijms232113289. [DOI: 10.3390/ijms232113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia, but the pathogenetic factors are not yet well known, and the relationships between brain and systemic biochemical derangements and disease onset and progression are unclear. We aim to focus on blood biomarkers for an accurate prognosis of the disease. We used a dataset characterized by longitudinal findings collected over the past 10 years from 90 AD patients. The dataset included 277 observations (both clinical and biochemical ones, encompassing blood analytes encompassing routine profiles for different organs, together with immunoinflammatory and oxidative markers). Subjects were grouped into four severity classes according to the Clinical Dementia Rating (CDR) Scale: mild (CDR = 0.5 and CDR = 1), moderate (CDR = 2), severe (CDR = 3) and very severe (CDR = 4 and CDR = 5). Statistical models were used for the identification of potential blood markers of AD progression. Moreover, we employed the Pathfinder tool of the Reactome database to investigate the biological pathways in which the analytes of interest could be involved. Statistical results reveal an inverse significant relation between four analytes (high-density cholesterol, total cholesterol, iron and ferritin) with AD severity. In addition, the Reactome database suggests that such analytes could be involved in pathways that are altered in AD progression. Indeed, the identified blood markers include molecules that reflect the heterogeneous pathogenetic mechanisms of AD. The combination of such blood analytes might be an early indicator of AD progression and constitute useful therapeutic targets.
Collapse
|
31
|
Xu H, Zheng LX, Chen XS, Pang QY, Yan YN, Liu R, Guo HM, Ren ZY, Yang Y, Gu ZY, Gao C, Gao Y, Luo CL, Zhao Y, Wang Y, Wang T, Tao LY. Brain-specific loss of Abcg1 disturbs cholesterol metabolism and aggravates pyroptosis and neurological deficits after traumatic brain injury. Brain Pathol 2022; 33:e13126. [PMID: 36271611 PMCID: PMC10154369 DOI: 10.1111/bpa.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Based on accumulating evidence, cholesterol metabolism dysfunction has been suggested to contribute to the pathophysiological process of traumatic brain injury (TBI) and lead to neurological deficits. As a key transporter of cholesterol that efflux from cells, the ATP-binding cassette (ABC) transporter family exerts many beneficial effects on central nervous system (CNS) diseases. However, there is no study regarding the effects and mechanisms of ABCG1 on TBI. As expected, TBI resulted in the different time-course changes of cholesterol metabolism-related molecules in the injured cortex. Considering ABCG1 is expressed in neuron and glia post-TBI, we generated nestin-specific Abcg1 knockout (Abcg1-KO) mice using the Cre/loxP recombination system. These Abcg1-KO mice showed reduced plasma high-density lipoprotein cholesterol levels and increased plasma lower-density lipoprotein cholesterol levels under the base condition. After TBI, these Abcg1-KO mice were susceptible to cholesterol metabolism turbulence. Moreover, Abcg1-KO exacerbated TBI-induced pyroptosis, apoptosis, neuronal cell insult, brain edema, neurological deficits, and brain lesion volume. Importantly, we found that treating with retinoid X receptor (RXR, the upstream molecule of ABCG1) agonist, bexarotene, in Abcg1-KO mice partly rescued TBI-induced neuronal damages mentioned above and improved functional deficits versus vehicle-treated group. These data show that, in addition to regulating brain cholesterol metabolism, Abcg1 improves neurological deficits through inhibiting pyroptosis, apoptosis, neuronal cell insult, and brain edema. Moreover, our findings demonstrate that the cerebroprotection of Abcg1 on TBI partly relies on the activation of the RXRalpha/PPARgamma pathway, which provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Le-Xin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Xue-Shi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qiu-Yu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ya-Nan Yan
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Han-Mu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Yang Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yan Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Ya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
33
|
Underberg J, Toth PP, Rodriguez F. LDL-C target attainment in secondary prevention of ASCVD in the United States: barriers, consequences of nonachievement, and strategies to reach goals. Postgrad Med 2022; 134:752-762. [PMID: 36004573 DOI: 10.1080/00325481.2022.2117498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death in the United States. Elevated low-density lipoprotein cholesterol (LDL-C) is a major causal risk factor for ASCVD. Current evidence overwhelmingly demonstrates that lowering LDL-C reduces the risk of secondary cardiovascular events in patients with previous myocardial infarction or stroke. There is no lower limit for LDL-C: large, randomized studies and meta-analyses have found continuous benefit and no safety concerns in patients achieving LDL-C levels <25 mg/dL. As 'Time is plaque' in patients with ASCVD, early, sustained reductions in LDL-C are critical to slow or halt disease progression. However, despite use of lipid-lowering medications, <30% of patients with ASCVD achieve guideline-recommended reductions in LDL-C, resulting in a substantial societal burden of preventable cardiovascular events and early mortality. LDL-C goals are not met due to several factors: lipid-lowering therapy is not initiated and intensified as directed by clinical guidelines (clinical inertia); most patients do not adhere to prescribed medications; and high-risk patients are frequently denied access to add-on therapies by their insurance providers. Promoting patient and clinician education, multidisciplinary collaboration, and other interventions may help to overcome these barriers. Ultimately, achieving population-level guideline-recommended reductions in LDL-C will require a collaborative effort from patients, clinicians, relevant professional societies, drug manufacturers, and payers.
Collapse
Affiliation(s)
| | - Peter P Toth
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fatima Rodriguez
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Relationship between Brain Metabolic Disorders and Cognitive Impairment: LDL Receptor Defect. Int J Mol Sci 2022; 23:ijms23158384. [PMID: 35955522 PMCID: PMC9369234 DOI: 10.3390/ijms23158384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The maintenance of cholesterol content in the brain, which is important to protect brain function, is affected by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to neuroinflammation and blood–brain-barrier (BBB) degradation. Moreover, interactions between endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation, apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aβ) in the brain, and hypoxia is induced by apoptosis induced by the LDLr defect. This review summarizes the association between neurodegenerative brain disease and typical cognitive deficits.
Collapse
|
35
|
Inflammation Induced by Lipopolysaccharide and Palmitic Acid Increases Cholesterol Accumulation via Enhancing Myeloid Differentiation Factor 88 Expression in HepG2 Cells. Pharmaceuticals (Basel) 2022; 15:ph15070813. [PMID: 35890112 PMCID: PMC9322353 DOI: 10.3390/ph15070813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20μmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells.
Collapse
|
36
|
Wu M, Zhai Y, Liang X, Chen W, Lin R, Ma L, Huang Y, Zhao D, Liang Y, Zhao W, Fang J, Fang S, Chen Y, Wang Q, Li W. Connecting the Dots Between Hypercholesterolemia and Alzheimer’s Disease: A Potential Mechanism Based on 27-Hydroxycholesterol. Front Neurosci 2022; 16:842814. [PMID: 35464321 PMCID: PMC9021879 DOI: 10.3389/fnins.2022.842814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/01/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia, is a complex and multifactorial disease involving genetic and environmental factors, with hypercholesterolemia considered as one of the risk factors. Numerous epidemiological studies have reported a positive association between AD and serum cholesterol levels, and experimental studies also provide evidence that elevated cholesterol levels accelerate AD pathology. However, the underlying mechanism of hypercholesterolemia accelerating AD pathogenesis is not clear. Here, we review the metabolism of cholesterol in the brain and focus on the role of oxysterols, aiming to reveal the link between hypercholesterolemia and AD. 27-hydroxycholesterol (27-OHC) is the major peripheral oxysterol that flows into the brain, and it affects β-amyloid (Aβ) production and elimination as well as influencing other pathogenic mechanisms of AD. Although the potential link between hypercholesterolemia and AD is well established, cholesterol-lowering drugs show mixed results in improving cognitive function. Nevertheless, drugs that target cholesterol exocytosis and conversion show benefits in improving AD pathology. Herbs and natural compounds with cholesterol-lowering properties also have a potential role in ameliorating cognition. Collectively, hypercholesterolemia is a causative risk factor for AD, and 27-OHC is likely a potential mechanism for hypercholesterolemia to promote AD pathology. Drugs that regulate cholesterol metabolism are probably beneficial for AD, but more research is needed to unravel the mechanisms involved in 27-OHC, which may lead to new therapeutic strategies for AD.
Collapse
Affiliation(s)
- Mingan Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingying Zhai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weichun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiyi Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunbo Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Qi Wang,
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Weirong Li,
| |
Collapse
|
37
|
Nucera S, Ruga S, Cardamone A, Coppoletta AR, Guarnieri L, Zito MC, Bosco F, Macrì R, Scarano F, Scicchitano M, Maiuolo J, Carresi C, Mollace R, Cariati L, Mazzarella G, Palma E, Gliozzi M, Musolino V, Cascini GL, Mollace V. MAFLD progression contributes to altered thalamus metabolism and brain structure. Sci Rep 2022; 12:1207. [PMID: 35075185 PMCID: PMC8786899 DOI: 10.1038/s41598-022-05228-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), commonly known as non-alcoholic fatty liver disease, represents a continuum of events characterized by excessive hepatic fat accumulation which can progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and in some severe cases hepatocellular carcinoma. MAFLD might be considered as a multisystem disease that affects not only the liver but involves wider implications, relating to several organs and systems, the brain included. The present study aims to investigate changes associated with MAFLD-induced alteration of thalamic metabolism in vivo. DIAMOND (Diet-induced animal model of non-alcoholic fatty liver disease) mice were fed a chow diet and tap water (NC NW) or fat Western Diet (WD SW) for up to 28 weeks. At the baseline and weeks 4, 8, 20, 28 the thalamic neurochemical profile and total cerebral brain volume were evaluated longitudinally in both diet groups using 1H-MRS. To confirm the disease progression, at each time point, a subgroup of animals was sacrificed, the livers excised and placed in formalin. Liver histology was assessed and reviewed by an expert liver pathologist. MAFLD development significantly increases the thalamic levels of total N-acetylaspartate, total creatine, total choline, and taurine. Furthermore, in the WD SW group a reduction in total cerebral brain volume has been observed (p < 0.05 vs NC NW). Our results suggest that thalamic energy metabolism is affected by MAFLD progression. This metabolic imbalance, that is quantifiable by 1H-MRS in vivo, might cause structural damage to brain cells and dysfunctions of neurotransmitter release.
Collapse
Affiliation(s)
- Saverio Nucera
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Lorenza Guarnieri
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Luca Cariati
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Giuseppe Mazzarella
- Nuclear Medicine Unit, Department of Diagnostic Imaging, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Diagnostic Imaging, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
38
|
Mollace R, Macrì R, Tavernese A, Gliozzi M, Musolino V, Carresi C, Maiuolo J, Fini M, Volterrani M, Mollace V. Comparative Effect of Bergamot Polyphenolic Fraction and Red Yeast Rice Extract in Rats Fed a Hyperlipidemic Diet: Role of Antioxidant Properties and PCSK9 Expression. Nutrients 2022; 14:477. [PMID: 35276836 PMCID: PMC8840352 DOI: 10.3390/nu14030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Elevated serum cholesterol levels, either associated or not with increased triglycerides, represent a risk of developing vascular injury, mostly leading to atherothrombosis-related diseases including myocardial infarction and stroke. Natural products have been investigated in the last few decades as they are seen to offer an alternative solution to counteract cardiometabolic risk, due to the occurrence of side effects with the use of statins, the leading drugs for treating hyperlipidemias. Red yeast rice (RYR), a monacolin K-rich natural extract, has been found to be effective in counteracting high cholesterol, being its use accompanied by consistent warnings by regulatory authorities based on the potential detrimental responses accompanying its statin-like chemical charcateristics. Here we compared the effects of RYR with those produced by bergamot polyphenolic fraction (BPF), a well-known natural extract proven to be effective in lowering both serum cholesterol and triglycerides in animals fed a hyperlipidemic diet. In particular, BPF at doses of 10 mg/Kg given orally for 30 consecutive days, counteracted the elevation of both serum LDL cholesterol (LDL-C) and triglycerides induced by the hyperlipidemic diet, an effect which was accompanied by significant reductions of malondialdehyde (MDA) and glutathione peroxidase serum levels, two biomarkers of oxidative stress. Furthermore, the activity of BPF was associated to increased HDL cholesterol (HDL-C) levels and to strong reduction of Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels which were found increased in hyperlipidemic rats. In contrast, RYR at doses of 1 and 3 mg/Kg, produced only significant reduction of LDL-C with very poor effects on triglycerides, HDL-C, glutathione peroxidase, MDA and PCSK9 expression. This indicates that while BPF and RYR both produce serum cholesterol-lowering benefits, BPF produces additional effects on triglycerides and HDL cholesterol compared to RYR at the doses used throughout the study. These additional effects of BPF appear to be related to the reduction of PCSK9 expression and to the antioxidant properties of this extract compared to RYR, thereby suggesting a more complete protection from cardiometabolic risk.
Collapse
Affiliation(s)
- Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
- IRCCS San Raffaele Pisana, Via di Valcannuta, 88163 Rome, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Annamaria Tavernese
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
| | - Massimo Fini
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
- IRCCS San Raffaele Pisana, Via di Valcannuta, 88163 Rome, Italy
| | - Maurizio Volterrani
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
- IRCCS San Raffaele Pisana, Via di Valcannuta, 88163 Rome, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Science, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (A.T.); (M.G.); (V.M.); (C.C.); (J.M.); (M.F.); (M.V.)
- IRCCS San Raffaele Pisana, Via di Valcannuta, 88163 Rome, Italy
| |
Collapse
|
39
|
Kim KY, Shin KY, Chang KA. Potential Biomarkers for Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23020602. [PMID: 35054785 PMCID: PMC8775398 DOI: 10.3390/ijms23020602] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
Stroke is a primary debilitating disease in adults, occurring in 15 million individuals each year and causing high mortality and disability rates. The latest estimate revealed that stroke is currently the second leading cause of death worldwide. Post-stroke cognitive impairment (PSCI), one of the major complications after stroke, is frequently underdiagnosed. However, stroke has been reported to increase the risk of cognitive impairment by at least five to eight times. In recent decades, peripheral blood molecular biomarkers for stroke have emerged as diagnostic, prognostic, and therapeutic targets. In this study, we aimed to evaluate some blood-derived proteins for stroke, especially related to brain damage and cognitive impairments, by conducting a systematic review and meta-analysis and discussing the possibility of these proteins as biomarkers for PSCI. Articles published before 26 July 2021 were searched in PubMed, Embase, the Web of Science, and the Cochrane Library to identify all relevant studies reporting blood biomarkers in patients with stroke. Among 1820 articles, 40 were finally identified for this study. We meta-analyzed eight peripheral biomarker candidates: homocysteine (Hcy), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), uric acid, and glycated hemoglobin (HbA1c). The Hcy, CRP, TC, and LDL-C levels were significantly higher in patients with PSCI than in the non-PSCI group; however, the HDL-C, TG, uric acid, and HbA1c levels were not different between the two groups. Based on our findings, we suggest the Hcy, CRP, TC, and LDL-C as possible biomarkers in patients with post-stroke cognitive impairment. Thus, certain blood proteins could be suggested as effective biomarkers for PSCI.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.Y.S.); (K.-A.C.)
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Korea
- Neuroscience of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21936, Korea
- Correspondence: (K.Y.S.); (K.-A.C.)
| |
Collapse
|
40
|
Reinicke M, Leyh J, Zimmermann S, Chey S, Brkovic IB, Wassermann C, Landmann J, Lütjohann D, Isermann B, Bechmann I, Ceglarek U. Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain. Int J Mol Sci 2021; 22:ijms222413207. [PMID: 34948003 PMCID: PMC8707069 DOI: 10.3390/ijms222413207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation—if any—remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and β-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and β-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Christin Wassermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Julia Landmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
- Correspondence: ; Tel.: +0049-341-97-2-2200
| |
Collapse
|
41
|
Pfrieger FW. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 2021; 13:766587. [PMID: 34803658 PMCID: PMC8595328 DOI: 10.3389/fnagi.2021.766587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer’s (AD), Parkinson’s (PD), and Huntington’s disease (HD) together with amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), devastate millions of lives per year worldwide and impose an increasing socio-economic burden across nations. Consequently, these diseases occupy a considerable portion of biomedical research aiming to understand mechanisms of neurodegeneration and to develop efficient treatments. A potential culprit is cholesterol serving as an essential component of cellular membranes, as a cofactor of signaling pathways, and as a precursor for oxysterols and hormones. This article uncovers the workforce studying research on neurodegeneration and cholesterol using the TeamTree analysis. This new bibliometric approach reveals the history and dynamics of the teams and exposes key players based on citation-independent metrics. The team-centered view reveals the players on an important field of biomedical research.
Collapse
Affiliation(s)
- Frank W Pfrieger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
42
|
Oxysterols — how much do we know about food occurrence, dietary intake and absorption? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Zakyrjanova GF, Tsentsevitsky AN, Kuznetsova EA, Petrov AM. Immune-related oxysterol modulates neuromuscular transmission via non-genomic liver X receptor-dependent mechanism. Free Radic Biol Med 2021; 174:121-134. [PMID: 34391813 DOI: 10.1016/j.freeradbiomed.2021.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory reactions induce changes in the neuromuscular system. The mechanisms underlying this link are unclear. Besides cytokines and reactive oxygen species (ROS), production of an antiviral oxysterol 25-hydroxycholesterol (25HC) by immune cells is quickly increased in response to inflammation. Hypothetically, 25HC could contribute to regulation of neuromuscular activity as well as redox status. We found that 25HC (0.01-10 μM) can bidirectionally modulate neurotransmission in mice diaphragm, the main respiratory muscle. Low concentrations (≤0.1 μM) of 25HC reduced involvement of synaptic vesicles (SVs) into exocytosis during 20-Hz activity, whereas higher inflammatory-related concentrations (≥1 μM) had a profound potentiating effect on SV mobilization. The latter stimulatory action of 25HC was accompanied by increase in Ca2+ release from intracellular stores via IP3 receptors. Both increase in SV mobilization and [Ca2+]in were suppressed by a specific antagonist of liver X receptors (LXRs). These receptors formed clusters within the synaptic membranes in a lipid raft-dependent manner. Either raft disruption or intracellular Ca2+ chelation prevented 25HC-mediated acceleration of the exocytotic rate. The same action had inhibition of estrogen receptor α, Gi-protein, Gβγ, phospholipase C and protein kinase C. Additionally, 1 μM 25HC upregulated ROS production in a Ca2+-dependent way and an antioxidant partially decreased the exocytosis-promoting effect of 25HC. Thus, 25HC has prooxidant properties and it is a potent regulator of SV mobilization via activation of lipid raft-associated LXRs which can trigger signaling via estrogen receptor α - Gi-protein - Gβγ - phospholipase C - Ca2+ - protein kinase C pathway. 25HC-mediated increase in ROS may modulate this signaling.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Department of Normal Physiology, Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
44
|
Maiuolo J, Carresi C, Gliozzi M, Musolino V, Scarano F, Coppoletta AR, Guarnieri L, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Cardamone A, Serra M, Mollace R, Tavernese A, Mollace V. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021; 13:nu13072476. [PMID: 34371986 PMCID: PMC8308586 DOI: 10.3390/nu13072476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8006
| |
Collapse
|
45
|
Varghese DS, Ali BR. Pathological Crosstalk Between Oxidized LDL and ER Stress in Human Diseases: A Comprehensive Review. Front Cell Dev Biol 2021; 9:674103. [PMID: 34124059 PMCID: PMC8187772 DOI: 10.3389/fcell.2021.674103] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 02/05/2023] Open
Abstract
The oxidative modification of the major cholesterol carrying lipoprotein, oxLDL, is a biomarker as well as a pathological factor in cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), obesity and other metabolic diseases. Perturbed cellular homeostasis due to physiological, pathological and pharmacological factors hinder the proper functioning of the endoplasmic reticulum (ER), which is the major hub for protein folding and processing, lipid biosynthesis and calcium storage, thereby leading to ER stress. The cellular response to ER stress is marked by a defensive mechanism called unfolded protein response (UPR), wherein the cell adapts strategies that favor survival. Under conditions of excessive ER stress, when the survival mechanisms fail to restore balance, UPR switches to apoptosis and eliminates the defective cells. ER stress is a major hallmark in metabolic syndromes such as diabetes, non-alcoholic fatty liver disease (NAFLD), neurological and cardiovascular diseases. Though the pathological link between oxLDL and ER stress in cardiovascular diseases is well-documented, its involvement in other diseases is still largely unexplored. This review provides a deep insight into the common mechanisms in the pathogenicity of diseases involving oxLDL and ER stress as key players. In addition, the potential therapeutic intervention of the targets implicated in the pathogenic processes are also explored.
Collapse
Affiliation(s)
- Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
46
|
MitoQ Is Able to Modulate Apoptosis and Inflammation. Int J Mol Sci 2021; 22:ijms22094753. [PMID: 33946176 PMCID: PMC8124358 DOI: 10.3390/ijms22094753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Mitoquinone (MitoQ) is a mitochondrial reactive oxygen species scavenger that is characterized by high bioavailability. Prior studies have demonstrated its neuroprotective potential. Indeed, the release of reactive oxygen species due to damage to mitochondrial components plays a pivotal role in the pathogenesis of several neurodegenerative diseases. The present study aimed to examine the impact of the inflammation platform activation on the neuronal cell line (DAOY) treated with specific inflammatory stimuli and whether MitoQ addition can modulate these deregulations. DAOY cells were pre-treated with MitoQ and then stimulated by a blockade of the cholesterol pathway, also called mevalonate pathway, using a statin, mimicking cholesterol deregulation, a common parameter present in some neurodegenerative and autoinflammatory diseases. To verify the role played by MitoQ, we examined the expression of genes involved in the inflammation mechanism and the mitochondrial activity at different time points. In this experimental design, MitoQ showed a protective effect against the blockade of the mevalonate pathway in a short period (12 h) but did not persist for a long time (24 and 48 h). The results obtained highlight the anti-inflammatory properties of MitoQ and open the question about its application as an effective adjuvant for the treatment of the autoinflammatory disease characterized by a cholesterol deregulation pathway that involves mitochondrial homeostasis.
Collapse
|