1
|
Ghamri KA. Mutual effects of gestational diabetes and schizophrenia: how can one promote the other?: A review. Medicine (Baltimore) 2024; 103:e38677. [PMID: 38905391 PMCID: PMC11191934 DOI: 10.1097/md.0000000000038677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
Although the physical complications of gestational diabetes mellitus (GDM) are well known, emerging evidence suggests a significant link with psychiatric conditions such as schizophrenia (SCZ). This review aimed to explore the extent, nature, and implications of the association between GDM and SCZ, exploring how the 2 conditions may reciprocally influence each other. We conducted a comprehensive literature review and, analyzed clinical and mechanistic evidence supporting the mutual effects of GDM and SCZ. This review examined factors such as neurodevelopment and the impact of antipsychotics. The study found that Maternal GDM increases the risk of SCZ in offspring. Conversely, women with SCZ were more prone to hyperglycemic pregnancies. The research highlights significant regional variations in GDM prevalence, with the highest rate in the Middle East, North Africa, and South-East Asia regions. These regional variations may have an impact on the epidemiology of SCZ. Furthermore, this review identifies the potential biological and environmental mechanisms underlying these associations. There is a bidirectional relationship between GDM and SCZ, with each disorder potentially exacerbating the others. This relationship has significant implications for maternal and offspring health, particularly in regions with high GDM prevalence. These findings underline the need for integrated care approaches for women with SCZ during pregnancy and the importance of monitoring and managing GDM to mitigate the risk of SCZ in the offspring. Notably, this study recognizes the need for further research to fully understand these complex interactions and their implications for healthcare.
Collapse
Affiliation(s)
- Kholoud A. Ghamri
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
3
|
Fonseca M, Carmo F, Martel F. Metabolic effects of atypical antipsychotics: Molecular targets. J Neuroendocrinol 2023; 35:e13347. [PMID: 37866818 DOI: 10.1111/jne.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed drugs in the treatment of schizophrenia, bipolar disorder and other mental diseases with psychotic traits. Although the use of AAPs is associated with beneficial effects in these patients, they are also associated with undesired metabolic side effects, including metabolic syndrome (MetS). MeS is defined by the presence of metabolic abnormalities such as large waist circumference, dyslipidemia, fasting hyperglycemia and elevated blood pressure, which predispose to type 2 diabetes (T2D) and cardiovascular disease. In this review, the molecular and cellular mechanisms involved in these undesired metabolic abnormalities induced by AAPs are described. These mechanisms are complex as AAPs have multiple cellular targets which significantly affect the activities of several hormones and neuromodulators. Additionally, AAPs affect all the relevant metabolic organs, namely the liver, pancreas, adipose tissue, skeletal muscle and intestine, and the central and peripheral nervous system as well. A better understanding of the molecular targets linking AAPs with MetS and of the mechanisms responsible for clinically different side effects of distinct AAPs is needed. This knowledge will help in the development of novel AAPs with less adverse effects as well as of adjuvant therapies to patients receiving AAPs.
Collapse
Affiliation(s)
- Maria Fonseca
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisca Carmo
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S -Institute of Research and innovation in Health University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Meyer JM, Correll CU. Increased Metabolic Potential, Efficacy, and Safety of Emerging Treatments in Schizophrenia. CNS Drugs 2023; 37:545-570. [PMID: 37470979 PMCID: PMC10374807 DOI: 10.1007/s40263-023-01022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Patients with schizophrenia experience a broad range of detrimental health outcomes resulting from illness severity, heterogeneity of disease, lifestyle behaviors, and adverse effects of antipsychotics. Because of these various factors, patients with schizophrenia have a much higher risk of cardiometabolic abnormalities than people without psychiatric illness. Although exposure to many antipsychotics increases cardiometabolic risk factors, mortality is higher in patients who are not treated versus those who are treated with antipsychotics. This indicates both direct and indirect benefits of adequately treated illness, as well as the need for beneficial medications that result in fewer cardiometabolic risk factors and comorbidities. The aim of the current narrative review was to outline the association between cardiometabolic dysfunction and schizophrenia, as well as discuss the confluence of factors that increase cardiometabolic risk in this patient population. An increased understanding of the pathophysiology of schizophrenia has guided discovery of novel treatments that do not directly target dopamine and that not only do not add, but may potentially minimize relevant cardiometabolic burden for these patients. Key discoveries that have advanced the understanding of the neural circuitry and pathophysiology of schizophrenia now provide possible pathways toward the development of new and effective treatments that may mitigate the risk of metabolic dysfunction in these patients. Novel targets and preclinical and clinical data on emerging treatments, such as glycine transport inhibitors, nicotinic and muscarinic receptor agonists, and trace amine-associated receptor-1 agonists, offer promise toward relevant therapeutic advancements. Numerous areas of investigation currently exist with the potential to considerably progress our knowledge and treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan M Meyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
5
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Jeon S, Park JE, Do YH, Santos R, Lee SM, Kim BN, Cheong JH, Kim Y. Atomoxetine and Fluoxetine Activate AMPK-ACC-CPT1 Pathway in Human SH-SY5Y and U-87 MG Cells. Psychiatry Investig 2023; 20:212-219. [PMID: 36990664 PMCID: PMC10064201 DOI: 10.30773/pi.2022.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/04/2022] [Indexed: 03/31/2023] Open
Abstract
OBJECTIVE Atomoxetine and fluoxetine are psychopharmacologic agents associated with loss of appetite and weight. Adenosine monophosphate-activated protein kinase (AMPK) is the cellular energy sensor that regulate metabolism and energy, being activated by fasting and inhibited by feeding in the hypothalamus. METHODS Human brain cell lines (SH-SY5Y and U-87 MG cells) were used to study the outcome of atomoxetine and fluoxetine treatment in the activity of AMPK-acetyl-CoA carboxylase (ACC)- carnitine palmitoyl transferase 1 (CPT1) pathway and upstream regulation by calcium/calmodulin-dependent kinase kinase β (CaMKKβ) using immunoblotting and CPT1 enzymatic activity measures. RESULTS Phosphorylation of AMPK and ACC increased significantly after atomoxetine and fluoxetine treatment in the first 30-60 minutes of treatment in the two cell lines. Activation of AMPK and inhibition of ACC was associated with an increase by 5-fold of mitochondrial CPT1 activity. Although the neuronal isoform CPT1C could be detected by immunoblotting, activity was not changed by the drug treatments. In addition, the increase in phospho-AMPK and phospho-ACC expression induced by atomoxetine was abolished by treatment with STO-609, a CaMKKβ inhibitor, indicating that AMPK-ACC-CPT1 pathway is activated through CaMKKβ phosphorylation. CONCLUSION These findings indicate that at the cellular level atomoxetine and fluoxetine treatments may activate AMPK-ACC-CPT1 pathways through CaMKKβ in human SH-SY5Y and U-87 MG cells.
Collapse
Affiliation(s)
- Songhee Jeon
- Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Eun Park
- Department of Otorhinolaryngology Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Young Ho Do
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Renata Santos
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Laboratory of Dynamics of Neuronal Structure in Health and Disease, Université Paris Cité, Paris, France
| | - Seong Mi Lee
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Institute of Clinical Psychopharmacology, Dongguk University International Hospital, Goyang, Republic of Korea
- Department of Neuropsychiatry, Dongguk University School of Medicine, Goyang, Republic of Korea
| |
Collapse
|
7
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
8
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
9
|
Burghardt KJ, Mando W, Seyoum B, Yi Z, Burghardt PR. The effect of antipsychotic treatment on hormonal, inflammatory, and metabolic biomarkers in healthy volunteers: A systematic review and meta‐analysis. Pharmacotherapy 2022; 42:504-513. [DOI: 10.1002/phar.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kyle Jon Burghardt
- Department of Pharmacy Practice Eugene Applebaum College of Pharmacy and Health Sciences Wayne State University Detroit Michigan USA
| | - Wasym Mando
- Department of Pharmacy Practice Eugene Applebaum College of Pharmacy and Health Sciences Wayne State University Detroit Michigan USA
| | - Berhane Seyoum
- Division of Endocrinology School of Medicine Wayne State University Detroit Michigan USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences Eugene Applebaum College of Pharmacy and Health Sciences Wayne State University Detroit Michigan USA
| | - Paul Ryen Burghardt
- Department of Food and Nutrition Sciences College of Literature Arts and Sciences Wayne State University Detroit Michigan USA
| |
Collapse
|
10
|
Garvey RW, Lacivita E, Niso M, Duszyńska B, Harris PE, Leopoldo M. Design, synthesis, and characterization of a novel fluoroprobe for live human islet cell imaging of serotonin 5-HT1A receptor. ChemMedChem 2022; 17:e202100759. [PMID: 35286016 DOI: 10.1002/cmdc.202100759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Mounting evidence suggests that the serotonin system serves in signal transmission to regulate insulin secretion in pancreatic islets of Langerhans. Among the 5-HT receptor subtype found in pancreatic islets, serotonin receptor 1A (5-HT 1A ) demonstrates a unique ability to inhibit beta-cell insulin secretion. We report on the design, synthesis, and characterization of two novel fluorescent probes for the 5-HT 1A receptor. The compounds were prepared by conjugating the scaffold of the 5-HT 1A receptor agonist 8-OH-DPAT with two fluorophores suitable for live-cells imaging. Compound 5a showed a high affinity for the 5-HT 1A receptor ( K i = 1.8 nM). Fluoroprobe 5a was able to label the 5-HT 1A receptor in pancreatic islet cell cultures in a selective manner, as the fluorescence emission was significantly attenuated by co-administration of the 5-HT 1A receptor antagonist WAY-100635. Thus, fluoroprobe 5a showed useful properties to further characterize this unique receptor's role.
Collapse
Affiliation(s)
- Robert W Garvey
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Enza Lacivita
- Universita' degli Studi di Bari, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Mauro Niso
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia -Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| | - Beata Duszyńska
- Institute of Pharmacology of the Polish Academy of Sciences: Instytut Farmakologii im Jerzego Maja Polskiej Akademii Nauk, Department of Medicinal Chemistry, Smetna, 12, 31-343, Krakow, POLAND
| | - Paul E Harris
- Columbia University, Division of Endocrinology, Department of Medicine, UNITED STATES
| | - Marcello Leopoldo
- Università degli Studi di Bari Aldo Moro: Universita degli Studi di Bari Aldo Moro, Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4, 70125, Bari, ITALY
| |
Collapse
|
11
|
Toledo FGS, Martin WF, Morrow L, Beysen C, Bajorunas D, Jiang Y, Silverman BL, McDonnell D, Namchuk MN, Newcomer JW, Graham C. Insulin and glucose metabolism with olanzapine and a combination of olanzapine and samidorphan: exploratory phase 1 results in healthy volunteers. Neuropsychopharmacology 2022; 47:696-703. [PMID: 34887529 PMCID: PMC8782841 DOI: 10.1038/s41386-021-01244-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/15/2021] [Accepted: 11/19/2021] [Indexed: 02/05/2023]
Abstract
A combination of olanzapine and samidorphan (OLZ/SAM) received US Food and Drug Administration approval in May 2021 for the treatment of adults with schizophrenia or bipolar I disorder. OLZ/SAM provides the efficacy of olanzapine, while mitigating olanzapine-associated weight gain. This exploratory study characterized the metabolic profile of OLZ/SAM in healthy volunteers to gain mechanistic insights. Volunteers received once-daily oral 10 mg/10 mg OLZ/SAM, 10 mg olanzapine, or placebo for 21 days. Assessments included insulin sensitivity during an oral glucose tolerance test (OGTT), hyperinsulinemic-euglycemic clamp, other measures of glucose/lipid metabolism, and adverse event (AE) monitoring. Treatment effects were estimated with analysis of covariance. In total, 60 subjects were randomized (double-blind; placebo, n = 12; olanzapine, n = 24; OLZ/SAM, n = 24). Olanzapine resulted in hyperinsulinemia and reduced insulin sensitivity during an OGTT at day 19, changes not observed with OLZ/SAM or placebo. Insulin sensitivity, measured by hyperinsulinemic-euglycemic clamp, was decreased in all treatment groups relative to baseline, but this effect was greatest with olanzapine and OLZ/SAM. Although postprandial (OGTT) glucose and fasting cholesterol concentrations were similarly increased with olanzapine or OLZ/SAM, other early metabolic effects were distinct, including post-OGTT C-peptide concentrations and aspects of energy metabolism. Forty-nine subjects (81.7%) experienced at least 1 AE, most mild or moderate in severity. OLZ/SAM appeared to mitigate some of olanzapine's unfavorable postprandial metabolic effects (e.g., hyperinsulinemia, elevated C-peptide) in this exploratory study. These findings supplement the body of evidence from completed or ongoing OLZ/SAM clinical trials supporting its role in the treatment of schizophrenia and bipolar I disorder.
Collapse
Affiliation(s)
- Frederico G. S. Toledo
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | | | | | | | - Daiva Bajorunas
- Vault Bioventures, San Diego, CA USA ,Present Address: DBMD Consulting, Pompano Beach, FL USA
| | - Ying Jiang
- grid.422303.40000 0004 0384 9317Alkermes, Inc., Waltham, MA USA
| | | | - David McDonnell
- grid.472773.20000 0004 0384 2510Alkermes Pharma Ireland Limited, Dublin, Ireland
| | - Mark N. Namchuk
- grid.422303.40000 0004 0384 9317Alkermes, Inc., Waltham, MA USA ,grid.38142.3c000000041936754XPresent Address: Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA USA
| | - John W. Newcomer
- Thriving Mind South Florida, Miami, FL USA ,grid.4367.60000 0001 2355 7002Washington University School of Medicine, St. Louis, MO USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Takahiko Nagamine
- Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu, Japan
| |
Collapse
|
13
|
Cernea S, Dima L, Correll CU, Manu P. Pharmacological Management of Glucose Dysregulation in Patients Treated with Second-Generation Antipsychotics. Drugs 2021; 80:1763-1781. [PMID: 32930957 DOI: 10.1007/s40265-020-01393-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fasting hyperglycemia, impaired glucose tolerance, prediabetes, and diabetes are frequently present in patients treated with second-generation antipsychotics (SGAPs) for schizophrenia, bipolar disorder, and other severe mental illnesses. These drugs are known to produce weight gain, which may lead to insulin resistance, glucose intolerance, and metabolic syndrome, which constitute important risk factors for the emergence of diabetes. The aim of this review was to formulate therapeutic guidelines for the management of diabetes in patients treated with SGAPs, based on the association between SGAP-induced weight gain and glucose dysregulation. A systematic search in PubMed from inception to March 2020 for randomized controlled trials (RCTs) of diabetes or prediabetes in patients treated with SGAPs was performed. PubMed was also searched for the most recent clinical practice guidelines of interventions for co-morbid conditions associated with diabetes mellitus (DM) (arterial hypertension and dyslipidemia), lifestyle interventions and switching from high metabolic liability SGAPs to safer SGAPs. The search identified 14 RCTs in patients treated with SGAPs. Drug therapy using metformin as first-line therapy and glucagon-like peptide-1 receptor agonists (GLP-1 RAs) or perhaps sodium-glucose cotransporter-2 (SGLT2) inhibitors as add-on therapy, might be preferred in these patients as well, as they favorably influence glucose metabolism and body mass index, and provide cardio-renal benefits in general to the DM population, although for the SGLT-2 inhibitors there are no RCTs in this specific patient category so far. Metformin is also useful for treatment of prediabetes. Arterial hypertension should be treated with angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers, and statins should be used for correction of dyslipidemia. The outcome of lifestyle-changing interventions has been disappointing. Switching from clozapine, olanzapine, or quetiapine to lower cardiometabolic-risk SGAPs, like aripiprazole, brexpiprazole, cariprazine, lurasidone, or ziprasidone, has been recommended.
Collapse
Affiliation(s)
- Simona Cernea
- Faculty of Medicine/Department M4/Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.,Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania
| | - Lorena Dima
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Universitatea Transilvania, Nicolae Balcescu Str 59, Brașov, 500019, Romania.
| | - Christoph U Correll
- Charite Universitaetsmedizin, Department of Child and Adolescent Psychiatry, Berlin, and Campus Virchow-Klinikum, Mittelallee 5A, Berlin, 13353, Germany.,Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Department of Psychiatry and Molecular Medicine, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, USA
| | - Peter Manu
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA.,South Oaks Hospital, Northwell Health System, Amityville, NY, USA
| |
Collapse
|
14
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Aslanoglou D, Bertera S, Sánchez-Soto M, Benjamin Free R, Lee J, Zong W, Xue X, Shrestha S, Brissova M, Logan RW, Wollheim CB, Trucco M, Yechoor VK, Sibley DR, Bottino R, Freyberg Z. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl Psychiatry 2021; 11:59. [PMID: 33589583 PMCID: PMC7884786 DOI: 10.1038/s41398-020-01171-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Dopamine (DA) and norepinephrine (NE) are catecholamines primarily studied in the central nervous system that also act in the pancreas as peripheral regulators of metabolism. Pancreatic catecholamine signaling has also been increasingly implicated as a mechanism responsible for the metabolic disturbances produced by antipsychotic drugs (APDs). Critically, however, the mechanisms by which catecholamines modulate pancreatic hormone release are not completely understood. We show that human and mouse pancreatic α- and β-cells express the catecholamine biosynthetic and signaling machinery, and that α-cells synthesize DA de novo. This locally-produced pancreatic DA signals via both α- and β-cell adrenergic and dopaminergic receptors with different affinities to regulate glucagon and insulin release. Significantly, we show DA functions as a biased agonist at α2A-adrenergic receptors, preferentially signaling via the canonical G protein-mediated pathway. Our findings highlight the interplay between DA and NE signaling as a novel form of regulation to modulate pancreatic hormone release. Lastly, pharmacological blockade of DA D2-like receptors in human islets with APDs significantly raises insulin and glucagon release. This offers a new mechanism where APDs act directly on islet α- and β-cell targets to produce metabolic disturbances.
Collapse
Affiliation(s)
- Despoina Aslanoglou
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Suzanne Bertera
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA
| | - Marta Sánchez-Soto
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - R. Benjamin Free
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Jeongkyung Lee
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Wei Zong
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Xiangning Xue
- grid.21925.3d0000 0004 1936 9000Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA USA
| | - Shristi Shrestha
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Marcela Brissova
- grid.412807.80000 0004 1936 9916Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Ryan W. Logan
- grid.21925.3d0000 0004 1936 9000Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,grid.249880.f0000 0004 0374 0039Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, ME USA
| | - Claes B. Wollheim
- grid.8591.50000 0001 2322 4988Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Massimo Trucco
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Vijay K. Yechoor
- grid.21925.3d0000 0004 1936 9000Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Diabetes and Beta Cell Biology Center, University of Pittsburgh, Pittsburgh, PA USA
| | - David R. Sibley
- grid.94365.3d0000 0001 2297 5165Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Rita Bottino
- grid.417046.00000 0004 0454 5075Institute of Cellular Therapeutics, Allegheny Health Network Research Institute, Allegheny Health Network, Pittsburgh, PA USA ,grid.147455.60000 0001 2097 0344Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA USA ,grid.166341.70000 0001 2181 3113College of Medicine, Drexel University, Philadelphia, PA USA
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Kowalchuk C, Castellani L, Kanagsundaram P, McIntyre WB, Asgariroozbehani R, Giacca A, Hahn MK. Olanzapine-induced insulin resistance may occur via attenuation of central K ATP channel-activation. Schizophr Res 2021; 228:112-117. [PMID: 33434724 DOI: 10.1016/j.schres.2020.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022]
Abstract
Antipsychotic use is associated with an increased risk of type 2 diabetes. Recent work suggests antipsychotics can induce insulin resistance immediately and independently of weight gain, and that this may occur via the central nervous system (CNS). We have previously shown that the highly effective and widely prescribed antipsychotic, olanzapine inhibits CNS insulin-mediated suppression of hepatic glucose production, but the mechanisms remain unknown. The ATP-sensitive potassium (KATP) channel is a key metabolic sensor downstream of hypothalamic insulin signalling, involved in the maintenance of glucose homeostasis. Thus, the possibility arises that olanzapine inhibits central KATP channel activation to disrupt glucose metabolism. We replicate that intracerebroventricular (ICV) administration of the KATP channel activator, diazoxide, suppresses hepatic glucose production and additionally demonstrate stimulation of peripheral glucose utilization. We report that olanzapine inhibits the effects of central KATP channel activation resulting in perturbation of whole body insulin sensitivity, specifically via inhibition of glucose utilization, while leaving central KATP channel-mediated suppression of glucose production intact. Perturbation of KATP channel action in the CNS could represent a novel mechanism of antipsychotic-induced diabetes.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Laura Castellani
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Pruntha Kanagsundaram
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - William Brett McIntyre
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, Toronto, Ontario M5G 2C4, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
17
|
A comparison of the metabolic side-effects of the second-generation antipsychotic drugs risperidone and paliperidone in animal models. PLoS One 2021; 16:e0246211. [PMID: 33508013 PMCID: PMC7842964 DOI: 10.1371/journal.pone.0246211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The second generation antipsychotic drugs represent the most common form of pharmacotherapy for schizophrenia disorders. It is now well established that most of the second generation drugs cause metabolic side-effects. Risperidone and its active metabolite paliperidone (9-hydroxyrisperidone) are two commonly used antipsychotic drugs with moderate metabolic liability. However, there is a dearth of preclinical data that directly compares the metabolic effects of these two drugs, using sophisticated experimental procedures. The goal of the present study was to compare metabolic effects for each drug versus control animals. METHODS Adult female rats were acutely treated with either risperidone (0.1, 0.5, 1, 2, 6 mg/kg), paliperidone (0.1, 0.5, 1, 2, 6 mg/kg) or vehicle and subjected to the glucose tolerance test; plasma was collected to measure insulin levels to measure insulin resistance with HOMA-IR. Separate groups of rats were treated with either risperidone (1, 6 mg/kg), paliperidone (1, 6 mg/kg) or vehicle, and subjected to the hyperinsulinemic euglycemic clamp. RESULTS Fasting glucose levels were increased by all but the lowest dose of risperidone, but only with the highest dose of paliperidone. HOMA-IR increased for both drugs with all but the lowest dose, while the three highest doses decreased glucose tolerance for both drugs. Risperidone and paliperidone both exhibited dose-dependent decreases in the glucose infusion rate in the clamp, reflecting pronounced insulin resistance. CONCLUSIONS In preclinical models, both risperidone and paliperidone exhibited notable metabolic side-effects that were dose-dependent. Differences between the two were modest, and most notable as effects on fasting glucose.
Collapse
|
18
|
Guo C, Liu J, Li H. Metformin ameliorates olanzapine-induced insulin resistance via suppressing macrophage infiltration and inflammatory responses in rats. Biomed Pharmacother 2021; 133:110912. [PMID: 33217690 DOI: 10.1016/j.biopha.2020.110912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/29/2022] Open
Abstract
AIMS The present study aimed to investigate the possible effects of metformin on the olanzapine-induced insulin resistance in rats. METHODS Rats were randomly divided into three groups: the control (Control) group, the olanzapine (Ola) group and the olanzapine + metformin (Ola + Met) group. Rats in the Ola group received olanzapine (8 mg/kg/day) intraperitoneally while rats in the Ola + Met group received olanzapine (8 mg/kg/day) intraperitoneally and metformin (300 mg/kg/day) orally for 8 weeks. Rats in the Control group received vehicle accordingly. Body weight and fasting blood glucose were recorded routinely. Inflammatory cytokines TNF-α, IL-6 and IL-1β and IL-10 were measured by ELISA. The gene expression of macrophages markers was examined by qPCR. The epididymal white adipose tissue, liver and skeletal muscle were also isolated for immunohistochemical analysis. RESULTS Olanzapine significantly induced body weight gain and insulin resistance compared to the control, which was markedly alleviated by metformin. Pro-inflammatory cytokines TNF-α, IL-6 and IL-1β were upregulated while the anti-inflammatory cytokine IL-10 was downregulated by olanzapine in plasma and epididymal white adipose tissue compared to the control, but not the liver and skeletal muscle. However, metformin co-administration significantly decreased the levels of TNF-α, IL-6 and IL-1β while increased the level of IL-10 in epididymal white adipose tissue compared to olanzapine-treated rats. Moreover, olanzapine treatment markedly increased the expression of the CD68 and the M1 macrophage markers while decreased the expression of the M2 macrophage markers in epididymal white adipose tissue in rats compared to the control. However, metformin co-treatment ameliorated the effects of olanzapine. CONCLUSIONS Our results suggest that metformin alleviated olanzapine-induced insulin resistance possibly by suppressing the inflammatory responses mediated by macrophage infiltration and polarization in epididymal white adipose tissue.
Collapse
Affiliation(s)
- Cuilian Guo
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huqun Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
19
|
Yuen JWY, Kim DD, Procyshyn RM, Panenka WJ, Honer WG, Barr AM. A Focused Review of the Metabolic Side-Effects of Clozapine. Front Endocrinol (Lausanne) 2021; 12:609240. [PMID: 33716966 PMCID: PMC7947876 DOI: 10.3389/fendo.2021.609240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
The second generation antipsychotic drug clozapine represents the most effective pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic drugs. However, clozapine tends to be underutilized in clinical practice due to a number of disabling and serious side-effects. These are characterized by a constellation of metabolic side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat. Many patients treated with clozapine go on to develop metabolic syndrome at a higher rate than the general population, which predisposes them for Type 2 diabetes mellitus and cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their efficacy. There is also a lack of knowledge about the underlying physiology of how clozapine exerts its metabolic effects in humans. In the current review, we focus on key studies which describe how clozapine affects each of the main symptoms of the metabolic syndrome, and cover some of the treatment options. The clinical data are then discussed in the context of preclinical studies that have been conducted to identify the key biological substrates involved, in order to provide a better integrated overview. Suggestions are provided about key areas for future research to better understand how clozapine causes metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica W. Y. Yuen
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David D. Kim
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ric M. Procyshyn
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William J. Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - William G. Honer
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M. Barr
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Alasdair M. Barr,
| |
Collapse
|
20
|
Stogios N, Smith E, Asgariroozbehani R, Hamel L, Gdanski A, Selby P, Sockalingam S, Graff-Guerrero A, Taylor VH, Agarwal SM, Hahn MK. Exploring Patterns of Disturbed Eating in Psychosis: A Scoping Review. Nutrients 2020; 12:E3883. [PMID: 33353080 PMCID: PMC7768542 DOI: 10.3390/nu12123883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Disturbed eating behaviours have been widely reported in psychotic disorders since the early 19th century. There is also evidence that antipsychotic (AP) treatment may induce binge eating or other related compulsive eating behaviours. It is therefore possible that abnormal eating patterns may contribute to the significant weight gain and other metabolic disturbances observed in patients with psychosis. In this scoping review, we aimed to explore the underlying psychopathological and neurobiological mechanisms of disrupted eating behaviours in psychosis spectrum disorders and the role of APs in this relationship. A systematic search identified 35 studies that met our eligibility criteria and were included in our qualitative synthesis. Synthesizing evidence from self-report questionnaires and food surveys, we found that patients with psychosis exhibit increased appetite and craving for fatty food, as well as increased caloric intake and snacking, which may be associated with increased disinhibition. Limited evidence from neuroimaging studies suggested that AP-naïve first episode patients exhibit similar neural processing of food to healthy controls, while chronic AP exposure may lead to decreased activity in satiety areas and increased activity in areas associated with reward anticipation. Overall, this review supports the notion that AP use can lead to disturbed eating patterns in patients, which may contribute to AP-induced weight gain. However, intrinsic illness-related effects on eating behaviors remain less well elucidated, and many confounding factors as well as variability in study designs limits interpretation of existing literature in this field and precludes firm conclusions from being made.
Collapse
Affiliation(s)
- Nicolette Stogios
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emily Smith
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Roshanak Asgariroozbehani
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Laurie Hamel
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
| | - Alexander Gdanski
- Department of Human Biology, University of Toronto, Toronto, ON M5S 3J6, Canada;
| | - Peter Selby
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sanjeev Sockalingam
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Bariatric Surgery Program, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Valerie H. Taylor
- Department of Psychiatry, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H3, Canada; (N.S.); (E.S.); (R.A.); (L.H.); (P.S.); (S.S.); (A.G.-G.); (S.M.A.)
- Institute of Medical Science (IMS), University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
21
|
Medak KD, Shamshoum H, Peppler WT, Wright DC. GLP1 receptor agonism protects against acute olanzapine-induced hyperglycemia. Am J Physiol Endocrinol Metab 2020; 319:E1101-E1111. [PMID: 33017220 DOI: 10.1152/ajpendo.00309.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Olanzapine is a second-generation antipsychotic (SGA) used in the treatment of schizophrenia and a number of off-label conditions. Although effective in reducing psychoses, acute olanzapine treatment causes hyperglycemia. Pharmacological agonists of the glucagon-like peptide 1 (GLP1) receptor have been shown to offset weight gain associated with chronic SGA administration. It is not known whether GLP1 receptor agonism would mitigate the acute metabolic side effects of SGAs. Within this context, we sought to determine whether pharmacological targeting of the GLP1 receptor would be sufficient to protect against acute olanzapine-induced impairments in glucose and lipid homeostasis. Male C57BL/6J mice were treated with olanzapine and/or the GLP1 receptor agonists liraglutide and exendin 4, and the blood glucose response was measured. We found that liraglutide or exendin 4 completely protected male mice against olanzapine-induced hyperglycemia in parallel with increases in circulating insulin (liraglutide, exendin 4) and reductions in glucagon (liraglutide only). In additional experiments, female mice, which are protected from acute olanzapine-induced hyperglycemia, displayed hyperglycemia, increases in glucagon, and reductions in insulin when treated with olanzapine and the GLP1 receptor antagonist exendin 9-39 compared with olanzapine treatment alone. Although in some instances the pharmacological targeting of the GLP1 receptor attenuated indexes of olanzapine-induced lipolysis, increases in liver triglyceride accumulation were not impacted. Our findings provide evidence that signaling through the GLP1 receptor can remarkably influence acute olanzapine-induced hyperglycemia, and from the standpoint of protecting against acute excursions in blood glucose, GLP1 receptor agonists should be considered as an adjunct treatment approach.NEW & NOTEWORTHY Antipsychotic drugs cause rapid perturbations in glucose and lipid metabolism. In the present study we have demonstrated that cotreatment with glucagon-like peptide 1 (GLP1) receptor agonists, such as liraglutide, protects against metabolic dysregulation caused by the antipsychotic drug olanzapine. These findings suggest that pharmacological targeting of the GLP1 receptor could be an effective adjunct approach to mitigate the harmful acute metabolic side effects of antipsychotic drugs.
Collapse
Affiliation(s)
- Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Selig DJ, Brown AJ, DeLuca JP, Kress AT, Livezey JR, Oliver TG, Por ED, Thelus Jean R. Risk of type 2 diabetes mellitus by antimuscarinic agents among adult females receiving care in the military health system. Pharmacoepidemiol Drug Saf 2020; 29:1605-1615. [PMID: 32897626 DOI: 10.1002/pds.5090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 11/05/2022]
Abstract
PURPOSE To explore patterns of antimuscarinic medication as a risk factor for type 2 diabetes mellitus (T2DM). METHODS This is a retrospective cohort study of females 18 years or older within the Military Health System from 2006 to 2016. Administrative and claims data were used to select patients who initiated therapy with tolterodine, fesoterodine, oxybutynin, darifenacin, solifenacin, or trospium. Patients with no documented history of T2DM were followed for the occurrence of T2DM, the end of the study or loss of eligibility. Rates of T2DM were calculated for the overall population, by duration of therapy and by individual drugs. Crude and adjusted Cox proportional hazards were calculated to assess differences by duration of use and specific muscarinic antagonist. RESULTS Over 2.6 million antimuscarinic prescriptions were dispensed to 241 829 females (mean age/SD, 62 ± 18 years). Patients exposed to M3 selective antagonists had highest risk of developing T2DM compared to those exposed to nonselective antagonists. Using oxybutynin, a nonselective antagonist as a comparator, adjusted rate ratios of T2DM were 57% (HR 1.57, 95%CI 1.48-1.67) and 29% (HR 1.29, 95%CI 1.24-1.35) significantly higher for darifenacin and solifenacin, respectively (both M3 selective). CONCLUSIONS We found exposure to M3 selective antagonists darifenacin and solifenacin had the highest risk of developing T2DM compared to nonselective antagonist oxybutynin. This is supported by well described physiologic mechanisms and may allow for more informed prescribing decisions, particularly if minimizing risk of T2DM is a priority.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, Experimental Therapeutics, 503 Robert Grant Ave, Silver Spring, Maryland, 20910, USA
| | - Aaron J Brown
- Uniformed Services University, Department of Medicine, Division of Clinical Pharmacology, 4301 Jones Bridge Rd, Bethesda, Maryland, 20814, USA
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Experimental Therapeutics, 503 Robert Grant Ave, Silver Spring, Maryland, 20910, USA
| | - Adrian T Kress
- Army Office of the Surgeon General, Pharmacovigilance Center, 7700 Arlington Boulevard, Falls Church, Virginia, 22042, USA
| | - Jeffrey R Livezey
- Uniformed Services University, Department of Medicine, Division of Clinical Pharmacology, 4301 Jones Bridge Rd, Bethesda, Maryland, 20814, USA
| | - Thomas G Oliver
- Uniformed Services University, Department of Medicine, Division of Clinical Pharmacology, 4301 Jones Bridge Rd, Bethesda, Maryland, 20814, USA
| | - Elaine D Por
- Walter Reed Army Institute of Research, Experimental Therapeutics, 503 Robert Grant Ave, Silver Spring, Maryland, 20910, USA
| | - Rosenie Thelus Jean
- Army Office of the Surgeon General, Pharmacovigilance Center, 7700 Arlington Boulevard, Falls Church, Virginia, 22042, USA
| |
Collapse
|
23
|
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z. New roles for dopamine D 2 and D 3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry 2020; 25:2070-2085. [PMID: 30626912 PMCID: PMC6616020 DOI: 10.1038/s41380-018-0344-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Although long-studied in the central nervous system, there is increasing evidence that dopamine (DA) has important roles in the periphery including in metabolic regulation. Insulin-secreting pancreatic β-cells express the machinery for DA synthesis and catabolism, as well as all five DA receptors. In these cells, DA functions as a negative regulator of glucose-stimulated insulin secretion (GSIS), which is mediated by DA D2-like receptors including D2 (D2R) and D3 (D3R) receptors. However, the fundamental mechanisms of DA synthesis, storage, release, and signaling in pancreatic β-cells and their functional relevance in vivo remain poorly understood. Here, we assessed the roles of the DA precursor L-DOPA in β-cell DA synthesis and release in conjunction with the signaling mechanisms underlying DA's inhibition of GSIS. Our results show that the uptake of L-DOPA is essential for establishing intracellular DA stores in β-cells. Glucose stimulation significantly enhances L-DOPA uptake, leading to increased DA release and GSIS reduction in an autocrine/paracrine manner. Furthermore, D2R and D3R act in combination to mediate dopaminergic inhibition of GSIS. Transgenic knockout mice in which β-cell D2R or D3R expression is eliminated exhibit diminished DA secretion during glucose stimulation, suggesting a new mechanism where D2-like receptors modify DA release to modulate GSIS. Lastly, β-cell-selective D2R knockout mice exhibit marked postprandial hyperinsulinemia in vivo. These results reveal that peripheral D2R and D3R receptors play important roles in metabolism through their inhibitory effects on GSIS. This opens the possibility that blockade of peripheral D2-like receptors by drugs including antipsychotic medications may significantly contribute to the metabolic disturbances observed clinically.
Collapse
Affiliation(s)
- Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Antonella Maffei
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Matthias Quick
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Alain J. De Solis
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA
| | - Pattama Wiriyasermkul
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Collaborative Research, Nara Medical University, Kashihara, Nara, Japan
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise Sorisio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin P. Inbar
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - R. Benjamin Free
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Prashant Donthamsetti
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Current address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eugene V. Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Gary J. Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David R. Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Schmauss
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Lori M. Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University, New York, NY, USA,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Holly Moore
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Paul E. Harris
- Division of Endocrinology, Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, USA,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA,Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
de Almeida V, Alexandrino GL, Aquino A, Gomes AF, Murgu M, Dobrowolny H, Guest PC, Steiner J, Martins-de-Souza D. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109945. [PMID: 32304808 DOI: 10.1016/j.pnpbp.2020.109945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023]
Abstract
Atypical antipsychotics are widely used to manage schizophrenia symptoms. However, these drugs can induce deleterious side effects, such as MetS, which are associated with an increased cardiovascular risk to patients. Lipids play a central role in this context, and changes in lipid metabolism have been implicated in schizophrenia's pathobiology. Furthermore, recent evidence suggests that lipidome changes may be related to antipsychotic treatment response. The aim of this study was to evaluate the lipidome changes in blood plasma samples of schizophrenia patients before and after 6 weeks of treatment with either risperidone, olanzapine, or quetiapine. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis showed changes in the levels of ceramides (Cer), glycerophosphatidic acids (PA), glycerophosphocholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), glycerophosphoglycerols (PG), and phosphatidylserines (PS) for all treatments. However, the treatment with risperidone also affected diacylglycerides (DG), ceramide 1-phosphates (CerP), triglycerides (TG), sphingomyelins (SM), and ceramide phosphoinositols (PI-Cer). Moreover, specific lipid profiles were observed that could be used to distinguish poor and good responders to the different antipsychotics. As such, further work in this area may lead to lipid-based biomarkers that could be used to improve the clinical management of schizophrenia patients.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme L Alexandrino
- Gas Chromatography Laboratory, Chemistry Institute, University of Campinas(UNICAMP), Campinas, SP, Brazil
| | - Adriano Aquino
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre F Gomes
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Michael Murgu
- Mass Spectrometry Applications & Development Laboratory, Waters Corporation, São Paulo, SP, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany; The Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil; D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
25
|
Lian J, Deng C. The dosage-dependent effects of cevimeline in preventing olanzapine-induced metabolic side-effects in female rats. Pharmacol Biochem Behav 2020; 191:172878. [PMID: 32112786 DOI: 10.1016/j.pbb.2020.172878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
Olanzapine has been used for the treatment of schizophrenia and other mental disorders. However, it is associated with serious weight gain and other metabolic side-effects. The antagonistic affinity of olanzapine to muscarinic M3 receptors has been evidenced as one of the main contributors for its weight gain and other metabolic side-effects. Therefore, this study investigated whether the co-treatment of cevimeline (a M3 receptor agonist) could prevent the metabolic side-effects associated with olanzapine medication. Female Sprague Dawley rats were treated orally with olanzapine (2 mg/kg, t.i.d.) and/or cevimeline at 3 dosages (3, 6, 9 mg/kg, t.i.d.), or vehicle for two weeks. Weight gain and food/water intake were measured throughout the drug treatment period. Intraperitoneal glucose tolerance tests and open field tests were conducted. Olanzapine-treated rats demonstrated significantly elevated body weight gain, food intake, feeding efficiency, total white fat mass, liver mass, and plasma triglyceride levels, which could be partly reversed by the co-treatment with cevimeline in a dosage-dependent manner. In general, the body weight gain can only be reversed by the co-treatment of 9 mg/kg cevimeline. The cevimeline co-treatment decreased plasma triglyceride and glucose levels compared with olanzapine only treatment. The results suggested a dosage-dependent effect of cevimeline in ameliorating olanzapine-induced weight gain and metabolic side-effects, which supports further clinical trials using cevimeline to control weight gain and metabolic side-effects caused by antipsychotic medications.
Collapse
Affiliation(s)
- Jiamei Lian
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, 2522, NSW, Australia; School of Medicine, and Molecular Horizons, University of Wollongong, Wollongong 2522, NSW, Australia.
| |
Collapse
|
26
|
Medak KD, Townsend LK, Hahn MK, Wright DC. Female mice are protected against acute olanzapine-induced hyperglycemia. Psychoneuroendocrinology 2019; 110:104413. [PMID: 31499390 DOI: 10.1016/j.psyneuen.2019.104413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Abstract
Olanzapine is a second-generation antipsychotic (SGA) used frequently in the treatment of schizophrenia and a growing list of off-label conditions. Though effective in reducing psychoses, acute olanzapine treatment causes rapid increases in blood glucose that are believed to be mediated by increases in liver glucose output, skeletal muscle insulin resistance, and beta cell dysfunction. Further, the acute lipidemic response to olanzapine has been largely unexplored. While females have been reported to be more susceptible to olanzapine-induced weight gain, there is little known about the impact of sex on the acute response to SGAs. The purpose of this study was to determine if the acute effects of SGAs on glucose and lipid metabolism display a sexually dimorphic response in C57BL/6 J mice and examine potential mechanisms mediating this effect. Age matched male and female C57BL/6 J mice were treated with olanzapine (5 mg/ kg, IP) or vehicle control and blood glucose was measured at baseline, 15, 30, 60, 90, and 120 min post-treatment and tissues and serum harvested. These experiments were repeated, and mice underwent an insulin (0.5 IU/kg) or pyruvate tolerance test (2 g/kg) following 60 min of olanzapine treatment. Females were protected against olanzapine-induced increases in blood glucose and pyruvate intolerance compared to male mice, and this occurred despite the development of severe insulin resistance. In male mice olanzapine increased the glucagon:insulin ratio whereas in females this ratio was reduced. When challenged with exogenous glucagon (1 mg/kg IP), females were less responsive than males. Male and female mice displayed similar increases in whole body fatty acid oxidation, serum fatty acids and liver triglyceride accumulation. Our findings provide evidence that while there are no apparent sex differences in the lipid metabolism response to olanzapine, that females are protected from acute olanzapine-induced excursions in blood glucose. This is likely due in part to reductions in the glucagon:insulin ratio and glucagon responsiveness which could impact olanzapine induced increases in liver glucose production.
Collapse
Affiliation(s)
- Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Margaret K Hahn
- Centre for Addition and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, ON, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
27
|
Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019; 8:cells8111336. [PMID: 31671770 PMCID: PMC6912706 DOI: 10.3390/cells8111336] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the cornerstone of treatment for schizophrenia because of their high clinical efficacy. However, SGA treatment is associated with severe metabolic alterations and body weight gain, which can increase the risk of type 2 diabetes and cardiovascular disease, and greatly accelerate mortality. Several underlying mechanisms have been proposed for antipsychotic-induced weight gain (AIWG), but some studies suggest that metabolic changes in insulin-sensitive tissues can be triggered before the onset of AIWG. In this review, we give an outlook on current research about the metabolic disturbances provoked by SGAs, with a particular focus on whole-body glucose homeostasis disturbances induced independently of AIWG, lipid dysregulation or adipose tissue disturbances. Specifically, we discuss the mechanistic insights gleamed from cellular and preclinical animal studies that have reported on the impact of SGAs on insulin signaling, endogenous glucose production, glucose uptake and insulin secretion in the liver, skeletal muscle and the endocrine pancreas. Finally, we discuss some of the genetic and epigenetic changes that might explain the different susceptibilities of SGA-treated patients to the metabolic side-effects of antipsychotics.
Collapse
|
28
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
29
|
A comparison of the effects of clozapine and its metabolite norclozapine on metabolic dysregulation in rodent models. Neuropharmacology 2019; 175:107717. [PMID: 31348941 DOI: 10.1016/j.neuropharm.2019.107717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023]
Abstract
RATIONALE The second generation antipsychotic drug clozapine is a psychotherapeutic agent with superior efficacy for treatment-resistant schizophrenia. Clozapine is associated with a low likelihood of neurological side-effects, but a high propensity to induce weight gain and metabolic dysregulation. The primary metabolite of clozapine is norclozapine (N-Desmethylclozapine), which has psychoactive properties itself, but its effects on metabolic function remains unknown. The goal of the present study was to determine whether directly administered norclozapine could cause metabolic dysregulation, similar to clozapine. METHODS Adult female rats were treated with a range of doses of clozapine and norclozapine (0.5, 2, 8 & 20 mg/kg, i.p.) and then subjected to the intraperitoneal glucose tolerance test (IGTT), where glucose levels were recorded for 2 h following a glucose challenge. In parallel, rats were tested with two doses of clozapine and norclozapine (2 & 20 mg/kg, i.p.) in the hyperinsulinemic-euglycemic clamp (HIEC), to measure whole body insulin resistance. RESULTS In the IGTT, clozapine demonstrated dose-dependent effects on fasting glucose levels and total glucose area-under-the-curve following the glucose challenge, with the two highest doses strongly increasing glucose levels. Only the highest dose of norclozapine increased fasting glucose levels, and caused a non-significant increase in glucose levels following the challenge. By contrast, both doses of clozapine and norclozapine caused a potent and long-lasting decrease in the glucose infusion rate in the HIEC, indicating that both compounds cause whole body insulin resistance. ABSTRACT While not as potent as its parent compound, norclozapine clearly exerts acute metabolic effects, particularly on insulin resistance. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
|
30
|
Kowalchuk C, Castellani LN, Chintoh A, Remington G, Giacca A, Hahn MK. Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol Endocrinol Metab 2019; 316:E1-E15. [PMID: 29969315 DOI: 10.1152/ajpendo.00164.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since the serendipitous discovery of the first antipsychotic (AP) drug in the 1950s, APs remain the cornerstone of treatment for schizophrenia. A shift over the past two decades away from first-generation, conventional APs to so-called "atypical" (or 2nd/3rd generation) APs parallels acknowledgment of serious metabolic side-effects associated in particular with these newer agents. As will be reviewed, AP drugs and type 2 diabetes are now inextricably linked, contributing to the three- to fivefold increased risk of type 2 diabetes observed in schizophrenia. However, this association is not straightforward. Biological and lifestyle-related illness factors contribute to the association between type 2 diabetes and metabolic disease independently of AP treatment. In addition, APs have a well-established weight gain propensity which could also account for elevated risk of insulin resistance and type 2 diabetes. However, compelling preclinical and clinical evidence now suggests that these drugs can rapidly and directly influence pathways of glucose metabolism independently of weight gain and even in absence of psychiatric illness. Mechanisms of these direct effects remain poorly elucidated but may involve central and peripheral antagonism of neurotransmitters implicated not only in the therapeutic effects of APs but also in glucose homeostasis, possibly via effects on the autonomic nervous system. The clinical relevance of studying "direct" effects of these drugs on glucose metabolism is underscored by the widespread use of these medications, both on and off label, for a growing number of mental illnesses, extending safety concerns well beyond schizophrenia.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
| | | | - Araba Chintoh
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Gary Remington
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
- Department of Physiology, University of Toronto , Toronto, Ontario , Canada
- Department of Medicine, University of Toronto , Toronto, Ontario Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health , Toronto, Ontario , Canada
- Institute of Medical Sciences, University of Toronto , Toronto, Ontario , Canada
- Department of Psychiatry, University of Toronto , Toronto, Ontario , Canada
- Banting and Best Diabetes Centre, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
31
|
Castellani LN, Wilkin J, Abela AR, Benarroch L, Ahasan Z, Teo C, Wilson V, Kowalchuk C, Giacca A, Remington GJ, Hahn MK. Effects of acute olanzapine exposure on central insulin-mediated regulation of whole body fuel selection and feeding. Psychoneuroendocrinology 2018; 98:127-130. [PMID: 30142549 DOI: 10.1016/j.psyneuen.2018.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 01/01/2023]
Abstract
The use of antipsychotics is associated with severe disruptions in whole body glucose and lipid metabolism which may in part occur through the central nervous system and impaired insulin action at the brain. Here we investigated whether olanzapine treatment might also affect the ability of central insulin treatment to regulate food intake and fuel preference in the light and dark cycle. Male Sprague-Dawley rats were treated with olanzapine (or vehicle solution; 3 mg/kg, subcutaneous) and a simultaneous acute intracerebral ventricular (ICV) infusion of insulin (or vehicle; 3 μL at 10mU; ICV) at the beginning of the 12-h light and dark cycles. Olanzapine treatment reduced RER in the dark and light phases (most consistently in the 4-hours post-treatment), while ICV insulin reduced average RER predominantly in the dark phase, but also at the end of the light cycle. The RER lowering effect of ICV-insulin during the light cycle was absent in the group co-administered olanzapine. The reduction in RER during the dark phase was mirrored by decreased food intake with ICV insulin, but not olanzapine treated rats. The reduction in food intake by ICV-insulin was abolished in rats co-administered olanzapine suggesting rapid induction of central insulin resistance. A combination of ICV-insulin and olanzapine similarly reduced RER in the dark phase, independent of changes in food intake. Olanzapine treatment, alone or in combination with ICV-insulin, significantly reduced VCO2 at regular intervals in the dark phase (specifically 3 h post-treatment), while VO2 was not significantly altered by either treatment. Finally, heat production was increased by olanzapine treatment in the light phase, though this effect was not consistent. The findings confirm that acute olanzapine treatment directly reduces RER and suggest that treatment with this drug may also override central insulin-mediated reductions in food intake at the hypothalamus (while still independently favoring fatty acid oxidation). Acute central insulin similarly reduces RER, but in contrast to olanzapine, this may represent a physiologically appropriate response to reduction in food intake.
Collapse
Affiliation(s)
- Laura N Castellani
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada
| | - Jennifer Wilkin
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
| | - Andrew R Abela
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Louise Benarroch
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Zohra Ahasan
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
| | - Celine Teo
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Virginia Wilson
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
| | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8T, Canada.
| | - Adria Giacca
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8T, Canada; Banting and Best Diabetes Centre, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, ON M5G 2C4, Canada.
| | - Gary J Remington
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8T, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8T, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, ON, M5T 1R8, Canada; Banting and Best Diabetes Centre, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
32
|
Role of Serotonin Transporter in Antidepressant-Induced Diabetes Mellitus: A Pharmacoepidemiological–Pharmacodynamic Study in VigiBase®. Drug Saf 2018; 41:1087-1096. [DOI: 10.1007/s40264-018-0693-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Lu ML, Chen CH, Kuo PT, Lin CH, Wu TH. Application of plasma levels of olanzapine and N-desmethyl-olanzapine to monitor metabolic parameters in patients with schizophrenia. Schizophr Res 2018; 193:139-145. [PMID: 28720417 DOI: 10.1016/j.schres.2017.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/18/2023]
Abstract
Metabolic disturbance is a common side effect of olanzapine (OLZ); however, the relationships between plasma OLZ concentration (COLZ) and metabolic disturbance remain unclear. Our previous study revealed that COLZ≧22.77ng/mL was a positive predictor of therapeutic efficacy in patients with schizophrenia. This study aimed to investigate the roles of OLZ or N-desmethyl-olanzapine (DMO) in metabolic outcomes among OLZ-treated patients with schizophrenia. The metabolic syndrome (MS) was diagnosed based on the modified the National Cholesterol Education Program Adult Treatment Panel III criteria for Asians. HPLC-ECD analytical system was applied to determine the COLZ and DMO concentration (CDMO). The absolute drug levels and concentration-to-dose ratios (C/D ratios) were tested for their correlations to metabolic parameters. Total 151 fasting blood samples from patients with schizophrenia were collected. DMO C/D ratio negatively correlated with weight, body mass index, waist circumference, and C-peptide level. The receiver operator characteristic analysis determined a threshold CDMO>5.63ng/mL and DMO C/D ratio>0.35ng/mL/mg were negative predictors of MS. The COLZ/CDMO ratio>6.03 was identified as positive predictor of MS. Combined with previous study result, we proposed that the optimal OLZ treatment should maintain COLZ/CDMO ratio between 3 and 6 to maximize the clinical efficacy and minimize the metabolic side effects. Our findings suggested that therapeutic drug monitoring on OLZ and DMO is a valuable tool to monitor metabolic side effects in OLZ-treated patients with schizophrenia.
Collapse
Affiliation(s)
- Mong-Liang Lu
- Department of Psychiatry, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ting Kuo
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hui Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hua Wu
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Raben AT, Marshe VS, Chintoh A, Gorbovskaya I, Müller DJ, Hahn MK. The Complex Relationship between Antipsychotic-Induced Weight Gain and Therapeutic Benefits: A Systematic Review and Implications for Treatment. Front Neurosci 2018; 11:741. [PMID: 29403343 PMCID: PMC5786866 DOI: 10.3389/fnins.2017.00741] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Antipsychotic-induced weight gain (AIWG) and other adverse metabolic effects represent serious side effects faced by many patients with psychosis that can lead to numerous comorbidities and which reduce the lifespan. While the pathophysiology of AIWG remains poorly understood, numerous studies have reported a positive association between AIWG and the therapeutic benefit of antipsychotic medications. Objectives: To review the literature to (1) determine if AIWG is consistently associated with therapeutic benefit and (2) investigate which variables may mediate such an association. Data Sources: MEDLINE, Google Scholar, Cochrane Database and PsycINFO databases were searched for articles containing all the following exploded MESH terms: schizophrenia [AND] antipsychotic agents/neuroleptics [AND] (weight gain [OR] lipids [OR] insulin [OR] leptin) [AND] treatment outcome. Results were limited to full-text, English journal articles. Results: Our literature search uncovered 31 independent studies which investigated an AIWG-therapeutic benefit association with a total of 6063 enrolled individuals diagnosed with schizophrenia or another serious mental illness receiving antipsychotic medications. Twenty-two studies found a positive association while, 10 studies found no association and one study reported a negative association. Study variables including medication compliance, sex, ethnicity, or prior antipsychotic exposure did not appear to consistently affect the AIWG-therapeutic benefit relationship. In contrast, there was some evidence that controlling for baseline BMI/psychopathology, duration of treatment and specific agent studied [i.e., olanzapine (OLZ) or clozapine (CLZ)] strengthened the relationship between AIWG and therapeutic benefit. Limitations: There were limitations of the reviewed studies in that many had small sample sizes, and/or were retrospective. The heterogeneity of the studies also made comparisons difficult and publication bias was not controlled for. Conclusions: An AIWG-therapeutic benefit association may exist and is most likely to be observed in OLZ and CLZ-treated patients. The clinical meaningfulness of this association remains unclear and weight gain and other metabolic comorbidities should be identified and treated to the same targets as the general population. Further research should continue to explore the links between therapeutic benefit and metabolic health with emphasis on both pre-clinical work and well-designed prospective clinical trials examining metabolic parameters associated, but also occurring independently to AIWG.
Collapse
Affiliation(s)
- Alex T Raben
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victoria S Marshe
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Araba Chintoh
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ilona Gorbovskaya
- Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel J Müller
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Pharmacogenetic Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Margaret K Hahn
- Schizophrenia Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Siafis S, Tzachanis D, Samara M, Papazisis G. Antipsychotic Drugs: From Receptor-binding Profiles to Metabolic Side Effects. Curr Neuropharmacol 2018; 16:1210-1223. [PMID: 28676017 PMCID: PMC6187748 DOI: 10.2174/1570159x15666170630163616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antipsychotic-induced metabolic side effects are major concerns in psychopharmacology and clinical psychiatry. Their pathogenetic mechanisms are still not elucidated. METHODS Herein, we review the impact of neurotransmitters on metabolic regulation, providing insights into antipsychotic-induced metabolic side effects. RESULTS Antipsychotic drugs seem to interfere with feeding behaviors and energy balance, processes that control metabolic regulation. Reward and energy balance centers in central nervous system constitute the central level of metabolic regulation. The peripheral level consists of skeletal muscles, the liver, the pancreas, the adipose tissue and neuroendocrine connections. Neurotransmitter receptors have crucial roles in metabolic regulation and they are also targets of antipsychotic drugs. Interaction of antipsychotics with neurotransmitters could have both protective and harmful effects on metabolism. CONCLUSION Emerging evidence suggests that antipsychotics have different liabilities to induce obesity, diabetes and dyslipidemia. However this diversity cannot be explained merely by drugs'pharmacodynamic profiles, highlighting the need for further research.
Collapse
Affiliation(s)
| | | | | | - Georgios Papazisis
- Address correspondence to this author at the Department of Clinical
Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Tel/Fax: +30 2310 999323; E-mail:
| |
Collapse
|
36
|
Chen J, Huang XF, Shao R, Chen C, Deng C. Molecular Mechanisms of Antipsychotic Drug-Induced Diabetes. Front Neurosci 2017; 11:643. [PMID: 29209160 PMCID: PMC5702456 DOI: 10.3389/fnins.2017.00643] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Antipsychotic drugs (APDs) are widely prescribed to control various mental disorders. As mental disorders are chronic diseases, these drugs are often used over a life-time. However, APDs can cause serious glucometabolic side-effects including type 2 diabetes and hyperglycaemic emergency, leading to medication non-compliance. At present, there is no effective approach to overcome these side-effects. Understanding the mechanisms for APD-induced diabetes should be helpful in prevention and treatment of these side-effects of APDs and thus improve the clinical outcomes of APDs. In this review, the potential mechanisms for APD-induced diabetes are summarized so that novel approaches can be considered to relieve APD-induced diabetes. APD-induced diabetes could be mediated by multiple mechanisms: (1) APDs can inhibit the insulin signaling pathway in the target cells such as muscle cells, hepatocytes and adipocytes to cause insulin resistance; (2) APD-induced obesity can result in high levels of free fatty acids (FFA) and inflammation, which can also cause insulin resistance. (3) APDs can cause direct damage to β-cells, leading to dysfunction and apoptosis of β-cells. A recent theory considers that both β-cell damage and insulin resistance are necessary factors for the development of diabetes. In high-fat diet-induced diabetes, the compensatory ability of β-cells is gradually damaged, while APDs cause direct β-cell damage, accounting for the severe form of APD-induced diabetes. Based on these mechanisms, effective prevention of APD-induced diabetes may need an integrated approach to combat various effects of APDs on multiple pathways.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Renfu Shao
- Faculty of Science, Health, Education and Engineering, GeneCology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chao Deng
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
37
|
Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci Rep 2017; 7:2762. [PMID: 28584269 PMCID: PMC5459828 DOI: 10.1038/s41598-017-02884-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Chronic treatment with second-generation antipsychotic drugs (SGAs) has been associated with an increased risk of metabolic syndrome. To evaluate the longitudinal changes in glucose-lipid homeostasis after SGA use, we studied the time-dependent effects of olanzapine (OLZ) (3 mg/kg, b.i.d.) or clozapine (CLZ) (20 mg/kg, b.i.d.) treatment on metabolic profiles for 9 weeks in rats. Although only OLZ significantly increased body weight in rats, both OLZ and CLZ elevated blood lipid levels. Chronic OLZ treatment induced significant weight gain leading to a higher fasting insulin level and impaired glucose tolerance, whereas CLZ lowered fasting insulin levels and impaired glucose tolerance independent of weight gain. Treatment with both drugs deranged AKT/GSK phosphorylation and up-regulated muscarinic M3 receptors in the rats’ livers. Consistent with an elevation in lipid levels, both OLZ and CLZ significantly increased the protein levels of nuclear sterol regulatory element-binding proteins (SREBPs) in the liver, which was associated with improvement in hepatic histamine H1R. However, enhanced carbohydrate response element binding protein (ChREBP) signalling was observed in only CLZ-treated rats. These results suggest that SGA-induced glucose-lipid metabolic disturbances could be independent of weight gain, possibly through activation of SREBP/ChREBP in the liver.
Collapse
|
38
|
Li H, Fang M, Xu M, Li S, Du J, Li W, Chen H. Chronic Olanzapine Treatment Induces Disorders of Plasma Fatty Acid Profile in Balb/c Mice: A Potential Mechanism for Olanzapine-Induced Insulin Resistance. PLoS One 2016; 11:e0167930. [PMID: 27973621 PMCID: PMC5156395 DOI: 10.1371/journal.pone.0167930] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022] Open
Abstract
Background Atypical antipsychotics such as olanzapine cause metabolic side effects leading to obesity and insulin resistance. The underlying mechanisms remain elusive. In this study we investigated the effects of chronic treatment of olanzapine on the fatty acid composition of plasma in mice. Methods Twenty 8-week female Balb/c mice were randomly assigned to two groups: the OLA group and the control group. After treatment with olanzapine (10 mg/kg/day) or vehicle intraperitoneally for 8 weeks, fasting glucose, insulin levels and oral glucose tolerance test were determined. Effects on plasma fatty acid profile and plasma indices of D5 desaturase, D6 desaturase and SCD1 activity were also investigated. Results Chronic administration of olanzapine significantly elevated fasting glucose and insulin levels, impaired glucose tolerance, but did not increase body weight. Total saturated fatty acids and n-6 polyunsaturated fatty acids were significantly increased and total monounsaturated fatty acids were significantly decreased, while total n-3 polyunsaturated fatty acids showed no prominent changes. Chronic olanzapine treatment significantly up-regulated D6 desaturase activity while down-regulating D5 desaturase activity. Palmitic acid (C16:0), dihomo-γ-linolenic acid (C20:3n-6) and D6 desaturase were associated with an increase probability of insulin resistance, whereas nervonic acid (C24:1) and SCD1 were significantly associated with a lower insulin resistance probability. Conclusions All results indicated that such drug-induced effects on fatty acid profile in plasma were relevant for the metabolic adverse effects associated with olanzapine and possibly other antipsychotics. Further studies are needed to investigate geneticand other mechanisms to explain how plasma fatty acids regulate glucose metabolism and affect the risk of insulin resistance.
Collapse
Affiliation(s)
- Huqun Li
- Department of Pharmacy, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | - Mingzhen Xu
- Department of Pharmacy, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shihong Li
- Department of Pharmacy, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Juan Du
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- * E-mail: (WYL); (HC)
| | - Hui Chen
- Department of Infectious Disease, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- * E-mail: (WYL); (HC)
| |
Collapse
|
39
|
Risk of Hospitalization for Hypoglycemia in Older Patients with Diabetes Using Antipsychotic Drugs. Am J Geriatr Psychiatry 2015; 23:1144-53. [PMID: 26419734 DOI: 10.1016/j.jagp.2015.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Antipsychotics may disrupt metabolic regulation in patients with diabetes mellitus. The risk of hypoglycemia in older users of antipsychotics with diabetes is largely unknown. Therefore, we investigated the association between the use of antipsychotic drugs and hypoglycemia requiring hospital admission in older patients with diabetes. METHODS In a nested case-control study using community pharmacy records linked to hospital admission data in the Netherlands (1998-2008), a cohort of 68,314 patients at least 65 years with diabetes was studied. Cases were patients from the study cohort with a first hospital admission for hypoglycemia; up to five comparison subjects were selected for each case. Exposure to antipsychotic drugs was the primary determinant of interest. Logistic regression analysis was performed to estimate the strength of the association between antipsychotic drug use and hypoglycemia, taking into account potential confounders. RESULTS Eight hundred fifteen patients were admitted to hospital for hypoglycemia. Current use of antipsychotic drugs was associated with an increased risk of hypoglycemia compared with non-use (adjusted OR: 2.26; 95% CI: 1.45-3.52; Wald χ(2) = 13.08, df = 1, p ≤0.001), especially in the first 30 days of treatment (adjusted OR: 7.65; 95% CI: 2.50-23.41; Wald χ(2) = 12.72, df = 1, p ≤0.001) and with higher doses (adjusted OR: 8.20; 95% CI: 3.09-21.75; Wald χ(2) = 17.90, df = 1, p ≤0.001). CONCLUSION Use of antipsychotic drugs by older patients with diabetes mellitus was associated with an increased risk of hospitalization for hypoglycemia. Our findings suggest that glucose levels should be monitored closely after initiation of antipsychotic drugs.
Collapse
|
40
|
Metabolic Impairments Precede Changes in Hunger and Food Intake Following Short-Term Administration of Second-Generation Antipsychotics. J Clin Psychopharmacol 2015; 35:579-82. [PMID: 26274045 PMCID: PMC4553098 DOI: 10.1097/jcp.0000000000000393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The second-generation antipsychotics (SGAs) are associated with weight gain and an increased incidence of metabolic diseases. The metabolic impairments are assumed a consequence of increased body adiposity secondary to central nervous system-associated increases in food intake. We have previously reported that, independent of weight gain, 9 days of olanzapine administration to control subjects is associated with insulin resistance and increases in postprandial levels of insulin and glucagon-like peptide 1 to a mixed meal challenge. This current report describes previously unpublished data on the effects of the SGAs olanzapine and aripiprazole compared with placebo on detailed hunger and satiety responses over the 12-day inpatient evaluation as well as postprandial ghrelin and leptin responses prior to and following administration of the 2 SGAs. We found no changes in hunger, fullness, or in the orexigenic hormone ghrelin or satiety hormone leptin, consistent with our previous report indicating no change in weight during this study. The results indicate that the SGAs are associated with metabolic changes prior to changes in hunger, satiety, and food intake, and this temporal separation suggests that there are differential mechanisms mediating SGA-associated changes in metabolism and food intake.
Collapse
|
41
|
Montastruc F, Palmaro A, Bagheri H, Schmitt L, Montastruc JL, Lapeyre-Mestre M. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase. Eur Neuropsychopharmacol 2015; 25:1556-65. [PMID: 26256010 DOI: 10.1016/j.euroneuro.2015.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/23/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
Abstract
Pharmacodynamic mechanisms of diabetes induced by antipsychotic drugs remain unclear, while numerous receptors have been suspected to be involved in the genesis of this Adverse Drug Reaction (ADR). We investigated potential relationships between antipsychotics׳ receptor occupancy (serotonin 5-HT1A, 5-HT2A, 5-HT2C, histamine H1, muscarinic M3, adrenergic α1, α2 or dopaminergic D2 D3 occupancies) and reports of diabetes using VigiBase(®), the World Health Organization (WHO) global Individual Case Safety Report (ICSR) database. All ADR reports from 15 first and second generation antipsychotic drugs recorded in VigiBase(®) were extracted. Logistic regression models, completed by disproportionality analysis, were used to determine the associations between antipsychotics׳ receptor occupancy and ICSRs of diabetes on VigiBase(®). During the study period, 94,460 ICSRs involved at least one of the 15 antipsychotics of interest. Diabetes was reported in 1799 (1.9%) patients. Clozapine was the most frequently suspected drug (n=953; 53.0%). A significant and positive association was found between histamine H1, muscarinic M3 and serotonin 5-HT2C, 5-HT2A receptor occupancies and reports of diabetes. A multivariable stepwise regression model showed that only serotonin 5-HT2c (AOR=2.13, CI 95% 1.72-2.64) and histamine H1 (AOR=1.91, CI 95% 1.38-2.64) predicted the risk for diabetes mellitus (p<0.001). Using an original pharmacoepidemiology-pharmacodynamic (PE-PD) approach, our study supports that antipsychotic drugs blocking simultaneously histamine H1 and serotonin 5-HT2C receptors are more frequently associated with diabetes reports in VigiBase(®) than other antipsychotics. These findings should encourage investigation of histamine H1 and serotonin 5-HT2C properties for predicting the risk of glycemic effects in candidate antipsychotics.
Collapse
Affiliation(s)
- François Montastruc
- Service de Pharmacologie Médicale et Clinique, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France; INSERM UMR 1027, Pharmacoépidémiologie, Evaluation de l׳utilisation et du risque médicamenteux, Université de Toulouse, France; Pharmacopôle Midi-Pyrénées, Centre Midi-Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d׳Informations sur le médicament, Toulouse, France; Inserm CIC 1436 Toulouse, CIC de Toulouse, Toulouse University Hospital, Place du Dr Baylac, 31059 Toulouse Cedex 9, France.
| | - Aurore Palmaro
- Service de Pharmacologie Médicale et Clinique, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France; INSERM UMR 1027, Pharmacoépidémiologie, Evaluation de l׳utilisation et du risque médicamenteux, Université de Toulouse, France; Inserm CIC 1436 Toulouse, CIC de Toulouse, Toulouse University Hospital, Place du Dr Baylac, 31059 Toulouse Cedex 9, France
| | - Haleh Bagheri
- Service de Pharmacologie Médicale et Clinique, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France; INSERM UMR 1027, Pharmacoépidémiologie, Evaluation de l׳utilisation et du risque médicamenteux, Université de Toulouse, France; Pharmacopôle Midi-Pyrénées, Centre Midi-Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d׳Informations sur le médicament, Toulouse, France; Inserm CIC 1436 Toulouse, CIC de Toulouse, Toulouse University Hospital, Place du Dr Baylac, 31059 Toulouse Cedex 9, France
| | - Laurent Schmitt
- Service Hospitalo-Universitaire de Psychiatrie et Psychologie Médicale, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France
| | - Jean-Louis Montastruc
- Service de Pharmacologie Médicale et Clinique, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France; INSERM UMR 1027, Pharmacoépidémiologie, Evaluation de l׳utilisation et du risque médicamenteux, Université de Toulouse, France; Pharmacopôle Midi-Pyrénées, Centre Midi-Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d׳Informations sur le médicament, Toulouse, France; Inserm CIC 1436 Toulouse, CIC de Toulouse, Toulouse University Hospital, Place du Dr Baylac, 31059 Toulouse Cedex 9, France
| | - Maryse Lapeyre-Mestre
- Service de Pharmacologie Médicale et Clinique, Faculté de Médecine de Toulouse, Centre Hospitalier Universitaire de Toulouse, France; INSERM UMR 1027, Pharmacoépidémiologie, Evaluation de l׳utilisation et du risque médicamenteux, Université de Toulouse, France; Inserm CIC 1436 Toulouse, CIC de Toulouse, Toulouse University Hospital, Place du Dr Baylac, 31059 Toulouse Cedex 9, France
| |
Collapse
|
42
|
Avila C, Holloway AC, Hahn MK, Morrison KM, Restivo M, Anglin R, Taylor VH. An Overview of Links Between Obesity and Mental Health. Curr Obes Rep 2015; 4:303-10. [PMID: 26627487 DOI: 10.1007/s13679-015-0164-9] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The American Medical Association recently recognized obesity as both an illness and a leading cause of preventable death and chronic disease. This association is not only linked to physical health outcomes, however, as obesity has also been extensively associated with mental illness as well. Both obesity and severe mental illness decrease quality of life and are associated with an increase in disability, morbidity, and mortality, and when they occur together, these adverse health outcomes are magnified. Despite educational campaigns, increased awareness, and improved treatment options, the high prevalence of mental illness and comorbid obesity remains a serious problem. This review examines this overlap, highlighting clinical and biological factors that have been linked to this association in order to improve our understanding and help elucidate potential therapeutic avenues.
Collapse
Affiliation(s)
- Christian Avila
- McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON, L8S 4K1, Canada
- Department of Psychiatry, University of Toronto, 76 Grenville Street, Toronto, ON, M5S 1B2, Canada
| | - Alison C Holloway
- McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON, L8S 4K1, Canada
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, 76 Grenville Street, Toronto, ON, M5S 1B2, Canada
| | - Katherine M Morrison
- McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON, L8S 4K1, Canada
| | - Maria Restivo
- McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON, L8S 4K1, Canada
| | - Rebecca Anglin
- McMaster University, 1280 Main Street West, HSC 3N52A, Hamilton, ON, L8S 4K1, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Toronto, 76 Grenville Street, Toronto, ON, M5S 1B2, Canada.
| |
Collapse
|
43
|
Meal-induced insulin sensitization is preserved after acute olanzapine administration in female Sprague-Dawley rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:525-30. [DOI: 10.1007/s00210-015-1091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
|
44
|
Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol 2015; 25:1-16. [PMID: 25523882 DOI: 10.1016/j.euroneuro.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/14/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication.
Collapse
Affiliation(s)
- Pedro Gonçalves
- INSERM (French Institute of Health and Medical Research), Unit 1151, INEM (Research Center in Molecular Medicine), Faculty of Medicine of Paris Descartes University, Paris, France
| | - João Ricardo Araújo
- INSERM (French Institute of Health and Medical Research), Unit 786, Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
45
|
Abstract
The metabolic side effects of atypical antipsychotics (AAPs) have been widely studied in younger populations, but research investigating these sequelae in the elderly is lacking. This article reviews the available literature examining the use of AAPs in the elderly, evaluating their association with weight gain and changes in blood glucose and lipid parameters. We find a relative paucity of studies in this area; while some data highlight significant, collective changes in metabolic parameters, the majority suggests an apparent low vulnerability to these side effects. We conclude that the risk and clinical implications of unfavorable metabolic changes in the elderly being treated with AAP medications remain largely undetermined, and we caution against drawing firm conclusions based on the available data. The conflicting evidence leaves us recommending that metabolic monitoring be implemented, with regular follow-up as advocated in other populations.
Collapse
|
46
|
Shawky NM, Shehatou GS, Abdel Rahim M, Suddek GM, Gameil NM. Levocetirizine ameliorates high fructose diet-induced insulin resistance, vascular dysfunction and hepatic steatosis in rats. Eur J Pharmacol 2014; 740:353-63. [DOI: 10.1016/j.ejphar.2014.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 11/15/2022]
|
47
|
Wu C, Yuen J, Boyda HN, Procyshyn RM, Wang CK, Asiri YI, Pang CCY, Honer WG, Barr AM. An evaluation of the effects of the novel antipsychotic drug lurasidone on glucose tolerance and insulin resistance: a comparison with olanzapine. PLoS One 2014; 9:e107116. [PMID: 25254366 PMCID: PMC4177840 DOI: 10.1371/journal.pone.0107116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022] Open
Abstract
Over the past two decades, there has been a notable rise in the use of antipsychotic drugs, as they are used to treat an increasing number of neuropsychiatric disorders. This rise has been led predominantly by greater use of the second generation antipsychotic (SGA) drugs, which have a low incidence of neurological side-effects. However, many SGAs cause metabolic dysregulation, including glucose intolerance and insulin resistance, thus increasing the risk of cardiometabolic disorders. The metabolic effects of the novel SGA lurasidone, which was approved by the Food and Drug Administration in 2010, remain largely unknown. As rodent models accurately predict the metabolic effects of SGAs in humans, the aim of the present study was to use sophisticated animal models of glucose tolerance and insulin resistance to measure the metabolic effects of lurasidone. In parallel, we compared the SGA olanzapine, which has established metabolic effects. Adult female rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (10.0 mg/kg, s.c.) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (1.5 and 15 mg/kg, s.c.) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC). Compared to vehicle treated animals, lurasidone caused mild glucose intolerance in the GTT with a single dose, but there was no effect on insulin resistance in the GTT, measured by HOMA-IR. The HIEC also confirmed no effect of lurasidone on insulin resistance. In contrast, olanzapine demonstrated dose-dependent and potent glucose intolerance, and insulin resistance in both tests. Thus, in preclinical models, lurasidone demonstrates mild metabolic liability compared to existing SGAs such as olanzapine. However, confirmation of these effects in humans with equivalent tests should be confirmed.
Collapse
Affiliation(s)
- Claire Wu
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Yuen
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heidi N. Boyda
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ric M. Procyshyn
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Addictions Research Institute, Vancouver, British Columbia, Canada
| | - Cathy K. Wang
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yahya I. Asiri
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine C. Y. Pang
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Addictions Research Institute, Vancouver, British Columbia, Canada
| | - Alasdair M. Barr
- Department of Pharmacology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Addictions Research Institute, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
48
|
Ringen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, possible causes, and interventions. Front Psychiatry 2014; 5:137. [PMID: 25309466 PMCID: PMC4175996 DOI: 10.3389/fpsyt.2014.00137] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Schizophrenia is among the major causes of disability worldwide and the mortality from cardiovascular disease (CVD) is significantly elevated. There is a growing concern that this health challenge is not fully understood and efficiently addressed. METHODS Non-systematic review using searches in PubMed on relevant topics as well as selection of references based on the authors' experience from clinical work and research in the field. RESULTS In most countries, the standardized mortality rate in schizophrenia is about 2.5, leading to a reduction in life expectancy between 15 and 20 years. A major contributor of the increased mortality is due to CVD, with CVD mortality ranging from 40 to 50% in most studies. Important causal factors are related to lifestyle, including poor diet, lack of physical activity, smoking, and substance abuse. Recent findings suggest that there are overlapping pathophysiology and genetics between schizophrenia and CVD-risk factors, further increasing the liability to CVD in schizophrenia. Many pharmacological agents used for treating psychotic disorders have side effects augmenting CVD risk. Although several CVD-risk factors can be effectively prevented and treated, the provision of somatic health services to people with schizophrenia seems inadequate. Further, there is a sparseness of studies investigating the effects of lifestyle interventions in schizophrenia, and there is little knowledge about effective programs targeting physical health in this population. DISCUSSION The risk for CVD and CVD-related deaths in people with schizophrenia is increased, but the underlying mechanisms are not fully known. Coordinated interventions in different health care settings could probably reduce the risk. There is an urgent need to develop and implement effective programs to increase life expectancy in schizophrenia, and we argue that mental health workers should be more involved in this important task.
Collapse
Affiliation(s)
- Petter Andreas Ringen
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; Division of Mental Health and Addiction, Oslo University Hospital , Oslo , Norway
| | - John A Engh
- Division of Mental Health and Addiction, Vestfold Hospital Trust , Tønsberg , Norway
| | - Astrid B Birkenaes
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; Division of Mental Health and Addiction, Oslo University Hospital , Oslo , Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; Division of Mental Health and Addiction, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
49
|
Abstract
Second generation antipsychotics (SGAs) are widely prescribed to treat various disorders, most notably schizophrenia and bipolar disorder; however, SGAs can cause abnormal glucose metabolism that can lead to insulin-resistance and type 2 diabetes mellitus side-effects by largely unknown mechanisms. This review explores the potential candidature of the acetylcholine (ACh) muscarinic M3 receptor (M3R) as a prime mechanistic and possible therapeutic target of interest in SGA-induced insulin dysregulation. Studies have identified that SGA binding affinity to the M3R is a predictor of diabetes risk; indeed, olanzapine and clozapine, SGAs with the highest clinical incidence of diabetes side-effects, are potent M3R antagonists. Pancreatic M3Rs regulate the glucose-stimulated cholinergic pathway of insulin secretion; their activation on β-cells stimulates insulin secretion, while M3R blockade decreases insulin secretion. Genetic modification of M3Rs causes robust alterations in insulin levels and glucose tolerance in mice. Olanzapine alters M3R density in discrete nuclei of the hypothalamus and caudal brainstem, regions that regulate glucose homeostasis and insulin secretion through vagal innervation of the pancreas. Furthermore, studies have demonstrated a dynamic sensitivity of hypothalamic and brainstem M3Rs to altered glucometabolic status of the body. Therefore, the M3R is in a prime position to influence glucose homeostasis through direct effects on pancreatic β-cells and by potentially altering signalling in the hypothalamus and brainstem. SGA-induced insulin dysregulation may be partly due to blockade of central and peripheral M3Rs, causing an initial disruption to insulin secretion and glucose homeostasis that can progressively lead to insulin resistance and diabetes during chronic treatment.
Collapse
|
50
|
Deng C. Effects of antipsychotic medications on appetite, weight, and insulin resistance. Endocrinol Metab Clin North Am 2013; 42:545-63. [PMID: 24011886 DOI: 10.1016/j.ecl.2013.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although clozapine, olanzapine, and other atypical antipsychotic drugs (APDs) have fewer extrapyramidal side effects, they have serious metabolic side effects such as substantial weight gain, intra-abdominal obesity, and type 2 diabetes mellitus. Given that most patients with mental disorders face chronic, even life-long, treatment with APDs, the risks of weight gain/obesity and other metabolic symptoms are major considerations for APD maintenance treatment. This review focuses on the effects of APDs on weight gain, appetite, insulin resistance, and glucose dysregulation, and the relevant underlying mechanisms that may be help to prevent and treat metabolic side effects caused by APD therapy.
Collapse
Affiliation(s)
- Chao Deng
- Antipsychotic Research Laboratory, School of Health Sciences, Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|