1
|
Ford HR, Mitchell TM, Scull T, Benitez OJ, Strieder-Barboza C. The Effect of Subclinical Ketosis on the Peripheral Blood Mononuclear Cell Inflammatory Response and Its Crosstalk with Depot-Specific Preadipocyte Function in Dairy Cows. Animals (Basel) 2024; 14:1995. [PMID: 38998107 PMCID: PMC11240650 DOI: 10.3390/ani14131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
During the periparturient period, cows undergo heightened energy demands at lactation onset, paired with reduced dry matter intake, leading to negative energy balance (NEB). Excessive lipolysis-driven adipose tissue remodeling, triggered by NEB, significantly contributes to ketosis in periparturient dairy cows. However, the role of peripheral blood mononuclear cells (PBMCs) in the pathogenesis of ketosis and in modulating adipose tissue function remains poorly understood. Here, we investigated how ketosis affects the transcriptional profile and secretome of PBMCs and its influence on preadipocyte function in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Twenty-one postpartum Holstein dairy cows were categorized as either subclinical ketosis (SCK; BHB ≥ 1.0 mM) or control (CON; BHB < 0.8 mM) based on blood beta-hydroxybutyrate (BHB) concentration screening. Blood samples were collected intravenously for the isolation of PBMCs and serum metabolic profiling. Ketosis elevated circulating NEFA and BHB levels but reduced total WBC and neutrophil counts. Isolated PBMCs were evaluated for gene expression and used to produce conditioned media (PBMC-CM), during which PBMCs were stimulated with 10 ng/mL LPS. The overall phenotype of PBMCs was largely consistent between SCK and CON cows, with minimal differences detected in immunomodulatory cytokine expression and PBMC-CM composition following stimulation. Preadipocytes isolated from non-ketotic cows were treated with PBMC-CM to assess the effect of PBMC secretomes on adipose cell function. Preadipocytes treated with SCK PBMC-CM showed reduced lipid accumulation compared to those treated with CON PBMC-CM regardless of the depot. SAT preadipocytes had heightened expression of lipid metabolism-related genes, including DGAT1, LIPE, and FASN, compared to VAT when treated with SCK PBMC-CM. Preadipocytes treated with CM from PBMC stimulated by LPS exhibited upregulation in IL1B and IL6 regardless of the depot or source of PBMCs. Together, these results indicate that although PBMC profiles showed minimal differences, preadipocytes treated with PBMC-CM may be influenced by additional factors, leading to altered preadipocyte function and gene expression that may contribute to adipose cellular dysfunction.
Collapse
Affiliation(s)
- Hunter R. Ford
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Ty M. Mitchell
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Tanner Scull
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
| | - Oscar J. Benitez
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (H.R.F.); (T.M.M.); (T.S.); (O.J.B.)
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
2
|
Pradel-Mora JJ, Marín G, Castillo-Rangel C, Hernández-Contreras KA, Vichi-Ramírez MM, Zarate-Calderon C, Herran Motta FS. Oxidative Stress in Postbariatric Patients: A Systematic Literature Review Exploring the Long-term Effects of Bariatric Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5646. [PMID: 38515558 PMCID: PMC10956951 DOI: 10.1097/gox.0000000000005646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
Background The present study investigates the impact of oxidative stress after bariatric surgery in patients with obesity. This field of study has gained great interest in recent years due to the role that oxidative stress plays in metabolic diseases. Obesity, by itself, can generate an increase in reactive oxygen and nitrogen species, intensifying cellular damage and promoting the progression of adverse metabolic conditions. In this context, bariatric surgery emerges as a candidate capable of modifying oxidative stress biomarkers, facilitating the patient's metabolic recovery. Methods A systematic review was carried out, identifying 30 studies found in databases such as PubMed, Scopus, Web of Science, and Google Scholar. It looked at the link between oxidative stress and recovery after bariatric surgery in patients. The selection of studies was based on the measurement of oxidative stress biomarkers before and after surgical intervention. Results The results reveal a significant decrease in oxidative stress biomarkers after bariatric surgery. However, a notable variability in antioxidant activity is observed between different patients, as well as a significant influence of comorbidities. Conclusions Bariatric surgery is postulated as an effective intervention in reducing oxidative stress in patients with obesity, enhancing antioxidant activity and improving patient recovery. This finding highlights the importance of considering oxidative stress management as an integral part of postoperative care, suggesting the need to implement complementary treatment strategies to optimize health outcomes.
Collapse
Affiliation(s)
- Jessica Juliana Pradel-Mora
- From the Plastic and Reconstructive Surgery, “UMAE Hospital de Especialidades Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Gerardo Marín
- Neural Dynamics and Modulation Lab, Cleveland Clinic, Cleveland, Ohio
| | - Carlos Castillo-Rangel
- Department of Neurosurgery, “Hospital Regional 1º de Octubre,” Institute of Social Security and Services for State Workers (ISSSTE), Mexico City, Mexico
| | | | | | | | - Fanny Stella Herran Motta
- Plastic and Reconstructive Surgery, “Centro Médico Nacional 20 de noviembre,” Institute of Social Security and Services for State Workers (ISSSTE), Mexico City, Mexico
| |
Collapse
|
3
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Piekarska K, Bonowicz K, Grzanka A, Jaworski ŁM, Reiter RJ, Slominski AT, Steinbrink K, Kleszczyński K, Gagat M. Melatonin and TGF-β-Mediated Release of Extracellular Vesicles. Metabolites 2023; 13:metabo13040575. [PMID: 37110233 PMCID: PMC10142249 DOI: 10.3390/metabo13040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The immune system, unlike other systems, must be flexible and able to "adapt" to fully cope with lurking dangers. The transition from intracorporeal balance to homeostasis disruption is associated with activation of inflammatory signaling pathways, which causes modulation of the immunology response. Chemotactic cytokines, signaling molecules, and extracellular vesicles act as critical mediators of inflammation and participate in intercellular communication, conditioning the immune system's proper response. Among the well-known cytokines allowing for the development and proper functioning of the immune system by mediating cell survival and cell-death-inducing signaling, the tumor necrosis factor α (TNF-α) and transforming growth factor β (TGF-β) are noteworthy. The high bloodstream concentration of those pleiotropic cytokines can be characterized by anti- and pro-inflammatory activity, considering the powerful anti-inflammatory and anti-oxidative stress capabilities of TGF-β known from the literature. Together with the chemokines, the immune system response is also influenced by biologically active chemicals, such as melatonin. The enhanced cellular communication shows the relationship between the TGF-β signaling pathway and the extracellular vesicles (EVs) secreted under the influence of melatonin. This review outlines the findings on melatonin activity on TGF-β-dependent inflammatory response regulation in cell-to-cell communication leading to secretion of the different EV populations.
Collapse
Affiliation(s)
- Klaudia Piekarska
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Łukasz M Jaworski
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| | - Andrzej T Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland
| |
Collapse
|
5
|
Al Madhoun A, Kochumon S, Haddad D, Thomas R, Nizam R, Miranda L, Sindhu S, Bitar MS, Ahmad R, Al-Mulla F. Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling. Cells 2023; 12:cells12071019. [PMID: 37048092 PMCID: PMC10093236 DOI: 10.3390/cells12071019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Obesity is characterized by chronic low-grade inflammation. Obese people have higher levels of caveolin-1 (CAV1), a structural and functional protein present in adipose tissues (ATs). We aimed to define the inflammatory mediators that influence CAV1 gene regulation and the associated mechanisms in obesity. Using subcutaneous AT from 27 (7 lean and 20 obese) normoglycemic individuals, in vitro human adipocyte models, and in vivo mice models, we found elevated CAV1 expression in obese AT and a positive correlation between the gene expression of CAV1, tumor necrosis factor-alpha (TNF-α), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). CAV1 gene expression was associated with proinflammatory cytokines and chemokines and their cognate receptors (r ≥ 0.447, p ≤ 0.030), but not with anti-inflammatory markers. CAV1 expression was correlated with CD163, indicating a prospective role for CAV1 in the adipose inflammatory microenvironment. Unlike wild-type animals, mice lacking TNF-α exhibited reduced levels of CAV1 mRNA/proteins, which were elevated by administering exogenous TNF-α. Mechanistically, TNF-α induces CAV1 gene transcription by mediating NF-κB binding to its two regulatory elements located in the CAV1 proximal regulatory region. The interplay between CAV1 and the TNF-α signaling pathway is intriguing and has potential as a target for therapeutic interventions in obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (R.N.); (M.S.B.)
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (L.M.); (S.S.)
- Correspondence: (A.A.M.); (R.A.); (F.A.-M.); Tel.: +965-2224-2999 (ext. 2211) (F.A.-M.)
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (R.T.)
| | - Dania Haddad
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (R.N.); (M.S.B.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (R.T.)
| | - Rasheeba Nizam
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (R.N.); (M.S.B.)
| | - Lavina Miranda
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (L.M.); (S.S.)
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (L.M.); (S.S.)
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (R.T.)
| | - Milad S. Bitar
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (R.N.); (M.S.B.)
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Jabriya 046300, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.); (R.T.)
- Correspondence: (A.A.M.); (R.A.); (F.A.-M.); Tel.: +965-2224-2999 (ext. 2211) (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (R.N.); (M.S.B.)
- Correspondence: (A.A.M.); (R.A.); (F.A.-M.); Tel.: +965-2224-2999 (ext. 2211) (F.A.-M.)
| |
Collapse
|
6
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|
7
|
Meka Farid Babu, A.R. S, Benerji G.V.. 3-Nitrotyrosine (NT) levels in serum and its association with insulin resistance in patients with type 2 diabetes mellitus: Biomarker role of NT in the assessment of oxidative stress mediated impending vascular complications in nephropathy. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction and Aim: 3-Nitrotyrosine (NT) has been recognized as a marker of oxidative stress in diabetes mellitus. NT has also been studied in diverse metabolic conditions. The aim of our study was oriented towards the role of NT as a predictor of oxidative stress mediated impending nephropathy in diabetes mellitus and that with reference to albuminuria.
Materials and Methods: A total of 150 type 2 diabetics in the age group 35 - 50 years were enrolled as three groups, comprising 50 each, based on albuminuria. 50 healthy age and gender matched subjects constituted the control group. Serum NT and Insulin were assessed by ELISA. HbA1c was quantitated by immunoturbidimetric method and microalbumin was assessed by turbilatex method. Routine biochemistry was enabled through ERBA EM-200 fully automated analyzer. Stringent quality control was affected. The study was begun following approval accorded by the competent committees.
Results: NT levels were positively correlated with albumin-creatinine ratio and insulin resistance. NT could be used as a predictor of impending vascular complications in diabetic nephropathy.
Conclusion: NT levels could act as a predictor of oxidative stress mediated diabetic nephropathy in the light of albuminuria.
Collapse
|
8
|
Chan PC, Hsieh PS. The Chemokine Systems at the Crossroads of Inflammation and Energy Metabolism in the Development of Obesity. Int J Mol Sci 2021; 22:ijms222413528. [PMID: 34948325 PMCID: PMC8709111 DOI: 10.3390/ijms222413528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue accompanied with alterations in the immune and metabolic responses. Although the chemokine systems have been documented to be involved in the control of tissue inflammation and metabolism, the dual role of chemokines and chemokine receptors in the pathogenesis of the inflammatory milieu and dysregulated energy metabolism in obesity remains elusive. The objective of this review is to present an update on the link between chemokines and obesity-related inflammation and metabolism dysregulation under the light of recent knowledge, which may present important therapeutic targets that could control obesity-associated immune and metabolic disorders and chronic complications in the near future. In addition, the cellular and molecular mechanisms of chemokines and chemokine receptors including the potential effect of post-translational modification of chemokines in the regulation of inflammation and energy metabolism will be discussed in this review.
Collapse
Affiliation(s)
- Pei-Chi Chan
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
| | - Po-Shiuan Hsieh
- National Defense Medical Center (NDMC), Department of Physiology & Biophysics, Taipei 114, Taiwan;
- Graduate Institute of Medical Science, NDMC, Taipei 114, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18622); Fax: +886-2-87924827
| |
Collapse
|
9
|
Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol 2021; 42:199-216. [PMID: 34779341 DOI: 10.1080/08830185.2021.1988591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cardiovascular disease is the most common cause of death, which has the highest mortality rate worldwide. Although a diverse range of inflammatory diseases can affect the cardiovascular system, however, heart failure and stroke occur due to atherosclerosis. Atherosclerosis is a chronic autoinflammatory disease of small to large vessels in which different immune mediators are involved in lipid plaque formation and inflammatory vascular remodeling process. A better understanding of the pathophysiology of atherosclerosis may lead to uncovering immunomodulatory therapies. Despite present diagnostic and therapeutic methods, the lack of immunotherapy in the prevention and treatment of atherosclerosis is perceptible. In this review, we will discuss the promising immunological-based therapeutics and novel preventive approaches for atherosclerosis. This study could provide new insights into a better perception of targeted therapeutic pathways and biological therapies.
Collapse
Affiliation(s)
- Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Yoshida H. [Preventive and Ameliorating Effects of Food Factors on Obesity-related Diseases by Regulating Inflammation]. YAKUGAKU ZASSHI 2021; 141:1161-1171. [PMID: 34602513 DOI: 10.1248/yakushi.21-00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Japan is currently a super-aging society, and lifestyle-related diseases that increase in incidence with age and the related rise in national medical expenses are major social problems. Preventive medicine and self-medication are becoming more important. Recently, various in vitro and in vivo studies have shown that food-derived natural compounds may contribute to the prevention and treatment of obesity-related diseases, such as diabetes mellitus. This report reviews our previous studies on the usefulness of the citrus flavonoid naringenin for obesity-related diseases. We showed that naringenin exerts an anti-diabetic effect by regulating inflammation pathways involving adipocytes and adipose tissue, and also showed an interaction between naringenin and anti-diabetic drugs. Because natural compounds are generally inexpensive and safe, they have the advantage of being easily applied to clinical applications. However, more detailed studies, such as clinical trials in humans, are required. Further research and scientific evidence will be required for the proper use of food factors in disease prevention and treatment.
Collapse
Affiliation(s)
- Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare
| |
Collapse
|
11
|
Das D, Podder S. Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput Biol Med 2021; 134:104459. [PMID: 34020127 PMCID: PMC8088080 DOI: 10.1016/j.compbiomed.2021.104459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) has created ruckus throughout the world. Growing epidemiological studies have depicted atherosclerosis as a comorbid factor of COVID-19. Though both these diseases are triggered via inflammatory rage that leads to injury of healthy tissues, the molecular linkage between them and their co-influence in causing fatality is not yet understood. METHODS We have retrieved the data of differentially expressed genes (DEGs) for both atherosclerosis and COVID-19 from publicly available microarray and RNA-Seq datasets. We then reconstructed the protein-protein interaction networks (PPIN) for these diseases from protein-protein interaction data of corresponding DEGs. Using RegNetwork and TRRUST, we mapped the transcription factors (TFs) in atherosclerosis and their targets (TGs) in COVID-19 PPIN. RESULTS From the atherosclerotic PPIN, we have identified 6 hubs (TLR2, TLR4, EGFR, SPI1, MYD88 and IRF8) as differentially expressed TFs that might control the expression of their 17 targets in COVID-19 PPIN. The important target proteins include IL1B, CCL5, ITGAM, IFIT3, CXCL1, CXCL2, CXCL3 and CXCL8. Consequent functional enrichment analysis of these TGs have depicted inflammatory responses to be overrepresented among the gene sets. CONCLUSION Finally, analyzing the DEGs in cardiomyocytes infected with SARS-CoV-2, we have concluded that MYD88 is a crucial linker of atherosclerosis and COVID-19, the co-existence of which lead to fatal outcomes. Anti-inflammatory therapy targeting MYD88 could be a potent strategy for combating this comorbidity.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India.
| |
Collapse
|
12
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
13
|
Silverio R, Gonçalves DC, Andrade MF, Seelaender M. Coronavirus Disease 2019 (COVID-19) and Nutritional Status: The Missing Link? Adv Nutr 2021; 12:682-692. [PMID: 32975565 PMCID: PMC7543263 DOI: 10.1093/advances/nmaa125] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging disease that has reached pandemic status by rapidly spreading worldwide. Elderly individuals and patients with comorbidities such as obesity, diabetes, and hypertension show a higher risk of hospitalization, severe disease, and mortality by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These patients frequently show exacerbated secretion of proinflammatory cytokines associated with an overreaction of the immune system, the so-called cytokine storm. Host nutritional status plays a pivotal role in the outcome of a variety of different infectious diseases. It is known that the immune system is highly affected by malnutrition, leading to decreased immune responses with consequent augmented risk of infection and disease severity. Body composition, especially low lean mass and high adiposity, has consistently been linked to worsened prognosis in many different diseases. In this review, evidence concerning the impact of nutritional status on viral infection outcomes is discussed.
Collapse
Affiliation(s)
- Renata Silverio
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Caetano Gonçalves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Biosciences Department, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, Santos, Brazil
| | - Márcia Fábia Andrade
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Clinical Surgery, LIM 26-HC, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Shi Z, Shen J, Qiu J, Zhao Q, Hua K, Wang H. CXCL10 potentiates immune checkpoint blockade therapy in homologous recombination-deficient tumors. Theranostics 2021; 11:7175-7187. [PMID: 34158843 PMCID: PMC8210593 DOI: 10.7150/thno.59056] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Homologous recombination deficiency (HRD) is a common molecular characteristic of genomic instability, and has been proven to be a biomarker for target therapy. However, until now, no research has explored the changes in the transcriptomics landscape of HRD tumors. Methods: The HRD score was established from SNP array data of breast cancer patients from the cancer genome atlas (TCGA) database. The transcriptome data of patients with different HRD scores were analyzed to identify biomarkers associated with HRD. The candidate biomarkers were validated in the gene expression omnibus (GEO) database and immunotherapy cohorts. Results: Based on data from the gene expression profile and clinical characteristics from 1310 breast cancer patients, including TCGA database and GEO database, we found that downstream targets of the cGAS-STING pathway, such as CXCL10, were upregulated in HRD tumors and could be used as a predictor of survival outcome in triple-negative breast cancer (TNBC) patients. Further comprehensive analysis of the tumor immune microenvironment (TIME) revealed that the expression of CXCL10 was positively correlated with neoantigen load and infiltrating immune cells. Finally, in vivo experimental data and clinical trial data confirmed that the expression of CXCL10 could be used as a biomarker for anti-PD-1/PD-L1 therapy. Conclusions: Together, our study not only revealed that CXCL10 is associated with HRD but also introduced a potential new perspective for identifying prognostic biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Shi
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Junjun Qiu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Qingguo Zhao
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
| | - Keqin Hua
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Hongyan Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regualtion, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
- Children's Hospital of Fudan University, Shanghai 201100, China
| |
Collapse
|
15
|
Yoshida H, Tsuhako R, Sugita C, Kurokawa M. Glucosyl Hesperidin Has an Anti-diabetic Effect in High-Fat Diet-Induced Obese Mice. Biol Pharm Bull 2021; 44:422-430. [PMID: 33642550 DOI: 10.1248/bpb.b20-00849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucosyl hesperidin (GH) is a water-soluble derivative of hesperidin, a citrus flavonoid. GH has various pharmacological effects, such as hypolipidemic and hypouricemic effects, and may therefore be a useful supplement or drug. In the present study, we evaluated the effects of long- and short-term intake of GH on hyperglycemia and macrophage infiltration into the adipose tissue of high-fat diet (HFD)-fed mice. Long-term (11-week) consumption of GH tended to reduce body weight and the fasting blood glucose concentration of the HFD-fed mice, and ameliorated glucose intolerance and insulin resistance, according to glucose and insulin tolerance tests. Additionally, although GH did not affect fat pad weight, it reduced HFD-induced macrophage infiltration into adipose tissue. Short-term (2-week) consumption of GH did not affect the HFD-induced increases in body weight or fasting blood glucose, and it did not ameliorate glucose intolerance or insulin resistance. However, short-term intake did reduce the HFD-induced macrophage infiltration and monocyte chemotactic protein 1 (MCP-1) expression in adipose tissue. Furthermore, hesperetin, which is an aglycone of GH, inhibited MCP-1 expression in 3T3-L1 adipocytes, 3T3-L1 adipocytes co-cultured with RAW264 macrophages, and tumor necrosis factor-α-treated 3T3-L1 adipocytes. The present findings suggest that daily consumption of GH may have preventive and/or therapeutic effects on obesity-related diseases, such as diabetes mellitus.
Collapse
Affiliation(s)
- Hiroki Yoshida
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare
| | - Rika Tsuhako
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare
| | - Chihiro Sugita
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare
| | - Masahiko Kurokawa
- Department of Biochemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare
| |
Collapse
|
16
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|
17
|
Cimini FA, Barchetta I, Ceccarelli V, Chiappetta C, Di Biasio A, Bertoccini L, Sentinelli F, Leonetti F, Silecchia G, Di Cristofano C, Baroni MG, Velotti F, Cavallo MG. Granzyme B Expression in Visceral Adipose Tissue Associates With Local Inflammation and Glyco-Metabolic Alterations in Obesity. Front Immunol 2020; 11:589188. [PMID: 33312176 PMCID: PMC7708321 DOI: 10.3389/fimmu.2020.589188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Granzyme B (GrB) is a serine protease produced by immune and non-immune cells, able to promote multiple processes, like apoptosis, inflammation, extracellular matrix remodeling and fibrosis. GrB expression in visceral adipose tissue (VAT) was associated with tissue damage, local inflammation and insulin resistance in obesity murine model, but there is no data in humans. Aim of this study was to explore the expression of GrB in VAT from obese subjects in relation to adipose tissue injury, inflammation, metabolic alterations and GrB circulating levels. For this purpose, 85 obese individuals undergoing bariatric surgery and 35 healthy subjects (as control) were recruited at Sapienza University, Rome, Italy. Study participants underwent clinical work-up and routine biochemistry. mRNA expression of GrB in VAT and of a panel of VAT inflammatory markers was analyzed by real-time PCR. Serum GrB levels were measured by Elisa Affymetrix EBIO. We observed that 80% of obese patients expressed GrB mRNA in VAT, and GrB VAT expression was associated with the presence of local inflammation and glucose homeostasis alterations. Moreover, GrB serum levels, which were higher in obese subjects compared to non-obese healthy individuals, were associated with GrB expression in VAT and glyco-metabolic impairment. Our data show, for the first time in humans, that obese subjects with “sick” fat and altered glucose tolerance exhibit GrB expression in VAT, and suggest that GrB might contribute to obesity-related VAT inflammatory remodeling and glucose homeostasis dysregulation. Moreover, increased circulating GrB levels might represent a possible peripheral marker of VAT dysfunction in metabolic diseases.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Alberto Di Biasio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Sentinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Marco Giorgio Baroni
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences (MeSVA), University of L'Aquila, L'Aquila, Italy.,Neuroendocrinology and Metabolic Diseases, IRCCS Neuromed, Pozzilli, Italy
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | | |
Collapse
|
18
|
Anupa G, Poorasamy J, Bhat MA, Sharma JB, Sengupta J, Ghosh D. Endometrial stromal cell inflammatory phenotype during severe ovarian endometriosis as a cause of endometriosis-associated infertility. Reprod Biomed Online 2020; 41:623-639. [PMID: 32792135 DOI: 10.1016/j.rbmo.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION Do endometrial stromal cells from primary infertile patients with severe ovarian endometriosis display differential secretory profiles of inflammation-associated cytokines during the implantation window that may cause infertility? DESIGN Forty-eight cytokines were measured in conditioned medium of isolated endometrial stromal cells obtained from primary infertile patients without endometriosis (control group, n = 12) or with stage IV ovarian endometriosis (ovarian endometriosis group, n = 14) using multiplex assays. Key cytokines showing differential secretory profiles were validated using Western immunoblotting. Cellular phenotypic validation was carried out in vitro by comparing proliferation and migration capacity between control (n = 6) and ovarian endometriosis (n = 7) groups. RESULTS CCL3, CCL4, CCL5, CXCL10, FGF2, IFNG, IL1RN, IL5, TNFA, and VEGF could be detected only in the conditioned media of stromal cells obtained from the ovarian endometriosis group. Among other cytokines detected in the conditioned media of both groups, CCL2 (P = 0.0018), CSF3 (P = 0.0017), IL1B (P = 0.0066), IL4 (P = 0.036), IL6 (P = 0.0039) and IL13 (P = 0.036) were found to be higher, whereas the concentration of IL18 was lower (P = 0.023) in the ovarian endometriosis group. Concentrations of CCL2, IL1B, IL4 and IL13 in conditioned medium reflected significant diagnostic performance for predicting ovarian endometriosis. Cellular phenotypic validation in vitro revealed an enhanced proliferative phenotype (P = 0.046) with no change in cell migratory capacity of endometrial stromal cells from the ovarian endometriosis group. CONCLUSIONS Endometrial stromal cells derived from severe ovarian endometriosis samples displayed a hyperinflammatory and hyperproliferative bias in the endometrial stroma during the 'window of implantation' putatively causing loss of fecundability.
Collapse
Affiliation(s)
- Geethadevi Anupa
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India; Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jeevitha Poorasamy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Muzaffer A Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jayasree Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Debabrata Ghosh
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
19
|
Caslin HL, Bhanot M, Bolus WR, Hasty AH. Adipose tissue macrophages: Unique polarization and bioenergetics in obesity. Immunol Rev 2020; 295:101-113. [PMID: 32237081 PMCID: PMC8015437 DOI: 10.1111/imr.12853] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages comprise a majority of the resident immune cells in adipose tissue (AT) and regulate both tissue homeostasis in the lean state and metabolic dysregulation in obesity. Since the AT environment rapidly changes based upon systemic energy status, AT macrophages (ATMs) must adapt phenotypically and metabolically. There is a distinct dichotomy in the polarization and bioenergetics of in vitro models, with M2 macrophages utilizing oxidative phosphorylation (OX PHOS) and M1 macrophages utilizing glycolysis. Early studies suggested differential polarization of ATMs, with M2-like macrophages predominant in lean AT and M1-like macrophages in obese AT. However, recent studies show that the phenotypic plasticity of ATMs is far more complicated, which is also reflected in their bioenergetics. Multiple ATM populations exist along the M2 to M1 continuum and appear to utilize both glycolysis and OX PHOS in obesity. The significance of the dual fuel bioenergetics is unclear and may be related to an intermediate polarization, their buffering capacity, or the result of a mixed population of distinct polarized ATMs. Recent evidence also suggests that ATMs of lean mice serve as a substrate buffer or reservoir to modulate lipid, catecholamine, and iron availability. Furthermore, recent models of weight loss and weight cycling reveal additional roles for ATMs in systemic metabolism. Evaluating ATM phenotype and intracellular metabolism together may more accurately illuminate the consequences of ATM accumulation in obese AT, lending further insight into obesity-related comorbidities in humans.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Monica Bhanot
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt Medical Center, Nashville, TN, USA
| | - W Reid Bolus
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
20
|
Liang Y, Alharthi AS, Bucktrout R, Elolimy AA, Lopreiato V, Martinez-Cortés I, Xu C, Fernandez C, Trevisi E, Loor JJ. Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. J Dairy Sci 2020; 103:6439-6453. [PMID: 32359988 DOI: 10.3168/jds.2019-17813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
Abstract
Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥3.5) or normal BCS (NBCS; n = 11, BCS ≤3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and β-carotene. Adipose biopsies harvested at -15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between -4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock 72205; Arkansas Children's Nutrition Center, Little Rock 72205; Department of Animal Production, National Research Centre, Giza 12611, Egypt
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960, Mexico
| | - C Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Xinyang Rd. 5, Daqing, 163319, Heilongjiang, China
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
21
|
Yang N, Tan RP, Chan AHP, Lee BSL, Santos M, Hung J, Liao Y, Bilek MMM, Fei J, Wise SG, Bao S. Immobilized Macrophage Colony-Stimulating Factor (M-CSF) Regulates the Foreign Body Response to Implanted Materials. ACS Biomater Sci Eng 2020; 6:995-1007. [PMID: 33464851 DOI: 10.1021/acsbiomaterials.9b01887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The functionality and durability of implanted biomaterials are often compromised by an exaggerated foreign body reaction (FBR). M1/M2 polarization of macrophages is a critical regulator of scaffold-induced FBR. Macrophage colony-stimulating factor (M-CSF), a hematopoietic growth factor, induces macrophages into an M2-like polarized state, leading to immunoregulation and promoting tissue repair. In the present study, we explored the immunomodulatory effects of surface bound M-CSF on poly-l-lactic acid (PLLA)-induced FBR. M-CSF was immobilized on the surface of PLLA via plasma immersion ion implantation (PIII). M-CSF functionalized PLLA, PLLA-only, and PLLA+PIII were assessed in an IL-1β luciferase reporter mouse to detect real-time levels of IL-1β expression, reflecting acute inflammation in vivo. Additionally, these different treated scaffolds were implanted subcutaneously into wild-type mice to explore the effect of M-CSF in polarization of M2-like macrophages (CD68+/CD206+), related cytokines (pro-inflammatory: IL-1β, TNF and MCP-1; anti-inflammatory: IL-10 and TGF-β), and angiogenesis (CD31) by immunofluorescent staining. Our data demonstrated that IL-1β activity in M-CSF functionalized scaffolds was ∼50% reduced compared to PLLA-only at day 1 (p < 0.01) and day 2 (p < 0.05) post-implantation. There were >2.6-fold more CD206+ macrophages in M-CSF functionalized PLLA compared to PLLA-only at day 7 (p < 0.001), along with higher levels of IL-10 at both day 7 (p < 0.05) and day 14 (p < 0.01), and TGF-β at day 3 (p < 0.05), day 7 (p < 0.05), and day 14 (p < 0.001). Lower levels of pro-inflammatory cytokines were also detected in M-CSF functionalized PLLA in the early phase of the immune response compared to PLLA-only: a ∼58% decrease at day 3 in IL-1β; a ∼91% decrease at day 3 and a ∼66% decrease at day 7 in TNF; and a ∼60% decrease at day 7 in MCP-1. Moreover, enhanced angiogenesis inside and on/near the scaffold was observed in M-CSF functionalized PLLA compared to PLLA-only at day 3 (p < 0.05) and day 7 (p < 0.05), respectively. Overall, M-CSF functionalized PLLA enhanced CD206+ macrophage polarization and angiogenesis, consistent with lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines in early stages of the host response, indicating potential immunoregulatory functions on the local environment.
Collapse
Affiliation(s)
- Nianji Yang
- Discipline of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.,Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard P Tan
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Bob S L Lee
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Miguel Santos
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Juichien Hung
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Marcela M M Bilek
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jian Fei
- School of Life Science and Technology, Shanghai Tongji University, Shanghai, China.,Research Centre for Model Organism, Shanghai, China
| | - Steven G Wise
- Discipline of Physiology, University of Sydney, Sydney, New South Wales 2006, Australia.,The Heart Research Institute, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shisan Bao
- Discipline of Pathology, University of Sydney, Sydney, New South Wales 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Haas MJ, Jurado-Flores M, Hammoud R, Feng V, Gonzales K, Onstead-Haas L, D Mooradian A. Inhibition of Pro-Inflammatory Cytokine Secretion by Select Antioxidants in Human Coronary Artery Endothelial Cells. INT J VITAM NUTR RES 2020; 90:103-112. [DOI: 10.1024/0300-9831/a000520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.
Collapse
Affiliation(s)
- Michael J. Haas
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Marilu Jurado-Flores
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Ramadan Hammoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Victoria Feng
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Krista Gonzales
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Luisa Onstead-Haas
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| | - Arshag D Mooradian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209
| |
Collapse
|
23
|
Sindhu S, Kochumon S, Shenouda S, Wilson A, Al-Mulla F, Ahmad R. The Cooperative Induction of CCL4 in Human Monocytic Cells by TNF-α and Palmitate Requires MyD88 and Involves MAPK/NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20184658. [PMID: 31546972 PMCID: PMC6770648 DOI: 10.3390/ijms20184658] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Chronic low-grade inflammation, also known as metabolic inflammation, is a hallmark of obesity and parallels with the presence of elevated circulatory levels of free fatty acids and inflammatory cytokines/chemokines. CCL4/MIP-1β chemokine plays a key role in the adipose tissue monocyte recruitment. Increased circulatory levels of TNF-α, palmitate and CCL4 are co-expressed in obesity. We asked if the TNF-α/palmitate could interact cooperatively to augment the CCL4 production in human monocytic cells and macrophages. THP-1 cells/primary macrophages were co-treated with TNF-α/palmitate and CCL4 mRNA/protein expression was assessed using qRT-PCR/ELISA. TLR4 siRNA, a TLR4 receptor-blocking antibody, XBlue™-defMyD cells and pathway inhibitors were used to decipher the signaling mechanisms. We found that TNF-α/palmitate co-stimulation augmented the CCL4 expression in monocytic cells and macrophages compared to controls (p < 0.05). TLR4 suppression or neutralization abrogated the CCL4 expression in monocytic cells. Notably, CCL4 cooperative induction in monocytic cells was: (1) Markedly less in MyD88-deficient cells, (2) IRF3 independent, (3) clathrin dependent and (4) associated with the signaling mechanism involving ERK1/2, c-Jun, JNK and NF-κB. In conclusion, TNF-α/palmitate co-stimulation promotes the CCL4 expression in human monocytic cells through the mechanism involving a TLR4-MyD88 axis and MAPK/NF-κB pathways. These findings unravel a novel mechanism of the cooperative induction of CCL4 by TNF-α and palmitate which could be relevant to metabolic inflammation.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Shihab Kochumon
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Steve Shenouda
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Ajit Wilson
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Fahd Al-Mulla
- Genetics & Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| | - Rasheed Ahmad
- Microbiolgy and Immunology, Dasman Diabetes Institute, Dasman 15462, Kuwait,
| |
Collapse
|
24
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Tsuhako R, Yoshida H, Sugita C, Kurokawa M. Naringenin suppresses neutrophil infiltration into adipose tissue in high-fat diet-induced obese mice. J Nat Med 2019; 74:229-237. [DOI: 10.1007/s11418-019-01332-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
|
26
|
Xue W, Fan Z, Li L, Lu J, Zhai Y, Zhao J. The chemokine system and its role in obesity. J Cell Physiol 2018; 234:3336-3346. [PMID: 30375006 DOI: 10.1002/jcp.27293] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022]
Abstract
The chemokine system is a complex arrangement of molecules that attract leukocytes to the site of injury or inflammation. This chemotactic behavior gives the system the name "Chemokine." The intricate and redundant nature of the chemokine system has made it a subject of ongoing scientific investigation. Obesity is characterized as low-grade systemic or chronic inflammation that is responsible for the release of cytokines, adipokines, and chemokines. Excessive tissue fat expansion triggers the release of chemokines, which in turn attract various leukocytes and activate the resident immune surveillance system, eventually leading to worsening of obesity and other related comorbidities. To date, 50 chemokines and 20 chemokine receptors that belong to the G-protein-coupled receptor family have been discovered, and over the past two decades, the physiological and pathological roles of many of these chemokines and their receptors have been elucidated. The objective of this review is to present an update on the link between chemokines and obesity under the light of recent knowledge.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhirui Fan
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lifeng Li
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yunkai Zhai
- Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Center of Telemedicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Engineering Laboratory for Digital Telemedicine Service, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Frydrych LM, Bian G, O'Lone DE, Ward PA, Delano MJ. Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol 2018; 104:525-534. [PMID: 30066958 DOI: 10.1002/jlb.5vmr0118-021rr] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2D) are global pandemics. Worldwide, the prevalence of obesity has nearly tripled since 1975 and the prevalence of T2D has almost doubled since 1980. Both obesity and T2D are indolent and chronic diseases that develop gradually, with cellular physiologic changes occurring before the clinical signs and symptoms of the diseases become apparent. Individuals with obesity and T2D are physiologically frail and have an increased risk of infections and mortality from sepsis. Improvement in the morbidity and mortality of these at-risk populations would provide a great societal benefit. We believe that the worsened outcomes observed in these patient populations is due to immune system dysfunction that is triggered by the chronic low-grade inflammation present in both diseases. As immune modulatory therapies have been utilized in other chronic inflammatory diseases, there is an emerging role for immune modulatory therapies that target the chronically affected immune pathways in obese and T2D patients. Additionally, bariatric surgery is currently the most successful treatment for obesity and is the only weight loss method that also causes a sustained, substantial improvement of T2D. Consequently, bariatric surgery may also have a role in improving immunity in these patient populations.
Collapse
Affiliation(s)
- Lynn M Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guowu Bian
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David E O'Lone
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter A Ward
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew J Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Gimeno A, Ardid-Ruiz A, Ojeda-Montes MJ, Tomás-Hernández S, Cereto-Massagué A, Beltrán-Debón R, Mulero M, Valls C, Aragonès G, Suárez M, Pujadas G, Garcia-Vallvé S. Combined Ligand- and Receptor-Based Virtual Screening Methodology to Identify Structurally Diverse Protein Tyrosine Phosphatase 1B Inhibitors. ChemMedChem 2018; 13:1939-1948. [DOI: 10.1002/cmdc.201800267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/05/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Andrea Ardid-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - María José Ojeda-Montes
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Sarah Tomás-Hernández
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Adrià Cereto-Massagué
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Raúl Beltrán-Debón
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Miquel Mulero
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Cristina Valls
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Manuel Suárez
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
- EURECAT, TECNIO, CEICS; Avinguda Universitat 1 43204 Reus Catalonia Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Campus de Sescelades 43007 Tarragona Catalonia Spain
- EURECAT, TECNIO, CEICS; Avinguda Universitat 1 43204 Reus Catalonia Spain
| |
Collapse
|
29
|
Frydrych LM, Fattahi F, He K, Ward PA, Delano MJ. Diabetes and Sepsis: Risk, Recurrence, and Ruination. Front Endocrinol (Lausanne) 2017; 8:271. [PMID: 29163354 PMCID: PMC5670360 DOI: 10.3389/fendo.2017.00271] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022] Open
Abstract
Sepsis develops when an infection surpasses local tissue containment. A series of dysregulated physiological responses are generated, leading to organ dysfunction and a 10% mortality risk. When patients with sepsis demonstrate elevated serum lactates and require vasopressor therapy to maintain adequate blood pressure in the absence of hypovolemia, they are in septic shock with an in-hospital mortality rate >40%. With improvements in intensive care treatment strategies, overall sepsis mortality has diminished to ~20% at 30 days; however, mortality continues to steadily climb after recovery from the acute event. Traditionally, it was thought that the complex interplay between inflammatory and anti-inflammatory responses led to sepsis-induced organ dysfunction and mortality. However, a closer examination of those who die long after sepsis subsides reveals that many initial survivors succumb to recurrent, nosocomial, and secondary infections. The comorbidly challenged, physiologically frail diabetic individuals suffer the highest infection rates. Recent reports suggest that even after clinical "recovery" from sepsis, persistent alterations in innate and adaptive immune responses exists resulting in chronic inflammation, immune suppression, and bacterial persistence. As sepsis-associated immune defects are associated with increased mortality long-term, a potential exists for immune modulatory therapy to improve patient outcomes. We propose that diabetes causes a functional immune deficiency that directly reduces immune cell function. As a result, patients display diminished bactericidal clearance, increased infectious complications, and protracted sepsis mortality. Considering the substantial expansion of the elderly and obese population, global adoption of a Western diet and lifestyle, and multidrug resistant bacterial emergence and persistence, diabetic mortality from sepsis is predicted to rise dramatically over the next two decades. A better understanding of the underlying diabetic-induced immune cell defects that persist following sepsis are crucial to identify potential therapeutic targets to bolster innate and adaptive immune function, prevent infectious complications, and provide more durable diabetic survival.
Collapse
Affiliation(s)
- Lynn M. Frydrych
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Fatemeh Fattahi
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine He
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Peter A. Ward
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J. Delano
- Department of Surgery, Division of Acute Care Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017; 174:3496-3513. [PMID: 28063251 PMCID: PMC5610164 DOI: 10.1111/bph.13705] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Perivascular adipose tissue (PVAT) plays a critical role in the pathogenesis of cardiovascular disease. In vascular pathologies, perivascular adipose tissue increases in volume and becomes dysfunctional, with altered cellular composition and molecular characteristics. PVAT dysfunction is characterized by its inflammatory character, oxidative stress, diminished production of vaso-protective adipocyte-derived relaxing factors and increased production of paracrine factors such as resistin, leptin, cytokines (IL-6 and TNF-α) and chemokines [RANTES (CCL5) and MCP-1 (CCL2)]. These adipocyte-derived factors initiate and orchestrate inflammatory cell infiltration including primarily T cells, macrophages, dendritic cells, B cells and NK cells. Protective factors such as adiponectin can reduce NADPH oxidase superoxide production and increase NO bioavailability in the vessel wall, while inflammation (e.g. IFN-γ or IL-17) induces vascular oxidases and eNOS dysfunction in the endothelium, vascular smooth muscle cells and adventitial fibroblasts. All of these events link the dysfunctional perivascular fat to vascular dysfunction. These mechanisms are important in the context of a number of cardiovascular disorders including atherosclerosis, hypertension, diabetes and obesity. Inflammatory changes in PVAT's molecular and cellular responses are uniquely different from classical visceral or subcutaneous adipose tissue or from adventitia, emphasizing the unique structural and functional features of this adipose tissue compartment. Therefore, it is essential to develop techniques for monitoring the characteristics of PVAT and assessing its inflammation. This will lead to a better understanding of the early stages of vascular pathologies and the development of new therapeutic strategies focusing on perivascular adipose tissue. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Ryszard Nosalski
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical SciencesUniversity of GlasgowScotlandUK
- Department of Internal and Agricultural MedicineJagiellonian University, Collegium MedicumKrakowPoland
| |
Collapse
|
31
|
Horn RC, Gelatti GT, Mori NC, Tissiani AC, Mayer MS, Pereira EA, Ross M, Moreira PR, Bortolotto JW, Felippin T. Obesity, bariatric surgery and oxidative stress. Rev Assoc Med Bras (1992) 2017; 63:229-235. [PMID: 28489128 DOI: 10.1590/1806-9282.63.03.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction: Obesity refers to the accumulation of fatty tissues and it favors the occurrence of oxidative stress. Alternatives that can contribute to body weight reduction have been investigated in order to reduce the production of reactive oxygen species responsible for tissue damage. The aim of the current study was to assess whether the oxidant and antioxidant markers of obese women before and after bariatric surgery were able to reduce oxidative damage. Method: We have assessed 16 morbidly obese women five days before and 180 days after the surgery. The control group comprised 16 non-obese women. Levels of thiobarbituric acid-reactive substances, carbonylated proteins, reduced glutathione and ascorbic acid were assessed in the patients' plasma. Results: Levels of lipid peroxidation and protein carbonylation in the pre-surgical obese women were higher than those of the controls and post-surgical obese women. Levels of reduced glutathione in the pre-surgical obese women were high compared to the controls, and declined after surgery. Levels of ascorbic acid fell in the pre--surgical obese women compared to the control and post-surgical obese women. Conclusion: Body weight influences the production of reactive oxygen species. Bariatric surgery, combined with weight loss and vitamin supplementation, reduces cellular oxidation, thus reducing tissue damage.
Collapse
Affiliation(s)
- Roberta Cattaneo Horn
- Professor in the Pharmaceutic Faculty, Universidade de Cruz Alta (Unicruz), Cruz Alta, RS, Brazil
| | - Gabriela Tassotti Gelatti
- Stricto Sensu Graduate Program in Comprehensive Health Care, Unicruz in association with the Universidade Regional do Noroeste do Rio Grande do Sul (Unijuí), Cruz Alta, RS, Brazil
| | - Natacha Cossettin Mori
- Professor in the Pharmaceutic Faculty, Universidade de Cruz Alta (Unicruz), Cruz Alta, RS, Brazil
| | | | | | | | - Marcelo Ross
- Biomedical Faculty, Unicruz, Cruz Alta, RS, Brazil
| | | | | | - Tamiris Felippin
- Stricto Sensu Graduate Program in Comprehensive Health Care, Unicruz in association with the Universidade Regional do Noroeste do Rio Grande do Sul (Unijuí), Cruz Alta, RS, Brazil
| |
Collapse
|
32
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
33
|
IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Sci Rep 2017; 7:2255. [PMID: 28536468 PMCID: PMC5442117 DOI: 10.1038/s41598-017-01828-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
Myeloid cells, key players in atherosclerosis, take up and present antigens, leading to systemic and local T cell activation. The recruitment and activation of immune cells to the aorta in atherosclerosis is regulated by adhesion molecules, chemokines and cytokines. IL-27R is an immunoregulatory signaling nod in autoimmune and infectious pathologies. IL-27R was shown to suppress T cells activation in atherosclerosis, however it’s possible role in myeloid cell accumulation and activation is not understood. Here we demonstrate that Apoe−/−Il27ra−/− mice fed with “Western Diet” for 7 or 18 weeks developed significantly more atherosclerosis compared to Apoe−/−Il27ra+/− controls. Accelerated disease was driven by enhanced expression of adhesion molecules and chemokines causing the accumulation of immune cells. Myeloid cells produced more inflammatory cytokines and upregulated MHCII. Multiphoton microscopy revealed more efficient interactions between aortic myeloid cells and CD4+ T cells. Overall, we show that IL-27R signaling controls endothelial cells activation and myeloid cell recruitment at early and advanced stages of atherosclerosis. In the absence of IL-27R myeloid cells become hyperactivated, produce pro-inflammatory cytokines and act as more potent antigen presenting cells. Enhanced interactions between Il27ra−/− APC and CD4+ T cells in the aortic wall contribute to T cells re-activation and pro-atherogenic cytokine production.
Collapse
|
34
|
All-trans-retinoic acid represses chemokine expression in adipocytes and adipose tissue by inhibiting NF-κB signaling. J Nutr Biochem 2017; 42:101-107. [PMID: 28157617 DOI: 10.1016/j.jnutbio.2017.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/22/2022]
Abstract
An effect of the Vitamin A metabolite all-trans-retinoic acid (ATRA) on body weight regulation and adiposity has been described, but little is known about its impact on obesity-associated inflammation. Our objective was to evaluate the overall impact of this metabolite on inflammatory response in human and mouse adipocytes, using high-throughput methods, and to confirm its effects in a mouse model. ATRA (2 μM for 24 h) down-regulated the mRNA expression of 17 chemokines in human adipocytes, and limited macrophage migration in a TNFα-conditioned 3 T3-L1 adipocyte medium (73.7%, P<.05). These effects were confirmed in mice (n=6-9 per group) subjected to oral gavage of ATRA (5 mg/kg of body weight) and subsequently injected intraperitoneally with lipopolysaccharide. In this model, both systemic and adipose levels of inflammatory markers were reduced. The antiinflammatory effect of ATRA was associated with a reduction in the phosphorylation levels of IκB and p65 (~50%, P<.05), two subunits of the NF-κB pathway, probably mediated by PGC1α, in 3 T3-L1 adipocytes. Taken together, these results show a significant overall antiinflammatory effect of ATRA on proinflammatory cytokine and chemokine production in adipocyte and adipose tissue and suggest that ATRA supplementation may represent a strategy of preventive nutrition to fight against obesity and its complications.
Collapse
|
35
|
Abstract
Adipose tissue is an endocrine organ which is responsible for postprandial uptake of glucose and fatty acids, consequently producing a broad range of adipokines controlling several physiological functions like appetite, insulin sensitivity and secretion, immunity, coagulation, and vascular tone, among others. Many aspects of adipose tissue pathophysiology in metabolic diseases have been described in the last years. Recent data suggest two main factors for adipose tissue dysfunction: accumulation of nonesterified fatty acids and their secondary products and hypoxia. Both of these factors are thought to be on the basis of low-grade inflammatory activation, further increasing metabolic dysregulation in adipose tissue. In turn, inflammation is involved in the inhibition of substrate uptake, alteration of the secretory profile, stimulation of angiogenesis, and recruitment of further inflammatory cells, which creates an inflammatory feedback in the tissue and is responsible for long-term establishment of insulin resistance.
Collapse
Affiliation(s)
- Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences-IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
36
|
Microcystin-Leucine Arginine Causes Cytotoxic Effects in Sertoli Cells Resulting in Reproductive Dysfunction in Male Mice. Sci Rep 2016; 6:39238. [PMID: 27976743 PMCID: PMC5157014 DOI: 10.1038/srep39238] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a potent toxin for Sertoli cells. However, the specific molecular mechanisms of MC-induced cytotoxicity still remain unclear. In this study, we performed a comprehensive analyses of changes of miRNAs and mRNAs in Sertoli cells treated with MC-LR. Through computational approaches, we showed the pivotal roles of differentially expressed miRNAs that were associated with cell metabolism, cellular growth and proliferation, cell-to-cell signaling and interaction and cellular movement. Ingenuity Pathway Analyses (IPA) revealed some differentially expressed miRNAs and mRNAs that may cause reproductive system diseases. Target gene analyses suggested that destruction in tight junctions (TJ) and adherens junctions (AJ) in testes may be mediated by miRNAs. Consistent with a significant enrichment of chemokine signaling pathways, we observed numerous macrophages in the testes of mice following treatment with MC-LR, which may cause testicular inflammation. Moreover, miR-98-5p and miR-758 were predicted to bind the 3′-UTR region of the mitogen-activated protein kinase 11 (MAPK11, p38 β isoform) gene which stimulates tumor necrosis factor-α (TNF-α) expression in Sertoli cells. TNF-α could interact with the tumor necrosis factor receptor 1 (TNFR1) on germ cells leading to induction of germ cell apoptosis. Collectively, our integrated miRNA/mRNA analyses provided a molecular paradigm, which was experimentally validated, for understanding MC-LR-induced cytotoxicity.
Collapse
|
37
|
Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, Bouget G, Ginet C, Gonzalez T, Maillet J, Dhennin V, Verbanck M, Auberger P, Froguel P, Tanti JF, Cormont M. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes. Diabetes 2016; 65:3062-74. [PMID: 27388216 DOI: 10.2337/db16-0014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022]
Abstract
Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance.
Collapse
Affiliation(s)
- Bastien Vergoni
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Pierre-Jean Cornejo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Jérôme Gilleron
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mansour Djedaini
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Franck Ceppo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Gwennaelle Bouget
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Clémence Ginet
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Teresa Gonzalez
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1062, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Julie Maillet
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Véronique Dhennin
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Marie Verbanck
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Patrick Auberger
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Philippe Froguel
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, U.K
| | - Jean-François Tanti
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mireille Cormont
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| |
Collapse
|
38
|
Is Synovial Macrophage Activation the Inflammatory Link Between Obesity and Osteoarthritis? Curr Rheumatol Rep 2016; 18:57. [DOI: 10.1007/s11926-016-0605-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Honma K, Mawatari R, Iikeda M, Mochizuki K, Goda T. Fasting during the suckling-weaning transient period of rats induces inflammatory gene expression in the adipose tissue and peripheral leukocytes. Nutrition 2016; 32:1268-74. [PMID: 27222344 DOI: 10.1016/j.nut.2016.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/21/2016] [Accepted: 03/15/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Nutritional deficiency during developmental stages could be associated with subsequent development of inflammation-related metabolic abnormalities. In this study, we examined the effects of a 3-d fast during the suckling-weaning transient period of rats, and subsequent intake of high-fat-high-sucrose (HF) and low-fat-high-starch (LF) diets in adulthood, on the expression of inflammatory genes in adipose tissue and peripheral leukocytes. METHODS Male Sprague-Dawley rats were deprived of food for 3 d during the suckling-weaning transient period, and were subsequently fed an HF or LF diet for 14 wk from 17 wk of age. Serum monocyte chemoattractant protein-1 (MCP-1) concentration and mRNA levels of inflammatory genes in mesenteric adipose tissues were assessed at 31 wk of age. The mRNA levels of inflammatory genes at 0 h and 2 h after oral glucose load at 30 wk of age in peripheral leukocytes were measured. RESULTS Fasting induced circulating MCP-1 protein in rats fed an LF diet but not an HF diet. The HF diet induced high mRNA levels of tumor necrosis factor-α, interleukin-1β, and S100 proteins in peripheral leukocytes at 2 h after glucose load in fasted rats when compared with controls. Expression of CD11c, an activated macrophage marker, was induced in the fasted group given an HF diet during adulthood. CONCLUSIONS Fasting rats during the suckling-weaning transient period and an HF diet intake during adulthood enhance inflammation by promoting the expression of inflammatory genes in adipose tissue and peripheral leukocytes.
Collapse
Affiliation(s)
- Kazue Honma
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Riko Mawatari
- Laboratory of Nutritional Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Misa Iikeda
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuki Mochizuki
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Toshinao Goda
- Laboratory of Nutritional Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
40
|
|
41
|
Yamaguchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Chemokine profiles of human visceral adipocytes from cryopreserved preadipocytes: Neutrophil activation and induction of nuclear factor-kappa B repressing factor. Life Sci 2015; 143:225-30. [DOI: 10.1016/j.lfs.2015.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/18/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
|
42
|
García JJ, Carvajal-Gil J, Guerrero-Bonmatty R. Altered release of chemokines by phagocytes from fibromyalgia patients: a pilot study. Innate Immun 2015; 22:3-8. [PMID: 26341115 DOI: 10.1177/1753425915602959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022] Open
Abstract
Fibromyalgia (FM) is a syndrome characterized by widespread chronic pain and is associated with elevated systemic inflammatory biomarkers, and an elevated innate cellular response. The aim of this study was to determine if fibromyalgia patients have altered ability to release pro-inflammatory chemokines by isolated neutrophils and monocytes. The study participants were women diagnosed with FM (n = 6) and a control group of healthy women (HW) (n = 6). Supernatant concentrations of eotaxin (CCL11), human macrophage-derived chemokine (MDC) (CCL22) and growth regulated-oncogene (GRO-α) (CXCL1) released by both monocytes and neutrophils either resting or stimulated by LPS were determined by ELISA and compared between the FM and HW groups. Both resting and activated monocytes from FM patients released more eotaxin, MDC and GRO-α than those from HW. However, there were no significant differences in the release of chemokines from neutrophils of FM patients and the ones from healthy women. In conclusion, monocytes from women with FM are deregulated, releasing higher amounts of eotaxin, MDC and GRO-α than healthy individuals. This fact does not occur in neutrophils from women with FM.
Collapse
Affiliation(s)
- Juan José García
- Department of Physiology, University Centre of Mérida, University of Extremadura, Mérida, Spain
| | - Julián Carvajal-Gil
- Department of Nursing, University Centre of Mérida, University of Extremadura, Mérida, Spain
| | | |
Collapse
|
43
|
DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 2015; 302:174-203. [PMID: 25242643 PMCID: PMC4366367 DOI: 10.1016/j.neuroscience.2014.09.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Peripheral nerves regenerate following injury due to the effective activation of the intrinsic growth capacity of the neurons and the formation of a permissive pathway for outgrowth due to Wallerian degeneration (WD). WD and subsequent regeneration are significantly influenced by various immune cells and the cytokines they secrete. Although macrophages have long been known to play a vital role in the degenerative process, recent work has pointed to their importance in influencing the regenerative capacity of peripheral neurons. In this review, we focus on the various immune cells, cytokines, and chemokines that make regeneration possible in the peripheral nervous system, with specific attention placed on the role macrophages play in this process.
Collapse
Affiliation(s)
| | - J A Lindborg
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - J P Niemi
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| | - R E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland OH 44106-4975
| |
Collapse
|
44
|
Osteopontin, CCL5 and CXCL9 are independently associated with psoriasis, regardless of the presence of obesity. Cytokine 2015; 74:287-92. [DOI: 10.1016/j.cyto.2015.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022]
|
45
|
Králová Lesná I, Poledne R, Fronek J, Králová A, Sekerková A, Thieme F, Pitha J. Macrophage subsets in the adipose tissue could be modified by sex and the reproductive age of women. Atherosclerosis 2015; 241:255-8. [DOI: 10.1016/j.atherosclerosis.2015.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/05/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
|
46
|
Singh A, Nunes JJ, Ateeq B. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases. Eur J Pharmacol 2015; 763:178-83. [PMID: 25981295 PMCID: PMC4784721 DOI: 10.1016/j.ejphar.2015.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) comprise a large family of cell-surface receptors, which have recently emerged as key players in tumorigenesis, angiogenesis and metastasis. In this review, we discussed our current understanding of the many roles played by GPCRs in general, and particularly Angiotensin II type I receptor (AGTR1), a member of the seven-transmembrane-spanning G-protein coupled receptor superfamily, and its significance in breast cancer progression and metastasis. We have also discussed different strategies for targeting AGTR1, and its ligand Angiotension II (Ang II), which might unravel unique opportunities for breast cancer prevention and treatment. For example, AGTR1 blockers (ARBs) which are already in clinical use for treating hypertension, merit further investigation as a therapeutic strategy for AGTR1-positive cancer patients and may have the potential to prevent Ang II-AGTR1 signalling mediated cancer pathogenesis and metastases.
Collapse
Affiliation(s)
- Anukriti Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Jessica J Nunes
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Bushra Ateeq
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
47
|
Van Gassen N, Staels W, Van Overmeire E, De Groef S, Sojoodi M, Heremans Y, Leuckx G, Van de Casteele M, Van Ginderachter JA, Heimberg H, De Leu N. Concise Review: Macrophages: Versatile Gatekeepers During Pancreatic β-Cell Development, Injury, and Regeneration. Stem Cells Transl Med 2015; 4:555-63. [PMID: 25848123 DOI: 10.5966/sctm.2014-0272] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/16/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Macrophages are classically considered detrimental for pancreatic β-cell survival and function, thereby contributing to β-cell failure in both type 1 (T1D) and 2 (T2D) diabetes mellitus. In addition, adipose tissue macrophages negatively influence peripheral insulin signaling and promote obesity-induced insulin resistance in T2D. In contrast, recent data unexpectedly uncovered that macrophages are not only able to protect β cells during pancreatitis but also to orchestrate β-cell proliferation and regeneration after β-cell injury. Moreover, by altering their activation state, macrophages are able to improve insulin resistance in murine models of T2D. This review will elaborate on current insights in macrophage heterogeneity and on the evolving role of pancreas macrophages during organogenesis, tissue injury, and repair. Additional identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for both T1D and T2D. SIGNIFICANCE Diabetes mellitus is a pandemic disease, characterized by severe acute and chronic complications. Macrophages have long been considered prime suspects in the pathogenesis of both type 1 and 2 diabetes mellitus. In this concise review, current insights in macrophage heterogeneity and on the, as yet, underappreciated role of alternatively activated macrophages in insulin sensing and β-cell development/repair are reported. Further identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for diabetes mellitus.
Collapse
Affiliation(s)
- Naomi Van Gassen
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Willem Staels
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Eva Van Overmeire
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sofie De Groef
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Mozhdeh Sojoodi
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Yves Heremans
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Mark Van de Casteele
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nico De Leu
- Diabetes Research Center and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Ghent University Hospital, and Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium; Myeloid Cell Immunology Laboratory, VIB, Brussels, Belgium; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
48
|
Abstract
Obesity is characterized as a chronic state of low-grade inflammation with progressive immune cell infiltration into adipose tissues. Adipose tissue macrophages play critical roles in the establishment of the chronic inflammatory state and metabolic dysfunctions. The novel discovery that pro-inflammatory macrophages are recruited to obese adipose tissue prompted an increased interest in the interplay between immune cells and metabolism. Since this discovery, many works have been published investigating the factors that lead to macrophage recruitment, the phenotypic change of adipose tissue macrophages, and metabolic dysfunctions. Adipokines and chemokines are key mediators that play crucial roles in crosstalk between adipocytes and macrophages and in regulating the adipose tissue inflammation. In the present review, we discuss the obesity-mediated adipose tissue remodelling, and particularly, the role of adipokines/chemokines in macrophage recruitment to obese adipose tissue. This review provides new insights into the physiological role of these factors and identifies a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Y Bai
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio, USA; Molecular, Cellular, and Developmental Biology Program, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
49
|
Gao Y, Zhang J, Li G, Xu H, Yi Y, Wu Q, Song M, Bee YM, Huang L, Tan M, Liang S, Li G. Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin. Biochem Pharmacol 2015; 94:39-45. [PMID: 25619422 DOI: 10.1016/j.bcp.2015.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Induction of endothelial cytotoxicity by hyperglycemia in diabetes has been widely accepted. Emodin is a natural anthraquinone in rhubarb used for treatment of diabetes, but its mechanism of action is not fully understood. This study aimed to examine the potential beneficial effects of emodin on endothelial cytotoxicity caused by high glucose milieu. Culture of human umbilical vein endothelial cells (HUVECs) with high concentrations of glucose resulted in damage to the cells, leading to decreased formazan products by 14-27%, reduced DNA contents by 12-19%, and increased hypodiploid apoptosis by 40-109%. These adverse effects of high glucose could be prevented to a large extent by co-culture with 3 μM of emodin which per se did not affect HUVECs viability. In addition, CCL5 expression of HUVECs cultured in high glucose medium was significantly elevated at both mRNA and protein levels, an effect abolished after treatment with emodin. Moreover, the enhanced adhesion of monocytes to HUVECs (2.1-2.2 fold over control) and elevated chemotaxis activities (2.3-2.4 fold over control) in HUVECs cultured in high glucose medium were completely reversed by emodin. Emodin also suppressed activation of p38 MAPK and ERK1/2 due to high glucose. Our data demonstrated that endothelial cytotoxicity occurred clearly when HUVECs were exposed to high glucose milieu and emodin was able to alleviate the impairments. The protective effects of emodin might be related to the inhibition of CCL5 expression and subsequent cell stress/inflammatory events possibly mediated by activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Yun Gao
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Jun Zhang
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Guilin Li
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Hong Xu
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Yun Yi
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Qin Wu
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Miaomiao Song
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Liping Huang
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Mengxia Tan
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - Shangdong Liang
- Department of Physiology, Nanchang University Medical College, Jiangxi Province, China
| | - GuoDong Li
- Department of Clinical Research, Singapore General Hospital, Singapore.
| |
Collapse
|
50
|
Pires AS, Souza VC, Paula RS, Toledo JO, Lins TC, Moraes CF, Córdova C, Pereira RW, Nóbrega OT. Pro-inflammatory cytokines correlate with classical risk factors for atherosclerosis in the admixed Brazilian older women. Arch Gerontol Geriatr 2015; 60:142-6. [DOI: 10.1016/j.archger.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022]
|