1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Zhou J, Wang S, He X, Ren H, Zhang XX. Comparative evaluation of SPE methods for biotoxicity assessment of water and wastewater: Linkage between chemical extracting efficiency and biotoxicity outcome. J Environ Sci (China) 2024; 142:33-42. [PMID: 38527894 DOI: 10.1016/j.jes.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 03/27/2024]
Abstract
Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shihao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Tanveer R, Neale PA, Melvin SD, Leusch FDL. Application of in vitro bioassays to monitor pharmaceuticals in water: A synthesis of chronological analysis, mode of action, and practical insights. CHEMOSPHERE 2024; 359:142255. [PMID: 38729441 DOI: 10.1016/j.chemosphere.2024.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/12/2024]
Abstract
Pharmaceutical compounds in wastewater have emerged as a significant concern for the aquatic environment. The use of in vitro bioassays represents a sustainable and cost-effective approach for assessing the potential toxicological risks of these biologically active compounds in wastewater and aligns with ethical considerations in research. It facilitates high-throughput analysis, captures mixture effects, integrates impacts of both known and unknown chemicals, and reduces reliance on animal testing. The core aim of the current review was to explore the practical application of in vitro bioassays in evaluating the environmental impacts of pharmaceuticals in wastewater. This comprehensive review strives to achieve several key objectives. First, it provides a summary categorisation of pharmaceuticals based on their mode of action, providing a structured framework for understanding their ecological significance. Second, a chronological analysis of pharmaceutical research aims to document their prevalence and trends over time, shedding light on evolving environmental challenges. Third, the review critically analyses existing bioassay applications in wastewater, while also examining bioassay coverage of representative compounds within major pharmaceutical classes. Finally, it explores the potential for developing innovative bioassays tailored for water quality monitoring of pharmaceuticals, paving the way for more robust environmental monitoring and risk assessment. Overall, adopting effect-based methods for pharmaceutical monitoring in water holds significant promise. It encompasses a broad spectrum of biological impacts, promotes standardized protocols, and supports a bioassay test battery approach indicative of different endpoints, thereby enhancing the effectiveness of environmental risk assessment.
Collapse
Affiliation(s)
- Rameesha Tanveer
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
4
|
Rogers JD, Leusch FD, Chambers B, Daniels KD, Everett LJ, Judson R, Maruya K, Mehinto AC, Neale PA, Paul-Friedman K, Thomas R, Snyder SA, Harrill J. High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2027-2037. [PMID: 38235672 PMCID: PMC11003563 DOI: 10.1021/acs.est.3c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
Collapse
Affiliation(s)
- Jesse D. Rogers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Bryant Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Logan J. Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Keith Maruya
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
| | - Alvine C. Mehinto
- Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
| | - Peta A. Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Russell Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Shane A. Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
5
|
Choi Y, Seo CD, Lee W, Son H, Lee Y. Assessment of bioactive chemicals in wastewater effluents and surface waters using in vitro bioassays in the Nakdong River basin, Korea. CHEMOSPHERE 2024; 347:140621. [PMID: 37956933 DOI: 10.1016/j.chemosphere.2023.140621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Organic micropollutants present in effluents of wastewater treatment plants (WWTPs) can negatively affect the quality of receiving waters or drinking water sources. The present work monitored the concentration of bioactive chemicals using a battery of in vitro bioassays in 14 WWTP effluents, 2 effluent-dominant streams, and 5 river waters in the Nakdong River basin, Korea, for a two-year period. The WWTP effluents showed AR/ERα/TRβ (androgen/estrogen/thyroid hormone) activities at a few to tens ng/L, PAH/PPARγ/p53 (polycyclic-aromatic-hydrocarbon/lipid metabolism/genotoxicity) activities at hundreds ng/L, and PXR/Nrf2 (xenobiotic metabolism/oxidative stress) activities at tens to hundreds μg/L as bioanalytical equivalent concentrations. The concentration level and type of bioactivities were statistically not affected by the source, season, or treatment processes of WWTPs for most endpoints. The effluent-dominant streams showed similar levels of AR/ERα/PAH/PXR/Nrf2 activities compared to the upstream WWTP effluents. The river waters showed lower levels of AR/ERα activities (by factors of 6 or 7) but had only slightly lower PAH/PXR/Nrf2 activities (within factors of 2) than the WWTP effluents when compared based on median concentration. Cytotoxicity was below the quantification limit (0.3 μg/L) in most effluent and river samples. For ERα/PAH/PXR/Nrf2, the median bioactivity levels of the river waters were higher than at least one of the effect-based trigger (EBT) values proposed in the literature. Further monitoring work and reliable/realistic EBT derivation are needed to determine possible ecological risks posed by the observed bioactivities.
Collapse
Affiliation(s)
- Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Dong Seo
- Water Quality Institute Busan Water Authority, Republic of Korea
| | - Woorim Lee
- Environment & Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Heejong Son
- Water Quality Institute Busan Water Authority, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Teng T, Huang WE, Li G, Wang X, Song Y, Tang X, Dawa D, Jiang B, Zhang D. Application of magnetic-nanoparticle functionalized whole-cell biosensor array for bioavailability and ecotoxicity estimation at urban contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165292. [PMID: 37414179 DOI: 10.1016/j.scitotenv.2023.165292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
The bioavailability and ecotoxicity of pollutants are important for urban ecological systems and human health, particularly at contaminated urban sites. Therefore, whole-cell bioreporters are used in many studies to assess the risks of priority chemicals; however, their application is restricted by low throughput for specific compounds and complicated operations for field tests. In this study, an assembly technology for manufacturing Acinetobacter-based biosensor arrays using magnetic nanoparticle functionalization was developed to solve this problem. The bioreporter cells maintained high viability, sensitivity, and specificity in sensing 28 priority chemicals, seven heavy metals, and seven inorganic compounds in a high-throughput manner, and their performance remained acceptable for at least 20 d. We also tested the performance by assessing 22 real environmental soil samples from urban areas in China, and our results showed positive correlations between the biosensor estimation and chemical analysis. Our findings prove the feasibility of the magnetic nanoparticle-functionalized biosensor array to recognize the types and toxicities of multiple contaminants for online environmental monitoring at contaminated sites.
Collapse
Affiliation(s)
- Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China; Suzhou Yiqing Environmental Technology Co. Ltd., Suzhou 215163, PR China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China
| | - Xiaoyi Tang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 2YQ, UK
| | - Dunzhu Dawa
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
7
|
Pech M, Steinbach C, Kocour M, Prokopová I, Šandová M, Bořík A, Lutz I, Kocour Kroupová H. Effects of mifepristone, a model compound with anti-progestogenic activity, on the development of African clawed frog (Xenopus laevis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106694. [PMID: 37716317 DOI: 10.1016/j.aquatox.2023.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The objective of this study was to assess the effects of a model substance with anti-progestogenic activity on development of African clawed frog (Xenopus laevis) from tadpole to juvenile stage. Mifepristone, a synthetic progesterone receptor-blocking steroid hormone used in medicine as an abortifacient, was chosen as a model compound with anti-progestogenic activity. In the experiment, African clawed frog tadpoles were exposed to mifepristone at three concentrations (2, 21, and 215 ng L-1). A control group was exposed to dimethyl sulfoxide (DMSO; 0.001 %). The experiment started when tadpoles reached stages 47-48 according to Nieuwkoop and Faber (NF; 1994) and continued until stage NF 66, when metamorphosis was complete. Exposure to mifepristone had no significant effect on the rate of tadpole development, occurrence of morphological anomalies, weight, body length, or sex ratio. Mortality was within an acceptable range of 0-3.6 % throughout the test and did not differ among the groups. Histopathological examination of the gonads and thyroid gland revealed no significant changes. Therefore, we can conclude that mifepristone had no negative effect on development of the African clawed frog up to juvenile stage. Nevertheless, at the highest tested mifepristone concentration (215 ng L-1), gene expression analysis revealed up-regulation of mRNA expression of nuclear progesterone receptor (npr), membrane progesterone receptor (mpr), estrogen receptor beta (esrβ), and luteinizing hormone (lh) in the brain-pituitary complex of exposed frogs at stage NF 66. Higher mRNA expression of npr was also found in frogs exposed to 22 ng L-1 mifepristone compared to the solvent control. These findings confirmed the anti-progestogenic activity of mifepristone in frogs because the up-regulation of progesterone receptors occurs if progesterone availability in the body is reduced. All the observed changes in combination may have negative consequences for reproduction and reproductive behavior later in life.
Collapse
Affiliation(s)
- Michal Pech
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic.
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Martin Kocour
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Ilona Prokopová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Marie Šandová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Ilka Lutz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin 12587, Federal Republic of Germany
| | - Hana Kocour Kroupová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| |
Collapse
|
8
|
Šauer P, Vrana B, Escher BI, Grabic R, Toušová Z, Krauss M, von der Ohe PC, König M, Grabicová K, Mikušová P, Prokeš R, Sobotka J, Fialová P, Novák J, Brack W, Hilscherová K. Bioanalytical and chemical characterization of organic micropollutant mixtures in long-term exposed passive samplers from the Joint Danube Survey 4: Setting a baseline for water quality monitoring. ENVIRONMENT INTERNATIONAL 2023; 178:107957. [PMID: 37406370 PMCID: PMC10445204 DOI: 10.1016/j.envint.2023.107957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 07/07/2023]
Abstract
Monitoring methodologies reflecting the long-term quality and contamination of surface waters are needed to obtain a representative picture of pollution and identify risk drivers. This study sets a baseline for characterizing chemical pollution in the Danube River using an innovative approach, combining continuous three-months use of passive sampling technology with comprehensive chemical (747 chemicals) and bioanalytical (seven in vitro bioassays) assessment during the Joint Danube Survey (JDS4). This is one of the world's largest investigative surface-water monitoring efforts in the longest river in the European Union, which water after riverbank filtration is broadly used for drinking water production. Two types of passive samplers, silicone rubber (SR) sheets for hydrophobic compounds and AttractSPETM HLB disks for hydrophilic compounds, were deployed at nine sites for approximately 100 days. The Danube River pollution was dominated by industrial compounds in SR samplers and by industrial compounds together with pharmaceuticals and personal care products in HLB samplers. Comparison of the Estimated Environmental Concentrations with Predicted No-Effect Concentrations revealed that at the studied sites, at least one (SR) and 4-7 (HLB) compound(s) exceeded the risk quotient of 1. We also detected AhR-mediated activity, oxidative stress response, peroxisome proliferator-activated receptor gamma-mediated activity, estrogenic, androgenic, and anti-androgenic activities using in vitro bioassays. A significant portion of the AhR-mediated and estrogenic activities could be explained by detected analytes at several sites, while for the other bioassays and other sites, much of the activity remained unexplained. The effect-based trigger values for estrogenic and anti-androgenic activities were exceeded at some sites. The identified drivers of mixture in vitro effects deserve further attention in ecotoxicological and environmental pollution research. This novel approach using long-term passive sampling provides a representative benchmark of pollution and effect potentials of chemical mixtures for future water quality monitoring of the Danube River and other large water bodies.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Zuzana Toušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Maria König
- UFZ - Helmholtz Centre for Environmental Research, Department of Cell Toxicology, 04318 Leipzig, Germany
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Petra Mikušová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 60300 Brno, Czech Republic
| | - Jaromír Sobotka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Pavla Fialová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, 04318 Leipzig, Germany; Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Straße 13, 60438 Frankfurt/Main, Germany
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
9
|
Luan H, Zhao J, Yang J, Gao X, Song J, Chen X, Cai Q, Yang C, Zhao L, Ji M, Zhai H, Chen Z, Li X, Liu W. Integrated genotoxicity of secondary and tertiary treatment effluents in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161241. [PMID: 36586681 DOI: 10.1016/j.scitotenv.2022.161241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Genotoxic effects on aquatic organisms caused by wastewater discharging have raised extensive concerns. However, the efficiency of various wastewater treatment processes to reduce effluent genotoxicity was not well known. Genotoxic effects of effluents from four secondary wastewater treatment plants (SWTPs) and a tertiary wastewater treatment plant (TTP) in north China on Chinese rare minnows (Gobiocypris rarus) were evaluated and the toxicity reduction efficiency of various treatment techniques was compared. SWTPs and TTP final effluents disturbed the antioxidant system and lipid peroxidation, with malondialdehyde (MDA) contents in the fish livers and gills increasing to 1.4-2.4 folds and 1.6-3.1 folds of control, respectively. Significant increases in erythrocytes micronucleus (MN) frequency were induced by effluent, and liver DNA damage caused by final SWTPs effluent was 29-54 % lower than TTP effluent. Further, DNA repair gene atm and growth arrest gene gadd45a were remarkably upregulated by SWTP and TTP final effluents to 1.8-12 folds and 4.1-15 folds, respectively, being consistent with the chromosomal aberration and DNA damage in liver tissue. Integrated biomarker response (IBR) of the tertiary effluent was 49 %-69 % lower than the secondary effluents. However, the final ozone disinfection at TTP caused an increase in the DNA damage, suggesting the generation of genotoxic by-products. UV disinfection at secondary treatment removed part of genotoxicity, with a reduction in IBR of 0 %-47 %. The total semi-volatile organic compounds (SVOCs) detected in the final effluent contained 5 %-56 % potential genotoxic substances, removal of which was 9 %-51 % lower than non-genotoxic compounds. Microfiltration and reverse osmosis process exhibited good performance in removing both the integrated genotoxicity and the potential genotoxic SVOCs. Our finding shows that TTP is superior than SWTP for wastewater treatment due to higher genotoxicity removal, but ozone disinfection needs improvement by optimizing performance parameters or adding post-treatment processes, to achieve better protection for aquatic organisms against genotoxic contaminants.
Collapse
Affiliation(s)
- Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qinyu Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liqian Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
10
|
Yan Y, Jin K, Huang H, Wang Y, Li T, Wang L, Wang Q, Ren H. Estrogen toxicity reduction of industrial biochemical tailwater by electrolysis biofilters with ceramsite‑sulfur-siderite fillers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161103. [PMID: 36581296 DOI: 10.1016/j.scitotenv.2022.161103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Biochemical tailwater of the industrial park wastewater treatment plant is facing the growing demand of advanced treatment and toxicity reduction. However, existing information on toxicity reduction of real industrial biochemical tailwater is still limited so far. Herein, the water quality of biochemical tailwater from an integrated industrial park in Taihu Lake Basin, China, was systematically investigated, and typical endocrine disrupting chemicals (EDCs) and estrogen toxicity were detected. Estrogen toxicity reduction by previously proposed electrolysis biofilters with ceramsite‑sulfur-siderite fillers was further verified. Results showed that total nitrogen (TN) and estrogen toxicity removal increased by 41.0 % and 30.3 % respectively under the optimal voltage of 4 V and electric loading of 24 h/d, and significantly positive correlation between estrogen toxicity reduction and TN removal (p < 0.05) was observed. The lowest effluent estrogen toxicity was 0.79-0.95 ngE2/L (in estradiol equivalent concentration) by the biofilter with ceramsite‑sulfur-siderite fillers, which was lower than the estrogen disruption effects mass concentration threshold of 1 ng/L. Electrical stimulation promoted the increase of the abundance of denitrifying bacteria Thauera and electroactive bacteria Hydrogenophaga, thus enhancing the removal of TN, furthermore, the abundance of Thiobacillus and Sulfuritalea were significantly correlated with the reduction of estrogen toxicity. The study highlights the potential of electrolysis biofilter in realizing the synergy of estrogen toxicity reduction and autotrophic denitrification of industrial biochemical tailwater, and paves the way for the application of electrolysis biofilter in the advanced purification of industrial biochemical tailwater.
Collapse
Affiliation(s)
- Yujie Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Kai Jin
- Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China.
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China
| | - Tong Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Laichun Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China
| | - Qing Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Yixing Environmental Research Institute of Nanjing University, Yixing 214200, Jiangsu, PR China
| |
Collapse
|
11
|
Neale PA, Escher BI, de Baat ML, Enault J, Leusch FDL. Effect-Based Trigger Values Are Essential for the Uptake of Effect-Based Methods in Water Safety Planning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:714-726. [PMID: 36524849 DOI: 10.1002/etc.5544] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Effect-based methods (EBMs) using in vitro bioassays and well plate-based in vivo assays are recommended for water quality monitoring because they can capture the mixture effects of the many chemicals present in water. Many in vitro bioassays are highly sensitive, so an effect in a bioassay does not necessarily indicate poor chemical water quality. Consequently, effect-based trigger values (EBTs) have been introduced to differentiate between acceptable and unacceptable chemical water quality and are required for the wider acceptance of EBMs by the water sector and regulatory bodies. These EBTs have been derived for both drinking water and surface water to protect human and ecological health, respectively, and are available for assays indicative of specific receptor-mediated effects, as well as assays indicative of adaptive stress responses, apical effects, and receptor-mediated effects triggered by many chemicals. An overview of currently available EBTs is provided, and a simple approach is proposed to predict interim EBTs for assays currently without an EBT based on the effect concentration of the assay reference compound. There was good agreement between EBTs predicted using this simplistic approach and EBTs from the literature derived using more robust methods. Finally, an interpretation framework that outlines the steps to take if the effect of a sample exceeds the EBT was developed to help facilitate the uptake of EBMs in routine water quality monitoring and water safety planning for drinking water production. Environ Toxicol Chem 2023;42:714-726. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
- Department of Cell Toxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
- Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Milo L de Baat
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
12
|
Kocour Kroupová H, Grimaldi M, Šauer P, Bořík A, Zálohová K, Balaguer P. Environmental water extracts differentially activate zebrafish and human nuclear progesterone receptors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160232. [PMID: 36402315 DOI: 10.1016/j.scitotenv.2022.160232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Many reports on anti-progestogenic activities in aquatic environments have been published in the past decade. These are monitored mainly by in vitro reporter gene bioassays based upon the human progesterone receptor (PR). However, results obtained by some human in vitro bioassays may not be relevant for aquatic animals, especially fish. The present work aimed to detect fish (anti-)PR activity in waste- and receiving surface waters. In parallel, human (anti-)PR activity was analysed to determine if there was any connection between human and fish (anti-)PR activities. Finally, (anti-)PR activities were linked to the occurrence of progestins in water samples. Human PR agonistic activity was detected in all wastewater and most receiving surface water samples. Nevertheless, zebrafish PR (zfPR) agonistic activity was found in only two influent wastewater samples (max. 117 ng/L 17α,20β-dihydroxy-4-pregnen-3-one [DHP] equivalents). Analysed synthetic progestins and progesterone accounted for 14 % to 161 % of detected human PR (hPR) agonistic activity in water samples. Progesterone also contributed significantly to zfPR agonistic activity (up to 10 %) in raw wastewater. The anti-hPR activity was detected also in most wastewater and some surface water samples, but synthetic progestins did not trigger anti-zfPR activity in excess of LOQ values. In addition, altrenogest, dienogest, and ulipristal acetate were tested for their potency to zfPR for the first time. The activity analyses of both pure substances and environmental samples showed that human and zebrafish progesterone receptors are differentially activated. Therefore, results based on human PR in vitro bioassays could not predict fish PR activities in the environment.
Collapse
Affiliation(s)
- Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194 - Université Montpellier - Institut régional du Cancer Montpellier, F-34298 Montpellier Cedex 5, France
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Klára Zálohová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194 - Université Montpellier - Institut régional du Cancer Montpellier, F-34298 Montpellier Cedex 5, France
| |
Collapse
|
13
|
Choi Y, Jung EY, Lee W, Choi S, Son H, Lee Y. In vitro bioanalytical assessment of the occurrence and removal of bioactive chemicals in municipal wastewater treatment plants in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159724. [PMID: 36306847 DOI: 10.1016/j.scitotenv.2022.159724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Effluents of wastewater treatment plants (WWTPs) contain various organic micropollutants, some of which can exert negative effects on the quality of receiving waters or drinking water sources. This study monitored two full-scale WWTPs in Korea for the occurrence and removal of bioactive chemicals for a one-year period using a battery of in vitro bioassays as a complementary approach to chemical analysis. Bioassays covering different endpoints were employed, such as hormone receptor activation (AR and ERα), xenobiotic metabolism (PAH and PXR), oxidative stress response (Nrf2), and cytotoxicity. The WWTP influents showed AR, ERα, and PAH activities at ng/L - μg/L and PXR and Nrf2 activities at μg/L - mg/L as bioanalytical equivalent concentrations of a reference compound for each bioassay. These bioactivities decreased along with the WWTP treatment train, with significant removals achieved by the secondary biological treatment processes. Cytotoxicity was observed only for some municipal wastewater (M-WWTP) influents but was below the limit of quantification for most cases. The influent and effluent bioactivities observed in this study were mostly comparable to those reported in other WWTPs in the literature. Comparison of the bioactivities with the effect-based trigger (EBT) values indicates that the impact of WWTP effluents on receiving water quality was low for most endpoints. For Nrf2, however, further investigation is required to evaluate the observed high bioactivities compared with the current EBT. The observed ERα activity could partly be explained by the presence of some steroid estrogens. Overall, our results contribute to an important database for the concentrations and removal efficiencies of bioactive chemicals in WWTPs and demonstrate bioassays as a useful tool for urban water quality monitoring.
Collapse
Affiliation(s)
- Yegyun Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eun-Young Jung
- Water Quality Institute, Busan Water Authority, Kimhae 50804, Republic of Korea
| | - Woorim Lee
- Water Quality Institute, Busan Water Authority, Kimhae 50804, Republic of Korea; Environment & Energy Research Laboratory, Research Institute of Industrial Science and Technology (RIST), Pohang 37673, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Busan Water Authority, Kimhae 50804, Republic of Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
14
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
15
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
16
|
Yang Y, Zhang X, Jiang J, Han J, Li W, Li X, Yee Leung KM, Snyder SA, Alvarez PJJ. Which Micropollutants in Water Environments Deserve More Attention Globally? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13-29. [PMID: 34932308 DOI: 10.1021/acs.est.1c04250] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Increasing chemical pollution of aquatic environments is a growing concern with global relevance. A large number of organic chemicals are termed as "micropollutants" due to their low concentrations, and long-term exposure to micropollutants may pose considerable risks to aquatic organisms and human health. In recent decades, numerous treatment methods and technologies have been proposed to remove micropollutants in water, and typically several micropollutants were chosen as target pollutants to evaluate removal efficiencies. However, it is often unclear whether their toxicity and occurrence levels and frequencies enable them to contribute significantly to the overall chemical pollution in global aquatic environments. This review intends to answer an important lingering question: Which micropollutants or class of micropollutants deserve more attention globally and should be removed with higher priority? Different risk-based prioritization approaches were used to address this question. The risk quotient (RQ) method was found to be a feasible approach to prioritize micropollutants in a large scale due to its relatively simple assessment procedure and extensive use. A total of 83 prioritization case studies using the RQ method in the past decade were compiled, and 473 compounds that were selected by screening 3466 compounds of three broad classes (pharmaceuticals and personal care products (PPCPs), pesticides, and industrial chemicals) were found to have risks (RQ > 0.01). To determine the micropollutants of global importance, we propose an overall risk surrogate, that is, the weighted average risk quotient (WARQ). The WARQ integrates the risk intensity and frequency of micropollutants in global aquatic environments to achieve a more comprehensive priority determination. Through metadata analysis, we recommend a ranked list of 53 micropollutants, including 36 PPCPs (e.g., sulfamethoxazole and ibuprofen), seven pesticides (e.g., heptachlor and diazinon), and 10 industrial chemicals (e.g., perfluorooctanesulfonic acid and 4-nonylphenol) for risk management and remediation efforts. One caveat is that the ranked list of global importance does not consider transformation products of micropollutants (including disinfection byproducts) and new forms of pollutants (including antibiotic resistance genes and microplastics), and this list of global importance may not be directly applicable to a specific region or country. Also, it needs mentioning that there might be no best answer toward this question, and hopefully this review can act as a small step toward a better answer.
Collapse
Affiliation(s)
- Yun Yang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong China
| | - Shane A Snyder
- Nanyang Technological University, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
18
|
Oskarsson A, Rosenmai AK, Mandava G, Johannisson A, Holmes A, Tröger R, Lundqvist J. Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays - Oxidative stress and antiandrogenic effects after artificial infiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144001. [PMID: 33338789 DOI: 10.1016/j.scitotenv.2020.144001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Drinking water quality and treatment efficacy was investigated in seven drinking water treatment plants (DWTPs), using water from the river Göta Älv, which also is a recipient of treated sewage water. A panel of cell-based bioassays was used, including measurements of receptor activity of aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), peroxisome proliferator-activated receptor alpha (PPARα) as well as induction of oxidative stress (Nrf2) and micronuclei formation. Grab water samples were concentrated by solid phase extraction (SPE) and water samples were analyzed at a relative enrichment factor of 50. High activities of AhR, ER and AR antagonism were present in WWTP outlets along the river. Inlet water from the river exhibited AhR and AR antagonistic activities. AhR activity was removed by DWTPs using granulated activated carbon (GAC) and artificial infiltration. AR antagonistic activity was removed by the treatment plants, except the artificial infiltration plant, which actually increased the activity. Furthermore, treated drinking water from the DWTP using artificial infiltration exhibited high Nrf2 activity, which was not found in any of the other water samples. Nrf2 activity was found in water from eight of the 13 abstraction wells, collecting water from the artificial infiltration. No genotoxic activity was detected at non-cytotoxic concentrations. No Nrf2 or AR antagonistic activities were detected in the inlet or outlet water after the DWTP had been replaced by a new plant, using membrane ultrafiltration and GAC. Neither target chemical analysis, nor chemical analysis according to the drinking water regulation, detected any presence of chemicals, which could be responsible of the prominent effects on oxidative stress and AR antagonistic activity in the drinking water samples. Thus, bioanalysis is a useful tool for detection of unknown hazards in drinking water and for assessment of drinking water treatments.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Andrew Holmes
- Kungälv Drinking Water Treatment Plant, Filaregatan 15, SE-442 81 Kungälv, Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
19
|
Brennan JC, Gale RW, Alvarez DA, Berninger JP, Leet JK, Li Y, Wagner T, Tillitt DE. Factors Affecting Sampling Strategies for Design of an Effects-Directed Analysis for Endocrine-Active Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1309-1324. [PMID: 32362034 DOI: 10.1002/etc.4739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 05/26/2023]
Abstract
Effects-directed analysis (EDA) is an important tool for identifying unknown bioactive components in a complex mixture. Such an analysis of endocrine-active chemicals (EACs) from water sources has promising regulatory implications but also unique logistical challenges. We propose a conceptual EDA (framework) based on a critical review of EDA literature and concentrations of common EACs in waste and surface waters. Required water volumes for identification of EACs under this EDA framework were estimated based on bioassay performance (in vitro and in vivo bioassays), limits of quantification by mass spectrometry (MS), and EAC water concentrations. Sample volumes for EDA across the EACs showed high variation in the bioassay detectors, with genistein, bisphenol A, and androstenedione requiring very high sample volumes and ethinylestradiol and 17β-trenbolone requiring low sample volumes. Sample volume based on the MS detector was far less variable across the EACs. The EDA framework equation was rearranged to calculate detector "thresholds," and these thresholds were compared with the literature EAC water concentrations to evaluate the feasibility of the EDA framework. In the majority of instances, feasibility of the EDA was limited by the bioassay, not MS detection. Mixed model analysis showed that the volumes required for a successful EDA were affected by the potentially responsible EAC, detection methods, and the water source type, with detection method having the greatest effect on the EDA of estrogens and androgens. The EDA framework, equation, and model we present provide a valuable tool for designing a successful EDA. Environ Toxicol Chem 2020;39:1309-1324. © 2020 SETAC.
Collapse
Affiliation(s)
- Jennifer C Brennan
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Robert W Gale
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - David A Alvarez
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jason P Berninger
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Jessica K Leet
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Yan Li
- North Carolina Division of Marine Fisheries, North Carolina Department of Environmental Quality, Morehead City, North Carolina, USA
| | - Tyler Wagner
- Pennsylvania Cooperative Fish and Wildlife Research Unit, US Geological Survey, Pennsylvania State University, University Park, Pennsylvania
| | - Donald E Tillitt
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| |
Collapse
|
20
|
Liu X, Ma XY, Dong K, Zheng K, Wang X. Investigating the origins of acute and long-term toxicity posed by municipal wastewater using fractionation. ENVIRONMENTAL TECHNOLOGY 2020; 41:2350-2359. [PMID: 30623729 DOI: 10.1080/09593330.2019.1567602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
It has been proven that the raw wastewater, secondary effluent and even reclaimed water may have toxic effects on aquatic organisms. In the present study, fractionation procedures combined with bioassays using luminescent bacteria were conducted to identify the fractions that contributed to the acute and long-term toxicity of municipal wastewater. Solid phase extraction was used to divide dissolved organic matter from the wastewater into three fractions, including non-polar, medium-polar and polar fraction. Among these fractions, although the acute toxicity of municipal wastewater was mainly caused by polar and medium-polar chemicals, the acute toxicity induced by the unit mass of the medium-polar fraction was the greatest. Using three kinds of resins, the organic substances in municipal wastewater were classified into six fractions, and the long-term toxicity of these fractions was further identified. The long-term toxicity of the hydrophobic neutrals, which were the primary toxic substances in raw wastewater, decreased after the conventional secondary biological treatment. Hydrophilic neutrals, which accounted for the majority of organic substances in the secondary effluent, were the main substances with long-term toxicity in the secondary effluent. The identification of fractions with acute and long-term toxicity in municipal wastewater is beneficial for further treatment to attenuate the ecotoxicity of wastewater before discharge into the aquatic environment.
Collapse
Affiliation(s)
- Xiaokun Liu
- Xi'an Municipal Engineering Design & Research Institute Co., Ltd., Xi'an, People's Republic of China
| | - Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Ke Dong
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Kai Zheng
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| | - Xiaochang Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Xi'an University of Architecture and Technology, School of environment and municipal engineering, Xi'an, People's Republic of China
| |
Collapse
|
21
|
Pochiraju SS, Linden K, Gu AZ, Rosenblum J. Development of a separation framework for effects-based targeted and non-targeted toxicological screening of water and wastewater. WATER RESEARCH 2020; 170:115289. [PMID: 31785562 DOI: 10.1016/j.watres.2019.115289] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 05/25/2023]
Abstract
An environmental water sample fractionation framework was developed based on effects-directed analysis (EDA) to detect known and unknown compounds of concern in different waters. Secondary effluent from a wastewater treatment plant was used to demonstrate the effectiveness of the developed framework for characterizing estrogenic compounds in the effluent. The effluent was spiked with known estrogenic compounds to validate the framework in a targeted approach and an unspiked sample was also investigated in a non-targeted approach. The framework separated compounds based on polarity and adsorption using liquid-liquid extraction followed by solid phase extraction. The targeted and non-targeted effluents generated six fractions each, which were assessed for estrogenic activity using an in vitro bioassay (yeast estrogen screen - YES). Three out of the six fractions in each case, along with the raw effluent, showed estrogen equivalent concentrations (EEQs) ranging between 1.0 and 3.0 μg/L. Directed by the assay results, these estrogenic fractions were further analyzed using liquid- and gas-chromatography coupled with mass spectrometry for compound identification. The developed separation framework coupled with a bioassay aided in identification of both known and unknown compounds producing estrogenic effects in the water sample. The approach of fractionation followed by concentration helped isolate and elevate contaminant levels without necessarily concentrating potential matrix effects that could cause interfering cytotoxicity and inhibition in the bioassay. The targeted analysis showed consistency between predicted and observed results, while the non-targeted analysis revealed the presence of three estrogenic compounds in the unspiked effluent: di-isobutyl phthalate, diethyl phthalate and benzophenone, that were confirmed with standards. The study mainly aimed at development and validation of a simple yet effective EDA framework with low cost techniques for water and wastewater toxicity screening and evaluation, and the results suggested that the developed framework could be used as a screening tool for isolating and identifying unknown compounds in a complex water sample.
Collapse
Affiliation(s)
- Susheera S Pochiraju
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Karl Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - April Z Gu
- Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - James Rosenblum
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
22
|
Xu J, Wei D, Wang F, Bai C, Du Y. Bioassay: A useful tool for evaluating reclaimed water safety. J Environ Sci (China) 2020; 88:165-176. [PMID: 31862058 DOI: 10.1016/j.jes.2019.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wastewater reclamation and reuse has been proved to be an effective way to relieve the fresh water crisis. However, toxic contaminants remaining in reclaimed water could lead to potential risk for reuse, and the conventional water quality standards have difficulty guaranteeing the safety of reclaimed water. Bioassays can vividly reflect the integrated biological effects of multiple toxic substances in water as a whole, and could be a powerful tool for evaluating the safety of reclaimed water. Therefore, in this study, the advantages and disadvantages of using bioassays for evaluating the safety of reclaimed water were compared with those of conventional water quality standards. Although bioassays have been widely used to describe the toxic effects of reclaimed water and treatment efficiency of reclamation techniques, a single bioassay cannot reflect the complex toxicity of reclaimed water, and a battery of bioassays involving multiple biological effects or in vitro tests with specific toxicity mechanisms would be recommended. Furthermore, in order to evaluate the safety of reclaimed water based on bioassay results, various methods including potential toxicology, the toxicity unit classification system, and a potential eco-toxic effects probe are summarized as well. Especially, some integrated ranking methods based on a bioassay battery involving multiple toxicity effects are recommended as useful tools for evaluating the safety of reclaimed water, which will benefit the promotion and guarantee the rapid development of the reclamation and reuse of wastewater.
Collapse
Affiliation(s)
- Jianying Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feipeng Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenzhong Bai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Vonk JA, Kraak MHS. Herbicide Exposure and Toxicity to Aquatic Primary Producers. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 250:119-171. [PMID: 32945954 DOI: 10.1007/398_2020_48] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of the present review was to give an overview of the current state of science concerning herbicide exposure and toxicity to aquatic primary producers. To this end we assessed the open literature, revealing the widespread presence of (mixtures of) herbicides, inevitably leading to the exposure of non-target primary producers. Yet, herbicide concentrations show strong temporal and spatial variations. Concerning herbicide toxicity, it was concluded that the most sensitive as well as the least sensitive species differed per herbicide and that the observed effect concentrations for some herbicides were rather independent from the exposure time. More extensive ecotoxicity testing is required, especially considering macrophytes and marine herbicide toxicity. Hence, it was concluded that the largest knowledge gap concerns the effects of sediment-associated herbicides on primary producers in the marine/estuarine environment. Generally, there is no actual risk of waterborne herbicides to aquatic primary producers. Still, median concentrations of atrazine and especially of diuron measured in China, the USA and Europe represented moderate risks for primary producers. Maximum concentrations due to misuse and accidents may even cause the exceedance of almost 60% of the effect concentrations plotted in SSDs. Using bioassays to determine the effect of contaminated water and sediment and to identify the herbicides of concern is a promising addition to chemical analysis, especially for the photosynthesis-inhibiting herbicides using photosynthesis as endpoint in the bioassays. This review concluded that to come to a reliable herbicide hazard and risk assessment, an extensive catch-up must be made concerning macrophytes, the marine environment and especially sediment as overlooked and understudied environmental compartments.
Collapse
Affiliation(s)
- J Arie Vonk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Shen X, Chang H, Sun Y, Wan Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. ENVIRONMENT INTERNATIONAL 2020; 134:105278. [PMID: 33387883 DOI: 10.1016/j.envint.2019.105278] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Glucocorticoids (GCs) have been increasingly reported to have adverse effects on aquatic organisms, but the lack of comprehensive analytical methods for a broad number of GCs has limited the effective management of pollution by these molecules in surface and coastal waters. In this study, we developed an original analytical method for simultaneously monitoring 25 natural GCs, and 43 synthetic GCs (4 hydrocortisone types, 6 acetonide types, 8 betamethasone types, 14 halogenated esters, and 11 labile prodrug esters) in water samples. Of the river samples investigated, 15 natural and 25 synthetic compounds were detected with the concentrations ranging from 0.13 ng/L (11-epitetrahydrocortisol) to 433 ng/L (cortisone) and from 0.05 (clobetasol) to 94 ng/L (prednisolone), respectively. Thirteen natural metabolites of cortisol (CRL) were first detected, and their concentrations were up to 36 times higher than that of CRL. Hydrocortisone-type GCs were the dominant synthetic compounds (≤154 ng/L), followed by halogenated esters (≤81 ng/L), acetonide type GCs (≤57 ng/L), betamethasone type GCs (≤32 ng/L), and labile prodrug esters (≤22 ng/L). Considering the relative potencies for detected GCs compared to dexamethasone, halogenated esters predominantly contributed to the GC activities in the samples. Notably, this is the first report of the halogenated esters 11-oxo fluticasone propionate (OFP) and cloticasone propionate (CTP) in environmental waters. Untreated wastewater is the main source of GCs in the studied waters, and the concentration ratios between natural and synthetic GCs can be used as potential indicators of sewage input. Because of the high detected concentrations and bioactivity potency of halogenated GCs, they are the main contributors to GC activities in the studied waters, and deserved more study in the future.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yu Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Procházka E, Melvin SD, Escher BI, Plewa MJ, Leusch FD. Global Transcriptional Analysis of Nontransformed Human Intestinal Epithelial Cells (FHs 74 Int) after Exposure to Selected Drinking Water Disinfection By-Products. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:117006. [PMID: 31755747 PMCID: PMC6927499 DOI: 10.1289/ehp4945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Drinking water disinfection inadvertently leads to the formation of numerous disinfection by-products (DBPs), some of which are cytotoxic, mutagenic, genotoxic, teratogenic, and potential carcinogens both in vitro and in vivo. OBJECTIVES We investigated alterations to global gene expression (GE) in nontransformed human small intestine epithelial cells (FHs 74 Int) after exposure to six brominated and two chlorinated DBPs: bromoacetic acid (BAA), bromoacetonitrile (BAN), 2,6-dibromo-p-benzoquinone (DBBQ), bromoacetamide (BAM), tribromoacetaldehyde (TBAL), bromate (BrO3-), trichloroacetic acid (TCAA), and trichloroacetaldehyde (TCAL). METHODS Using whole-genome cDNA microarray technology (Illumina), we examined GE in nontransformed human cells after 4h exposure to DBPs at predetermined equipotent concentrations, identified significant changes in gene expression (p≤0.01), and investigated the relevance of these genes to specific toxicity pathways via gene and pathway enrichment analysis. RESULTS Genes related to activation of oxidative stress-responsive pathways exhibited fewer alterations than expected based on prior work, whereas all DBPs induced notable effects on transcription of genes related to immunity and inflammation. DISCUSSION Our results suggest that alterations to genes associated with immune and inflammatory pathways play an important role in the potential adverse health effects of exposure to DBPs. The interrelationship between these pathways and the production of reactive oxygen species (ROS) may explain the common occurrence of oxidative stress in other studies exploring DBP toxicity. Finally, transcriptional changes and shared induction of toxicity pathways observed for all DBPs caution of additive effects of mixtures and suggest further assessment of adverse health effects of mixtures is warranted. https://doi.org/10.1289/EHP4945.
Collapse
Affiliation(s)
- Erik Procházka
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Steven D. Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - Beate I. Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Environmental Toxicology, Centre for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Michael J. Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Frederic D.L. Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Zhang Z, Liu W, Hu J, Qu Y, Zhao J, Pan Y, Zhang X, Quan X. Surface water extracts impair gene profiles and differentiation in human mesenchymal stem cells. ENVIRONMENT INTERNATIONAL 2019; 132:104823. [PMID: 31445443 DOI: 10.1016/j.envint.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Low concentrations of pollutants in surface water challenge the assessment of chronic effects on human health. Human bone mesenchymal stem cells (hBMSCs) were employed as a sensitive and relevant in vitro model to evaluate the potential biological effects caused by mixtures of pollutants in surface water. Organic extracts of surface water collected from Hun River inhibited cell viability in a dose-dependent manner. Surface water extracts at noncytotoxic concentrations induced 533 to 1055 differentially expressed genes (DEGs) in hBMSCs after 48 h of exposure. Total of 370 genes were commonly affected by surface water from different sites and accounted for 35-69% of DEGs impaired by individual sample. Pathways related to human diseases, genetic information processing and organismal systems were enriched based on DEGs. Interleukins (IL1B, IL6 and IL8) were affected and involved in most human diseases related pathways. The significantly downregulation of COL1A1 and the variation of rheumatoid arthritis pathway suggested that surface water potentially inhibited osteogenic differentiation of hBMSCs. Clustering analysis and principle component analysis with DEGs distinguish the surface water from tributary and mainstream. The crossing-species comparison of transcriptomic changes identified 923 and 2715 differentially expressed orthologs in hBMSCs and zebrafish, respectively. After the exposure ceased, the followed osteogenic and adipogenic differentiation in hBMSCs for 14 days were inhibited by the treatment of surface water during undifferentiated period, whereas the non-polar fraction exhibited stronger potency in affecting differentiation than the mid to polar fractions. hBMSCs, combining unsupervised transcriptomic technique and specific endpoints test, are promising in screening the health effects of environmental mixtures in surface water.
Collapse
Affiliation(s)
- Zhou Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Junxiang Hu
- Liaoning Environmental Monitoring Experiment Center, Shenyang 110031, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yifan Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
|
28
|
Recent developments and concepts of effect-based methods for the detection of endocrine activity and the importance of antagonistic effects. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
An Y, Zheng H, Zheng X, Sun Q, Zhou Y. Use of a floating adsorbent to remove dyes from water: A novel efficient surface separation method. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:138-148. [PMID: 31054531 DOI: 10.1016/j.jhazmat.2019.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 04/18/2019] [Indexed: 05/17/2023]
Abstract
In this study, our group grafted 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto the surface of hollow glass microspheres (HGM) and successfully prepared AMPS grafted floating adsorbent (AFA). The prepared AFA carries a large amount of negative charges, and the adsorptions of cationic dyes are achieved under the action of strong electrostatic interaction. Furthermore, due to the unique shell structure of AFA, it has a stable self-floating ability, which may change the traditional separation method to make the adsorbent easier to enrich and separate from water surface. Characterizations of AFA by scanning electron microscope, energy dispersive spectrometry, X-ray photoelectron spectroscopy. Fourier transform infrared spectra, Brunauer-Emmett-Teller surface areas, thermogravimetric analysis, and X-ray diffractometer shows the successful grafting of AMPS. Adsorption experiments confirmed that the adsorption capacities of AFA for methylene blue, malachite green, basic fuchsin and crystal violet under optimum conditions were 436.8 mg g-1, 637.6 mg g-1, 457.8 mg g-1, and 399.4 mg g-1, respectively. At the same time, AFA has excellent recyclability, and its adsorption capacity can be maintained after 6 cycles of reuse.
Collapse
Affiliation(s)
- Yanyan An
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Xinyu Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Qiang Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yuhao Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
30
|
De Baat ML, Kraak MHS, Van der Oost R, De Voogt P, Verdonschot PFM. Effect-based nationwide surface water quality assessment to identify ecotoxicological risks. WATER RESEARCH 2019; 159:434-443. [PMID: 31125803 DOI: 10.1016/j.watres.2019.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 05/26/2023]
Abstract
A large portion of the toxic effects observed in surface waters cannot be attributed to compounds regularly measured by water authorities. Hence, there is an urgent need for an effect-based monitoring strategy that employs bioassays to identify environmental risks. The aim of the present study was to perform an effect-based nationwide water quality assessment to identify ecotoxicological risks in a wide variety of surface waters. At 45 locations silicone rubbers and polar organic chemical integrative samplers were exposed to surface water for 6 weeks. Alongside the passive samplers an in-situ daphnid test was performed. Subsequent to field exposure, accumulated compounds were extracted from the passive samplers after which a battery of in vivo and in vitro bioassays was exposed to the extracts. The bioassay battery was selected such that it could identify the risks posed by a wide range of chemical pollutants and their transformation products, while simultaneously allowing for targeted identification of groups of compounds that cause specific effects. Bioassay responses were compared to effect-based trigger values to identify potential ecotoxicological risks at the investigated locations. Responses were observed in all bioassays, and trigger values were exceeded in 9 out of the 21 applied assays, allowing for ranking of the investigated locations based on ecotoxicological risks. No relationship between land use and the identification of ecotoxicological risks was observed. Based on the results, considerations regarding future improvements of effect-based monitoring are given. It is concluded that effect-based water quality assessment allowed prioritization of sites based on ecotoxicological risks, identified the presence of hazardous compounds regardless of being listed as priority substances, and meanwhile could prevent costly chemical analysis at sites with low ecotoxicological risks.
Collapse
Affiliation(s)
- M L De Baat
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands.
| | - M H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands
| | - R Van der Oost
- Department of Technology, Research and Engineering, Waternet Institute for the Urban Water Cycle, Amsterdam, the Netherlands
| | - P De Voogt
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands; KWR Watercycle Research Institute, Nieuwegein, the Netherlands
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands; Wageningen Environmental Research, Wageningen, UR, the Netherlands
| |
Collapse
|
31
|
Ma XY, Wang Y, Dong K, Wang XC, Zheng K, Hao L, Ngo HH. The treatability of trace organic pollutants in WWTP effluent and associated biotoxicity reduction by advanced treatment processes for effluent quality improvement. WATER RESEARCH 2019; 159:423-433. [PMID: 31121410 DOI: 10.1016/j.watres.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
As increasing attention is paid to surface water protection, there has been demand for improvements of domestic wastewater treatment plant (WWTP) effluent. This has led to the application of many different advanced treatment processes (ATPs). In this study, the treatability of trace organic pollutants in secondary effluent (SE) and associated biotoxicity reduction by four types of ATPs, including coagulation, granular activated carbon (GAC) adsorption, ultraviolet (UV) photolysis and photocatalysis, and ozonation, were investigated at the bench-scale. The ATPs showed different removal capacity for the 48 chemicals, which were classified into seven categories. EDCs, herbicides, bactericides and pharmaceuticals were readily degraded, and insecticides, flame retardants, and UV filters were relatively resistant to removal. During these processes, the efficiency of the ATPs in reducing four biological effects were investigated. Of the four biological effects, the estrogenic activity from SE was not detected using the yeast estrogen screen. In contrast with genotoxicity and photosynthesis inhibition, bacterial cytotoxicity posed by SE was the most difficult biological effect to reduce with these ATPs. GAC adsorption and ozonation were the most robust treatment processes for reducing the three detected biotoxicities. UV photolysis and photocatalysis showed comparable efficiencies for the reduction of genotoxicity and photosynthesis inhibition. However, coagulation only performed well in genotoxicity reduction. The effect-based trigger values for the four bioassays, that were derived from the existing environmental quality standards and from HC5 (hazardous concentration for 5% of aquatic organisms), were all used to select and optimize these ATPs for ecological safety. Conducting ATPs in more appropriate ways could eliminate the negative effects of WWTP effluent on receiving water bodies.
Collapse
Affiliation(s)
- Xiaoyan Y Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China.
| | - Yongkun Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Ke Dong
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China.
| | - Kai Zheng
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Liwei Hao
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, Shaanxi Province, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
32
|
Finlayson KA, Leusch FDL, van de Merwe JP. Cytotoxicity of organic and inorganic compounds to primary cell cultures established from internal tissues of Chelonia mydas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:958-967. [PMID: 30769319 DOI: 10.1016/j.scitotenv.2019.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Chemical contaminants have been found in the tissues of sea turtles from all over the world; however, very little is known about the effects. Recently, in vitro alternatives to live animal testing have been applied to sea turtles due to their ethical and practical benefits. While primary skin fibroblasts have been established for several species of sea turtle, cells from internal organs are lacking, though they may be more relevant due to the well documented accumulation of contaminants within internal tissues. This study established primary cell cultures from the small intestine, heart, liver, ovary and skin of green turtles (Chelonia mydas). Cells were exposed to ten contaminants typically found in sea turtles to examine potential variations in sensitivity among cells established from different organs. Differences between cells established from different animals were also examined, including a comparison of cells established from a turtle with fibropapillomatosis (FP) and healthy turtles. Loggerhead (Caretta caretta) primary skin cells were also included for species comparisons. Significant differences were found between the organ types, with liver and heart being the least sensitive, and skin being the most sensitive. Overall, variation between the organ types was low. Primary skin fibroblasts may be a suitable and representative cell type for in vitro turtle toxicology research, as it is relatively easy to obtain from healthy live animals. Skin cultures provide a more sensitive indication of effect, and could be used as an early warning of the potential effects of chemical contamination. Some species differences were found but no differences were found between cell cultures from an FP turtle and healthy turtles. When EC50 values were compared to accumulation values from the literature, inorganic contaminants, such as Zn, Cd, Cr, Hg, and Cu were identified as posing a potential risk to sea turtle populations around the world.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
33
|
Tran TKA, Yu RMK, Islam R, Nguyen THT, Bui TLH, Kong RYC, O'Connor WA, Leusch FDL, Andrew-Priestley M, MacFarlane GR. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1067-1078. [PMID: 31091639 DOI: 10.1016/j.envpol.2019.02.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Thi Hong Tham Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Thi Lien Ha Bui
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Experimental Biology, Research Institute for Aquaculture No 2, Viet Nam
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment and Science, Griffith University, QLD, 4111, Australia
| | | | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
34
|
Leusch FDL, Neale PA, Busetti F, Card M, Humpage A, Orbell JD, Ridgway HF, Stewart MB, van de Merwe JP, Escher BI. Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1480-1490. [PMID: 30677914 DOI: 10.1016/j.scitotenv.2018.12.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting compounds (EDCs) are frequently detected in drinking water sources. This raises concerns about the formation of potentially more toxic transformation products (TPs) after drinking water disinfection. This study applied a combination of computational and experimental methods to investigate the biological activity of eight EDCs and PPCPs commonly detected in source waters (acetaminophen, bisphenol A, carbamazepine, estrone, 17α-ethinylestradiol, gemfibrozil, naproxen and triclosan) before and after disinfection. Using a Stepped Forced Molecular Dynamics (SFMD) method, we detected 911 unique TPs, 36% of which have been previously reported in the scientific literature. We calculated the likelihood that TPs would cause damage to biomolecules or DNA relative to the parent compound based on lipophilicity and the occurrence of structural alerts, and applied two Quantitative Structure-Activity Relationship (QSAR) tools to predict toxicity via receptor-mediated effects. In parallel, batch experiments were performed with three disinfectants, chlorine, chlorine dioxide and chloramine. After solid-phase extraction, the resulting TP mixtures were analyzed by chemical analysis and a battery of eleven in vitro bioassays covering a variety of endpoints. The laboratory results were in good agreement with the predictions. Overall, the combination of computational and experimental chemistry and toxicity methods used in this study suggest that disinfection of the studied EDCs and PPCPs will produce a large number of TPs, which are unlikely to increase specific toxicity (e.g., endocrine activity), but may result in increased reactive and non-specific toxicity.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Francesco Busetti
- Curtin Water Quality Research Centre, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Marcella Card
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Qld 4102, Australia
| | - Andrew Humpage
- Australian Water Quality Centre, SA Water, Adelaide, SA, Australia
| | - John D Orbell
- Institute for Sustainable Industries & Livable Cities (ISILC), College of Engineering & Science, Victoria University, Melbourne, Vic, Australia
| | | | - Matthew B Stewart
- Institute for Sustainable Industries & Livable Cities (ISILC), College of Engineering & Science, Victoria University, Melbourne, Vic, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Qld 4102, Australia; UFZ - Helmholtz Centre for Environmental Research, Cell Toxicology, 04318 Leipzig, Germany
| |
Collapse
|
35
|
Pedrazzani R, Bertanza G, Brnardić I, Cetecioglu Z, Dries J, Dvarionienė J, García-Fernández AJ, Langenhoff A, Libralato G, Lofrano G, Škrbić B, Martínez-López E, Meriç S, Pavlović DM, Papa M, Schröder P, Tsagarakis KP, Vogelsang C. Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3202-3221. [PMID: 30463169 DOI: 10.1016/j.scitotenv.2018.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123 Brescia, Italy.
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Ivan Brnardić
- Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44103 Sisak, Croatia.
| | - Zeynep Cetecioglu
- Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium.
| | - Jolanta Dvarionienė
- Kaunas University of Technology, Institute of Environmental Engineering, Gedimino str. 50, 44239 Kaunas, Lithuania.
| | - Antonio J García-Fernández
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands.
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia ed. 7, 80126 Naples, Italy.
| | - Giusy Lofrano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy.
| | - Biljana Škrbić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Emma Martínez-López
- Department of Toxicology, Faculty of Veterinary Medicine, University of Murcia, 30100, Campus of Espinardo, Spain.
| | - Süreyya Meriç
- Çorlu Engineering Faculty, Environmental Engineering Department, Namik Kemal University, Çorlu, 59860, Tekirdağ, Turkey.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia.
| | - Matteo Papa
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze, 43 and University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", University of Brescia, 25123, Italy.
| | - Peter Schröder
- Helmholtz-Center for Environmental Health GmbH, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
| | - Konstantinos P Tsagarakis
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece.
| | - Christian Vogelsang
- Norwegian Institute for Water Research, Gaustadalleen 21, 0349 Oslo, Norway.
| |
Collapse
|
36
|
de Vasconcelos Lima M, de Siqueira WN, Silva HAMF, de Melo Lima Filho J, de França EJ, de Albuquerque Melo AMM. Cytotoxic and genotoxic effect of oxyfluorfen on hemocytes of Biomphalaria glabrata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3350-3356. [PMID: 30506409 DOI: 10.1007/s11356-018-3848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Chemicals released from anthropogenic activities such as industry and agriculture often end up in aquatic ecosystems. These substances can cause serious damage to these ecosystems, thus threatening the conservation of biodiversity. Among these substances are pesticides, such as oxyfluorfen, a herbicide used for the control of grasses and weeds. Considering its widespread use, it is important to investigate the possible toxicity of this compound to aquatic organisms, especially invertebrates. Hence, the use of biological systems able to detect such effects is of great importance. The mollusk Biomphalaria glabrata has been shown to be useful as an environmental indicator to assess the potential ecological effects of physical and chemical stressors in freshwater environments. The present study sought to detect mutagenic changes in hemocytes of B. glabrata exposed to oxyfluorfen. To perform these tests, this study used ten animals per group, exposed acutely (48 h) and chronically (15 days) to oxyfluorfen. The herbicide concentrations were 0.125, 0.25, and 0.5 mg/L. The results showed that oxyfluorfen induced significant frequencies of micronuclei, binucleated cells, and apoptosis in hemocytes of mollusks when compared to the control group. Unlike chronic exposure, acute exposure was dose-dependent. The present study's results demonstrate the cytotoxic and genotoxic effects of oxyfluorfen on hemocytes of B. glabrata.
Collapse
Affiliation(s)
- Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Hianna Arely Milca Fagundes Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - José de Melo Lima Filho
- Grupo de Dosimetria Numérica, Instituto Federal de Educação Ciência e Tecnologia de Pernambuco, Recife, Pernambuco, 50740-540, Brazil
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| |
Collapse
|
37
|
de Baat ML, Bas DA, van Beusekom SAM, Droge STJ, van der Meer F, de Vries M, Verdonschot PFM, Kraak MHS. Nationwide screening of surface water toxicity to algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:780-787. [PMID: 30031336 DOI: 10.1016/j.scitotenv.2018.07.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
According to the European Water Framework Directive (WFD), chemical water quality is assessed by monitoring 45 priority substances. However, observed toxic effects can often not be attributed to these priority substances, and therefore there is an urgent need for an effect-based monitoring strategy that employs bioassays to identify environmental risk. Algal photosynthesis is a sensitive process that can be applied to identify the presence of hazardous herbicides in surface water. Therefore, the aim of this study was to employ an algal photosynthesis bioassay to assess surface water toxicity to algae and to identify the compounds causing the observed effects. To this purpose, Raphidocelis subcapitata was exposed to surface water samples and after 4.5 h photosynthetic efficiency was determined using PAM fluorometry. In this rapid high throughput bioassay, algal photosynthesis was affected by surface water from only one of 39 locations. Single compounds toxicity confirmation elucidated that the observed effect could be solely attributed to the herbicide linuron, which occurred at 110 times the EQS concentration and which is not included in the WFD priority substances list. In conclusion, applying the algal photosynthesis bioassay enables more efficient and effective assessment of toxicity to primary producers because it: (i) identifies the presence of herbicides that would be overlooked by routine chemical WFD monitoring, and (ii) avoids redundant chemical analyses by focusing only on (non-)target screening in samples with demonstrated effects.
Collapse
Affiliation(s)
- M L de Baat
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - D A Bas
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - S A M van Beusekom
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - S T J Droge
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | - F van der Meer
- Wetterskip Fryslân, Fryslânplein 3, 8914 BZ Leeuwarden, the Netherlands.
| | - M de Vries
- Wetterskip Fryslân, Fryslânplein 3, 8914 BZ Leeuwarden, the Netherlands.
| | - P F M Verdonschot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Department of Freshwater Ecology, Wageningen Environmental Research, Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands.
| | - M H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Daniels KD, VanDervort D, Wu S, Leusch FDL, van de Merwe JP, Jia A, Snyder SA. Downstream trends of in vitro bioassay responses in a wastewater effluent-dominated river. CHEMOSPHERE 2018; 212:182-192. [PMID: 30144679 DOI: 10.1016/j.chemosphere.2018.07.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Surface waters are becoming increasingly influenced by wastewater effluents due to drought conditions, growing populations, and urbanization. These effluents contain mixtures of trace organic compounds (TOrCs), including bioactive constituents, which are not fully attenuated by conventional wastewater treatment systems. This study investigated the occurrence of glucocorticoid receptor (GR), aryl hydrocarbon receptor (AhR), and estrogen receptor (ER) activity, as well as the overall toxicity to bacteria (BLT-Screen), in the effluent of two wastewater reclamation facilities (WRF) and downstream of the Lower Santa Cruz River, Pima County, Arizona USA, which is dominated by the WRF effluents. The GR, AhR, and ER activities and toxicity to bacteria were determined by in vitro bioassays during four seasons. Bioassay results showed the highest activities at the wastewater outfalls, with activities decreasing downstream of the river. Biological equivalent concentrations ranged from 9 to 170 ng/L dexamethasone-equivalents (DexEQ), 0.1-0.8 ng/L 2,3,7,8-tetrachlorodibenzo-p-dioxin-equivalents (TCDDEQ), and <0.005-0.8 ng/L estradiol equivalents (EEQ) for GR-, AhR- and ER-mediated activity, respectively. This level of biological activity at times exceeded the relevant effects-based trigger value for environmental effects, indicating a potential risk to the receiving environment. Toxicity to bacteria was low at all sites, well below the trigger value of 1.0 TUIC20, which represents an undiluted water sample causing 20% toxicity in the assay. The potential inducing glucocorticoid agonists were further analysed by liquid chromatography coupled to tandem mass spectrometry. Analytical results reveal triamcinolone acetonide as the most abundant glucocorticoid with concentrations up to 38 ng/L. Similar results for DexEQ concentrations calculated from both chemical and bioassay data indicate a successful mass balance for glucocorticoids. This mass balance illustrated lower DexEQ during summer months, which could be due to an increased attenuation from photodegradation.
Collapse
Affiliation(s)
- Kevin D Daniels
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Darcy VanDervort
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Shimin Wu
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Qld 4222, Australia
| | - Ai Jia
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA
| | - Shane A Snyder
- University of Arizona, Department of Environmental and Chemical Engineering, 1133 E. James E. Rogers Way, Harshbarger108, Tucson, AZ, 85721, USA; Nanyang Technological University Singapore, Nanyang Environment & Water Research Institute (NEWRI), 1 CleanTech Loop, CleanTech One, #06-08, 637141 Singapore.
| |
Collapse
|
39
|
Aquilino M, Martínez-Guitarte JL, García P, Beltrán EM, Fernández C, Sánchez-Argüello P. Combining the assessment of apical endpoints and gene expression in the freshwater snail Physa acuta after exposure to reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:180-189. [PMID: 29894877 DOI: 10.1016/j.scitotenv.2018.06.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Post-treatment wastewater reuses are diverse. Recreational and environmental restoration uses of reclaimed water (RW) can be potentially harmful to aquatic organisms. In this work the freshwater snail Physa acuta was exposed to RW (100%) and its dilution (RW 50%). A simple laboratory mixture of three emerging pollutants was used to address the complex problem of mixture toxicity of RW. Hence fortified reclaimed water (FRW), obtained by adding fluoxetine (400 μg FLX/L), perfluorooctane sulphonic acid (90 μg PFOS/L) and methylparaben (9 μg MP/L), was tested at two dilution percentages: 100% and 50%. The effects of the laboratory mixture of FLX, PFOS and MP on the test medium were also studied. Long-lasting effects, together with early molecular responses, were assessed. Fecundity (cumulative egg production) over 21 days and the hatching of produced eggs (F1) after another 21-day embryonic exposure were monitored. The gene expression of three genes was analysed after 24 h of exposure: two endocrine-related nuclear receptors (ERR and RXR) and one stress protein gene (Hsp70). This reproduction test, with additional assessments of the F1 recovered eggs' hatching success, showed that both RW and FRW significantly reduced fecundity. F1 hatching was affected only by FRW. The gene expression results showed that the RXR response was strikingly similar to the fecundity response, which suggests that this nuclear receptor is involved in the reproductive pathways of gastropods. ERR remained virtually unaltered. Hsp70 was overexpressed by the laboratory mixture in the test medium, but no effect was observed in the fortification of RW. This opposite effect and lack of response for F1 hatching produced by the laboratory mixture in the test medium highlighted the difficulty of predicting mixture effects. The experimental approach allowed us to test the effects caused by RW on P. acuta at different biological organisation levels. Thus, the combination of molecular biomarkers and ecological relevant endpoints is a good strategy to test complex mixtures like RW as it provides a framework to link mechanisms of action and whole organism effects when it is almost impossible to detect the pollutant(s) that cause toxic effects.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Jose Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Pilar García
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Eulalia Maria Beltrán
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Carlos Fernández
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
40
|
Neale PA, Leusch FDL, Escher BI. What is driving the NF-κB response in environmental water extracts? CHEMOSPHERE 2018; 210:645-652. [PMID: 30031348 DOI: 10.1016/j.chemosphere.2018.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In vitro bioassays are increasingly applied for water quality monitoring, with assays indicative of adaptive stress responses commonly included in test batteries. The NF-κB assay is responsive to surface water and wastewater extracts, but the causative compounds are unknown and micropollutants typically found in water do not activate the NF-κB assay. The current study aimed to investigate if co-extracted organic matter and/or endotoxins could cause the NF-κB response in surface water extracts. The effect of model bacterial lipopolysaccharides (LPS) and dissolved organic carbon (DOC) was evaluated in the NF-κB assay both before and after solid-phase extraction (SPE), with 7% effect recovery for LPS and between 7 and 52% effect recovery for DOC observed. The NF-κB response, endotoxin activity, micropollutant concentration and total organic carbon concentration was measured in four surface water extracts. All water extracts showed a response in the NF-κB assay, but the detected micropollutants could not explain the effect. Comparison of predicted bioanalytical equivalent concentrations based on micropollutant, DOC and endotoxin concentrations in surface water with experimental bioanalytical equivalent concentrations suggest that co-extracted endotoxins are the most important drivers of the observed effect, with DOC only having a minor contribution. While in vitro bioassays typically detect mixtures of organic micropollutants, the current study shows that the NF-κB assay can integrate the effects of co-extracted endotoxins. Given that endotoxins can pose a risk for human health, the NF-κB assay is a valuable inclusion in bioanalytical test batteries used for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geoscience, 72074 Tübingen, Germany
| |
Collapse
|
41
|
Šauer P, Bořík A, Golovko O, Grabic R, Staňová AV, Valentová O, Stará A, Šandová M, Kocour Kroupová H. Do progestins contribute to (anti-)androgenic activities in aquatic environments? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:417-425. [PMID: 29990947 DOI: 10.1016/j.envpol.2018.06.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
Unknown compounds with (anti-)androgenic activities enter the aquatic environment via municipal wastewater treatment plants (WWTPs). Progestins are well-known environmental contaminants capable of interfering with androgen receptor (AR) signaling pathway. The aim of the present study was to determine if 15 selected progestins have potential to contribute to (anti-)androgenic activities in municipal wastewaters and the respective recipient surface waters. AR-specific Chemically Activated LUciferase gene eXpression bioassay in agonistic (AR-CALUX) and antagonistic (anti-AR-CALUX) modes and liquid chromatography tandem atmospheric pressure chemical ionization/atmospheric photoionization with hybrid quadrupole/orbital trap mass spectrometry operated in high resolution product scan mode (LC-APCI/APPI-HRPS) methods were used to assess (anti-)androgenic activity and to detect the target compounds, respectively. The contribution of progestins to (anti-)androgenic activities was evaluated by means of a biologically and chemically derived toxicity equivalent approach. Androgenic (0.08-59 ng/L dihydrotestosterone equivalents - DHT EQs) and anti-androgenic (2.4-26 μg/L flutamide equivalents - FLU EQs) activities and progestins (0.19-75 ng/L) were detected in selected aquatic environments. Progestins displayed androgenic potencies (0.01-0.22 fold of dihydrotestosterone) and strong anti-androgenic potencies (9-62 fold of flutamide). Although they accounted to some extent for androgenic (0.3-29%) and anti-androgenic (4.6-27%) activities in influents, the progestins' contribution to (anti-)androgenic activities was negligible (≤2.1%) in effluents and surface waters. We also tested joint effect of equimolar mixtures of target compounds and the results indicate that compounds interact in an additive manner. Even if progestins possess relatively strong (anti-)androgenic activities, when considering their low concentrations (sub-ng/L to ng/L) it seems unlikely that they would be the drivers of (anti-)androgenic effects in Czech aquatic environments.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Olga Valentová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Alžběta Stará
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Marie Šandová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
42
|
Louisse J, Dingemans MML, Baken KA, van Wezel AP, Schriks M. Exploration of ToxCast/Tox21 bioassays as candidate bioanalytical tools for measuring groups of chemicals in water. CHEMOSPHERE 2018; 209:373-380. [PMID: 29935466 DOI: 10.1016/j.chemosphere.2018.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/14/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment.
Collapse
Affiliation(s)
- Jochem Louisse
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands.
| | - Milou M L Dingemans
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands
| | - Kirsten A Baken
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands
| | - Annemarie P van Wezel
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, the Netherlands; Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
| | - Merijn Schriks
- Vitens Drinking Water Company, 8019 BE, Zwolle, the Netherlands
| |
Collapse
|
43
|
Rosenmai AK, Lundqvist J, le Godec T, Ohlsson Å, Tröger R, Hellman B, Oskarsson A. In vitro bioanalysis of drinking water from source to tap. WATER RESEARCH 2018; 139:272-280. [PMID: 29656192 DOI: 10.1016/j.watres.2018.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH2Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic activities. Bioassays of AhR and Nrf2 are useful for screening of effects of a broad range of chemicals in drinking water and ER activity can be monitored with a high sensitivity.
Collapse
Affiliation(s)
- Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Théo le Godec
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Åsa Ohlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07, Uppsala, Sweden
| | - Björn Hellman
- Department of Pharmaceutical Biosciences, Division of Drug Safety and Toxicology, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
44
|
Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:748-765. [PMID: 29454215 DOI: 10.1016/j.scitotenv.2018.01.340] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination.
Collapse
Affiliation(s)
- Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany; Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia.
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | | | - Sarah E Crawford
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Timo Hamers
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | | - Klára Hilscherová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Kase
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Andrew J Tindall
- Laboratoire Watchfrog, 1 Rue Pierre Fontaine, 91 000 Evry, France
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, D-47229 Duisburg, Germany
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, The Netherlands
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia
| |
Collapse
|
45
|
Šauer P, Stará A, Golovko O, Valentová O, Bořík A, Grabic R, Kroupová HK. Two synthetic progestins and natural progesterone are responsible for most of the progestagenic activities in municipal wastewater treatment plant effluents in the Czech and Slovak republics. WATER RESEARCH 2018; 137:64-71. [PMID: 29544204 DOI: 10.1016/j.watres.2018.02.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/18/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Vast numbers of xenobiotics are known still to be present in treated municipal wastewater treatment plant (WWTP) effluents. Some of these possess endocrine-disrupting potency and pose risks for exposed aquatic animals. We searched for 17 potential environmental contaminants having affinity to the progesterone receptor. Relative potency values of these progesterone receptor-active chemicals were obtained. On the basis of relative potencies and measured environmental concentrations, the contribution of progestins to measured progestagenic activities was evaluated. Wastewaters (influent and effluent) and surrounding surface waters (upstream and downstream) at six municipal WWTPs were screened using instrumental chemical analysis and in vitro reporter gene bioassay. We showed the presence of target compounds and (anti-)progestagenic activities in municipal wastewater and surface water. Nine and seven progestins were identified in influent and effluent wastewaters, respectively. Only two compounds, progesterone and medroxyprogesterone were found in surface waters. Progestagenic agonistic activities in influents were partially masked by strong anti-progestagenic activities that were detected in all influents and ranged from 2.63 to 83 ng/L of mifepristone equivalents (EQs). Progestagenic activities were detected in all effluents and ranged from 0.06 to 0.47 ng/L of reference compound ORG 2058 EQs (a synthetic progestin equivalents), thus indicating incomplete removal of progestins during wastewater treatment processing. This activity poses a continuing risk for the aquatic environment. By contrast, anti-progestagenic activities showed better removal efficiency in WWTPs compared to progestagenic agonistic activities. Anti-progestagenic activities were found in only three of six effluents and ranged from 0.26 to 2.1 ng/L mifepristone EQs. We explained most of the progestagenic activity in municipal WWTP effluents by the presence of synthetic progestins and progesterone, which contributed 65-96% of such activity in samples where no antagonistic activity was found. The progestins medroxyprogesterone acetate, megestrol acetate and progesterone contributed most to the progestagenic activity detected in municipal effluents. Anti-progestagenic activities were found in some municipal effluents, but no causative agents were revealed because two analysed selective progesterone receptor modulators (SPRMs) with anti-progestagenic activities, mifepristone and ulipristal acetate, were not present in the effluents.
Collapse
Affiliation(s)
- Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Alžběta Stará
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Oksana Golovko
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Olga Valentová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Adam Bořík
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
46
|
Zwart N, Nio SL, Houtman CJ, de Boer J, Kool J, Hamers T, Lamoree MH. High-Throughput Effect-Directed Analysis Using Downscaled in Vitro Reporter Gene Assays To Identify Endocrine Disruptors in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4367-4377. [PMID: 29547277 PMCID: PMC5947935 DOI: 10.1021/acs.est.7b06604] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 05/21/2023]
Abstract
Effect-directed analysis (EDA) is a commonly used approach for effect-based identification of endocrine disruptive chemicals in complex (environmental) mixtures. However, for routine toxicity assessment of, for example, water samples, current EDA approaches are considered time-consuming and laborious. We achieved faster EDA and identification by downscaling of sensitive cell-based hormone reporter gene assays and increasing fractionation resolution to allow testing of smaller fractions with reduced complexity. The high-resolution EDA approach is demonstrated by analysis of four environmental passive sampler extracts. Downscaling of the assays to a 384-well format allowed analysis of 64 fractions in triplicate (or 192 fractions without technical replicates) without affecting sensitivity compared to the standard 96-well format. Through a parallel exposure method, agonistic and antagonistic androgen and estrogen receptor activity could be measured in a single experiment following a single fractionation. From 16 selected candidate compounds, identified through nontargeted analysis, 13 could be confirmed chemically and 10 were found to be biologically active, of which the most potent nonsteroidal estrogens were identified as oxybenzone and piperine. The increased fractionation resolution and the higher throughput that downscaling provides allow for future application in routine high-resolution screening of large numbers of samples in order to accelerate identification of (emerging) endocrine disruptors.
Collapse
Affiliation(s)
- Nick Zwart
- Department
of Environment & Health, VU University, Amsterdam, The Netherlands
- E-mail:
| | - Shan Li Nio
- Department
of Environment & Health, VU University, Amsterdam, The Netherlands
| | | | - Jacob de Boer
- Department
of Environment & Health, VU University, Amsterdam, The Netherlands
| | - Jeroen Kool
- Biomolecular
Analysis Group, VU University, Amsterdam, The Netherlands
| | - Timo Hamers
- Department
of Environment & Health, VU University, Amsterdam, The Netherlands
| | - Marja H. Lamoree
- Department
of Environment & Health, VU University, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Bieber S, Snyder SA, Dagnino S, Rauch-Williams T, Drewes JE. Management strategies for trace organic chemicals in water - A review of international approaches. CHEMOSPHERE 2018; 195:410-426. [PMID: 29274580 DOI: 10.1016/j.chemosphere.2017.12.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
To ensure an appropriate management of potential health risks and uncertainties from the release of trace organic chemicals (TOrCs) into the aqueous environment, many countries have evaluated and implemented strategies to manage TOrCs. The aim of this study was to evaluate existing management strategies for TOrCs in different countries to derive and compare underlying core principles and paradigms and to develop suggestions for more holistic management strategies to protect the environment and drinking water supplies from the discharge of undesired TOrCs. The strategies in different industrial countries were summarized and subsequently compared with regards to three particular questions: 1) Do the approaches different countries have implemented manage all or only specific portions of the universe of chemicals; 2) What implementation and compliance strategies are used to manage aquatic and human health risk and what are their pros and cons; and 3) How are site-specific watershed differences being addressed? While management strategies of the different countries target similar TOrCs, the programs differ in several important aspects, including underlying principles, the balance between aquatic or human health protection, implementation methods, and financing mechanisms used to fund regulatory programs.
Collapse
Affiliation(s)
- Stefan Bieber
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Shane A Snyder
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Sonia Dagnino
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
48
|
Scott PD, Coleman HM, Khan S, Lim R, McDonald JA, Mondon J, Neale PA, Prochazka E, Tremblay LA, Warne MSJ, Leusch FDL. Histopathology, vitellogenin and chemical body burden in mosquitofish (Gambusia holbrooki) sampled from six river sites receiving a gradient of stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1638-1648. [PMID: 29079092 DOI: 10.1016/j.scitotenv.2017.10.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/14/2017] [Indexed: 05/11/2023]
Abstract
There are over 40,000 chemical compounds registered for use in Australia, and only a handful are monitored in the aquatic receiving environments. Their effects on fish species in Australia are largely unknown. Mosquitofish (Gambusia holbrooki) were sampled from six river sites in Southeast Queensland identified as at risk from a range of pollutants. The sites selected were downstream of a wastewater treatment plant discharge, a landfill, two agricultural areas, and two sites in undeveloped reaches within or downstream of protected lands (national parks). Vitellogenin analysis, histopathology of liver, kidney and gonads, morphology of the gonopodium, and chemical body burden were measured to characterize fish health. Concentrations of trace organic contaminants (TrOCs) in water were analyzed by in vitro bioassays and chemical analysis. Estrogenic, anti-estrogenic, anti-androgenic, progestagenic and anti-progestagenic activities and TrOCs were detected in multiple water samples. Several active pharmaceutical ingredients (APIs), industrial compounds, pesticides and other endocrine active compounds were detected in fish carcasses at all sites, ranging from <4-4700ng/g wet weight, including the two undeveloped sites. While vitellogenin protein was slightly increased in fish from two of the six sites, the presence of micropollutants did not cause overt sexual endocrine disruption in mosquitofish (i.e., no abnormal gonads or gonopodia). A correlation between lipid accumulation in the liver with total body burden warrants further investigation to determine if exposure to low concentrations of TrOCs can affect fish health and increase stress on organs such as the liver and kidneys via other mechanisms, including disruption of non-sexual endocrine axes involved in lipid regulation and metabolism.
Collapse
Affiliation(s)
- Philip D Scott
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Heather M Coleman
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Stuart Khan
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Richard Lim
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - James A McDonald
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Julie Mondon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria 3280, Australia
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Erik Prochazka
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax St. East, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand
| | - Michael St J Warne
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia; Water Quality and Investigations, Department of Science, Information Technology and Innovation, Queensland Government, Queensland 4001, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
49
|
Wu C, Zhou Y, Sun X, Fu L. The recent development of advanced wastewater treatment by ozone and biological aerated filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8315-8329. [PMID: 29411279 DOI: 10.1007/s11356-018-1393-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The combination of ozone and biological aerated filter (O3/BAF) has been widely studied and applied in polishing different biological secondary effluents. O3/BAF has the advantages of high pollutants removal rate, low operating cost, and flexible combination types. The principle and combination, effect of ozone dosage and influent suspended solids (SS) on O3/BAF, applications, current research focuses, and development are discussed. The ozone can break refractory macromolecules into small and biodegradable fragments, increasing the biodegradation. It benefits the operation of BAF. The coupling of ozonation and BAF is efficient in the removal of refractory organic pollutants from different wastewaters. Ozonation can also be used as the post-treatment option after BAF to guarantee the effluent qualities. Normally, the ozone dosage varied from 5 to 125 mg/L with the contact time of 4 to 60 min, while the hydraulic retention time (HRT) of BAF is usually between 2 to 5 h when treating different biological effluents. The effluent COD is normally lower than 50 mg/L. Most of the organic micropollutants (OMPs) in the biological effluent, such as antibiotics, pharmaceuticals, personal care products, steroid hormones, and industrial chemicals, can be efficiently removed by O3/BAF. More importantly, the O3/BAF can obviously reduce the toxicity of the wastewater. The residual ozone of about 0.2 mg/L in the ozonation effluent benefits the performance of BAF. The future trends of O3/BAF are also discussed in the paper.
Collapse
Affiliation(s)
- Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Xiumei Sun
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Liya Fu
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
50
|
Spitta LF, Diegeler S, Baumstark-Khan C, Hellweg CE. An in-vitro approach for water quality determination: activation of NF-κB as marker for cancer-related stress responses induced by anthropogenic pollutants of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3985-3995. [PMID: 27878482 DOI: 10.1007/s11356-016-7901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.
Collapse
Affiliation(s)
- Luis F Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany.
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| | - Christine E Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Unit, Cellular Biodiagnostics, Cologne, Germany
| |
Collapse
|