1
|
O'Hearn LA. Signals of energy availability in sleep: consequences of a fat-based metabolism. Front Nutr 2024; 11:1397185. [PMID: 39267859 PMCID: PMC11390529 DOI: 10.3389/fnut.2024.1397185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Humans can flexibly switch between two primary metabolic modes, usually distinguished by whether substrate supply from glucose can meet energy demands or not. However, it is often overlooked that when glucose use is limited, the remainder of energy needs may still be met more or less effectively with fat and ketone bodies. Hence a fat-based metabolism marked by ketosis is often conflated with starvation and contexts of inadequate energy (including at the cellular level), even when energy itself is in ample supply. Sleep and satiation are regulated by common pathways reflecting energy metabolism. A conceptual analysis that distinguishes signals of inadequate energy in a glucose-dominant metabolism from signals of a fat-based metabolism that may well be energy sufficient allows a reexamination of experimental results in the study of sleep that may shed light on species differences and explain why ketogenic diets have beneficial effects simultaneously in the brain and the periphery. It may also help to distinguish clinically when a failure of a ketogenic diet to resolve symptoms is due to inadequate energy rather than the metabolic state itself.
Collapse
|
2
|
Yan S, Luo W, Lei L, Zhang Q, Xiu J. Association between serum Klotho concentration and hyperlipidemia in adults: a cross-sectional study from NHANES 2007-2016. Front Endocrinol (Lausanne) 2023; 14:1280873. [PMID: 38027194 PMCID: PMC10668332 DOI: 10.3389/fendo.2023.1280873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The Klotho protein is a well-documented anti-aging protein known for its diverse biological functions. Hyperlipidemia is an established independent risk factor for various chronic diseases. However, there is limited understanding of the connection between Klotho and hyperlipidemia. The aim was to assess the association between serum Klotho levels and hyperlipidemia among adults. Methods The study included 11,618 individuals from the NHANES database from 2006 to 2017. Hyperlipidemia was diagnosed following the National Cholesterol Education Program guidelines. Serum Klotho concentration was measured by an enzyme-linked immunosorbent assay kit, and the association between Klotho and hyperlipidemia was assessed by a multivariable logistic regression model. Fitted smoothing curves and threshold-effect analysis were employed to describe nonlinear relationships. Results In our multiple logistic regression models, serum Klotho concentration was significantly associated with hyperlipidemia after adjusting for comprehensive confounders (per SD increment odds ratio (OR): 0.91; 95% confidence interval (CI): 0.86-0.97). Compared to individuals in the lowest Klotho quartile, those in the highest quartile exhibited a substantially decreased prevalence of hyperlipidemia (OR: 0.72; 95% CI: 0.58-0.90). Using a two-segment logistic regression model, we identified a U-shaped relationship between serum Klotho concentration and hyperlipidemia, with an inflection point at 1,365.5 pg/mL. Subgroup analysis did not reveal any potential moderating effects. Conclusion This study revealed an inverse relationship between Klotho levels and hyperlipidemia. Further investigation is warranted to explore the underlying mechanism between serum Klotho and hyperlipidemia.
Collapse
Affiliation(s)
| | | | | | - Qiuxia Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancheng Xiu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
4
|
Aaldijk AS, Verzijl CRC, Jonker JW, Struik D. Biological and pharmacological functions of the FGF19- and FGF21-coreceptor beta klotho. Front Endocrinol (Lausanne) 2023; 14:1150222. [PMID: 37260446 PMCID: PMC10229096 DOI: 10.3389/fendo.2023.1150222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 06/02/2023] Open
Abstract
Beta klotho (KLB) is a fundamental component in fibroblast growth factor receptor (FGFR) signaling as it serves as an obligatory coreceptor for the endocrine hormones fibroblast growth factor 19 (FGF19) and fibroblast growth factor 21 (FGF21). Through the development of FGF19- and FGF21 mimetics, KLB has emerged as a promising drug target for treating various metabolic diseases, such as type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease. While rodent studies have significantly increased our understanding of KLB function, current clinical trials that test the safety and efficacy of KLB-targeting drugs raise many new scientific questions about human KLB biology. Although most KLB-targeting drugs can modulate disease activity in humans, individual patient responses differ substantially. In addition, species-specific differences in KLB tissue distribution may explain why the glucose-lowering effects that were observed in preclinical studies are not fully replicated in clinical trials. Besides, the long-term efficacy of KLB-targeting drugs might be limited by various pathophysiological conditions known to reduce the expression of KLB. Moreover, FGF19/FGF21 administration in humans is also associated with gastrointestinal side effects, which are currently unexplained. A better understanding of human KLB biology could help to improve the efficacy and safety of existing or novel KLB/FGFR-targeting drugs. In this review, we provide a comprehensive overview of the current understanding of KLB biology, including genetic variants and their phenotypic associations, transcriptional regulation, protein structure, tissue distribution, subcellular localization, and function. In addition, we will highlight recent developments regarding the safety and efficacy of KLB-targeting drugs in clinical trials. These insights may direct the development and testing of existing and future KLB-targeting drugs.
Collapse
|
5
|
Cui J, Yang Z, Wang J, Yin S, Xiao Y, Bai Y, Wang J. A cross-sectional analysis of association between visceral adiposity index and serum anti-aging protein Klotho in adults. Front Endocrinol (Lausanne) 2023; 14:1082504. [PMID: 36814582 PMCID: PMC9939517 DOI: 10.3389/fendo.2023.1082504] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The visceral adiposity index (VAI) is regarded as a reliable indicator to assess body fat distribution and dysfunction. Klotho protein is a hormone with anti-aging biological functions. However, the relationship between them has not been researched. OBJECTS This study aimed to evaluate the association between VAI and serum anti-aging protein klotho in American adults. METHODS A cross-sectional study of participants was conducted based on the National Health and Nutrition Examination Surveys (NHANES) 2007-2016. Visceral adiposity was determined using the VAI score, while the klotho protein concentration was measured by ELISA kit. After adjusting some possible confounding variables, multivariate regression model was conducted to estimate the relationship between VAI and klotho protein. Furthermore, the smooth curve fitting and the segmented regression model were applied to examine the threshold effect and to calculate the inflection point. RESULT In total, 6 252 adults were eligible, with a mean VAI of 2.04 ± 0.03 and a mean klotho protein concentration of 848.79 ± 6.98 pg/ml. Multivariate regression analysis indicated that serum klotho protein concentration was lower in participants with high VAI score. When VAI was divided into quartiles, participants in the fourth quartiles of higher VAI had lower klotho protein levels (Q4: -32.25 pg/ml) than participants in the lowest quartile (Q1) after full adjustment (P < 0.05). Segmented regression suggested that the turning point value of VAI was 3.21. A 1-unit increase in VAI was significantly associated with lower klotho protein levels by -18.61 pg/ml (95% CI: -28.87, -8.35; P < 0.05) when VAI ranged from 0.29 to 3.21(accounting for 83.7% of the participants), however, the association was not significant when VAI ranged from 3.21 to 11.81 (P = 0.77). CONCLUSION There was a nonlinear correlation between VAI score and the serum anti-aging protein klotho concentrations, showing a saturation effect. When VAI was less than 3.21, they were negatively correlated, and when VAI was greater than 3.21, they had no obvious correlation.
Collapse
Affiliation(s)
- Jianwei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Yang
- Department of Clinical Laboratory, Nanchong Central Hospital, Nanchong, China
| | - Jiahao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yunfei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yunjin Bai, n; Jia Wang,
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yunjin Bai, n; Jia Wang,
| |
Collapse
|
6
|
Ahuja P, Bi X, Ng CF, Tse MCL, Hang M, Pang BPS, Iu ECY, Chan WS, Ooi XC, Sun A, Herlea-Pana O, Liu Z, Yang X, Jiao B, Ma X, Wu KKL, Lee LTO, Cheng KKY, Lee CW, Chan CB. Src homology 3 domain binding kinase 1 protects against hepatic steatosis and insulin resistance through the Nur77-FGF21 pathway. Hepatology 2023; 77:213-229. [PMID: 35363898 DOI: 10.1002/hep.32501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Metabolism in the liver is dysregulated in obesity, contributing to various health problems including steatosis and insulin resistance. While the pathogenesis of lipid accumulation has been extensively studied, the protective mechanism against lipid challenge in the liver remains unclear. Here, we report that Src homology 3 domain binding kinase 1 (SBK1) is a regulator of hepatic lipid metabolism and systemic insulin sensitivity in response to obesity. APPROACH AND RESULTS Enhanced Sbk1 expression was found in the liver of high-fat diet (HFD)-induced obese mice and fatty acid (FA)-challenged hepatocytes. SBK1 knockdown in mouse liver cells augmented FA uptake and lipid accumulation. Similarly, liver-specific SBK1 knockout ( Lsko ) mice displayed more severe hepatosteatosis and higher expression of genes in FA uptake and lipogenesis than the Flox/Flox ( Fl/Fl ) control mice when fed the HFD. The HFD-fed Lsko mice also showed symptoms of hyperglycemia, poor systemic glucose tolerance, and lower insulin sensitivity than the Fl/Fl mice. On the other hand, hepatic Sbk1 overexpression alleviated the high-fructose diet-induced hepatosteatosis, hyperlipidemia, and hyperglycemia in mice. White adipose tissue browning was also observed in hepatic SBK1 -overexpressed mice. Moreover, we found that SBK1 was a positive regulator of FGF21 in the liver during energy surplus conditions. Mechanistically, SBK1 phosphorylates the orphan nuclear receptor 4A1 (Nur77) on serine 344 to promote hepatic FGF21 expression and inhibit the transcription of genes involved in lipid anabolism. CONCLUSIONS Collectively, our data suggest that SBK1 is a regulator of the metabolic adaption against obesity through the Nur77-FGF21 pathway.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xinyi Bi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chun Fai Ng
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | | | - Miaojia Hang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Brian Pak Shing Pang
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Elsie Chit Yu Iu
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Wing Suen Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Xin Ci Ooi
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Anqi Sun
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Oana Herlea-Pana
- Department of Physiology , The University of Oklahoma Health Sciences Center , Oklahoma City , Oklahoma , USA
| | - Zhixue Liu
- Center for Molecular & Translational Medicine , Georgia State University , Atlanta , Georgia , USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing , Key Laboratory of Drug Target and Screening Research , Institute of Materia Medica of Peking Union Medical College , Beijing , China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution , Kunming Institute of Zoology , Chinese Academy of Sciences , Kunming , China
| | - Xin Ma
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
| | - Kelvin Ka Lok Wu
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Leo Tsz On Lee
- Cancer Centre , Faculty of Health Sciences , University of Macau , Taipa, Macau , China
- MOE Frontiers Science Center for Precision Oncology , University of Macau , Taipa, Macau , China
| | - Kenneth King Yip Cheng
- Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Chi Wai Lee
- School of Biomedical Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chi Bun Chan
- School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
- State Key Laboratory of Pharmaceutical Biotechnology , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
7
|
Endocrine Fibroblast Growth Factors in Relation to Stress Signaling. Cells 2022; 11:cells11030505. [PMID: 35159314 PMCID: PMC8834311 DOI: 10.3390/cells11030505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) play important roles in various growth signaling processes, including proliferation, development, and differentiation. Endocrine FGFs, i.e., atypical FGFs, including FGF15/19, FGF21, and FGF23, function as endocrine hormones that regulate energy metabolism. Nutritional status is known to regulate the expression of endocrine FGFs through nuclear hormone receptors. The increased expression of endocrine FGFs regulates energy metabolism processes, such as fatty acid metabolism and glucose metabolism. Recently, a relationship was found between the FGF19 subfamily and stress signaling during stresses such as endoplasmic reticulum stress and oxidative stress. This review focuses on endocrine FGFs and the recent progress in FGF studies in relation to stress signaling. In addition, the relevance of the stress-FGF pathway to disease and human health is discussed.
Collapse
|
8
|
Nonogaki K. The Regulatory Role of the Central and Peripheral Serotonin Network on Feeding Signals in Metabolic Diseases. Int J Mol Sci 2022; 23:ijms23031600. [PMID: 35163521 PMCID: PMC8836087 DOI: 10.3390/ijms23031600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Central and peripheral serotonin (5-hydroxytryptamine, 5-HT) regulate feeding signals for energy metabolism. Disruption of central 5-HT signaling via 5-HT2C receptors (5-HT2CRs) induces leptin-independent hyperphagia in mice, leading to late-onset obesity, insulin resistance, and impaired glucose tolerance. 5-HT2CR mutant mice are more responsive than wild-type mice to a high-fat diet, exhibiting earlier-onset obesity and type 2 diabetes. High-fat and high-carbohydrate diets increase plasma 5-HT and fibroblast growth factor-21 (FGF21) levels. Plasma 5-HT and FGF21 levels are increased in rodents and humans with obesity, type 2 diabetes, and non-alcohol fatty liver diseases (NAFLD). The increases in plasma FGF21 and hepatic FGF21 expression precede hyperinsulinemia, insulin resistance, hyperglycemia, and weight gain in mice fed a high-fat diet. Nutritional, pharmacologic, or genetic inhibition of peripheral 5-HT synthesis via tryptophan hydroxylase 1 (Tph1) decreases hepatic FGF21 expression and plasma FGF21 levels in mice. Thus, perturbing central 5-HT signaling via 5-HT2CRs alters feeding behavior. Increased energy intake via a high-fat diet and/or high-carbohydrate diet can upregulate gut-derived 5-HT synthesis via Tph1. Peripheral 5-HT upregulates hepatic FGF21 expression and plasma FGF21 levels, leading to metabolic diseases such as obesity, insulin resistance, type 2 diabetes, and NAFLD. The 5-HT network in the brain–gut–liver axis regulates feeding signals and may be involved in the development and/or prevention of metabolic diseases.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Laboratory of Diabetes and Nutrition, New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Deficiency of Cathelicidin Attenuates High-Fat Diet Plus Alcohol-Induced Liver Injury through FGF21/Adiponectin Regulation. Cells 2021; 10:cells10123333. [PMID: 34943840 PMCID: PMC8699208 DOI: 10.3390/cells10123333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol consumption and obesity are known risk factors of steatohepatitis. Here, we report that the deficiency of CRAMP (cathelicidin-related antimicrobial peptide—gene name: Camp) is protective against a high-fat diet (HFD) plus acute alcohol (HFDE)-induced liver injury. HFDE markedly induced liver injury and steatosis in WT mice, which were attenuated in Camp–/– mice. Neutrophil infiltration was lessened in the liver of Camp–/– mice. HFDE feeding dramatically increased epididymal white adipose tissue (eWAT) mass and induced adipocyte hypertrophy in WT mice, whereas these effects were attenuated by the deletion of Camp. Furthermore, Camp–/– mice had significantly increased eWAT lipolysis, evidenced by up-regulated expression of lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). The depletion of Camp also increased uncoupling protein 1 (UCP1)-dependent thermogenesis in the brown adipose tissue (BAT) of mice. HFDE fed Camp–/– mice had elevated protein levels of fibroblast growth factor 21 (FGF21) in the eWAT, with an increased adiponectin production, which had been shown to alleviate hepatic fat deposition and inflammation. Collectively, we have demonstrated that Camp–/– mice are protected against HFD plus alcohol-induced liver injury and steatosis through FGF21/adiponectin regulation. Targeting CRAMP could be an effective approach for prevention/treatment of high-fat diet plus alcohol consumption-induced steatohepatitis.
Collapse
|
10
|
Kim S, Choi S, Dutta M, Asubonteng JO, Polunas M, Goedken M, Gonzalez FJ, Cui JY, Gyamfi MA. Pregnane X receptor exacerbates nonalcoholic fatty liver disease accompanied by obesity- and inflammation-prone gut microbiome signature. Biochem Pharmacol 2021; 193:114698. [PMID: 34303710 PMCID: PMC9135326 DOI: 10.1016/j.bcp.2021.114698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease due to the current epidemics of obesity and diabetes. The pregnane X receptor (PXR) is a xenobiotic-sensing nuclear receptor known for trans-activating liver genes involved in drug metabolism and transport, and more recently implicated in energy metabolism. The gut microbiota can modulate the host xenobiotic biotransformation and contribute to the development of obesity. While the male sex confers a higher risk for NAFLD than women before menopause, the mechanism remains unknown. We hypothesized that the presence of PXR promotes obesity by modifying the gut-liver axis in a sex-specific manner. Male and female C57BL/6 (wild-type/WT) and PXR-knockout (PXR-KO) mice were fed control or high-fat diet (HFD) for 16-weeks. Serum parameters, liver histopathology, transcriptomic profiling, 16S-rDNA sequencing, and bile acid (BA) metabolomics were performed. PXR enhanced HFD-induced weight gain, hepatic steatosis and inflammation especially in males, accompanied by PXR-dependent up-regulation in hepatic genes involved in microbial response, inflammation, oxidative stress, and cancer; PXR-dependent increase in intestinal Firmicutes/Bacteroides ratio (hallmark of obesity) and the pro-inflammatory Lactobacillus, as well as a decrease in the anti-obese Allobaculum and the anti-inflammatory Bifidobacterum, with a PXR-dependent reduction of beneficial BAs in liver. The resistance to NAFLD in females may be explained by PXR-dependent decrease in pro-inflammatory bacteria (Ruminococcus gnavus and Peptococcaceae). In conclusion, PXR exacerbates hepatic steatosis and inflammation accompanied by obesity- and inflammation-prone gut microbiome signature, suggesting that gut microbiome may contribute to PXR-mediated exacerbation of NAFLD.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey O Asubonteng
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA
| | - Marianne Polunas
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Michael Goedken
- Office of Research and Economic Development, Research Pathology Services, Rutgers University, Piscataway, NJ, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
11
|
Koike S, Hsu MF, Bettaieb A, Chu B, Matsumoto N, Morisseau C, Havel PJ, Huising MO, Hammock BD, Haj FG. Genetic deficiency or pharmacological inhibition of soluble epoxide hydrolase ameliorates high fat diet-induced pancreatic β-cell dysfunction and loss. Free Radic Biol Med 2021; 172:48-57. [PMID: 34038767 PMCID: PMC9901526 DOI: 10.1016/j.freeradbiomed.2021.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic β-cells are crucial regulators of systemic glucose homeostasis, and their dysfunction and loss are central features in type 2 diabetes. Interventions that rectify β-cell dysfunction and loss are essential to combat this deadly malady. In the current study, we sought to delineate the role of soluble epoxide hydrolase (sEH) in β-cells under diet-induced metabolic stress. The expression of sEH was upregulated in murine and macaque diabetes models and islets of diabetic human patients. We postulated that hyperglycemia-induced elevation in sEH leads to a reduction in its substrates, epoxyeicosatrienoic acids (EETs), and attenuates the function of β-cells. Genetic deficiency of sEH potentiated glucose-stimulated insulin secretion in mice, likely in a cell-autonomous manner, contributing to better systemic glucose control. Consistent with this observation, genetic and pharmacological inactivation of sEH and the treatment with EETs exhibited insulinotropic effects in isolated murine islets ex vivo. Additionally, sEH deficiency enhanced glucose sensing and metabolism with elevated ATP and cAMP concentrations. This phenotype was associated with attenuated oxidative stress and diminished β-cell death in sEH deficient islets. Moreover, pharmacological inhibition of sEH in vivo mitigated, albeit partly, high fat diet-induced β-cell loss and dedifferentiation. The current observations provide new insights into the role of sEH in β-cells and information that may be leveraged for the development of a mechanism-based intervention to rectify β-cell dysfunction and loss.
Collapse
Affiliation(s)
- Shinichiro Koike
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ming-Fo Hsu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Bryan Chu
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA
| | - Naoki Matsumoto
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Peter J Havel
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Mark O Huising
- Department of Neurobiology & Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA, 95616, USA; Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Spann RA, Morrison CD, den Hartigh LJ. The Nuanced Metabolic Functions of Endogenous FGF21 Depend on the Nature of the Stimulus, Tissue Source, and Experimental Model. Front Endocrinol (Lausanne) 2021; 12:802541. [PMID: 35046901 PMCID: PMC8761941 DOI: 10.3389/fendo.2021.802541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone that is involved in the regulation of lipid, glucose, and energy metabolism. Pharmacological FGF21 administration promotes weight loss and improves insulin sensitivity in rodents, non-human primates, and humans. However, pharmacologic effects of FGF21 likely differ from its physiological effects. Endogenous FGF21 is produced by many cell types, including hepatocytes, white and brown adipocytes, skeletal and cardiac myocytes, and pancreatic beta cells, and acts on a diverse array of effector tissues such as the brain, white and brown adipose tissue, heart, and skeletal muscle. Different receptor expression patterns dictate FGF21 function in these target tissues, with the primary effect to coordinate responses to nutritional stress. Moreover, different nutritional stimuli tend to promote FGF21 expression from different tissues; i.e., fasting induces hepatic-derived FGF21, while feeding promotes white adipocyte-derived FGF21. Target tissue effects of FGF21 also depend on its capacity to enter the systemic circulation, which varies widely from known FGF21 tissue sources in response to various stimuli. Due to its association with obesity and non-alcoholic fatty liver disease, the metabolic effects of endogenously produced FGF21 during the pathogenesis of these conditions are not well known. In this review, we will highlight what is known about endogenous tissue-specific FGF21 expression and organ cross-talk that dictate its diverse physiological functions, with particular attention given to FGF21 responses to nutritional stress. The importance of the particular experimental design, cellular and animal models, and nutritional status in deciphering the diverse metabolic functions of endogenous FGF21 cannot be overstated.
Collapse
Affiliation(s)
- Redin A. Spann
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Christopher D. Morrison
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
- *Correspondence: Laura J. den Hartigh,
| |
Collapse
|
13
|
Wang N, Sun B, Guo H, Jing Y, Ruan Q, Wang M, Mi Y, Chen H, Song L, Cui W. Association of Elevated Plasma FGF21 and Activated FGF21 Signaling in Visceral White Adipose Tissue and Improved Insulin Sensitivity in Gestational Diabetes Mellitus Subtype: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 12:795520. [PMID: 34912302 PMCID: PMC8667891 DOI: 10.3389/fendo.2021.795520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To study the discrepancy of the insulin sensitivity alteration pattern, circulating fibroblast growth factor (FGF21) levels and FGF21 signaling in visceral white adipose tissue (vWAT) of gestational diabetes mellitus (GDM) subtypes. METHODS 26 GDM women with either a predominant of insulin-secretion defect (GDM-dysfunction, n = 9) or insulin-sensitivity defect (GDM-resistance, n = 17) and 13 normal glucose tolerance (NGT) women scheduled for caesarean-section at term were studied. Blood and vWAT samples were collected at delivery. RESULTS The insulin sensitivity was improved from the 2nd trimester to delivery in the GDM-resistance group. Elevated circulating FGF21 concentration at delivery, increased FGF receptor 1c and decreased klotho beta gene expression, enhanced ERK1/2 phosphorylation, and increased GLUT1, IR-B, PPAR-γ gene expression in vWAT were found in the GDM-resistance group as compared with the NGT group. The circulating FGF21 concentration was negatively correlated with fasting blood glucose (r = -0.574, P < 0.001), and associated with the GDM-resistance group (r = 0.574, P < 0.001) in pregnant women at delivery. However, we observed no insulin sensitivity alteration in GDM-dysfunction and NGT groups during pregnancy. No differences of plasma FGF21 level and FGF21 signaling in vWAT at delivery were found between women in the GDM-dysfunction and the NGT group. CONCLUSIONS Women with GDM heterogeneity exhibited different insulin sensitivity alteration patterns. The improvement of insulin sensitivity may relate to the elevated circulating FGF21 concentration and activated FGF21 signaling in vWAT at delivery in the GDM-resistance group.
Collapse
Affiliation(s)
- Ning Wang
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Haonan Guo
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingyu Jing
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Ruan
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengjun Wang
- Department of Endocrinology, 521 Hospital of Norinco Group, Xi’an, China
| | - Yang Mi
- The Second Department of Obstetrics, Northwest Women and Children’s Hospital, Xi’an, China
| | - Huan Chen
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lin Song, ; Wei Cui,
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lin Song, ; Wei Cui,
| |
Collapse
|
14
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Ileal interposition improves metabolic syndrome parameters in a rat model of metabolic syndrome induced by monosodium glutamate. Life Sci 2020; 266:118846. [PMID: 33309719 DOI: 10.1016/j.lfs.2020.118846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022]
Abstract
AIMS Metabolic syndrome (MetS) is a cluster of metabolic abnormalities. Anatomically restructuring of the gastrointestinal system has recently been an important subject of research in the treatment of MetS and closely related diseases. The aim of this study is to ensure the remission of parameters that define MetS by ileal interposition (IT) and to examine the effect of IT on plasma total GLP-1 and pancreatic GLP-1R expression. MAIN METHODS To induce MetS, newborn male Wistar albino rats were given MSG (4 g/mg) on days 0, 2, 4, 6, 8, and 10. The control group was injected with saline. In the 5th month, IT or sham surgery was performed on the MetS rats. The lipid levels, abdominal obesity, insulin level, OGTT, Lee index, HOMA-IR, plasma GLP-1 and pancreas GLP-1R expression were evaluated 2 months after surgery. KEY FINDINGS The results showed that IT significantly improved hyperinsulinemia (p = 0.013) and lipid profile (TG p = 0.0001; TCHOL p = 0.018; HDL p = 0.001). Furthermore, it normalized the Lee index (p = 0.006) and insulin resistance. The IT did not affect the secretion of the GLP-1, but the expression levels of pancreas GLP-1R were increased (p = 0.006). SIGNIFICANCE IT surgery corrected the MetS parameters in this rat model. The healing effects of IT surgery could be caused by mechanisms in the target tissues of insulin. The decrease in pancreatic GLP-1R levels in the MetS groups might be a compensatory response to the harmful effects of hyperinsulinemia in these groups. These results show that IT can be useful in the treatment of MetS.
Collapse
|
16
|
Lin YJ, Chen AN, Yin XJ, Li C, Lin CC. Human Microfibrillar-Associated Protein 4 (MFAP4) Gene Promoter: A TATA-Less Promoter That Is Regulated by Retinol and Coenzyme Q10 in Human Fibroblast Cells. Int J Mol Sci 2020; 21:ijms21218392. [PMID: 33182307 PMCID: PMC7664931 DOI: 10.3390/ijms21218392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Elastic fibers are one of the major structural components of the extracellular matrix (ECM) in human connective tissues. Among these fibers, microfibrillar-associated protein 4 (MFAP4) is one of the most important microfibril-associated glycoproteins. MFAP4 has been found to bind with elastin microfibrils and interact directly with fibrillin-1, and then aid in elastic fiber formation. However, the regulations of the human MFAP4 gene are not so clear. Therefore, in this study, we firstly aimed to analyze and identify the promoter region of the human MFAP4 gene. The results indicate that the human MFAP4 promoter is a TATA-less promoter with tissue- and species-specific properties. Moreover, the promoter can be up-regulated by retinol and coenzyme Q10 (coQ10) in Detroit 551 cells.
Collapse
Affiliation(s)
- Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan;
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - An-Ni Chen
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
| | - Xi Jiang Yin
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chunxiang Li
- Advanced Materials Technology Centre, Singapore Polytechnic, Singapore 139651, Singapore; (X.J.Y.); (C.L.)
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan;
- Correspondence: ; Tel.: +886-4-26328001; Fax: +886-4-26311167
| |
Collapse
|
17
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
18
|
Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges. Int J Mol Sci 2019; 20:ijms20194692. [PMID: 31546675 PMCID: PMC6801670 DOI: 10.3390/ijms20194692] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
The Fibroblast Growth Factor 21 (FGF21) is considered an attractive therapeutic target for obesity and obesity-related disorders due to its beneficial effects in lipid and carbohydrate metabolism. FGF21 response is essential under stressful conditions and its metabolic effects depend on the inducer factor or stress condition. FGF21 seems to be the key signal which communicates and coordinates the metabolic response to reverse different nutritional stresses and restores the metabolic homeostasis. This review is focused on describing individually the FGF21-dependent metabolic response activated by some of the most common nutritional challenges, the signal pathways triggering this response, and the impact of this response on global homeostasis. We consider that this is essential knowledge to identify the potential role of FGF21 in the onset and progression of some of the most prevalent metabolic pathologies and to understand the potential of FGF21 as a target for these diseases. After this review, we conclude that more research is needed to understand the mechanisms underlying the role of FGF21 in macronutrient preference and food intake behavior, but also in β-klotho regulation and the activity of the fibroblast activation protein (FAP) to uncover its therapeutic potential as a way to increase the FGF21 signaling.
Collapse
|
19
|
Lyophilized Maqui ( Aristotelia chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-Induced Obese Mice. Antioxidants (Basel) 2019; 8:antiox8090360. [PMID: 31480627 PMCID: PMC6769892 DOI: 10.3390/antiox8090360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.
Collapse
|
20
|
Effects of Moderate Chronic Food Restriction on the Development of Postprandial Dyslipidemia with Ageing. Nutrients 2019; 11:nu11081865. [PMID: 31405194 PMCID: PMC6723802 DOI: 10.3390/nu11081865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023] Open
Abstract
Ageing is a major risk factor for the development of metabolic disorders linked to dyslipidemia, usually accompanied by increased adiposity. The goal of this work was to investigate whether avoiding an excessive increase in adiposity with ageing, via moderate chronic food restriction (FR), ameliorates postprandial dyslipidemia in a rat model of metabolic syndrome associated with ageing. Accordingly, we performed an oral lipid loading test (OLLT) in mature middle-aged (7 months) and middle-old-aged (24 months) Wistar rats fed ad libitum (AL) or under moderate FR for 3 months. Briefly, overnight fasted rats were orally administered a bolus of extra-virgin olive oil (1 mL/Kg of body weight) and blood samples were taken from the tail vein before fat load (t = 0) and 30, 60, 90, 120, 180, and 240 min after fat administration. Changes in serum lipids, glucose, insulin, and glucagon levels were measured at different time-points. Expression of liver and adipose tissue metabolic genes were also determined before (t = 0) and after the fat load (t = 240 min). Postprandial dyslipidemia progressively increased with ageing and this could be associated with hepatic ChREBP activity. Interestingly, moderate chronic FR reduced adiposity and avoided excessive postprandial hypertriglyceridemia in 7- and 24-month-old Wistar rats, strengthening the association between postprandial triglyceride levels and adiposity. The 24-month-old rats needed more insulin to maintain postprandial normoglycemia; nevertheless, hyperglycemia occurred at 240 min after fat administration. FR did not alter the fasted serum glucose levels but it markedly decreased glucagon excursion during the OLLT and the postprandial rise of glycemia in the 24-month-old rats, and FGF21 in the 7-month-old Wistar rats. Hence, our results pointed to an important role of FR in postprandial energy metabolism and insulin resistance in ageing. Lastly, our data support the idea that the vWAT might function as an ectopic site for fat deposition in 7-month-old and in 24-month-old Wistar rats that could increase their browning capacity in response to an acute fat load.
Collapse
|
21
|
Lewis JE, Ebling FJP, Samms RJ, Tsintzas K. Going Back to the Biology of FGF21: New Insights. Trends Endocrinol Metab 2019; 30:491-504. [PMID: 31248786 DOI: 10.1016/j.tem.2019.05.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a protein highly synthesized in the liver that exerts paracrine and endocrine control of many aspects of energy homeostasis in multiple tissues. In preclinical models of obesity and type 2 diabetes, treatment with FGF21 improves glucose homeostasis and promotes weight loss, and, as a result, FGF21 has attracted considerable attention as a therapeutic agent for the treatment of metabolic syndrome in humans. An improved understanding of the biological role of FGF21 may help to explain why its therapeutic potential in humans has not been fully realized. This review will cover the complexities in FGF21 biology in rodents and humans, with emphasis on its role in protection from central and peripheral facets of obesity.
Collapse
Affiliation(s)
- Jo E Lewis
- Institute of Metabolic Sciences and MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, CB0 0QQ, UK
| | - Francis J P Ebling
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | - Kostas Tsintzas
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
22
|
Christoffersen B, Straarup EM, Lykkegaard K, Fels JJ, Sass-Ørum K, Zhang X, Raun K, Andersen B. FGF21 decreases food intake and body weight in obese Göttingen minipigs. Diabetes Obes Metab 2019; 21:592-600. [PMID: 30328263 DOI: 10.1111/dom.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to assess the effect of FGF21 on food intake, body weight, body composition, glucose homeostasis, bone mineral density (BMD), cortisol and growth hormone (GH) in obese minipigs. The pig is a unique model for studying FGF21 pharmacology as it does not express UCP1, unlike mice and humans. METHODS Twelve obese Göttingen minipigs with a mean body weight of 91.6 ± 6.7 kg (mean ± SD) received subcutaneously either vehicle (n = 6) or recombinant human FGF21 (n = 6) once daily for 14 weeks (0.1 mg/kg for 9.5 weeks and 0.3 mg/kg for 4.5 weeks). RESULTS Treatment of obese minipigs with FGF21 led to a 50% reduction in food intake and a body weight loss of, on average, 18 kg compared to the vehicle group after 14 weeks of dosing. Glucose tolerance and insulin sensitivity, evaluated by intravenous glucose tolerance test, were significantly improved in the FGF21 group compared to the vehicle group at the end of the study. The plasma cortisol profile was unaffected by FGF21, whereas a small decrease in peak GH values was observed in the FGF21-treated animals after 7 to 9.5 weeks of treatment compared to the vehicle group. Whole-body BMD was not affected by 13 weeks of FGF21 dosing. CONCLUSION Despite a lack of UCP-1 in obese minipigs, FGF21 treatment induced a significant weight loss, primarily a result of reduction in food intake, with no adverse effect on BMD or plasma cortisol.
Collapse
|
23
|
Hong ES, Lim C, Choi HY, Lee YK, Ku EJ, Moon JH, Park KS, Jang HC, Choi SH. Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes. BMJ Open Diabetes Res Care 2019; 7:e000776. [PMID: 31798902 PMCID: PMC6861080 DOI: 10.1136/bmjdrc-2019-000776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a novel metabolic regulator that has beneficial effects on glucose and lipid metabolism. However, plasma FGF21 levels are paradoxically increased in type 2 diabetes mellitus (T2DM) and obesity, suggesting resistance to this ligand. FGF21 acts mainly on adipose tissue and ectopic fat accumulation is a typical feature in metabolic deterioration such as diabetes, metabolic syndrome, and cardiovascular disease. OBJECTIVE To investigate the relationship between FGF21 resistance and ectopic fat accumulation. RESEARCH DESIGN AND METHODS Subjects who underwent 64-slice multidetector CT (MDCT) were enrolled (n=190). Plasma FGF21 levels and MDCT data of ectopic fats at various sites were analyzed. Human visceral and subcutaneous fat tissues from abdominal and coronary artery bypass surgery were obtained. FGF21 receptor expression and postreceptor signaling in different fat deposits of both control and T2DM subjects were analyzed. RESULTS Plasma FGF21 levels were significantly associated with body mass index, triglyceride, homeostatic model assessment of insulin resistance, and Matsuda index. Plasma FGF21 levels were significantly higher in patients with T2DM than in the pre-diabetes and normal glucose tolerance groups. The ectopic fat phenotypes (visceral, epicardial, intrahepatic, and intramuscular fat) of T2DM were significantly higher than controls. Plasma FGF21 levels were elevated and exhibited a strong positive correlation with ectopic fat accumulation in T2DM. The expression of genes comprising the FGF21 signaling pathway was also lower in visceral fat than in subcutaneous fat in this disease. CONCLUSIONS Human FGF21 resistance in T2DM could result from increases in FGF21-resistant ectopic fat accumulation. Our study provides novel clinical evidence linking FGF21 resistance and T2DM pathogenesis.
Collapse
Affiliation(s)
- Eun Shil Hong
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Internal Medicine, Konkuk University Chungju Hospital, Chungju, South Korea
| | - Cheong Lim
- Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Yeon Choi
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eu Jeong Ku
- Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea
| | - Jae Hoon Moon
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyong Soo Park
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hak Chul Jang
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
24
|
Panaro BL, Coppage AL, Beaudry JL, Varin EM, Kaur K, Lai JH, Wu W, Liu Y, Bachovchin WW, Drucker DJ. Fibroblast activation protein is dispensable for control of glucose homeostasis and body weight in mice. Mol Metab 2018; 19:65-74. [PMID: 30477988 PMCID: PMC6323180 DOI: 10.1016/j.molmet.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast Activation Protein (FAP), an enzyme structurally related to dipeptidyl peptidase-4 (DPP-4), has garnered interest as a potential metabolic drug target due to its ability to cleave and inactivate FGF-21 as well as other peptide substrates. Here we investigated the metabolic importance of FAP for control of body weight and glucose homeostasis in regular chow-fed and high fat diet-fed mice. Methods FAP enzyme activity was transiently attenuated using a highly-specific inhibitor CPD60 and permanently ablated by genetic inactivation of the mouse Fap gene. We also assessed the FAP-dependence of CPD60 and talabostat (Val-boroPro), a chemical inhibitor reportedly targeting both FAP and dipeptidyl peptidase-4 Results CPD60 robustly inhibited plasma FAP activity with no effect on DPP-4 activity. Fap gene disruption was confirmed by assessment of genomic DNA, and loss of FAP enzyme activity in plasma and tissues. CPD60 did not improve lipid tolerance but modestly improved acute oral and intraperitoneal glucose tolerance in a FAP-dependent manner. Genetic inactivation of Fap did not improve glucose or lipid tolerance nor confer resistance to weight gain in male or female Fap−/− mice fed regular chow or high-fat diets. Moreover, talabostat markedly improved glucose homeostasis in a FAP- and FGF-21-independent, DPP-4 dependent manner. Conclusion Although pharmacological FAP inhibition improves glucose tolerance, the absence of a metabolic phenotype in Fap−/−mice suggest that endogenous FAP is dispensable for the regulation of murine glucose homeostasis and body weight. These findings highlight the importance of characterizing the specificity and actions of FAP inhibitors in different species and raise important questions about the feasibility of mouse models for targeting FAP as a treatment for diabetes and related metabolic disorders. Acute inhibition of FAP enzyme activity improves glucose tolerance in mice. Fap knockout mice exhibit normal glucose and lipid tolerance. Fap knockout mice do not resist obesity after high fat feeding. Talabostat robustly lowers glucose in a FAP and FGF21-independent manner. Talabostat, but not CPD60, requires DPP4 to exert its full metabolic activity.
Collapse
Affiliation(s)
- Brandon L Panaro
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Andrew L Coppage
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Kirandeep Kaur
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jack H Lai
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Wengen Wu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Yuxin Liu
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William W Bachovchin
- Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
25
|
Andersen B, Straarup EM, Heppner KM, Takahashi DL, Raffaele V, Dissen GA, Lewandowski K, Bödvarsdottir TB, Raun K, Grove KL, Kievit P. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys. Int J Obes (Lond) 2018; 42:1151-1160. [PMID: 29892039 DOI: 10.1038/s41366-018-0080-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. METHODS Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. RESULTS On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA1C. Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. CONCLUSION In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.
Collapse
Affiliation(s)
| | | | | | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Virginia Raffaele
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Gregory A Dissen
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Katherine Lewandowski
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | | | - Kirsten Raun
- Diabetes Research, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Kevin L Grove
- Obesity Research, Novo Nordisk A/S, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
26
|
Yan K, Chen W, Zhu H, Lin G, Pan H, Li N, Wang L, Yang H, Liu M, Gong F. Ileal Transposition Surgery Decreases Fat Mass and Improves Glucose Metabolism in Diabetic GK Rats: Possible Involvement of FGF21. Front Physiol 2018; 9:191. [PMID: 29593555 PMCID: PMC5854974 DOI: 10.3389/fphys.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: Ileal transposition (IT) surgery has been reported to improve glucose and lipid metabolism, and fibroblast growth factor 21 (FGF21) is a powerful metabolic regulator. In the present study, we aimed to investigate the effects of IT surgery on metabolism and its possible relationship with the FGF21 signaling pathway in diabetic Goto-Kakizaki (GK) rats. Methods: Ten-week-old male GK rats were subjected to IT surgery with translocation of a 10 cm ileal segment to the proximal jejunum (IT group) or sham surgery without the ileum transposition (Sham-IT group). Rats in the no surgery group did not receive any surgical intervention. Six weeks later, body weight, fat mass, fasting blood glucose (FBG), and serum levels of FGF21 and leptin were measured. The expression of the FGF21 signaling pathway and white adipose tissue (WAT) browning-related genes in the WAT and liver were evaluated by real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blot. Results: IT surgery significantly decreased the body weights and FBG levels and increased the insulin sensitivity of GK rats. The total WAT mass of the IT rats showed a 41.5% reduction compared with the Sham-IT rats, and serum levels of FGF21 and leptin of the IT rats decreased by 26.3 and 61.7%, respectively (all P < 0.05). The mRNA levels of fibroblast growth factor receptor 1 (FGFR1) and its co-receptor β klotho (KLB) in the perirenal WAT (pWAT) of the IT rats were 1.4- and 2.4-fold that of the Sham-IT rats, respectively, and the FGFR1 protein levels were 1.7-fold of the Sham-IT rats (all P < 0.05). In accordance with the pWAT, the protein levels of FGFR1 and KLB in the epididymal WAT (eWAT) of the IT rats notably increased to 3.0- and 3.9-fold of the Sham-IT rats (P < 0.05). Furthermore, uncoupling protein 1 (UCP1) protein levels in the eWAT and pWAT of the IT rats also increased to 2.2- and 2.3-fold of the Sham-IT rats (P < 0.05). However, the protein levels of FGFR1 and KLB in the subcutaneous WAT (sWAT) of the IT rats decreased by 34.4 and 72.1%, respectively, compared with the Sham-IT rats (P < 0.05). In addition, the protein levels of FGF21 and KLB in the livers of IT rats were 3.9- and 2.3-fold of the Sham-IT rats (all P < 0.05). Conclusions: IT surgery significantly decreased fat mass and improved glucose metabolism in diabetic GK rats. These beneficial roles of IT surgery were probably associated with its stimulatory action on the expression of FGFR1 and KLB in both the eWAT and the pWAT, thereby promoting UCP1 expression in these tissues.
Collapse
Affiliation(s)
- Kemin Yan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weijie Chen
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guole Lin
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Naishi Li
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Wu G, Liu Y, Liu Y, Zhang L, Zhao H, Liu L, Zhao C, Feng W. FGF 21 deficiency slows gastric emptying and reduces initial blood alcohol concentration in mice exposed to acute alcohol in fasting state. Biochem Biophys Res Commun 2018; 497:46-50. [PMID: 29448103 DOI: 10.1016/j.bbrc.2018.01.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Excess alcohol consumption can lead to alcoholic liver disease. Fibroblast growth factor 21 (FGF21) is a metabolic regulator with multiple physiologic functions. Previous study demonstrated that FGF21 deficiency exacerbated alcohol-induced liver injury and exogenous FGF21 administration protected liver from chronic alcohol-induced injury. In this study, we aimed to explore the role of FGF21 in alcohol metabolism in mice. FGF21 knockout (KO) mice and the wild type(WT) control mice were divided into two groups and fasted for 24 h followed by a bonus of alcohol treatment at a dose of 5 g/kg body weight via gavage. Serum alcohol concentration was measured after gavage at 0.5, 2, 3, 4 and 6 h, respectively. At the end, gastric and liver tissues were collected. Serum alcohol concentration of KO mice was significantly lower than that of WT at 0.5 h after alcohol expose. There were no significant differences in alcohol dehydrogenase (ADH) activity and aldehyde dehydrogenase 2 (ALDH2) activity in gastric and liver tissues between WT and the KO mice. However, gastric emptying time of KO mice was much longer than that of WT mice. In addition, the intestinal permeability and serum GLP-1 level of KO mice were significantly higher than that of WT mice. These results suggest that FGF21 deficiency slow gastric emptying rate and indirectly influence initial alcohol metabolism in mice exposed to acute alcohol. Our findings provide additional information for understanding the gastrointestinal mechanism of alcoholic liver disease and other alcohol use disorders.
Collapse
Affiliation(s)
- Guicheng Wu
- Department of Hepatology, Chongqing Three Gorges Central Hospital, Chongqing, 404000, China; Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yanlong Liu
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA; School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunhuan Liu
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lihua Zhang
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Haiyang Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, 325027, China
| | - Liming Liu
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, 325027, China
| | - Cuiqing Zhao
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, 325027, China
| | - Wenke Feng
- Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA; School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
28
|
Sandoval V, Rodríguez-Rodríguez R, Martínez-Garza Ú, Rosell-Cardona C, Lamuela-Raventós RM, Marrero PF, Haro D, Relat J. Mediterranean Tomato-Based Sofrito Sauce Improves Fibroblast Growth Factor 21 (FGF21) Signaling in White Adipose Tissue of Obese ZUCKER Rats. Mol Nutr Food Res 2018; 62. [PMID: 29266852 DOI: 10.1002/mnfr.201700606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/23/2017] [Indexed: 01/24/2023]
Abstract
SCOPE Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Since FGF21 production and signaling are regulated by some bioactive dietary compounds, we analyze the impact of Mediterranean tomato-based sofrito sauce on: (i) the FGF21 expression and signaling in visceral white adipose tissue (vWAT), and (ii) the insulin sensitivity of obese Zucker rats (OZR). METHODS AND RESULTS OZR are fed with a sofrito-supplemented diet or control diet. Insulin sensitivity and FGF21 signaling are determined. We observed that sofrito is able to improve the responsiveness to both hormones in obese rats. Sofrito-supplemented diet increases FGF21 signaling in vWAT by inducing the expression of the FGF receptors (FGFR1 and FGFR4) that promotes the expression of canonical target genes, like Egr-1, c-Fos and uncoupling protein 1 (Ucp1). CONCLUSIONS A sofrito-supplemented diet improves insulin and FGF21 sensitivity in OZR, explaining part of sofrito's healthy effects on glucose metabolism. In addition, induction of UCP1 and the unchanged body weight despite the hyperphagic behavior of the sofrito-fed rats suggests that the increase in FGF21 signaling correlates with an increase in energy expenditure (EE). Further studies in humans may help to understand whether sofrito consumption increases the EE in obese individuals.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Úrsula Martínez-Garza
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| | - Cristina Rosell-Cardona
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB).,CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro F Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food and Nutrition Torribera Campus, University of Barcelona, Santa Coloma de Gramenet, Spain.,Insitute of Nutrition and Food Safety of the University of Barcelona (INSA-UB)
| |
Collapse
|
29
|
Li H, Wu G, Fang Q, Zhang M, Hui X, Sheng B, Wu L, Bao Y, Li P, Xu A, Jia W. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat Commun 2018; 9:272. [PMID: 29348470 PMCID: PMC5773530 DOI: 10.1038/s41467-017-02677-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 12/19/2017] [Indexed: 02/08/2023] Open
Abstract
Although the pharmacological effects of fibroblast growth factor 21 (FGF21) are well-documented, uncertainty about its role in regulating excessive energy intake remains. Here, we show that FGF21 improves systemic insulin sensitivity by promoting the healthy expansion of subcutaneous adipose tissue (SAT). Serum FGF21 levels positively correlate with the SAT area in insulin-sensitive obese individuals. FGF21 knockout mice (FGF21KO) show less SAT mass and are more insulin-resistant when fed a high-fat diet. Replenishment of recombinant FGF21 to a level equivalent to that in obesity restores SAT mass and reverses insulin resistance in FGF21KO, but not in adipose-specific βklotho knockout mice. Moreover, transplantation of SAT from wild-type to FGF21KO mice improves insulin sensitivity in the recipients. Mechanistically, circulating FGF21 upregulates adiponectin in SAT, accompanied by an increase of M2 macrophage polarization. We propose that elevated levels of endogenous FGF21 in obesity serve as a defense mechanism to protect against systemic insulin resistance. FGF21 has a number of beneficial metabolic effects. Here, Li et al. show that FGF21 promotes the healthy expansion of subcutaneous white adipose tissue, promoting the healthy expansion of fat tissue as a regulatory mechanism to maintain systemic insulin sensitivity during nutrient excess.
Collapse
Affiliation(s)
- Huating Li
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guangyu Wu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qichen Fang
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mingliang Zhang
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Sheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liang Wu
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Peng Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Hong Kong, China. .,Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
30
|
Laeger T, Baumeier C, Wilhelmi I, Würfel J, Kamitz A, Schürmann A. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes. Diabetologia 2017; 60:2274-2284. [PMID: 28770320 PMCID: PMC6448882 DOI: 10.1007/s00125-017-4389-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Fibroblast growth factor 21 (FGF21) is considered to be a promising therapeutic candidate for the treatment of type 2 diabetes. However, as FGF21 levels are elevated in obese and diabetic conditions we aimed to test if exogenous FGF21 is sufficient to prevent diabetes and beta cell loss in New Zealand obese (NZO) mice, a model for polygenetic obesity and type 2 diabetes. METHODS Male NZO mice were treated with a specific dietary regimen that leads to the onset of diabetes within 1 week. Mice were treated subcutaneously with PBS or FGF21 to assess changes in glucose homeostasis, energy expenditure, food intake and other metabolic endpoints. RESULTS FGF21 treatment prevented islet destruction and the onset of hyperglycaemia, and improved glucose clearance. FGF21 increased energy expenditure by inducing browning in subcutaneous white adipose tissue. However, as a result of a compensatory increased food intake, body fat did not decrease in response to FGF21 treatment, but exhibited elevated Glut4 expression. CONCLUSIONS/INTERPRETATION FGF21 prevents the onset of diet-induced diabetes, without changing body fat mass. Beneficial effects are mediated via white adipose tissue browning and elevated thermogenesis. Furthermore, these data indicate that obesity does not induce FGF21 resistance in NZO mice.
Collapse
Affiliation(s)
- Thomas Laeger
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Baumeier
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ilka Wilhelmi
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Josefine Würfel
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Anne Kamitz
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
31
|
Kruse R, Vienberg SG, Vind BF, Andersen B, Højlund K. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes. Diabetologia 2017; 60:2042-2051. [PMID: 28721439 DOI: 10.1007/s00125-017-4373-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR). RESULTS Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes. CONCLUSIONS/INTERPRETATION Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.
Collapse
Affiliation(s)
- Rikke Kruse
- Department of Clinical Research, Section of Molecular Diabetes and Metabolism, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, Section of Molecular Diabetes and Metabolism, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, DK-5000, Odense, Denmark
| | | | - Birgitte F Vind
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, DK-5000, Odense, Denmark
| | | | - Kurt Højlund
- Department of Clinical Research, Section of Molecular Diabetes and Metabolism, University of Southern Denmark, Odense, Denmark.
- Department of Molecular Medicine, Section of Molecular Diabetes and Metabolism, University of Southern Denmark, Odense, Denmark.
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, DK-5000, Odense, Denmark.
| |
Collapse
|
32
|
Rajan S, Mandikian D, Baruch A, Gelzleichter TR, Stevens D, Sonoda J, Cowan K, Boswell CA, Stefanich E. Preclinical pharmacokinetic characterization of an adipose tissue-targeting monoclonal antibody in obese and non-obese animals. MAbs 2017; 9:1379-1388. [PMID: 28895785 DOI: 10.1080/19420862.2017.1373923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Target receptor levels can influence pharmacokinetics (PK) or pharmacodynamics (PD) of monoclonal antibodies (mAbs), and can affect drug development of this class of molecules. We generated an effector-less humanized bispecific antibody that selectively activates fibroblast growth factor receptor (FGFR)1 and βKlotho receptor, a FGF21 receptor complex highly expressed in both white and brown adipocytes. The molecule shows cross-species binding with comparable equilibrium binding affinity (Kd) for human, cynomolgus monkey, and mouse FGFR1/βKlotho. To understand the PK/PD relationship in non-obese and obese animals, we evaluated the adipose tissue distribution of the antibody, serum exposures, and an associated PD marker (high-molecular-weight adiponectin), in both non-obese and obese mice and monkeys. Antibody uptake into fat tissue was found to be higher on a per gram basis in non-obese animals compared to obese animals. Since obesity has been reported to be associated with reduced expression of FGFR1 and βKlotho receptor in white adipose tissues in mice, our results suggest that the distribution in adipose tissues was influenced by target expression levels. Even so, the overall dose-normalized serum exposures were comparable between non-obese and obese mice and monkeys, suggesting that adipose tissue uptake plays a limited role in overall systemic PK determination. It remains to be determined if and how obesity and receptor expression in humans influence the PK and PD profile of this novel therapeutic candidate.
Collapse
Affiliation(s)
- Sharmila Rajan
- a Preclinical and Translational Pharmacokinetics , Genentech Inc. , South San Francisco , CA , USA
| | - Danielle Mandikian
- a Preclinical and Translational Pharmacokinetics , Genentech Inc. , South San Francisco , CA , USA
| | - Amos Baruch
- b Pharmacodynamic Biomarkers Development , Genentech Inc. , South San Francisco , CA , USA
| | | | - Dale Stevens
- c Safety Assessment, Genentech Inc. , South San Francisco , CA , USA
| | - Junichiro Sonoda
- d Molecular Biology , Genentech Inc. , South San Francisco , CA , USA
| | - Kyra Cowan
- e Bioanalytical Sciences , Genentech Inc. , 1 DNA Way, South San Francisco , CA , USA
| | - C Andrew Boswell
- a Preclinical and Translational Pharmacokinetics , Genentech Inc. , South San Francisco , CA , USA
| | - Eric Stefanich
- a Preclinical and Translational Pharmacokinetics , Genentech Inc. , South San Francisco , CA , USA
| |
Collapse
|
33
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
34
|
Strowski MZ. Impact of FGF21 on glycemic control. Horm Mol Biol Clin Investig 2017; 30:/j/hmbci.ahead-of-print/hmbci-2017-0001/hmbci-2017-0001.xml. [PMID: 28593912 DOI: 10.1515/hmbci-2017-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/07/2017] [Indexed: 11/15/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays a role in regulating adaptation to various metabolic abnormalities. In addition, FGF21 is involved in controlling glucose and lipid homeostasis. The regulation of FGF21 is a complex process and depends upon multiple metabolic factors and hormones. Humans and animals with obesity or type 2 diabetes have abnormal expression and changes of FGF21 in the circulation. Interventional studies in rodents and monkeys with obesity, insulin resistance or type 2 diabetes revealed a potential therapeutic relevance of FGF21 in correcting these abnormalities. This review summarizes the current knowledge about the regulation of FGF21 by distinct metabolic and endogenous factors, considering the most relevant studies. In this context, the results of interventional studies in humans and various animal models of diseases, such as diabetes and obesity, are discussed. In addition, potential mechanisms of the molecular regulation of FGF21 expression and secretion are reviewed.
Collapse
|
35
|
Fjeldborg K, Pedersen SB, Møller HJ, Richelsen B. Reduction in serum fibroblast growth factor-21 after gastric bypass is related to changes in hepatic fat content. Surg Obes Relat Dis 2017; 13:1515-1523. [PMID: 28552744 DOI: 10.1016/j.soard.2017.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/27/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is elevated in obesity. OBJECTIVES We investigated the circulating level of FGF21 and the expression of FGF21, beta-klotho (KLB), and FGF receptor 1 (FGFR1) in adipose tissue in relation to weight, fat distribution, and Roux-en-Y gastric bypass (RYGB)-induced weight loss. SETTING The Department of Endocrinology at Aarhus University Hospital. METHODS Thirty-one obese patients were enrolled. Visceral adipose tissue volume measured by magnetic resonance imaging, hepatic fat content measured by magnetic resonance spectroscopy, and body composition measured by dual-energy x-ray absorbtiometry were determined at baseline and 12 months after RYGB. Fasting blood samples and subcutaneous and visceral adipose tissue samples were obtained. Moreover, 25 lean controls were enrolled. RESULTS FGF21 was significantly elevated in obese patients compared with lean patients (281±151 pg/mL versus 149±99 pg/mL, P<.05). RYGB-induced weight loss resulted in a smaller reduction in FGF21 (P = .08). However, a significant reduction was seen in obese patients with initially high FGF21 levels (42% reduction, P<.001). A significant association was found between FGF21 and hepatic fat content at baseline (r = 0.40, P<.05). Moreover, ΔFGF21 was significantly associated with Δhepatic fat content after RYGB (r = 0.39, P<.05). FGF21 mRNA was not detectable in AT from either lean or obese patients. KLB and FGFR1 were upregulated in AT in relation to obesity, and both were further increased 12 months after RYGB. CONCLUSIONS FGF21 is reduced in relation to weight loss in patients with initial high levels of FGF21 and this reduction is significantly associated with a reduction in hepatic fat content. Thus, changes in FGF21 after RYGB-induced weight loss are closely related to changes in liver fat content.
Collapse
Affiliation(s)
- Karen Fjeldborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Steen B Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
36
|
Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-O M, Yada T. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Sci Rep 2017; 7:45819. [PMID: 28374855 PMCID: PMC5379189 DOI: 10.1038/srep45819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21’s anorexigenic effect and the systemic energy state supporting it are unclear. We explored the target neuron and fed/fasted state dependence of FGF21’s anorexigenic action. Intracerebroventricular (ICV) injection of FGF21 markedly suppressed food intake in fed mice with elevated blood glucose. FGF21 induced c-Fos expression preferentially in hypothalamic paraventricular nucleus (PVN), and increased mRNA expression selectively for nucleobindin 2/nesfatin-1 (NUCB2/Nesf-1). FGF21 at elevated glucose increased [Ca2+]i in PVN NUCB2/Nesf-1 neurons. FGF21 failed to suppress food intake in PVN-preferential Sim1-Nucb2-KO mice. These findings reveal that FGF21, assisted by elevated glucose, activates PVN NUCB2/Nesf-1 neurons to suppress feeding under fed states, serving as the glycemia-monitoring messenger of liver-hypothalamic network for integrative regulation of energy and glucose metabolism.
Collapse
Affiliation(s)
- Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zhang Boyang
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kumari Parmila
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zesemdorj Otgon-Uul
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.,Metabolic and Obese Research Institute, Maebashi, Gunma 371-0037, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
37
|
Markan KR, Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ. FGF21 resistance is not mediated by downregulation of beta-klotho expression in white adipose tissue. Mol Metab 2017; 6:602-610. [PMID: 28580290 PMCID: PMC5444074 DOI: 10.1016/j.molmet.2017.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Objective Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates metabolic homeostasis. Previous work has suggested that impairment of FGF21 signaling in adipose tissue may occur through downregulation of the obligate FGF21 co-receptor, β-klotho, which leads to “FGF21 resistance” during the onset of diet-induced obesity. Here, we sought to determine whether maintenance of β-klotho expression in adipose tissue prevents FGF21 resistance and whether other mechanisms also contribute to FGF21 resistance in vivo. Methods We generated adipose-specific β-klotho transgenic mice to determine whether maintenance of β-klotho expression in adipose tissue prevents FGF21 resistance in vivo. Results β-klotho protein levels are markedly decreased in white adipose tissue, but not liver or brown adipose tissue, during diet-induced obesity. Maintenance of β-klotho protein expression in adipose tissue does not alleviate impaired FGF21 signaling in white adipose or increase FGF21 sensitivity in vivo. Conclusions In white adipose tissue, downregulation of β-klotho expression is not the major mechanism contributing to impaired FGF21 signaling in white adipose tissue.
Collapse
Affiliation(s)
- Kathleen R. Markan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C. Naber
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sarah M. Small
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lila Peltekian
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rachel L. Kessler
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J. Potthoff
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Corresponding author. University of Iowa Carver College of Medicine, 169 Newton Road 3322 PBDB, Iowa City, IA 52242, USA. Fax: +1 319 335 8930.University of Iowa Carver College of Medicine169 Newton Road 3322 PBDBIowa CityIA52242USA
| |
Collapse
|
38
|
Kharitonenkov A, DiMarchi R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field. J Intern Med 2017; 281:233-246. [PMID: 27878865 DOI: 10.1111/joim.12580] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning βKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - R DiMarchi
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
39
|
Heianza Y, Ma W, Huang T, Wang T, Zheng Y, Smith SR, Bray GA, Sacks FM, Qi L. Macronutrient Intake-Associated FGF21 Genotype Modifies Effects of Weight-Loss Diets on 2-Year Changes of Central Adiposity and Body Composition: The POUNDS Lost Trial. Diabetes Care 2016; 39:1909-1914. [PMID: 27581055 PMCID: PMC5079612 DOI: 10.2337/dc16-1111] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/12/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is involved in the regulation of energy balance and adipose metabolism. Our previous genome-wide association study identified genetic variants in the FGF21 region associated with macronutrient intake preference. We investigated whether the FGF21 genotype modified effects of weight-loss diets varying in macronutrient intake on changes in adiposity in a 2-year randomized diet intervention trial. RESEARCH DESIGN AND METHODS We genotyped FGF21 rs838147 in 715 overweight or obese individuals who were assigned to one of four diets varying in macronutrient contents. A DEXA scan was performed to evaluate body composition. RESULTS We observed a significant interaction between the FGF21 genotype and carbohydrate/fat intake on 2-year changes in waist circumference (WC), percentage of total fat mass, and percentage of trunk fat (P = 0.049, P = 0.001, and P = 0.003 for interaction, respectively). In response to the low-carbohydrate/high-fat diet, carrying the carbohydrate intake-decreasing C allele of rs838147 was marginally associated with less reduction in WC (P = 0.08) and significantly associated with less reduction of total fat mass (P = 0.01) and trunk fat (P = 0.02). Opposite genetic associations with these outcomes were observed among the high-carbohydrate/low-fat diet group; carrying the C allele was associated with a greater reduction of WC, total body fat mass, and trunk fat. CONCLUSIONS Our data suggest that FGF21 genotypes may interact with dietary carbohydrate/fat intake on changes in central adiposity and body fat composition. A low-calorie, high-carbohydrate/low-fat diet was beneficial for overweight or obese individuals carrying the carbohydrate intake-decreasing allele of the FGF21 variant to improve body composition and abdominal obesity.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Wenjie Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Steven R Smith
- Florida Hospital and Sanford-Burnham Institute, Orlando, FL
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
40
|
Pérez-Martí A, Sandoval V, Marrero PF, Haro D, Relat J. Nutritional regulation of fibroblast growth factor 21: from macronutrients to bioactive dietary compounds. Horm Mol Biol Clin Investig 2016; 30:/j/hmbci.ahead-of-print/hmbci-2016-0034/hmbci-2016-0034.xml. [PMID: 27583468 DOI: 10.1515/hmbci-2016-0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022]
Abstract
Obesity is a worldwide health problem mainly due to its associated comorbidities. Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in metabolic homeostasis in healthy individuals and considered a promising therapeutic candidate for the treatment of obesity. FGF21 is predominantly produced by the liver but also by other tissues, such as white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle, and pancreas in response to different stimuli such as cold and different nutritional challenges that include fasting, high-fat diets (HFDs), ketogenic diets, some amino acid-deficient diets, low protein diets, high carbohydrate diets or specific dietary bioactive compounds. Its target tissues are essentially WAT, BAT, skeletal muscle, heart and brain. The effects of FGF21 in extra hepatic tissues occur through the fibroblast growth factor receptor (FGFR)-1c together with the co-receptor β-klotho (KLB). Mechanistically, FGF21 interacts directly with the extracellular domain of the membrane bound cofactor KLB in the FGF21- KLB-FGFR complex to activate FGFR substrate 2α and ERK1/2 phosphorylation. Mice lacking KLB are resistant to both acute and chronic effects of FGF21. Moreover, the acute insulin sensitizing effects of FGF21 are also absent in mice with specific deletion of adipose KLB or FGFR1. Most of the data show that pharmacological administration of FGF21 has metabolic beneficial effects. The objective of this review is to compile existing information about the mechanisms that could allow the control of endogenous FGF21 levels in order to obtain the beneficial metabolic effects of FGF21 by inducing its production instead of doing it by pharmacological administration.
Collapse
|
41
|
|
42
|
Sobolesky PM, Harrell TS, Parry C, Venn-Watson S, Janech MG. Feeding a Modified Fish Diet to Bottlenose Dolphins Leads to an Increase in Serum Adiponectin and Sphingolipids. Front Endocrinol (Lausanne) 2016; 7:33. [PMID: 27148164 PMCID: PMC4838613 DOI: 10.3389/fendo.2016.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/08/2016] [Indexed: 01/16/2023] Open
Abstract
Feeding a modified fish diet has been suggested to improve insulin sensitivity in bottlenose dolphins; however, insulin sensitivity was not directly measured. Since demonstrating an improvement in insulin sensitivity is technically difficult in dolphins, we postulated that directional changes in the hormone axis: fibroblast growth factor 21 (FGF21)/Adiponectin/Ceramide (Cer), could provide further support to this hypothesis. We measured 2-h post-prandial serum FGF21, total adiponectin, percent unmodified adiponectin, ceramide, and sphingosine levels from dolphins fed a diet rich in heptadecanoic acid (C17:0) over 24 weeks. Serum FGF21 was quantified by ELISA with an observed range of 129-1599 pg/ml, but did not significantly change over the 24-week study period. Total adiponectin levels (mean ± SD) significantly increased from 776 ± 400 pmol/ml at week 0 to 1196 ± 467 pmol/ml at week 24. The percent unmodified adiponectin levels (mean ± SD) decreased from 23.8 ± 6.0% at week 0 to 15.2 ± 5.2% at week 24. Interestingly, although FGF21 levels did not change, there was a good correlation between FGF21 and total adiponectin (ρ = 0.788, P < 0.001). We quantified the abundances of serum ceramides and sphingosines (SPH) because adiponectin has a defined role in sphingolipid metabolism through adiponectin receptor-mediated activation of ceramidases. The most abundant ceramide in dolphin sera was Cer 24:1 comprising 49% of the ceramides measured. Significant reductions were observed in the unsaturated Cer 18:1, Cer 20:1, and Cer 24:1, whereas significant increases were observed in saturated Cer 22:0, Cer 24:0, and Cer 26:0. However, total serum ceramides did not change. Significant elevations were detected for total sphingosine, dihydrosphingosine, sphingosine-1-phosphate, and dihydrosphingosine-1-phosphate. Proteomic analysis of the serum proteins revealed few changes in serum proteins over the study period. In conclusion, shifting the dolphin diet to fishes rich in odd chain saturated fatty acids, such as C17:0, resulted in increased serum levels of the insulin sensitizing hormone adiponectin and serum SPH consistent with an insulin-sensitizing phenotype. It is still unclear whether FGF21 plays a role in the regulation of adiponectin in dolphins, similar to that shown in laboratory animal models.
Collapse
Affiliation(s)
- Philip M. Sobolesky
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Tyler S. Harrell
- Grice Marine Laboratory, Department of Biology, College of Charleston, Charleston, SC, USA
| | - Celeste Parry
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Stephanie Venn-Watson
- Translational Medicine and Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Michael G. Janech
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
- Grice Marine Laboratory, Department of Biology, College of Charleston, Charleston, SC, USA
- *Correspondence: Michael G. Janech,
| |
Collapse
|
43
|
Giralt M, Gavaldà-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol 2015; 418 Pt 1:66-73. [PMID: 26415590 DOI: 10.1016/j.mce.2015.09.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF)-21 is an endocrine member of the FGF family with healthy effects on glucose and lipid metabolism. FGF21 reduces glycemia and lipidemia in rodent models of obesity and type 2 diabetes. In addition to its effects improving insulin sensitivity, FGF21 causes weight loss by increasing energy expenditure. Activation of the thermogenic activity of brown adipose tissue and promotion of the appearance of the so-called beige/brite type of brown adipocytes in white fat are considered the main mechanisms underlying the leaning effects of FGF21. Paradoxically, however, obesity in rodents and humans is characterized by high levels of FGF21 in the blood. Some degree of resistance to the actions of FGF21 has been proposed as part of the endocrine alterations in obesity. The resistance in adipose tissue from obese rodents and patients is likely attributable to abnormally low levels of the FGF co-receptor β-Klotho, required for FGF21 cellular action. However, native FGF21 and FGF21 derivatives retain their healthy metabolic and weight-loss effects when used as pharmacological agents to treat obese rodents and humans. FGF21 derivatives or molecules mimicking FGF21 action appear to be interesting candidates for the development of novel anti-obesity drugs designed to increase energy expenditure.
Collapse
Affiliation(s)
- Marta Giralt
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2015; 15:51-69. [PMID: 26567701 DOI: 10.1038/nrd.2015.9] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocrine fibroblast growth factors (FGFs), FGF19, FGF21 and FGF23, are critical for maintaining whole-body homeostasis, with roles in bile acid, glucose and lipid metabolism, modulation of vitamin D and phosphate homeostasis and metabolic adaptation during fasting. Given these functions, the endocrine FGFs have therapeutic potential in a wide array of chronic human diseases, including obesity, type 2 diabetes, cancer, and kidney and cardiovascular disease. However, the safety and feasibility of chronic endocrine FGF administration has been challenged, and FGF analogues and mimetics are now being investigated. Here, we discuss current knowledge of the complex biology of the endocrine FGFs and assess how this may be harnessed therapeutically.
Collapse
|
45
|
Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat Med 2015; 21:769-76. [PMID: 26076035 PMCID: PMC4496282 DOI: 10.1038/nm.3872] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022]
Abstract
The peptide hormone urocortin3 (Ucn3) is abundantly expressed by mature beta cells, yet its physiological role is unknown. Here we demonstrate that Ucn3 is stored and co-released with insulin and potentiates glucose-stimulated somatostatin secretion via cognate receptors on delta cells. Further, we found that islets lacking endogenous Ucn3 have fewer delta cells, reduced somatostatin content, impaired somatostatin secretion, and exaggerated insulin release, and that these defects are rectified by treatment with synthetic Ucn3 in vitro. Our observations indicate that the paracrine actions of Ucn3 activate a negative feedback loop that promotes somatostatin release to ensure the timely reduction of insulin secretion upon normalization of plasma glucose. Moreover, Ucn3 is markedly depleted from beta cells in mouse and macaque models of diabetes and in human diabetic islets. This suggests that Ucn3 is a key contributor to stable glycemic control, whose reduction during diabetes aggravates glycemic volatility and contributes to the pathophysiology of this disease.
Collapse
|
46
|
Gat-Yablonski G, Phillip M. Nutritionally-induced catch-up growth. Nutrients 2015; 7:517-51. [PMID: 25594438 PMCID: PMC4303852 DOI: 10.3390/nu7010517] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022] Open
Abstract
Malnutrition is considered a leading cause of growth attenuation in children. When food is replenished, spontaneous catch-up (CU) growth usually occurs, bringing the child back to its original growth trajectory. However, in some cases, the CU growth is not complete, leading to a permanent growth deficit. This review summarizes our current knowledge regarding the mechanism regulating nutrition and growth, including systemic factors, such as insulin, growth hormone, insulin- like growth factor-1, vitamin D, fibroblast growth factor-21, etc., and local mechanisms, including autophagy, as well as regulators of transcription, protein synthesis, miRNAs and epigenetics. Studying the molecular mechanisms regulating CU growth may lead to the establishment of better nutritional and therapeutic regimens for more effective CU growth in children with malnutrition and growth abnormalities. It will be fascinating to follow this research in the coming years and to translate the knowledge gained to clinical benefit.
Collapse
Affiliation(s)
- Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, and Felsenstein Medical Research Center, Petach Tikva 49100, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children's Diabetes, Schneider Children's Medical Center of Israel, and Felsenstein Medical Research Center, Petach Tikva 49100, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
47
|
Seo H, Lee NH, Ryu S. Antioxidant and antiapoptotic effects of pine needle powder ingestion and endurance training in high cholesterol-fed rats. J Exerc Nutrition Biochem 2014; 18:301-9. [PMID: 25566467 PMCID: PMC4241895 DOI: 10.5717/jenb.2014.18.3.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 11/06/2022] Open
Abstract
[Purpose] Pine needle is a kind of medicinal plant ingested traditionally for a variety of purposes. Therefore, we examined the antioxidant and antiapoptotic capacities of pine needle ingestion in high cholesterol-fed and endurance exercise-trained rats. [Methods] Animals were divided into six groups as; CON: normal diet control group; EX: normal diet and exercise training group; HC: high cholesterol diet group; HCE: high cholesterol diet and exercise training group; HCP: high cholesterol and pine needle group; HCPE: high-cholesterol and pine needle diet with exercise training group, respectively. Each group consisted of seven Sprague-Dawley male rats. The swim-training groups, EX, HCE, and HCPE swam in the swim pool 60 min/d and 5 d/week for 5 weeks. During the rearing periods, freeze-dried pine needle powder mix with 5% of the high cholesterol diet was supplied to the HCP and HCPE groups. Gastrocnemius muscle was used as the skeletal muscle. Malondialdehyde (MDA), Mn-containing superoxide dismutase (Mn-SOD), Cu, Zn containing superoxide dismutase (Cu,Zn-SOD), and glutathione peroxidase (GPx) were analyzed for their antioxidant capacities. Finally, p53, Bcl-2 (B-cell lymphoma 2), caspase-3 protein expression was analyzed to determine antiapoptotic ability. [Results] MDA showed low content in HCPE compared to the HC. Mn-SOD, Cu,Zn-SOD, and GPx protein expression was significantly increased by pine needle ingestion and/or exercise training. In addition, suppression of p53 protein expression resulted in Bcl-2 increase followed by caspase-3 decrease with/without pine needle ingestion and exercise training. [Conclusion] When exercise training in addition to pine needle powder ingestion may be a helpful nutritional regimen to athletes and exercisers.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| | - Nam-Ho Lee
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea
| | - Sungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju, Korea ; Institute of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| |
Collapse
|
48
|
Pound LD, Comstock SM, Grove KL. Consumption of a Western-style diet during pregnancy impairs offspring islet vascularization in a Japanese macaque model. Am J Physiol Endocrinol Metab 2014; 307:E115-23. [PMID: 24844258 PMCID: PMC4080145 DOI: 10.1152/ajpendo.00131.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Children exposed to a maternal Western-style diet in utero have an increased risk of developing type 2 diabetes. Understanding the mechanisms and an investigation of possible interventions are critical to reversing this phenomenon. We examined the impact of maternal Western-style diet consumption on the development of islet vascularization and innervation, both of which are critical to normal islet function, in fetal and juvenile offspring. Furthermore, we assessed whether improved dietary intake or resveratrol supplementation could ameliorate the harmful consequences of Western-style diet consumption during pregnancy. Adult female Japanese macaques were maintained on a control or Western-style diet for 4-7 yr. One cohort of dams was switched back onto a control diet, whereas another cohort received resveratrol supplementation throughout gestation. Pregnancies were terminated in the early third trimester by C-section, or offspring were born naturally and sent to necropsy at 1 yr of age. Western-style diet consumption resulted in impaired fetal islet capillary density and sympathetic islet innervation. Furthermore, this reduction in vascularization persisted in the juvenile offspring. This effect is independent of changes in the expression of key angiogenic markers. Diet reversal normalized islet vascularization to control offspring levels, whereas resveratrol supplementation caused a significant increase in capillary density above controls. These data provide a novel mechanism by which maternal Western-style diet consumption leads to increased susceptibility to type 2 diabetes in the offspring. Importantly, an improved maternal diet may mitigate these harmful effects. However, until the long-term consequences of increased vascularization can be determined, resveratrol use during pregnancy is not advised.
Collapse
Affiliation(s)
- Lynley D Pound
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Sarah M Comstock
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon; and Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
49
|
Wilson ME, Moore CJ, Ethun KF, Johnson ZP. Understanding the control of ingestive behavior in primates. Horm Behav 2014; 66:86-94. [PMID: 24727080 PMCID: PMC4051844 DOI: 10.1016/j.yhbeh.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/08/2023]
Abstract
This article is part of a Special Issue "Energy Balance". Ingestive behavior in free-ranging populations of nonhuman primates is influenced by resource availability and social group organization and provides valuable insight on the evolution of ecologically adaptive behaviors and physiological systems. As captive populations were established, questions regarding proximate mechanisms that regulate food intake in these animals could be more easily addressed. The availability of these captive populations has led to the use of selected species to understand appetite control or metabolic physiology in humans. Recognizing the difficulty of quantitating food intake in free-ranging groups, the use of captive, singly-housed animals provided a distinct advantage though, at the same time, produced a different social ecology from the animals' natural habitat. However, the recent application of novel technologies to quantitate caloric intake and energy expenditure in free-feeding, socially housed monkeys permits prospective studies that can accurately define how food intake changes in response to any number of interventions in the context of a social environment. This review provides an overview of studies examining food intake using captive nonhuman primates organized into three areas: a) neurochemical regulation of food intake in nonhuman primates; b) whether exposure to specific diets during key developmental periods programs differences in diet preferences or changes the expression of feeding related neuropeptides; and c) how psychosocial factors influence appetite regulation. Because feeding patterns are driven by more than just satiety and orexigenic signals, appreciating how the social context influences pattern of feeding in nonhuman primates may be quite informative for understanding the biological complexity of feeding in humans.
Collapse
Affiliation(s)
- Mark E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | - Carla J Moore
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Nutrition & Health Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kelly F Ethun
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Zachary P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, Domingo P, Giralt M, Frühbeck G, Villarroya F. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond) 2014; 39:121-9. [PMID: 24813368 DOI: 10.1038/ijo.2014.76] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/08/2014] [Accepted: 04/30/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Fibroblast growth factor (FGF)-21, and possibly FGF19, protect against type 2 diabetes mellitus (T2DM) and obesity in rodents. We investigated the circulating levels of FGF21 and FGF19 in obese patients with varying degrees of abnormal glucose homeostasis, and we determined gene expression for FGF receptors (FGFR1-4) and the co-receptor β-Klotho, in liver and adipose tissues. SUBJECTS AND METHODS We analyzed 35 lean healthy (71% men) and 61 obese patients (49% men, median body mass index (BMI): 40.5 kg m(-2), interquartile range: 34.7-46.2). Among obese patients, 36 were normoglycemic, 15 showed impaired glucose tolerance and 10 had T2DM. Biopsies from liver and visceral and subcutaneous fat from a subset of obese patients and controls were analyzed. FGF19 and FGF21 levels were measured using enzyme-linked immunosorbent assay, and tissue mRNA and protein levels by reverse transcription-polymerase chain reaction and immunoblotting. RESULTS FGF21 serum levels were significantly increased in obese patients compared with controls (P<0.001), whereas FGF19 levels were decreased (P < 0.001). FGF21 levels were positively correlated with homeostasis model assessment of insulin resistance (P = 0.0002, r = 0.37) and insulin (P = 0.001, r = 0.32), whereas FGF19 levels were negatively correlated (P = 0.007, r = -0.27; P=0.003, r = -0.28; respectively). After adjusting for BMI, the correlations of FGF21 and FGF19 levels with indicators of abnormal glucose homeostasis were not significant. In obese patients, the hepatic expression of FGF21 was increased. (P = 0.04). β-Klotho transcript levels in visceral fat (P = 0.002) and β-Klotho protein levels in subcutaneous (P = 0.03) and visceral fat (P = 0.04) were significantly reduced in obese patients, whereas hepatic levels for β-Klotho (P = 0.03), FGFR1 (P = 0.04) and FGFR3 (P = 0.001) transcripts were significantly increased. CONCLUSIONS Obesity is characterized by reciprocal alterations in FGF19 (decrease) and FGF21 (increase) levels. Although worsened in diabetic obese patients, obesity itself appears as the predominant determinant of the abnormalities in FGF21 and FGF19 levels. Opposite changes in β-Klotho expression in fat and liver indicate potential tissue-specific alterations in the responsiveness to endocrine FGFs in obesity.
Collapse
Affiliation(s)
- J M Gallego-Escuredo
- 1] Department of Biochemistry and Molecular Biology and Institute of Biomedicina, University of Barcelona, Barcelona, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain
| | - J Gómez-Ambrosi
- 1] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain [2] Clínica Universidad de Navarra, Pamplona, Spain
| | - V Catalan
- 1] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain [2] Clínica Universidad de Navarra, Pamplona, Spain
| | - P Domingo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - M Giralt
- 1] Department of Biochemistry and Molecular Biology and Institute of Biomedicina, University of Barcelona, Barcelona, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain
| | - G Frühbeck
- 1] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain [2] Clínica Universidad de Navarra, Pamplona, Spain
| | - F Villarroya
- 1] Department of Biochemistry and Molecular Biology and Institute of Biomedicina, University of Barcelona, Barcelona, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición, Nutrición, Spain
| |
Collapse
|