1
|
Cai Y, Guo T, Zhou J, Zhang H, Li T, Zhi Z, Wang P, Cui M, Hu Z, Zhang J. Alpha-Linolenic Acid from Zanthoxylum Seed Powder Regulates Fatty Acid Metabolism and Influences Meat Quality of Pekin Duck via the ADIPOQ/AMPK/CPT-1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:14651-14665. [PMID: 40459020 PMCID: PMC12164340 DOI: 10.1021/acs.jafc.5c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025]
Abstract
Zanthoxylum seed powder contains dominant α-linolenic acid (ALA). Its regulatory mechanism as a novel feed additive for the livestock field is not clear. In this study, RNA-seq was used to identify the differential gene expression in breast muscle of Pekin duck supplemented with different doses of Zanthoxylum seed powder, and Adiponectin (ADIPOQ) was found to be an important factor. Functional validation was performed in duck primary myoblasts. Our results revealed that ADIPOQ overexpression could promote myoblast myotube fusion, that is, myogenic differentiation. On the other hand, ALA inhibited lipid deposition in myoblasts. SiADIPOQ inhibited fatty acid oxidation, but stimulated fatty acid synthesis and transport. Furthermore, ALA promoted the up-regulation of ADIPOQ, AMPK, p-AMPK and CPT-1 protein levels. It was concluded that ALA regulates lipid deposition through the ADIPOQ/AMPK/CPT-1 pathway in myoblasts. These results may provide theoretical basis for the development and utilization of Zanthoxylum seed powder in duck production.
Collapse
Affiliation(s)
- Yingjie Cai
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Tong Guo
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Jie Zhou
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Huiya Zhang
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Tao Li
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Zhuo Zhi
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Peng Wang
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Mengmeng Cui
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Zhigang Hu
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| | - Jianqin Zhang
- College of Animal Science
and Technology, Northwest A&F University, Yangling, Shaanxi712100, P. R. China
| |
Collapse
|
2
|
Velasco‐Silva JN, Wilkerson JL, Ramos D, Low HK, Bowman F, Evason KJ, Boudina S, Holland WL, Ducker GS. Loss of hepatic autophagy induces α-cell proliferation through impaired glutamine-dependent gluconeogenesis. Physiol Rep 2025; 13:e70381. [PMID: 40420631 PMCID: PMC12106947 DOI: 10.14814/phy2.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3iLKO) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.
Collapse
Affiliation(s)
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Daniela Ramos
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Hayden K. Low
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
| | - Faith Bowman
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | | - Sihem Boudina
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | |
Collapse
|
3
|
Fan ZK, Chen YF, Han WW, Guo XF, Li D. Coffee peel polyphenols ameliorate nonalcoholic fatty liver disease by modulating cannabinoid receptor type-1-ceramide axis. Phytother Res 2025; 39:2312-2323. [PMID: 40135380 DOI: 10.1002/ptr.8078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 03/27/2025]
Abstract
Cannabinoid receptor type-1 (CB1) signaling plays an important part in maintenance of energy homeostasis, and CB1 blockers have shown promise in the treatment of obesity-related metabolic dysfunction. Coffee peel contains abundant phytochemicals and possesses hypolipidemic and anti-inflammatory activities. The present study aimed to elucidate the preventive effect of coffee peel polyphenols (CPPs) on nonalcoholic fatty liver disease (NAFLD) from the perspective of CB1 signaling. Male C57BL/6J mice were fed a high-fat and high-cholesterol diet and CPPs (200/400 mg/kg/day) for 8 weeks. Serum biochemical indexes and liver pathological analysis were used to evaluate the effect of CPPs on NAFLD. Untargeted/targeted lipidomics analyses were used to evaluate the levels of endocannabinoid ligands and ceramides in serum and liver. The expression levels of proteins were detected by using Western blotting analysis. Administration of CPPs significantly improved hepatic steatosis, insulin resistance and biomarkers of liver function. Meanwhile, CPPs administration indicated reductions in endocannabinoid ligands, including anandamide and 2-arachidonoylglycerol levels, associated with blockade of CB1 overexpression. Blockage of CB1 signaling depleted hepatic C16:0- and C18:0-ceramide concentrations by enhancing ceramide metabolism. The reductions in hepatic ceramide concentrations contributed to down-regulating sterol regulatory element-binding protein-1c and up-regulating proliferator activated receptor alpha, leading to decrease de novo lipogenesis and increase fatty acid β-oxidation in the liver, respectively. This study demonstrated a novel mechanism that CPPs could ameliorate NAFLD through modulating CB1-ceramide axis.
Collapse
Affiliation(s)
- Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei-Wei Han
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Datta S, Koka S, Boini KM. Understanding the Role of Adipokines in Cardiometabolic Dysfunction: A Review of Current Knowledge. Biomolecules 2025; 15:612. [PMID: 40427505 PMCID: PMC12109550 DOI: 10.3390/biom15050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiometabolic risk and associated dysfunctions contribute largely to the recent rise in mortality globally. Advancements in multi-omics in recent years promise a better understanding of potential biomarkers that enable an early diagnosis of cardiometabolic dysfunction. However, the molecular mechanisms driving the onset and progression of cardiometabolic disorders remain poorly understood. Adipokines are adipocyte-specific cytokines that are central to deleterious cardiometabolic alterations. They exhibit both pro-inflammatory and anti-inflammatory effects, complicating their association with cardiometabolic disturbances. Thus, understanding the cardiometabolic association of adipokines from a molecular and signaling perspective assumes great importance. This review presents a comprehensive outline of the most prominent adipokines exhibiting pro-inflammatory and/or anti-inflammatory functions in cardiometabolic dysfunction. The review also presents an insight into the pathophysiological implications of such adipokines in different cardiometabolic dysfunction conditions, the status of adipokine druggability, and future studies that can be undertaken to address the existing scientific gap. A clear understanding of the functional and mechanistic role of adipokines can potentially improve our understanding of cardiovascular disease pathophysiology and enhance our current therapeutic regimen in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A & M University, Kingsville, TX 78363, USA
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Blvd., Houston, TX 77204, USA;
| |
Collapse
|
5
|
Tilg H, Ianiro G, Gasbarrini A, Adolph TE. Adipokines: masterminds of metabolic inflammation. Nat Rev Immunol 2025; 25:250-265. [PMID: 39511425 DOI: 10.1038/s41577-024-01103-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Adipose tissue is an immunologically active organ that controls host physiology, partly through the release of mediators termed adipokines. In obesity, adipocytes and infiltrating leukocytes produce adipokines, which include the hormones adiponectin and leptin and cytokines such as tumour necrosis factor and IL-1β. These adipokines orchestrate immune responses that are collectively referred to as metabolic inflammation. Consequently, metabolic inflammation characterizes metabolic disorders and promotes distinct disease aspects, such as insulin resistance, metabolic dysfunction-associated liver disease and cardiovascular complications. In this unifying concept, adipokines participate in the immunological cross-talk that occurs between metabolically active organs in metabolic diseases, highlighting the fundamental role of adipokines in obesity and their potential for therapeutic intervention. Here, we summarize how adipokines shape metabolic inflammation in mice and humans, focusing on their contribution to metabolic disorders in the setting of obesity and discussing their value as therapeutic targets.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Yki-Järvinen H, Luukkonen PK. Function of PNPLA3 I148M-Lessons From In Vivo Studies in Humans. Liver Int 2025; 45:e70047. [PMID: 40052746 DOI: 10.1111/liv.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) associated with insulin resistance (IR) and the metabolic syndrome ('IR-SLD') increases the risk of liver disease, type 2 diabetes and cardiovascular disease (CVD). SLD associated with the PNPLA3 I148M variant ('PNPLA3-SLD') also predisposes individuals to liver disease but protects against type 2 diabetes and CVD. Although in real life the two causes of SLD commonly co-exist, the opposite effects of 'IR-SLD' and 'PNPLA3-SLD' on CVD and liver disease suggest their pathogenesis differs. METHODS AND RESULTS This review summarises human data comparing the effects of 'IR-SLD' and 'PNPLA3-SLD' on the human liver lipidome, hepatic handling of fatty acids, pathways of intrahepatocellular triglyceride synthesis, circulating lipids and lipoproteins and adipose tissue inflammation. We also discuss how steatosis in PNPLA3 I148M carriers leads to defects in mitochondrial function.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Blüher M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Diabetes Obes Metab 2025; 27 Suppl 2:3-19. [PMID: 40069923 PMCID: PMC12000860 DOI: 10.1111/dom.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 04/17/2025]
Abstract
Obesity is a highly prevalent chronic multisystem disease associated with shortened life expectancy due to a number of adverse health outcomes. Epidemiological data link body weight and parameters of central fat distribution to an increasing risk for type 2 diabetes, hypertension, fatty liver diseases, cardiovascular diseases including myocardial infarction, heart failure, atrial fibrillation, stroke, obstructive sleep apnoea, osteoarthritis, mental disorders and some types of cancer. However, the individual risk to develop cardiometabolic and other obesity-related diseases cannot entirely be explained by increased fat mass. Rather than excess fat accumulation, dysfunction of adipose tissue may represent the mechanistic link between obesity and adverse health outcomes. There are people living with obesity who seem to be protected against the premature development of cardiometabolic diseases. On the other hand, people with normal weight may develop typical obesity diseases upon dysfunction of adipose tissue and predominantly visceral fat distribution. The mechanisms linking impaired function of adipose tissue in people with obesity include adipocyte hypertrophy, altered cellular composition, limited expandability of safe subcutaneous fat stores, ectopic fat deposition in visceral depots, the liver and other organs, hypoxia, a variety of stresses, inflammatory processes, and the release of pro-inflammatory, diabetogenic and atherogenic signals. Genetic and environmental factors might contribute either alone or via interaction with intrinsic biological factors to variation in adipose tissue function. There are still many open questions regarding the mechanisms of how increased body weight causes obesity-related disorders and whether these pathologies could be reversed. Evidence-based weight loss interventions using behaviour change, pharmacological or surgical approaches have clarified the beneficial effects of realistic and sustained weight loss on obesity-related complications as hard outcomes. This review focusses on recent advances in understanding epidemiological trends and mechanisms of obesity-related diseases. PLAIN LANGUAGE SUMMARY: Obesity is a chronic complex and progressive disease characterized by excessive fat deposition that may impair health and quality of life. Worldwide, the number of adults living with obesity has more than doubled since 1990. Obesity may lead to reduced life expectancy, because it increases the risk for type 2 diabetes, cardiovascular diseases (e.g., myocardial infarction, high blood pressure, stroke), fatty liver diseases, musculoskeletal diseases, chronic respiratory diseases, depression and certain types of cancer. However, not every person with obesity develops these diseases. For better prevention and treatment, it is important to understand the mechanisms linking high fat mass to obesity related diseases. It has become clear that fat mass alone cannot explain the higher risk of obesity complications. People with obesity can have either high or low risk of developing complications. Compared to people with a low risk for obesity complications those with a high risk to develop obesity related diseases are characterized by higher central fat deposition in the abdominal region, on average bigger fat cells, higher number of immune cells in adipose tissue and altered signals released from adipose tissue that may directly affect the brain, liver, vasculature and other organs. Both inherited and environment factors may cause these abnormalities of adipose tissue function. However, weight loss through behaviour changes (e.g., lower calorie intake, higher physical activity), medications or obesity surgery can improve health, quality of life and reduce the risk for obesity related diseases.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum MünchenUniversity of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III—Endocrinology, Nephrology, RheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| |
Collapse
|
8
|
Vincent V, Thakkar H, Sen A, Bansal A, Das US, Gunasekaran A, Bhatla N, Velpandian T, Singh A. Adiponectin mediated metabolic and sphingolipid alterations in preventing endothelial dysfunction. Mol Cell Biochem 2025:10.1007/s11010-025-05268-1. [PMID: 40140228 DOI: 10.1007/s11010-025-05268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Endothelial dysfunction is an early indicator of atherosclerosis. Adiponectin, a hormone secreted by adipose tissue with insulin-sensitizing and anti-inflammatory properties, offers protection against atherosclerosis. This study investigated the metabolic and sphingolipid alterations in endothelial cells linked to the protective effects of adiponectin against endothelial dysfunction. Human Umbilical Endothelial Cells (HUVECs) were treated with Tumor Necrosis Factor-alpha (TNF-α) to induce endothelial dysfunction. AdipoRon and SKI-I were used to study the effects of adiponectin and sphingosine kinase inhibition in HUVECs. Metabolic changes and sphingolipid alterations were assessed to understand changes in lipid metabolism, and RNA sequencing was used to quantify the transcriptomics changes. TNF-α treatment significantly upregulated glycolysis and downregulated long-chain fatty acid oxidation and mitochondrial ATP production, while AdipoRon co-treatment partially reversed these metabolic effects. In HUVECs, TNF-α treatment increased intracellular C16 and C18 ceramides and Sphingosine 1-Phosphate (S1P) while decreasing extracellular S1P. AdipoRon Co-treatment reversed these effects; AdipoRon also reversed the transcriptional changes induced by TNF-α. Sphingosine kinase inhibition in HUVECs led to mitochondrial dysfunction at the metabolic and transcriptional levels. This study provides insights into potential therapeutic strategies targeting endothelial metabolism while unraveling a novel mitochondrial modulation mediated by sphingosine kinases in endothelial cells.
Collapse
Affiliation(s)
- Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ujjalkumar Subhash Das
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Abishek Gunasekaran
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Thirumurthy Velpandian
- Ocular Pharmacology and Pharmacy Division, Dr. RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross S, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. eLife 2025; 13:RP92635. [PMID: 39873665 PMCID: PMC11774516 DOI: 10.7554/elife.92635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- College of Health and Life Science, Hamad bin Khalifa UniversityDohaQatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
- Biological Sciences division, University of ChicagoChicagoUnited States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Steven Gross
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
11
|
Gianopoulos I, Mantzoros CS, Daskalopoulou SS. Adiponectin and Adiponectin Receptors in Atherosclerosis. Endocr Rev 2025; 46:1-25. [PMID: 39106421 PMCID: PMC11720176 DOI: 10.1210/endrev/bnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Adiponectin is an abundantly secreted hormone that communicates information between the adipose tissue, and the immune and cardiovascular systems. In metabolically healthy individuals, adiponectin is usually found at high levels and helps improve insulin responsiveness of peripheral tissues, glucose tolerance, and fatty acid oxidation. Beyond its metabolic functions in insulin-sensitive tissues, adiponectin plays a prominent role in attenuating the development of atherosclerotic plaques, partially through regulating macrophage-mediated responses. In this context, adiponectin binds to its receptors, adiponectin receptor 1 (AdipoR1) and AdipoR2 on the cell surface of macrophages to activate a downstream signaling cascade and induce specific atheroprotective functions. Notably, macrophages modulate the stability of the plaque through their ability to switch between proinflammatory responders, and anti-inflammatory proresolving mediators. Traditionally, the extremes of the macrophage polarization spectrum span from M1 proinflammatory and M2 anti-inflammatory phenotypes. Previous evidence has demonstrated that the adiponectin-AdipoR pathway influences M1-M2 macrophage polarization; adiponectin promotes a shift toward an M2-like state, whereas AdipoR1- and AdipoR2-specific contributions are more nuanced. To explore these concepts in depth, we discuss in this review the effect of adiponectin and AdipoR1/R2 on 1) metabolic and immune responses, and 2) M1-M2 macrophage polarization, including their ability to attenuate atherosclerotic plaque inflammation, and their potential as therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA 02130, USA
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
12
|
Wang S, Jin Z, Wu B, Morris AJ, Deng P. Role of dietary and nutritional interventions in ceramide-associated diseases. J Lipid Res 2025; 66:100726. [PMID: 39667580 PMCID: PMC11754522 DOI: 10.1016/j.jlr.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical. Dietary interventions including the Mediterranean diet, lacto-ovo-vegetarian diet, calorie-restricted diet, restriction of dairy product consumption, and dietary supplementation with polyunsaturated fatty acids, dietary fibers, and polyphenols, all have beneficial effects on modulating ceramide levels. Mechanistic insights into these interventions are discussed. This article reviews the relationships between ceramides and disease pathogenesis, with a focus on dietary intervention as a viable strategy for lowering the concentration of circulating ceramides.
Collapse
Affiliation(s)
- Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zihui Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyu Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, Arkansas, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Duan F, Wu J, Chang J, Peng H, Liu Z, Liu P, Han X, Sun T, Shang D, Yang Y, Li Z, Li P, Liu Y, Zhu Y, Lv Y, Guo X, Zhao Y, An Y. Deciphering endocrine function of adipose tissue and its significant influences in obesity-related diseases caused by its dysfunction. Differentiation 2025; 141:100832. [PMID: 39709882 DOI: 10.1016/j.diff.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints. An in-depth summary of the roles of adipokines in the regulation of other tissues and organs can help to provide more effective therapeutic strategies for obesity-related diseases and explore potential therapeutic targets. Therefore, this review has retrospected the endocrine function of adipose tissue under obesity and the role of dysregulated adipokine secretion in related diseases and the underlying mechanisms, in order to provide a theoretical basis for targeting adipokine-mediated systemic dysregulation.
Collapse
Affiliation(s)
- Feiyi Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiaoyan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Jiayi Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Haoyuan Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zitao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengfei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Dandan Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yutian Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yunzhi Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xiumei Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
14
|
Blüher M. Understanding Adipose Tissue Dysfunction. J Obes Metab Syndr 2024; 33:275-288. [PMID: 39734091 PMCID: PMC11704217 DOI: 10.7570/jomes24013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
Diseases affecting adipose tissue (AT) function include obesity, lipodystrophy, and lipedema, among others. Both a lack of and excess AT are associated with increased risk for developing diseases including type 2 diabetes mellitus, hypertension, obstructive sleep apnea, and some types of cancer. However, individual risk of developing cardiometabolic and other 'obesity-related' diseases is not entirely determined by fat mass. Rather than excess fat accumulation, AT dysfunction may represent the mechanistic link between obesity and comorbid diseases. There are people who remain metabolically healthy despite obesity, whereas people with normal weight or very low subcutaneous AT mass may develop typically obesity-related diseases. AT dysfunction is characterized by adipocyte hypertrophy, impaired subcutaneous AT expandability (ectopic fat deposition), hypoxia, a variety of stress, inflammatory processes, and the release of proinflammatory, diabetogenic, and atherogenic signals. Genetic and environmental factors might contribute to AT heterogeneity either alone or via interaction with intrinsic biological factors. However, many questions remain regarding the mechanisms of AT dysfunction initiation and whether and how it could be reversed. Do AT signatures define clinically relevant subtypes of obesity? Is the cellular composition of AT associated with variation in obesity phenotypes? What roles do environmental compounds play in the manifestation of AT dysfunction? Answers to these and other questions may explain AT disease mechanisms and help to define strategies for improving AT health. This review focuses on recent advances in our understanding of AT biology.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
15
|
Chen T, Yang W, Dong R, Yao H, Sun M, Wang J, Zhou Q, Xu J. The effect and application of adiponectin in hepatic fibrosis. Gastroenterol Rep (Oxf) 2024; 12:goae108. [PMID: 39737222 PMCID: PMC11683834 DOI: 10.1093/gastro/goae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatic fibrosis, a degenerative liver lesion, significantly contributes to the deterioration and mortality among patients with chronic liver diseases. The condition arises from various factors including toxins, such as alcohol, infections like different types of viral hepatitis, and metabolic diseases. Currently, there are no effective treatments available for liver fibrosis. Recent research has shown that adiponectin (ADPN) exhibits inhibitory effects on hepatic fibrosis. ADPN, an adipocytokine secreted by mature adipocytes, features receptors that are widely distributed across multiple tissues, especially the liver. In the liver, direct effects of ADPN on liver fibrosis include reducing inflammation and regulating hepatic stellate cell proliferation and migration. And its indirect effects include alleviating hepatic endoplasmic reticulum stress and reducing inflammation in hepatic lobules, thereby mitigating hepatic fibrosis. This review aims to elucidate the regulatory role of ADPN in liver fibrosis, explore how ADPN and its receptors alleviate endoplasmic reticulum stress, summarize ADPN detection methods, and discuss its potential as a novel marker and therapeutic agent in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Taoran Chen
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wenjing Yang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Rongrong Dong
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Han Yao
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Miao Sun
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiaxin Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
16
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
17
|
Rahman MM, Kraft C, Clark C, Nicholson RJ, Marchetti M, Williams E, Zhang C, Holland WL, Summers SA, Edgar BA. Bwa, an ortholog of alkaline ceramidase-ACER2, promotes intestinal stem cell proliferation through pro-inflammatory cytokine signaling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624044. [PMID: 39651270 PMCID: PMC11623631 DOI: 10.1101/2024.11.26.624044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sphingolipids, including ceramides, are an important component of high-fat diets. These molecules can regulate fatty acid oxidation and intestinal stem cell proliferation, predisposing the gut to tumorigenesis. However, the molecular mechanisms involved in ceramide metabolism-mediated intestinal stem cell (ISC) proliferation and tumorigenesis are poorly understood. To understand how changes in sphingolipid metabolite flux affect intestinal stem cells, we manipulated the activities of each of the enzymes of the ceramide synthetic pathway using cell type-specific over-expression or depletion of the corresponding mRNAs in each intestinal cell type of the Drosophila midgut. We documented cell-autonomous and non-cell-autonomous effects, including alterations in cell size, number, differentiation, and proliferation. In our screen, the altered expression of several ceramide metabolism enzymes led to changes in ISC proliferation, cell sizes, and overall cellularity. Among other genes, over-expression of ceramidase homolog, Brain washing (bwa) in gut enteroblasts (EB) increased EB cell size and caused a non-cell-autonomous, 7-8-fold increase in ISC proliferation. Our analysis confirmed previous reports that bwa does not have ceramidase activity, and lipidomic studies indicated that bwa increases the saturation status of sphingolipids, free fatty acids, and other lipids. The pro-proliferative effects of bwa could be counter-acted by depleting a serine palmitoyltransferase, Lace , or a sphingosine acyltransferase, Schlank , which are needed for ceramide synthesis, or by co-expressing a ceramide desaturase enzyme, ifc , indicating that increased saturated ceramides were causal for ISC proliferation and the disruption of gut homeostasis. Accumulating saturated sphingolipids and fatty acids induced inflammatory signaling in the gut, and activated ISC proliferation through the pro-inflammatory cytokines, Upd3 and Upd2. We propose that saturated sphingolipids promote ISC proliferation through pro-inflammatory pathways.
Collapse
|
18
|
Durumutla HB, Prabakaran AD, El Abdellaoui Soussi F, Akinborewa O, Latimer H, McFarland K, Piczer K, Werbrich C, Jain MK, Haldar SM, Quattrocelli M. Glucocorticoid chronopharmacology promotes glucose metabolism in heart through a cardiomyocyte-autonomous transactivation program. JCI Insight 2024; 9:e182599. [PMID: 39378111 PMCID: PMC11601906 DOI: 10.1172/jci.insight.182599] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Circadian time of intake gates the cardioprotective effects of glucocorticoid administration in both healthy and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) and its cofactor, Krüppel-like factor 15 (KLF15), play critical roles in maintaining normal heart function in the long term and serve as pleiotropic regulators of cardiac metabolism. Despite this understanding, the cardiomyocyte-autonomous metabolic targets influenced by the concerted epigenetic action of the GR/KLF15 axis remain undefined. Here, we demonstrated the critical roles of the cardiomyocyte-specific GR and KLF15 in orchestrating a circadian-dependent glucose oxidation program within the heart. Combining integrated transcriptomics and epigenomics with cardiomyocyte-specific inducible ablation of GR or KLF15, we identified their synergistic role in the activation of adiponectin receptor expression (Adipor1) and the mitochondrial pyruvate complex (Mpc1/2), thereby enhancing insulin-stimulated glucose uptake and pyruvate oxidation. Furthermore, in obese diabetic (db/db) mice exhibiting insulin resistance and impaired glucose oxidation, light-phase prednisone administration, as opposed to dark-phase prednisone dosing, restored cardiomyocyte glucose oxidation and improved diastolic function. These effects were blocked by combined in vivo knockdown of GR and KLF15 levels in db/db hearts. In summary, this study leveraged the circadian-dependent cardioprotective effects of glucocorticoids to identify cardiomyocyte-autonomous targets for the GR/KLF15 axis in glucose metabolism.
Collapse
Affiliation(s)
- Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| | - Mukesh K. Jain
- Department of Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Saptarsi M. Haldar
- Amgen Research, South San Francisco, California, USA
- Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, Cardiology Division, UCSF, San Francisco, California, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, and
| |
Collapse
|
19
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
20
|
Liu Y, Ma X, Le Y, Feng J, Xu M, Wang W, Wang C. Organophosphorus Flame Retardants and Metabolic Disruption: An in Silico, in Vitro, and in Vivo Study Focusing on Adiponectin Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117003. [PMID: 39514743 PMCID: PMC11548883 DOI: 10.1289/ehp14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Environmental chemical exposures have been associated with metabolic outcomes, and typically, their binding to nuclear hormone receptors is considered the molecular initiating event (MIE) for a number of outcomes. However, more studies are needed to understand the influence of such exposures on cell membrane-bound adiponectin receptors (AdipoRs), which are critical metabolic regulators. OBJECTIVE We aimed to clarify the potential interactions between AdipoRs and environmental chemicals, specifically organophosphorus flame retardants (OPFRs), and the resultant effects. METHODS Employing in silico simulation, cell thermal shift, and noncompetitive binding assays, we screened eight OPFRs for interactions with AdipoR1 and AdipoR2. We tested two key events underlying AdipoR modulation upon OPFR exposure in a liver cell model. The Toxicological Prioritization Index (ToxPi)scoring scheme was used to rank OPFRs according to their potential to disrupt AdipoR-associated metabolism. We further examined the inhibitory effect of OPFRs on AdipoR signaling activation in mouse models. RESULTS Analyses identified pi-pi stacking and pi-sulfur interactions between the aryl-OPFRs 2-ethylhexyl diphenyl phosphate (EHDPP), triphenyl phosphate (TPhP), and tricresyl phosphate (TCP) and the transmembrane cavities of AdipoR1 and AdipoR2. Cell thermal shift assays showed a > 3 ° C rightward shift in the AdipoR proteins' melting curves upon exposure to these three compounds. Although the binding sites differed from adiponectin, results suggest that aryl-OPFRs noncompetitively inhibited the binding of the endogenous peptide ligand ADP355 to the receptors. Analyses of key events underlying AdipoR modulation revealed that glucose uptake was notably lower, whereas lipid content was higher in cells exposed to aryl-OPFRs. EHDPP, TCP, and TPhP were ranked as the top three disruptors according to the ToxPi scores. A noncompetitive binding between these aryl-OPFRs and AdipoRs was also observed in wild-type (WT) mice. In db/db mice, the finding of lower blood glucose levels after ADP355 injection was diminished in the presence of a typical aryl-OPFR (TCP). WT mice exposed to TCP demonstrated lower AdipoR1 signaling, which was marked by lower phosphorylated AMP-activated protein kinase (pAMPK) and a higher expression of gluconeogenesis-related genes. Moreover, WT mice exposed to ADP355 demonstrated higher levels of pAMPK protein and peroxisome proliferator-activated receptor-α messenger RNA. This was accompanied by higher glucose disposal and by lower levels of long-chain fatty acids and hepatic triglycerides; these metabolic improvements were negated upon TCP co-treatment. CONCLUSIONS In silico, in vitro, and in vivo assays suggest that aryl-OPFRs act as noncompetitive inhibitors of AdipoRs, preventing their activation by adiponectin, and thus function as antagonists to these receptors. Our study describes a novel MIE for chemical-induced metabolic disturbances and highlights a new pathway for environmental impact on metabolic health. https://doi.org/10.1289/EHP14634.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengting Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanyue Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
21
|
Xu JW, Chen FF, Qv YH, Sun CC, Zhang D, Guo Z, Wang YJ, Wang JF, Liu T, Dong L, Qi Q. Unleashing AdipoRon's Potential: A Fresh Approach to Tackle Pseudomonas aeruginosa Infections in Bronchiectasis via Sphingosine Metabolism Modulation. J Inflamm Res 2024; 17:7653-7674. [PMID: 39469062 PMCID: PMC11514707 DOI: 10.2147/jir.s483689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Bronchiectasis patients are prone to Pseudomonas aeruginosa infection due to decreased level of sphingosine in airway. Adiponectin receptor agonist AdipoRon activates the intrinsic ceramidase activity of adiponectin receptor 1 (AdipoR1) and positively regulates sphingosine metabolism. This study aimed to investigate the potential therapeutic benefit of AdipoRon against Pseudomonas aeruginosa infection. Methods A mouse model of Pseudomonas aeruginosa lung infection and a co-culture model of human bronchial epithelial cells with Pseudomonas aeruginosa were established to explore the protective effect of AdipoRon. Liquid chromatography-mass spectrometry was used to detect the effect of AdipoRon on sphingosine level in lung of Pseudomonas aeruginosa-infected mouse models. Results The down-regulation of adiponectin and AdipoR1 in airway of bronchiectasis patients was linked to Pseudomonas aeruginosa infection. By activating AdipoR1, AdipoRon reduced Pseudomonas aeruginosa adherence on bronchial epithelial cells and protected cilia from damage in vitro. With the treatment of AdipoRon, the load of Pseudomonas aeruginosa in lung significantly decreased, and peribronchial inflammatory cell infiltration was lessened in vivo. The reduced level of sphingosine in the airway of Pseudomonas aeruginosa infected mice was replenished by AdipoRon, thus playing a protective role in the airway. Moreover, AdipoRon activated P-AMPKα/PGC1α, inhibited TLR4/P-NF-κB p65, and reduced expression of pro-apoptotic bax. However, the protective effect of AdipoRon on resisting Pseudomonas aeruginosa infection was weakened when AdipoR1 was knocked down. Conclusion AdipoRon protects bronchial epithelial cells and lung by enhancing their resistance to Pseudomonas aeruginosa infection. The mechanism might be modulating sphingosine metabolism and activating P-AMPKα/PGC1α while inhibiting TLR4/P-NF-κB p65.
Collapse
Affiliation(s)
- Jia-wei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Fang-fang Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Ying-hui Qv
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Cong-cong Sun
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Dong Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Zhi Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Yu-jiao Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Jun-fei Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Tian Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Qian Qi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Characteristic Laboratory of Clinical Transformation of Respiratory Biological Immunity and Regenerative Medicine, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| |
Collapse
|
22
|
Neeland IJ, Lim S, Tchernof A, Gastaldelli A, Rangaswami J, Ndumele CE, Powell-Wiley TM, Després JP. Metabolic syndrome. Nat Rev Dis Primers 2024; 10:77. [PMID: 39420195 DOI: 10.1038/s41572-024-00563-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The metabolic syndrome (MetS) is a multiplex modifiable risk factor for cardiovascular disease, type 2 diabetes mellitus and other health outcomes, and is a major challenge to clinical practice and public health. The rising global prevalence of MetS, driven by urbanization, sedentary lifestyles and dietary changes, underlines the urgency of addressing this syndrome. We explore the complex underlying mechanisms, including genetic predisposition, insulin resistance, accumulation of dysfunctional adipose tissue and ectopic lipids in abdominal obesity, systemic inflammation and dyslipidaemia, and how they contribute to the clinical manifestations of MetS. Diagnostic approaches vary but commonly focus on abdominal obesity (assessed using waist circumference), hyperglycaemia, dyslipidaemia and hypertension, highlighting the need for population-specific and phenotype-specific diagnostic strategies. Management of MetS prioritizes lifestyle modifications, such as healthy dietary patterns, physical activity and management of excess visceral and ectopic adiposity, as foundational interventions. We also discuss emerging therapies, including new pharmacological treatments and surgical options, providing a forward-looking perspective on MetS research and care. This Primer aims to inform clinicians, researchers and policymakers about MetS complexities, advocating for a cohesive, patient-centred management and prevention strategy. Emphasizing the multifactorial nature of MetS, this Primer calls for integrated public health efforts, personalized care and innovative research to address this escalating health issue.
Collapse
Affiliation(s)
- Ian J Neeland
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Division of Cardiovascular Medicine, University Hospitals Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - André Tchernof
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Québec, Canada
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Janani Rangaswami
- Division of Nephrology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chiadi E Ndumele
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tiffany M Powell-Wiley
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Jean-Pierre Després
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, Québec, Canada.
- VITAM - Centre de recherche en santé durable, Centre intégré universitaire de santé et de services sociaux de la Capitale-Nationale, Québec, Québec, Canada.
| |
Collapse
|
23
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
24
|
Lu J, Zhu DX, Wu Z, Liu L, Hao FX, Jiang ZH, Xu WX. Low serum adiponectin levels are associated with an increased risk of diabetes in obese dogs. J Small Anim Pract 2024; 65:730-736. [PMID: 38957893 DOI: 10.1111/jsap.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Adiponectin plays an important role in carbohydrate and lipid metabolism. However, the evidence regarding the association between adiponectin and diabetes mellitus in obese dogs is sparse. The aim of this study is to investigate the associations of adiponectin with the risk of diabetes mellitus in obese dogs on the basis of a prospective cohort study. MATERIALS AND METHODS Serum adiponectin levels in obese dogs recruited from three small animal hospitals between 2015 and 2018 were measured by ELISA. Electronic health records were used to record the incidence of diabetes mellitus during follow-up for 3 years. RESULTS A total of 862 dogs were included. Amongst the 862 dogs, 51 developed diabetes. Adiponectin levels were associated with diabetes mellitus after adjusting for sex, age, breed, exercise, body condition score, fasting plasma glucose, serum triglyceride and total cholesterol. When adjusting for sex, age, breed, exercise, body condition score, fasting plasma glucose, serum triglyceride and total cholesterol, the adjusted hazard ratios were 7.83 (95% confidence interval: 2.67 to 30.13) in the lowest adiponectin group and 1.96 (95% CI: 1.10 to 8.55) in the medium adiponectin group relative to that in the highest adiponectin group. The area under a curve of adiponectin's Receiver operating characteristic curve was 0.81 (95% CI: 0.76 to 0.86). CLINICAL SIGNIFICANCE Low adiponectin is associated with diabetes mellitus and has a high risk of incident diabetes mellitus, implying the potential of adiponectin as a predictive biomarker of diabetes mellitus in obese dogs.
Collapse
Affiliation(s)
- J Lu
- Department of Pet Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - D-X Zhu
- Department of Animal Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Z Wu
- Department of Animal Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - L Liu
- Department of Animal Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - F-X Hao
- Department of Animal Medicine, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Z-H Jiang
- Department of Diagnosis and Treatment of Small Animal Diseases, Kangmei Pet Hospital, Nantong, China
| | - W-X Xu
- Department of Diagnosis and Treatment of Small Animal Diseases, Hongmei Pet Hospital, Changzhou, China
| |
Collapse
|
25
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Wu W, Jian Y, Yuan S, Li X, Tang Y, Zeng F, Liu W, Zhao Z, Wang Y, Wang Y, Liu W. Exercise-promoted adiponectin secretion activates autolysosomes to protect the liver of ApoE -/- mice from a high-fat diet. Food Funct 2024; 15:9796-9812. [PMID: 39229645 DOI: 10.1039/d4fo02984d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fat is a "double-edged sword": while it is a necessary substance for the body, the long-term intake of excessive fat will cause obesity, with the liver subjected to lipotoxicity as it accumulates. It will then continue to deteriorate, eventually leading to liver failure, which is a negative impact of high-fat food intake. Research has shown that exercise can reverse the side effects of a chronic high-fat diet and help the body to mitigate the harmful effects of lipotoxicity. In our study, it was found that moderate-intensity cardio-training (MICT) and high-intensity interval exercise (HIIT) effectively protected the livers of high-fat diet (HFD) ApoE-/- mice against lipotoxicity. Previous results demonstrated that 12 weeks of HFD resulted in a significant elevation of CD36 in the livers of C57BL/6J mice, while knockdown of CD36 did not reduce the accumulation of fat in the liver. Therefore, we used ApoE-/- mice as experimental subjects. Although HFD caused the development of hyperlipidemia and atherosclerosis, it is interesting to note that, due to the knockdown of ApoE, the livers of ApoE-/- mice in the non-exercise group did not show significant lipid deposition; however, after 12 weeks of MICT and HIIT, the livers of ApoE-/- mice showed significant lipid deposition. After we analyzed the lipid metabolism in their livers, we found that this was caused by the promotion of transport of peripheral fat into the liver due to exercise. Moreover, 12 weeks of exercise effectively reduced atherosclerosis, and the livers of ApoE-/- mice in the exercise group were not damaged by lipotoxicity. The results showed that a 12-week exercise treatment activated AMPK in the livers of HFD ApoE-/- mice through the APN-AdipoR1 signaling pathway, improved hepatic lipid metabolism disorders, and promoted the nuclear translocation of TFEB to enhance autophagic-lysosomal lipid scavenging. After the peripheral lipid is input into the liver due to exercise, the energy generated through gluconeogenesis can be used to replenish the energy consumed by exercise and maintain the normal operation of various functions in the liver, based on which the high autophagic flux in the liver can be maintained and the lipid clearance rate can be enhanced to protect the liver from lipotoxicity.
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University, College of Arts and Sciences, Jingzhou 434020, China
| | - Xuan Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenjing Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
27
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
28
|
Durumutla HB, Prabakaran AD, Soussi FEA, Akinborewa O, Latimer H, McFarland K, Piczer K, Werbrich C, Jain MK, Haldar SM, Quattrocelli M. Glucocorticoid chrono-pharmacology unveils novel targets for the cardiomyocyte-specific GR-KLF15 axis in cardiac glucose metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572210. [PMID: 38187555 PMCID: PMC10769285 DOI: 10.1101/2023.12.18.572210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Circadian time-of-intake gates the cardioprotective effects of glucocorticoid administration in both healthy and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) and its co-factor, Krüppel-like factor (Klf15), play critical roles in maintaining normal heart function in the long-term and serve as pleiotropic regulators of cardiac metabolism. Despite this understanding, the cardiomyocyte-autonomous metabolic targets influenced by the concerted epigenetic action of GR-Klf15 axis remain undefined. Here, we demonstrate the critical roles of the cardiomyocyte-specific GR and Klf15 in orchestrating a circadian-dependent glucose oxidation program within the heart. Combining integrated transcriptomics and epigenomics with cardiomyocyte-specific inducible ablation of GR or Klf15, we identified their synergistic role in the activation of adiponectin receptor expression (Adipor1) and the mitochondrial pyruvate complex (Mpc1/2), thereby enhancing insulin-stimulated glucose uptake and pyruvate oxidation. Furthermore, in obese diabetic (db/db) mice exhibiting insulin resistance and impaired glucose oxidation, light-phase prednisone administration, as opposed to dark-phase prednisone dosing, effectively restored cardiomyocyte glucose oxidation and improved diastolic function towards control-like levels in a sex-independent manner. Collectively, our findings uncover novel cardiomyocyte-autonomous metabolic targets of the GR-Klf15 axis. This study highlights the circadian-dependent cardioprotective effects of glucocorticoids on cardiomyocyte glucose metabolism, providing critical insights into chrono-pharmacological strategies for glucocorticoid therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Hima Bindu Durumutla
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashok Daniel Prabakaran
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fadoua El Abdellaoui Soussi
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Olukunle Akinborewa
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hannah Latimer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin McFarland
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kevin Piczer
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Cole Werbrich
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mukesh K Jain
- Dept Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Saptarsi M Haldar
- Amgen Research, South San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA and Dept Medicine, Cardiology Division, UCSF, San Francisco, CA, USA
| | - Mattia Quattrocelli
- Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children’s Hospital Medical Center and Dept. Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
29
|
Khatoon S, Das N, Chattopadhyay S, Joharapurkar A, Singh A, Patel V, Nirwan A, Kumar A, Mugale MN, Mishra DP, Kumaravelu J, Guha R, Jain MR, Chattopadhyay N, Sanyal S. Apigenin-6-C-glucoside ameliorates MASLD in rodent models via selective agonism of adiponectin receptor 2. Eur J Pharmacol 2024; 978:176800. [PMID: 38950835 DOI: 10.1016/j.ejphar.2024.176800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Adiponectin plays key roles in energy metabolism and ameliorates inflammation, oxidative stress, and mitochondrial dysfunction via its primary receptors, adiponectin receptors -1 and 2 (AdipoR1 and AdipoR2). Systemic depletion of adiponectin causes various metabolic disorders, including MASLD; however adiponectin supplementation is not yet achievable owing to its large size and oligomerization-associated complexities. Small-molecule AdipoR agonists, thus, may provide viable therapeutic options against metabolic disorders. Using a novel luciferase reporter-based assay here, we have identified Apigenin-6-C-glucoside (ACG), but not apigenin, as a specific agonist for the liver-rich AdipoR isoform, AdipoR2 (EC50: 384 pM) with >10000X preference over AdipoR1. Immunoblot analysis in HEK-293 overexpressing AdipoR2 or HepG2 and PLC/PRF/5 liver cell lines revealed rapid AMPK, p38 activation and induction of typical AdipoR targets PGC-1α and PPARα by ACG at a pharmacologically relevant concentration of 100 nM (reported cMax in mouse; 297 nM). ACG-mediated AdipoR2 activation culminated in a favorable modulation of key metabolic events, including decreased inflammation, oxidative stress, mitochondrial dysfunction, de novo lipogenesis, and increased fatty acid β-oxidation as determined by immunoblotting, QRT-PCR and extracellular flux analysis. AdipoR2 depletion or AMPK/p38 inhibition dampened these effects. The in vitro results were recapitulated in two different murine models of MASLD, where ACG at 10 mg/kg body weight robustly reduced hepatic steatosis, fibrosis, proinflammatory macrophage numbers, and increased hepatic glycogen content. Together, using in vitro experiments and rodent models, we demonstrate a proof-of-concept for AdipoR2 as a therapeutic target for MASLD and provide novel chemicobiological insights for the generation of translation-worthy pharmacological agents.
Collapse
Affiliation(s)
- Shamima Khatoon
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nabanita Das
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sourav Chattopadhyay
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Abhinav Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Patel
- Zydus Research Center, Moraiya, Ahmedabad, 382213, Gujarat, India
| | - Abhishek Nirwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Madhav Nilakanth Mugale
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jagavelu Kumaravelu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajdeep Guha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sabyasachi Sanyal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Sancar G, Birkenfeld AL. The role of adipose tissue dysfunction in hepatic insulin resistance and T2D. J Endocrinol 2024; 262:e240115. [PMID: 38967989 PMCID: PMC11378142 DOI: 10.1530/joe-24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
The root cause of type 2 diabetes (T2D) is insulin resistance (IR), defined by the failure of cells to respond to circulating insulin to maintain lipid and glucose homeostasis. While the causes of whole-body insulin resistance are multifactorial, a major contributing factor is dysregulation of liver and adipose tissue function. Adipose dysfunction, particularly adipose tissue-IR (adipo-IR), plays a crucial role in the development of hepatic insulin resistance and the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) in the context of T2D. In this review, we will focus on molecular mechanisms of hepatic insulin resistance and its association with adipose tissue function. A deeper understanding of the pathophysiological mechanisms of the transition from a healthy state to insulin resistance, impaired glucose tolerance, and T2D may enable us to prevent and intervene in the progression to T2D.
Collapse
Affiliation(s)
- Gencer Sancar
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Delcheva G, Stefanova K, Stankova T. Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases 2024; 12:195. [PMID: 39329864 PMCID: PMC11443555 DOI: 10.3390/diseases12090195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Abnormalities in lipid homeostasis have been associated with many human diseases, and the interrelation between lipotoxicity and cellular dysfunction has received significant attention in the past two decades. Ceramides (Cers) are bioactive lipid molecules that serve as precursors of all complex sphingolipids. Besides their function as structural components in cell and mitochondrial membranes, Cers play a significant role as key mediators in cell metabolism and are involved in numerous cellular processes, such as proliferation, differentiation, inflammation, and induction of apoptosis. The accumulation of various ceramides in tissues causes metabolic and cellular disturbances. Recent studies suggest that Cer lipotoxicity has an important role in obesity, metabolic syndrome, type 2 diabetes, atherosclerosis, and cardiovascular diseases (CVDs). In humans, elevated plasma ceramide levels are associated with insulin resistance and impaired cardiovascular and metabolic health. In this review, we summarize the role of ceramides as key mediators of lipotoxicity in obesity, diabetes, cardiovascular diseases, and inflammation and their potential as a promising diagnostic tool.
Collapse
Affiliation(s)
- Ginka Delcheva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Katya Stefanova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
32
|
Lasher AT, Wang L, Hyun J, Summers SA, Sun LY. Unveiling ceramide dynamics: Shedding light on healthy aging in growth hormone-releasing hormone knockout mice. Aging Cell 2024; 23:e14226. [PMID: 38808779 PMCID: PMC11320351 DOI: 10.1111/acel.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Dysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone-releasing hormone knockout (GHRH-KO) female mice and their littermate controls. Employing a targeted lipidomic approach, we specifically investigated ceramide levels in GHRH-KO mice, a well-established model of enhanced longevity. While younger GHRH-KO mice did not exhibit notable differences in serum lipids, older counterparts demonstrated significant reductions in over one-third of the evaluated lipids. In employing the same analysis in liver tissue, GHRH-KO mice showed pronounced downregulation of numerous ceramides and hexosylceramides, which have been shown to elicit many of the tissue defects that accompany aging (e.g., insulin resistance, oxidative stress, and cell death). Additionally, gene expression analysis in the liver tissue of adult GHRH-KO mice identified substantial decreases in several ceramide synthesis genes, indicating that these alterations are, at least in part, attributed to GHRH-KO-induced transcriptional changes. These findings provide the first evidence of disrupted ceramide metabolism in a long-lived mammal. This study sheds light on the intricate connections between GH deficiency, ceramide levels, and the molecular mechanisms influencing lifespan extension.
Collapse
Affiliation(s)
| | - Liping Wang
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Jooyoung Hyun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Scott A. Summers
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
33
|
SenthilKumar G, Zirgibel Z, Cohen KE, Katunaric B, Jobe AM, Shult CG, Limpert RH, Freed JK. Ying and Yang of Ceramide in the Vascular Endothelium. Arterioscler Thromb Vasc Biol 2024; 44:1725-1736. [PMID: 38899471 PMCID: PMC11269027 DOI: 10.1161/atvbaha.124.321158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Ceramides, a group of biologically active sphingolipids, have been described as the new cholesterol given strong evidence linking high plasma ceramide with endothelial damage, risk for early adverse cardiovascular events, and development of cardiometabolic disease. This relationship has sparked great interest in investigating therapeutic targets with the goal of suppressing ceramide formation. However, the growing data challenge this paradigm of ceramide as solely eliciting detrimental effects to the cardiovascular system. Studies show that ceramides are necessary for maintaining proper endothelial redox states, mechanosensation, and membrane integrity. Recent work in preclinical models and isolated human microvessels highlights that the loss of ceramide formation can in fact propagate vascular endothelial dysfunction. Here, we delve into these conflicting findings to evaluate how ceramide may be capable of exerting both beneficial and damaging effects within the vascular endothelium. We propose a unifying theory that while basal levels of ceramide in response to physiological stimuli are required for the production of vasoprotective metabolites such as S1P (sphingosine-1-phosphate), the chronic accumulation of ceramide can promote activation of pro-oxidative stress pathways in endothelial cells. Clinically, the evidence discussed here highlights the potential challenges associated with therapeutic suppression of ceramide formation as a means of reducing cardiovascular disease risk.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Zachary Zirgibel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Katie E. Cohen
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee WI
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Alyssa M. Jobe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Carolyn G. Shult
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Rachel H. Limpert
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| | - Julie K. Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
34
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
35
|
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024; 16:2436. [PMID: 39125318 PMCID: PMC11313710 DOI: 10.3390/nu16152436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue (AT), composed mainly of adipocytes, plays a critical role in lipid control, metabolism, and energy storage. Once considered metabolically inert, AT is now recognized as a dynamic endocrine organ that regulates food intake, energy homeostasis, insulin sensitivity, thermoregulation, and immune responses. This review examines the multifaceted role of adiponectin, a predominant adipokine released by AT, in glucose and fatty acid metabolism. We explore the regulatory mechanisms of adiponectin, its physiological effects and its potential as a therapeutic target for metabolic diseases such as type 2 diabetes, cardiovascular disease and fatty liver disease. Furthermore, we analyze the impact of various dietary patterns, specific nutrients, and physical activities on adiponectin levels, highlighting strategies to improve metabolic health. Our comprehensive review provides insights into the critical functions of adiponectin and its importance in maintaining systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Eliana Mansilla Di Martino
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Diego Campaci
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| | - Fares M. S. Muthanna
- Pharmacy Department, Faculty of Medicine and Health Sciences, University of Science and Technology-Aden, Alshaab Street, Enmaa City 22003, Yemen
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy (E.M.D.M.)
| |
Collapse
|
36
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
37
|
Fiorenza M, Checa A, Sandsdal RM, Jensen SBK, Juhl CR, Noer MH, Bogh NP, Lundgren JR, Janus C, Stallknecht BM, Holst JJ, Madsbad S, Wheelock CE, Torekov SS. Weight-loss maintenance is accompanied by interconnected alterations in circulating FGF21-adiponectin-leptin and bioactive sphingolipids. Cell Rep Med 2024; 5:101629. [PMID: 38959886 PMCID: PMC11293340 DOI: 10.1016/j.xcrm.2024.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rasmus M Sandsdal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Simon B K Jensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian R Juhl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikkel H Noer
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai P Bogh
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie R Lundgren
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Janus
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bente M Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Signe S Torekov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Fu L, Du J, Furkert D, Shipton ML, Liu X, Aguirre T, Chin AC, Riley AM, Potter BVL, Fiedler D, Zhang X, Zhu Y, Fu C. Depleting inositol pyrophosphate 5-InsP7 protected the heart against ischaemia-reperfusion injury by elevating plasma adiponectin. Cardiovasc Res 2024; 120:954-970. [PMID: 38252884 PMCID: PMC11218692 DOI: 10.1093/cvr/cvae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.
Collapse
Affiliation(s)
- Lin Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jimin Du
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Megan L Shipton
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xiaoqi Liu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Chenglai Fu
- Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
39
|
Zhu Q, Chen S, Funcke JB, Straub LG, Lin Q, Zhao S, Joung C, Zhang Z, Kim DS, Li N, Gliniak CM, Lee C, Cebrian-Serrano A, Pedersen L, Halberg N, Gordillo R, Kusminski CM, Scherer PE. PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels. Nat Metab 2024; 6:1347-1366. [PMID: 38961186 PMCID: PMC11891014 DOI: 10.1038/s42255-024-01078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Line Pedersen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
40
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
41
|
Norris MK, Tippetts TS, Wilkerson JL, Nicholson RJ, Maschek JA, Levade T, Medin JA, Summers SA, Holland WL. Adiponectin overexpression improves metabolic abnormalities caused by acid ceramidase deficiency but does not prolong lifespan in a mouse model of Farber Disease. Mol Genet Metab Rep 2024; 39:101077. [PMID: 38595987 PMCID: PMC11002753 DOI: 10.1016/j.ymgmr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Farber Disease is a debilitating and lethal childhood disease of ceramide accumulation caused by acid ceramidase deficiency. The potent induction of a ligand-gated neutral ceramidase activity promoted by adiponectin may provide sufficient lowering of ceramides to allow for the treatment of Farber Disease. In vitro, adiponectin or adiponectin receptor agonist treatments lowered total ceramide concentrations in human fibroblasts from a patient with Farber Disease. However, adiponectin overexpression in a Farber Disease mouse model did not improve lifespan or immune infiltration. Intriguingly, mice heterozygous for the Farber Disease mutation were more prone to glucose intolerance and insulin resistance when fed a high-fat diet, and adiponectin overexpression protected from these metabolic perturbations. These studies suggest that adiponectin evokes a ceramidase activity that is not reliant on the functional expression of acid ceramidase, but indicates that additional strategies are required to ameliorate outcomes of Farber Disease.
Collapse
Affiliation(s)
- Marie K. Norris
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Trevor S. Tippetts
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - J. Alan Maschek
- Metabolomics Core Facility, University of Utah, Salt Lake City, UT, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31037 Toulouse, France
| | - Jeffrey A. Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| | - William L. Holland
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
- Diabetes and Metabolism Research Center, University of Utah College of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Vakilpour A, Amini-Salehi E, Soltani Moghadam A, Keivanlou MH, Letafatkar N, Habibi A, Hashemi M, Eslami N, Zare R, Norouzi N, Delam H, Joukar F, Mansour-Ghanaei F, Hassanipour S, Samethadka Nayak S. The effects of gut microbiome manipulation on glycemic indices in patients with non-alcoholic fatty liver disease: a comprehensive umbrella review. Nutr Diabetes 2024; 14:25. [PMID: 38729941 PMCID: PMC11087547 DOI: 10.1038/s41387-024-00281-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.
Collapse
Affiliation(s)
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
43
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
44
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
45
|
Chen YF, Fan ZK, Wang YP, Liu P, Guo XF, Li D. Docosahexaenoic Acid Modulates Nonalcoholic Fatty Liver Disease by Suppressing Endocannabinoid System. Mol Nutr Food Res 2024; 68:e2300616. [PMID: 38430210 DOI: 10.1002/mnfr.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Indexed: 03/03/2024]
Abstract
SCOPE Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid β-oxidation related protein expression levels. CONCLUSIONS This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.
Collapse
Affiliation(s)
- Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yin-Peng Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Peng Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- Qingdao University Function Center of Medical Nutrition, Qingdao, 266071, China
| |
Collapse
|
46
|
Liu Y, Qian SW, Tang Y, Tang QQ. The secretory function of adipose tissues in metabolic regulation. LIFE METABOLISM 2024; 3:loae003. [PMID: 39872218 PMCID: PMC11748999 DOI: 10.1093/lifemeta/loae003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2025]
Abstract
In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment. A subset of these adipose-derived secretory factors can enter the circulation and target the distant tissues to regulate appetite, cognitive function, energy expenditure, insulin secretion and sensitivity, gluconeogenesis, cardiovascular remodeling, and exercise capacity. In this review, we highlight the role of adipose-derived secretory factors and their signaling pathways in modulating metabolic homeostasis. Furthermore, we delve into the alterations in both the content and secretion processes of these factors under various physiological and pathological conditions, shedding light on potential pharmacological treatment strategies for related diseases.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
48
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
49
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
50
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|