1
|
Wang B, Xiao L, Chen P, Zhang T, Zhang P, Cao L, Zhou Z, Cheng H, Zhang T, Li S. Uncovering the role of traditional Chinese medicine in immune-metabolic balance of gastritis from the perspective of Cold and Hot: Jin Hong Tablets as a case study. Chin Med 2024; 19:134. [PMID: 39367502 PMCID: PMC11451182 DOI: 10.1186/s13020-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
Chronic gastritis (CG) is a common inflammatory disease of chronic inflammatory lesion of gastric mucosa and in the diagnosis of gastritis in traditional Chinese medicine (TCM), CG can be classified into Cold ZHENG (syndrome in TCM) and Hot ZHENG. However, the molecular features of Cold/Hot ZHENG in CG and the mechanism of Cold/Hot herbs in formulae for CG remained unclear. In this study, we collected a transcriptomics data including 35 patients of Cold/Hot ZHENG CG and 3 scRNA-seq CG samples. And 25 formulae for CG and 89 herbs recorded in these formulae were also collected. We conduct a comprehensive analysis based on the combination of transcriptomics datasets and machine learning algorithms, to discover biomarkers for Cold/Hot ZHENG CG. Then the target profiles of the collected formulae and Cold/Hot herbs were predicted to uncover the features and biomarkers of them against Cold/Hot ZHENG CG. These biomarkers suggest that Hot ZHENG CG might be characterized by over-inflammation and exuberant metabolism, and Cold ZHENG CG showed a trend of suppression in immune regulation and energy metabolism. Biomarkers and specific pathways of Hot herbs tend to regulate immune responses and energy metabolism, while those of Cold herbs are more likely to participate in anti-inflammatory effects. Finally, the findings were verified based on public transcriptomics datasets, as well as transcriptomics and ELISA detection, taking Jin Hong tablets as a case study. Biomarkers like leptin and IL-6 together with proportions of immune cells showed significant changes after the intervention. These findings might reflect the mechanism and build a bridge between macro and micro views of Cold/Hot ZHENG as well as Cold/Hot herbs.
Collapse
Affiliation(s)
- Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lihao Xiao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Pan Chen
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co.,Ltd., Lianyungang, 222047, Jiangshu, China
| | - Ziyi Zhou
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Haibo Cheng
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangshu, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRist, Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
de Winne C, Pascual FL, Lopez-Vicchi F, Etcheverry-Boneo L, Mendez-Garcia LF, Ornstein AM, Lacau-Mengido IM, Sorianello E, Becu-Villalobos D. Neuroendocrine control of brown adipocyte function by prolactin and growth hormone. J Neuroendocrinol 2024; 36:e13248. [PMID: 36932836 DOI: 10.1111/jne.13248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 03/06/2023]
Abstract
Growth hormone (GH) is fundamental for growth and glucose homeostasis, and prolactin for optimal pregnancy and lactation outcome, but additionally, both hormones have multiple functions that include a strong impact on energetic metabolism. In this respect, prolactin and GH receptors have been found in brown, and white adipocytes, as well as in hypothalamic centers regulating thermogenesis. This review describes the neuroendocrine control of the function and plasticity of brown and beige adipocytes, with a special focus on prolactin and GH actions. Most evidence points to a negative association between high prolactin levels and the thermogenic capacity of BAT, except in early development. During lactation and pregnancy, prolactin may be a contributing factor that limits unneeded thermogenesis, downregulating BAT UCP1. Furthermore, animal models of high serum prolactin have low BAT UCP1 levels and whitening of the tissue, while lack of Prlr induces beiging in WAT depots. These actions may involve hypothalamic nuclei, particularly the DMN, POA and ARN, brain centers that participate in thermogenesis. Studies on GH regulation of BAT function present some controversies. Most mouse models with GH excess or deficiency point to an inhibitory role of GH on BAT function. Even so, a stimulatory role of GH on WAT beiging has also been described, in accordance with whole-genome microarrays that demonstrate divergent response signatures of BAT and WAT genes to the loss of GH signaling. Understanding the physiology of BAT and WAT beiging may contribute to the ongoing efforts to curtail obesity.
Collapse
Affiliation(s)
- Catalina de Winne
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Florencia L Pascual
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Felicitas Lopez-Vicchi
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luz Etcheverry-Boneo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Luis F Mendez-Garcia
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ana Maria Ornstein
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Isabel Maria Lacau-Mengido
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Krittika S, Yadav P. Correlated changes in stress resistance and biochemical parameters in response to long-term protein restriction in Drosophila melanogaster. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231741. [PMID: 39100164 PMCID: PMC11295984 DOI: 10.1098/rsos.231741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/02/2024] [Indexed: 08/06/2024]
Abstract
Studies in fruit flies, Drosophila melanogaster, have observed considerable variation in the effect of dietary protein restriction (PR) on various fitness traits. In addition, not only are there inconsistent results relating lifespan to stress resistance, but also the long-term effects of PR are unexplored. We study PR implementation across generations (long term) hypothesizing that it will be beneficial for fitness traits, stress resistance and storage reserves due to nutritional plasticity transferred by parents to offspring in earlier Drosophila studies. By imposing two concentrations of PR diets (50% and 70% of control protein) from the pre-adult and adult (age 1 day) stages of the flies, we assessed the stage-specific and long-term effect of the imposed PR. All long-term PR flies showed increased resistance against the tested stressors (starvation, desiccation, H2O2-induced oxidative stress). In addition, we also found long-term PR-induced increased stress resistance across generations. The PR flies also possessed higher protein and triglyceride (TG) content, reduced glucose and unaffected glycogen levels. We also assayed the effect of returning the PR flies to control (AL) food for a single generation and assessed their biochemical parameters to witness the transient PR effect. It was seen that TG content upon reversal was similar to AL flies except for PRI70 males; however, the glucose levels of PR males increased, while they were consistently lower in females. Taken altogether, our study suggests that long-term PR implementation contributes to increased stress resistance and was found to influence storage reserves in D. melanogaster.
Collapse
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu 613401, India
| |
Collapse
|
4
|
Ichimura-Shimizu M, Kurrey K, Miyata M, Dezawa T, Tsuneyama K, Kojima M. Emerging Insights into the Role of BDNF on Health and Disease in Periphery. Biomolecules 2024; 14:444. [PMID: 38672461 PMCID: PMC11048455 DOI: 10.3390/biom14040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/06/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor that promotes the survival and growth of developing neurons. It also enhances circuit formation to synaptic transmission for mature neurons in the brain. However, reduced BDNF expression and single nucleotide polymorphisms (SNP) are reported to be associated with functional deficit and disease development in the brain, suggesting that BDNF is a crucial molecule for brain health. Interestingly, BDNF is also expressed in the hypothalamus in appetite and energy metabolism. Previous reports demonstrated that BDNF knockout mice exhibited overeating and obesity phenotypes remarkably. Therefore, we could raise a hypothesis that the loss of function of BDNF may be associated with metabolic syndrome and peripheral diseases. In this review, we describe our recent finding that BDNF knockout mice develop metabolic dysfunction-associated steatohepatitis and recent reports demonstrating the role of one of the BDNF receptors, TrkB-T1, in some peripheral organ functions and diseases, and would provide an insight into the role of BDNF beyond the brain.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Khuleshwari Kurrey
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Takuya Dezawa
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan 924-0838, Japan; (M.M.); (T.D.)
| |
Collapse
|
5
|
Zuniga SS, Flores MR, Albu A. Role of Endogenous Opioids in the Pathophysiology of Obesity and Eating Disorders. ADVANCES IN NEUROBIOLOGY 2024; 35:329-356. [PMID: 38874731 DOI: 10.1007/978-3-031-45493-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This second chapter in our trilogy reviews and critically appraises the scientific evidence for the role of endogenous opioid system (EOS) activity in the onset and progression of both obesity and eating disorders. Defining features of normative eating and maladaptive eating behaviors are discussed as a foundation. We review the scientific literature pertaining to the predisposing risk factors and pathophysiology for obesity and eating disorders. Research targeting the association between obesity, disordered eating, and psychiatric comorbidities is reviewed. We conclude by discussing the involvement of endogenous opioids in neurobiological and behavior traits, and the clinical evidence for the role of the EOS in obesity and eating disorders.
Collapse
Affiliation(s)
- Sylvana Stephano Zuniga
- Obesity and Eating Disorders Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| | - Marcela Rodriguez Flores
- Obesity and Eating Disorders Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico
| | - Adriana Albu
- 2nd Department of Internal Medicine, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Milhem F, Komarnytsky S. Progression to Obesity: Variations in Patterns of Metabolic Fluxes, Fat Accumulation, and Gastrointestinal Responses. Metabolites 2023; 13:1016. [PMID: 37755296 PMCID: PMC10535155 DOI: 10.3390/metabo13091016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Obesity is a multifactorial disorder that is remarkably heterogeneous. It presents itself in a variety of phenotypes that can be metabolically unhealthy or healthy, associate with no or multiple metabolic risk factors, gain extreme body weight (super-responders), as well as resist obesity despite the obesogenic environment (non-responders). Progression to obesity is ultimately linked to the overall net energy balance and activity of different metabolic fluxes. This is particularly evident from variations in fatty acids oxidation, metabolic fluxes through the pyruvate-phosphoenolpyruvate-oxaloacetate node, and extracellular accumulation of Krebs cycle metabolites, such as citrate. Patterns of fat accumulation with a focus on visceral and ectopic adipose tissue, microbiome composition, and the immune status of the gastrointestinal tract have emerged as the most promising targets that allow personalization of obesity and warrant further investigations into the critical issue of a wider and long-term weight control. Advances in understanding the biochemistry mechanisms underlying the heterogenous obesity phenotypes are critical to the development of targeted strategies to maintain healthy weight.
Collapse
Affiliation(s)
- Fadia Milhem
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition, University of Petra, 317 Airport Road, Amman 11196, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Shoemaker AH, Tamaroff J. Approach to the Patient With Hypothalamic Obesity. J Clin Endocrinol Metab 2023; 108:1236-1242. [PMID: 36413492 PMCID: PMC10306088 DOI: 10.1210/clinem/dgac678] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Hypothalamic obesity (HO) is defined as abnormal weight gain due to physical destruction of the hypothalamus. Suprasellar tumors, most commonly craniopharyngiomas, are a classic cause of HO. HO often goes unnoticed initially as patients, families, and medical teams are focused on oncologic treatments and management of panhypopituitarism. HO is characterized by rapid weight gain in the first year after hypothalamic destruction followed by refractory obesity due to an energy imbalance of decreased energy expenditure without decreased food intake. Currently available pharmacotherapies are less effective in HO than in common obesity. While not a cure, dietary interventions, pharmacotherapy, and bariatric surgery can mitigate the effects of HO. Early recognition of HO is necessary to give an opportunity to intervene before substantial weight gain occurs. Our goal for this article is to review the pathophysiology of HO and to discuss available treatment options and future directions for prevention and treatment.
Collapse
Affiliation(s)
- Ashley H Shoemaker
- Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Jaclyn Tamaroff
- Pediatric Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
9
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
10
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
11
|
Liu J, Sun B, Guo K, Yang Z, Zhao Y, Gao M, Yin Z, Jiang K, Dong C, Gao Z, Ye M, Liu J, Wang L. Lipid-related FABP5 activation of tumor-associated monocytes fosters immune privilege via PD-L1 expression on Treg cells in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1951-1960. [PMID: 35902729 DOI: 10.1038/s41417-022-00510-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 01/25/2023]
Abstract
Monocytes/macrophages, a plastic and heterogeneous cell population of the tumor microenvironment (TME), can constitute a major component of most solid tumors. Under the pressure of rapid proliferation of the tumor, monocytes/macrophages can be educated and foster immune tolerance via metabolic reprogramming. Our studies have shown that the activation of FABP5, a lipid-binding protein, decreases the rate of β-oxidation causing the accumulation of lipid droplets in monocytes. We found that hepatocellular carcinoma cells (HCC) increased IL-10 secretion by monocytes, which depended on the expression of FABP5 and suppressing of the PPARα pathway. Moreover, the elevated level of IL-10 promotes PD-L1 expression on Treg cells via the JNK-STAT3 pathway activation. We also observed that elevation of FABP5 in monocytes was negatively related to HCC patients' overall survival time. Thus, FABP5 promotes monocyte/macrophage lipid accumulation, fosters immune tolerance formation, and might represent itself as a therapeutic target in both tumor-associated monocytes (TAMs) and cancer cells.
Collapse
Affiliation(s)
- Jin Liu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116027, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Kun Guo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China.,Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116027, China
| | - Zhou Yang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Yidan Zhao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Mingwei Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Keqiu Jiang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Zhenming Gao
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116027, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhong Shan Road, Dalian, 116011, China.
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, 116027, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, China.
| |
Collapse
|
12
|
Sideromenos S, Nikou M, Czuczu B, Thalheimer N, Gundacker A, Horvath O, Cuenca Rico L, Stöhrmann P, Niello M, Partonen T, Pollak DD. The metabolic regulator USF-1 is involved in the control of affective behaviour in mice. Transl Psychiatry 2022; 12:497. [PMID: 36450713 PMCID: PMC9712601 DOI: 10.1038/s41398-022-02266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epidemiological studies indicate a bidirectional association between metabolic disturbances, including obesity and related pathological states, and mood disorders, most prominently major depression. However, the biological mechanisms mediating the comorbid relationship between the deranged metabolic and mood states remain incompletely understood. Here, we tested the hypothesis that the enhanced activation of brown fat tissue (BAT), known to beneficially regulate obesity and accompanying dysfunctional metabolic states, is also paralleled by an alteration of affective behaviour. We used upstream stimulatory factor 1 (USF-1) knock-out (KO) mice as a genetic model of constitutively activated BAT and positive cardiometabolic traits and found a reduction of depression-like and anxiety-like behaviours associated with USF-1 deficiency. Surgical removal of interscapular BAT did not impact the behavioural phenotype of USF-1 KO mice. Further, the absence of USF-1 did not lead to alterations of adult hippocampal neural progenitor cell proliferation, differentiation, or survival. RNA-seq analysis characterised the molecular signature of USF-1 deficiency in the hippocampus and revealed a significant increase in the expression of several members of the X-linked lymphocyte-regulated (xlr) genes, including xlr3b and xlr4b. Xlr genes are the mouse orthologues of the human FAM9 gene family and are implicated in the regulation of dendritic branching, dendritic spine number and morphology. The transcriptional changes were associated with morphological alterations in hippocampal neurons, manifested in reduced dendritic length and complexity in USF-1 KO mice. Collectively these data suggest that the metabolic regulator USF-1 is involved in the control of affective behaviour in mice and that this modulation of mood states is unrelated to USF-1-dependent BAT activation, but reflected in structural changes in the brain.
Collapse
Affiliation(s)
- Spyros Sideromenos
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Maria Nikou
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Barbara Czuczu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Nikolas Thalheimer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Orsolya Horvath
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Peter Stöhrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Marco Niello
- Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Timo Partonen
- Mental Health Team, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Kim D, Justice AE, Chittoor G, Blanco E, Burrows R, Graff M, Howard AG, Wang Y, Rohde R, Buchanan VL, Voruganti VS, Almeida M, Peralta J, Lehman DM, Curran JE, Comuzzie AG, Duggirala R, Blangero J, Albala C, Santos JL, Angel B, Lozoff B, Gahagan S, North KE. Genetic determinants of metabolic biomarkers and their associations with cardiometabolic traits in Hispanic/Latino adolescents. Pediatr Res 2022; 92:563-571. [PMID: 34645953 PMCID: PMC9005573 DOI: 10.1038/s41390-021-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Metabolic regulation plays a significant role in energy homeostasis, and adolescence is a crucial life stage for the development of cardiometabolic disease (CMD). This study aims to investigate the genetic determinants of metabolic biomarkers-adiponectin, leptin, ghrelin, and orexin-and their associations with CMD risk factors. METHODS We characterized the genetic determinants of the biomarkers among Hispanic/Latino adolescents of the Santiago Longitudinal Study (SLS) and identified the cumulative effects of genetic variants on adiponectin and leptin using biomarker polygenic risk scores (PRS). We further investigated the direct and indirect effect of the biomarker PRS on downstream body fat percent (BF%) and glycemic traits using structural equation modeling. RESULTS We identified putatively novel genetic variants associated with the metabolic biomarkers. A substantial amount of biomarker variance was explained by SLS-specific PRS, and the prediction was improved by including the putatively novel loci. Fasting blood insulin and insulin resistance were associated with PRS for adiponectin, leptin, and ghrelin, and BF% was associated with PRS for adiponectin and leptin. We found evidence of substantial mediation of these associations by the biomarker levels. CONCLUSIONS The genetic underpinnings of metabolic biomarkers can affect the early development of CMD, partly mediated by the biomarkers. IMPACT This study characterized the genetic underpinnings of four metabolic hormones and investigated their potential influence on adiposity and insulin biology among Hispanic/Latino adolescents. Fasting blood insulin and insulin resistance were associated with polygenic risk score (PRS) for adiponectin, leptin, and ghrelin, with evidence of some degree of mediation by the biomarker levels. Body fat percent (BF%) was also associated with PRS for adiponectin and leptin. This provides important insight on biological mechanisms underlying early metabolic dysfunction and reveals candidates for prevention efforts. Our findings also highlight the importance of ancestrally diverse populations to facilitate valid studies of the genetic architecture of metabolic biomarker levels.
Collapse
Affiliation(s)
- Daeeun Kim
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Geetha Chittoor
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
| | - Estela Blanco
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA, USA
- Department of Public Health, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raquel Burrows
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yujie Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca Rohde
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L Buchanan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - V Saroja Voruganti
- Department of Nutrition and Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Juan Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Donna M Lehman
- Departments of Medicine and Epidemiology and Biostatistics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Cecilia Albala
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health at the Center for Community Health, University of California at San Diego, San Diego, CA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
15
|
Ye H, Feng B, Wang C, Saito K, Yang Y, Ibrahimi L, Schaul S, Patel N, Saenz L, Luo P, Lai P, Torres V, Kota M, Dixit D, Cai X, Qu N, Hyseni I, Yu K, Jiang Y, Tong Q, Sun Z, Arenkiel BR, He Y, Xu P, Xu Y. An estrogen-sensitive hypothalamus-midbrain neural circuit controls thermogenesis and physical activity. SCIENCE ADVANCES 2022; 8:eabk0185. [PMID: 35044814 PMCID: PMC8769556 DOI: 10.1126/sciadv.abk0185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Estrogen receptor–α (ERα) expressed by neurons in the ventrolateral subdivision of the ventromedial hypothalamic nucleus (ERαvlVMH) regulates body weight in females, but the downstream neural circuits mediating this biology remain largely unknown. Here we identified a neural circuit mediating the metabolic effects of ERαvlVMH neurons. We found that selective activation of ERαvlVMH neurons stimulated brown adipose tissue (BAT) thermogenesis, physical activity, and core temperature and that ERαvlVMH neurons provide monosynaptic glutamatergic inputs to 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN). Notably, the ERαvlVMH → DRN circuit responds to changes in ambient temperature and nutritional states. We further showed that 5-HTDRN neurons mediate the stimulatory effects of ERαvlVMH neurons on BAT thermogenesis and physical activity and that ERα expressed by DRN-projecting ERαvlVMH neurons is required for the maintenance of energy balance. Together, these findings support a model that ERαvlVMH neurons activate BAT thermogenesis and physical activity through stimulating 5-HTDRN neurons.
Collapse
Affiliation(s)
- Hui Ye
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Chunmei Wang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenji Saito
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongjie Yang
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lucas Ibrahimi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sarah Schaul
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nirali Patel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leslie Saenz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pei Luo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Penghua Lai
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Valeria Torres
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maya Kota
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Devin Dixit
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xing Cai
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Qu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilirjana Hyseni
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kaifan Yu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zheng Sun
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Pingwen Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yong Xu
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Antioxidant and lipid-reducing effects of Rosa rugosa root extract in 3T3-L1 cell. Food Sci Biotechnol 2021; 31:121-129. [DOI: 10.1007/s10068-021-01018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
|
17
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
18
|
The "Adipo-Cerebral" Dialogue in Childhood Obesity: Focus on Growth and Puberty. Physiopathological and Nutritional Aspects. Nutrients 2021; 13:nu13103434. [PMID: 34684432 PMCID: PMC8539184 DOI: 10.3390/nu13103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overweight and obesity in children and adolescents are overwhelming problems in western countries. Adipocytes, far from being only fat deposits, are capable of endocrine functions, and the endocrine activity of adipose tissue, resumable in adipokines production, seems to be a key modulator of central nervous system function, suggesting the existence of an “adipo-cerebral axis.” This connection exerts a key role in children growth and puberty development, and it is exemplified by the leptin–kisspeptin interaction. The aim of this review was to describe recent advances in the knowledge of adipose tissue endocrine functions and their relations with nutrition and growth. The peculiarities of major adipokines are briefly summarized in the first paragraph; leptin and its interaction with kisspeptin are focused on in the second paragraph; the third paragraph deals with the regulation of the GH-IGF axis, with a special focus on the model represented by growth hormone deficiency (GHD); finally, old and new nutritional aspects are described in the last paragraph.
Collapse
|
19
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
20
|
Genome-wide identification and characterization of perirenal adipose tissue microRNAs in rabbits fed a high-fat diet. Biosci Rep 2021; 41:228333. [PMID: 33851695 PMCID: PMC8082595 DOI: 10.1042/bsr20204297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous single-stranded RNA molecules that play an important role in gene regulation in animals by pairing with target gene mRNA. Extensive evidence shows that miRNAs are key players in metabolic regulation and the development of obesity. However, the systemic understanding of miRNAs in the adipogenesis of obese rabbits need further investigation. Here, seven small RNA libraries from rabbits fed either a standard normal diet (SND; n=3) or high-fat diet (HFD; n=4) were constructed and sequenced. Differentially expressed (DE) miRNAs were identified using the edgeR data analysis package from R. Software miRanda and RNAhybrid were used to predict the target genes of miRNAs. To further explore the functions of DE miRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. A total of 81449996 clean reads were obtained from the seven libraries, of which, 52 known DE miRNAs (24 up-regulated, 28 down-regulated) and 31 novel DE miRNAs (14 up-regulated, 17 down-regulated) were identified. GO enrichment analysis revealed that the DE miRNAs target genes were involved in intermediate filament cytoskeleton organization, intermediate filament-based process, and α-tubulin binding. DE miRNAs were involved in p53 signaling, linoleic acid metabolism, and other adipogenesis-related KEGG pathways. Our study further elucidates the possible functions of DE miRNAs in rabbit adipogenesis, contributing to the understanding of rabbit obesity.
Collapse
|
21
|
Rehman N, Varghese J. Larval nutrition influences adult fat stores and starvation resistance in Drosophila. PLoS One 2021; 16:e0247175. [PMID: 33606785 PMCID: PMC7895371 DOI: 10.1371/journal.pone.0247175] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Insulin plays a major role in connecting nutrient availability to energy homeostasis by regulating metabolic pathways. Defects in insulin signalling is the primary cause for diabetes, obesity and various metabolic disorders. Nutritional status during growth and developmental stages play a crucial role in determining adult size, fecundity and ageing. However, the association between developmental nutrition and adult metabolic disorders has not been fully explored. Here, we address the effects of nutrient status during the larval growth phase on adult metabolism in Drosophila. We report that restricted food supply in larvae led to higher fat reserves and starvation resistance in mature adult flies, which we attribute to low insulin signalling. A lesser amount of stored fat was mobilised during early adult stages and during acute starvation, which accounts for the metabolic effects. Furthermore, larval diet influenced the expression of fat mobilisation genes brummer and lipid storage droplet-2 in adult flies, which led to the metabolic phenotypes reported here. Thus, the restricted nutrient environment in developing larvae led to adaptive changes that entrain the adult flies for scarce food availability.
Collapse
Affiliation(s)
- Niyas Rehman
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Thiruvananthapuram, Kerala, India
| | - Jishy Varghese
- School of Biology, Indian Institute of Science Education and Research (IISER TVM), Thiruvananthapuram, Kerala, India
- * E-mail:
| |
Collapse
|
22
|
Shao J, Bai X, Pan T, Li Y, Jia X, Wang J, Lai S. Genome-Wide DNA Methylation Changes of Perirenal Adipose Tissue in Rabbits Fed a High-Fat Diet. Animals (Basel) 2020; 10:E2213. [PMID: 33255930 PMCID: PMC7761299 DOI: 10.3390/ani10122213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that plays an important role in gene regulation without an altered DNA sequence. Previous studies have demonstrated that diet affects obesity by partially mediating DNA methylation. Our study investigated the genome-wide DNA methylation of perirenal adipose tissue in rabbits to identify the epigenetic changes of high-fat diet-mediated obesity. Two libraries were constructed pooling DNA of rabbits fed a standard normal diet (SND) and DNA of rabbits fed a high-fat diet (HFD). Differentially methylated regions (DMRs) were identified using the option of the sliding window method, and online software DAVID Bioinformatics Resources 6.7 was used to perform Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DMRs-associated genes. A total of 12,230 DMRs were obtained, of which 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated, 233 down-regulated) of identified DMRs were observed in the gene body and promoter regions, respectively. GO analysis revealed that the DMRs-associated genes were involved in developmental process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289), and KEGG pathway enrichment analysis revealed the DMRs-associated genes were enriched in linoleic acid metabolism (KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010). Our study further elucidates the possible functions of DMRs-associated genes in rabbit adipogenesis, contributing to the understanding of HFD-mediated obesity.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xue Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Ting Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.S.); (X.B.); (Y.L.); (X.J.); (J.W.)
| |
Collapse
|
23
|
Shao J, Wang J, Li Y, Elzo MA, Tang T, Lai T, Ma Y, Gan M, Wang L, Jia X, Lai S. Growth, behavioural, serum biochemical and morphological changes in female rabbits fed high-fat diet. J Anim Physiol Anim Nutr (Berl) 2020; 105:345-353. [PMID: 33038071 DOI: 10.1111/jpn.13459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/23/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022]
Abstract
This study aimed to determine whether high-fat diet (HFD) could cause growth, behavioural, biochemical and morphological changes in young female rabbits. Thirty-six female rabbits were randomly divided into two groups fed with either a high-fat diet (HFD) or a standard normal diet (SND) for 5 weeks. Growth and behavioural changes were recorded during the 5-week feeding period. Tissue samples, including blood and adipose tissue, were obtained after slaughter. HFD rabbits weighed more by the end of the feeding period, had a higher percent body weight and adipose tissue weight change and had longer body and bust lengths than SND rabbits. HFD rabbits significantly reduced their feed intake and feeding frequency during the fourth and fifth weeks. HFD rabbits also showed lower frequency of drinking and resting and increased stereotypical behaviour. Besides, HFD rabbits showed significant physiological abnormalities. HFD rabbits had higher serum cholesterol (TC) and triglycerides (TG) levels than SND rabbits at the end of the feeding period, and higher free fatty acid (FFA) levels than rabbits in the SND group after the third week of feeding. Serum thyroxine (T4) increased significantly in week 2 and week 5 and triiodothyronine (T3) increased significantly in week four. However, there was no significant change in serum glucose (GLU) and insulin (INS) levels. Additionally, HFD reduced the area and diameter of perirenal and subcutaneous fat cells and increased their density. Our findings suggest that HFD rabbits had higher weight gains, accumulation of fat, and more behavioural changes than SND rabbits. Although high levels of fat in the diet had a low impact on hyperglycaemia, it could lead to hyperlipidemia and hyperthyroidism. Our results also suggest that sustained HFD may cause the proliferation of adipocytes in young female rabbits.
Collapse
Affiliation(s)
- Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Yanhong Li
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Mauricio A Elzo
- Department of Animal Science, University of Florida, Gainesville, FL, USA
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Tianfu Lai
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Yuan Ma
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Mingchuan Gan
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Li Wang
- College of Animal Science and Technology, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University - Chengdu Campus, Chengdu, China
| |
Collapse
|
24
|
Grigolon RB, Brietzke E, Trevizol AP, McIntyre RS, Mansur RB. Caloric restriction, resting metabolic rate and cognitive performance in Non-obese adults: A post-hoc analysis from CALERIE study. J Psychiatr Res 2020; 128:16-22. [PMID: 32485641 DOI: 10.1016/j.jpsychires.2020.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
Physical activity (PA) has been proposed as a determinant of cognitive function and is one component of energy balance (EB). EB is the difference between energy intake (EI) and the total daily energy expenditure (TDEE). TDEE is a combination of resting metabolic rate (RMR), thermic effect of food and PA. The potential role of each of these components on cognitive function has not yet been systemically investigated. We aim to evaluate the association between each component of EB on cognition, using baseline and longitudinal data from a clinical trial of caloric restriction (CR). This is a parallel-group, randomized clinical trial comparing two years of 25% CR with two years of ad libitum diet (AL), with 220 healthy volunteers of both sex, aged between 21 and 50 years and initial BMI ≥ 22 kg/m2 and <28 kg/m2. Body weight, fat mass (FM), fat-free mass (FFM), and bone mineral content were evaluated, as well as RMR, TDEE, cognitive performance and baseline energy intake. A 30 min/day of a moderate level on a minimum of 5 days/week was advised as PA measure. Longitudinal analysis demonstrated that the influence of CR in the improvement of cognitive performance was moderated by changes in RMR, suggesting that in individuals submitted to CR, the cognitive performance and the RMR improved proportionally, independently of changes in EI and body mass. EB and homeostasis are crucial to modulate the RMR. Moreover, RMR presents an important influence on cognitive function in individuals submitted to CR in a long term.
Collapse
Affiliation(s)
- Ruth Bartelli Grigolon
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Elisa Brietzke
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada; Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Alisson Paulino Trevizol
- Temerty Centre for Therapeutic Brain Intervention and Campbell Family Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; Brain and Cognition Foundation, Toronto, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Bae YH, Park K. Advanced drug delivery 2020 and beyond: Perspectives on the future. Adv Drug Deliv Rev 2020; 158:4-16. [PMID: 32592727 PMCID: PMC7736191 DOI: 10.1016/j.addr.2020.06.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
Drug delivery systems are developed to maximize drug efficacy and minimize side effects. As drug delivery technologies improve, the drug becomes safer and more comfortable for patients to use. During the last seven decades, extraordinary progress has been made in drug delivery technologies, such as systems for long-term delivery for months and years, localized delivery, and targeted delivery. The advances, however, will face a next phase considering the future technologies we need to overcome many physicochemical barriers for new formulation development and biological unknowns for treating various diseases. For immediate and long-term progress into the future, the drug delivery field should use time and resources for more translatable research ideas. The drug delivery discipline has to continue working on basic, applied, translational, and clinical research in a concerted manner to produce drug delivery systems that work for patients. It is a time to focus our attention on things that matter. It is also a time to develop realistic research goals and outcomes, diversify drug delivery technologies, and take the collective responsibility for our actions.
Collapse
Affiliation(s)
- You Han Bae
- University of Utah, 30 South 2000 East, Salt Lake City, UT 84112, United States of America.
| | - Kinam Park
- Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, United States of America
| |
Collapse
|
26
|
Oliveira MS, Rheinheimer J, Moehlecke M, Rodrigues M, Assmann TS, Leitão CB, Trindade MRM, Crispim D, de Souza BM. UCP2, IL18, and miR-133a-3p are dysregulated in subcutaneous adipose tissue of patients with obesity. Mol Cell Endocrinol 2020; 509:110805. [PMID: 32251712 DOI: 10.1016/j.mce.2020.110805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023]
Abstract
The aim of this study was to compare the expression of UCP2, NLRP3, IL1B, IL18, and miR-133a-3p in subcutaneous adipose tissue (SAT) of 61 patients divided according to BMI: Group 1 (n = 8; BMI<25.0 kg/m2), Group 2 (n = 24; BMI 30.0-39.9 kg/m2), and Group 3 (n = 29; BMI≥40.0 kg/m2). SAT biopsies were obtained from individuals who underwent bariatric surgery or elective abdominal surgery. Gene expressions were quantified using qPCR. Bioinformatics analyses were employed to investigate target genes and pathways related to miR-133a-3p. UCP2 and miR-133a-3p expressions were decreased in SAT of Groups 2 and 3 while IL18 was increased compared to Group 1. NLRP3 and IL1B expressions did not differ between groups; however, NLRP3 was positively correlated with waist circumference and excess weight. Bioinformatics analysis demonstrated that UCP2 and NLRP3 are targets of miR-133a-3p. In conclusion, UCP2 and miR-133a-3p expressions are downregulated in patients with obesity, while IL18 is upregulated. NRLP3 is correlated with waist circumference and weight excess.
Collapse
Affiliation(s)
- Mayara S Oliveira
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Jakeline Rheinheimer
- Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Milene Moehlecke
- Department of Endocrinology, Universidade Luterana do Brasil, Canoas, Rio Grande do Sul, Brazil
| | - Michelle Rodrigues
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taís S Assmann
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Cristiane B Leitão
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Manoel R M Trindade
- Digestive Surgery Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil
| | - Bianca M de Souza
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Faculty of Medicine, Graduate Program of Medical Sciences: Endocrinology, Brazil.
| |
Collapse
|
27
|
Tang Q, Gao Y, Liu Q, Yang X, Wu T, Huang C, Huang Y, Zhang J, Zhang Z, Li R, Pu S, Zhang G, Zhao Y, Zhou J, Huang H, Li Y, Jiang W, Chang Y, He J. Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling. Mol Metab 2020; 37:100994. [PMID: 32278654 PMCID: PMC7215198 DOI: 10.1016/j.molmet.2020.100994] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms. METHODS For overexpression studies, the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice was targeted bilaterally and adenovirus was delivered by using stereotaxic apparatus. For knockout studies, the POMC neuron-specific Sirt6 knockout mice (PKO mice) were generated. Mice were fed with chow diet or high-fat diet, and body weight and food intake were monitored. Whole-body energy expenditure was determined by metabolic cages. Parameters of body composition and glucose/lipid metabolism were evaluated. RESULTS Sirt6 overexpression in the ARC ameliorated diet-induced obesity. Conversely, selective Sirt6 ablation in POMC neurons predisposed mice to obesity and metabolic disturbances. PKO mice showed an increased fat mass and food intake, while the energy expenditure was decreased. Mechanistically, Sirt6 could modulate leptin signaling in hypothalamic POMC neurons, with Sirt6 deficiency impairing leptin-induced phosphorylation of signal transducer and activator of transcription 3. The effects of leptin on reducing food intake and body weight and leptin-stimulated lipolysis were also impaired. Moreover, Sirt6 inhibition diminished the leptin-induced depolarization of POMC neurons. CONCLUSIONS Our results reveal a key role of Sirt6 in POMC neurons against energy imbalance, suggesting that Sirt6 is an important molecular regulator for POMC neurons to promote negative energy balance.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Cuiyuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guorong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongsheng Chang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice-a new potential probiotic for appetite and body weight management. Int J Obes (Lond) 2020; 44:1041-1051. [PMID: 31911661 PMCID: PMC7188665 DOI: 10.1038/s41366-019-0515-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022]
Abstract
Background/objectives Based on the recent identification of E.coli heat shock protein ClpB as a mimetic of the anorexigenic α-melanocyte stimulating hormone (α-MSH), the objective of this study was to preclinically validate Hafnia alvei, a ClpB-producing commensal bacterium as a potential probiotic for appetite and body weight management in overweight and obesity. Methods The involvement of enterobacterial ClpB in the putative anti-obesity effects was studied using ClpB-deficient E.coli. A food-grade H. alvei HA4597 strain synthetizing the ClpB protein with an α-MSH-like motif was selected as a candidate probiotic to be tested in ob/ob and high-fat diet (HFD)-fed obese and overweight mice. The relevance of the enterobacterial ClpB gene to human obesity was studied by in silico analysis of fecal metagenomes of 569 healthy individuals from the “MetaHIT” database. Results Chronic per os administration of native but not ClpB-deficient E.coli strain reduced body weight gain (p < 0.05) and daily meal frequency (p < 0.001) in ob/ob mice. Oral gavage of H.alvei for 18 and 46 days in ob/ob and HFD-fed obese mice, respectively, was well tolerated, reduced body weight gain and fat mass in both obesity models (p < 0.05) and decreased food intake in hyperphagic ob/ob mice (p < 0.001). Elevated fat tissue levels of phosphorylated hormone-sensitive lipase were detected in H.alvei -treated ob/ob mice (p < 0.01). Enterobacterial ClpB gene richness was lower in obese vs. non-obese humans (p < 0.0001) and correlated negatively with BMI in genera of Enterobacter, Klebsiella and Hafnia. Conclusions H.alvei HA4597 strain reduces food intake, body weight and fat mass gain in hyperphagic and obese mice. These data combined with low enterobacterial ClpB gene abundance in the microbiota of obese humans provide the rationale for using H.alvei as a probiotic for appetite and body weight management in overweight and obesity.
Collapse
|
29
|
DA SILVA ALESSANDRA, ROCHA DANIELAMAYUMIU, LOPES LÍLIANL, BRESSAN JOSEFINA, HERMSDORFF HELENHERMANAM. High-saturated fatty meals with orange juice intake have subjective appetite sensations suppressed: Acute, postprandial study. AN ACAD BRAS CIENC 2020; 92:e20191085. [DOI: 10.1590/0001-3765202020191085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
|
30
|
Idelevich A, Sato K, Nagano K, Rowe G, Gori F, Baron R. ΔFosB Requires Galanin, but not Leptin, to Increase Bone Mass via the Hypothalamus, but both are needed to increase Energy expenditure. J Bone Miner Res 2019; 34:1707-1720. [PMID: 30998833 PMCID: PMC6744351 DOI: 10.1002/jbmr.3741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 01/29/2023]
Abstract
Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin-responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno-associated virus (AAV) expression of ΔFosB in the VHT of leptin-deficient ob/ob mice and genetic crossing of ENO2-ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB-triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB-triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB-induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass-accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Idelevich
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kazusa Sato
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Kenichi Nagano
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Glenn Rowe
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Francesca Gori
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit, Massachusetts General Hospital, and Division of Bone and Mineral Metabolism, Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Falk S, Lund C, Clemmensen C. Muscarinic receptors in energy homeostasis: Physiology and pharmacology. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:66-76. [PMID: 31464050 DOI: 10.1111/bcpt.13311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
Despite increased awareness and intensified biomedical research efforts, the prevalence of obesity continues to rise worldwide. This is alarming, because obesity accelerates the progression of several chronic disorders, including type 2 diabetes, cancer and cardiovascular disease. Individuals who experience significant weight loss must combat powerful counter-regulatory energy homeostatic processes, and, typically, most individuals regain the lost weight. Therefore, decoding the neural mechanisms underlying the regulation of energy homeostasis is necessary for developing breakthroughs in obesity management. It has been known for decades that cholinergic neurotransmission both directly and indirectly modulates energy homeostasis and metabolic health. Despite this insight, the molecular details underlying the modulation remain ill-defined, and the potential for targeting cholinergic muscarinic receptors for treating metabolic disease is largely uncharted. In this MiniReview, we scrutinize the literature that has formed our knowledge of muscarinic acetylcholine receptors (mAChRs) in energy homeostasis. The role of mAChRs in canonical appetite-regulating circuits will be discussed as will the more indirect regulation of energy homoeostasis via neurocircuits linked to motivated behaviours and emotional states. Finally, we discuss the therapeutic prospects of targeting mAChRs for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Sarah Falk
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Folgueira C, Beiroa D, Porteiro B, Duquenne M, Puighermanal E, Fondevila MF, Barja-Fernández S, Gallego R, Hernández-Bautista R, Castelao C, Senra A, Seoane P, Gómez N, Aguiar P, Guallar D, Fidalgo M, Romero-Pico A, Adan R, Blouet C, Labandeira-García JL, Jeanrenaud F, Kallo I, Liposits Z, Salvador J, Prevot V, Dieguez C, Lopez M, Valjent E, Frühbeck G, Seoane LM, Nogueiras R. Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat Metab 2019; 1:811-829. [PMID: 31579887 PMCID: PMC6774781 DOI: 10.1038/s42255-019-0099-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine signaling is a crucial part of the brain reward system and can affect feeding behavior. Dopamine receptors are also expressed in the hypothalamus, which is known to control energy metabolism in peripheral tissues. Here we show that pharmacological or chemogenetic stimulation of dopamine receptor 2 (D2R) expressing cells in the lateral hypothalamic area (LHA) and the zona incerta (ZI) decreases body weight and stimulates brown fat activity in rodents in a feeding-independent manner. LHA/ZI D2R stimulation requires an intact sympathetic nervous system and orexin system to exert its action and involves inhibition of PI3K in the LHA/ZI. We further demonstrate that, as early as 3 months after onset of treatment, patients treated with the D2R agonist cabergoline experience an increase in energy expenditure that persists for one year, leading to total body weight and fat loss through a prolactin-independent mechanism. Our results may provide a mechanistic explanation for how clinically used D2R agonists act in the CNS to regulate energy balance.
Collapse
Affiliation(s)
- Cintia Folgueira
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Begoña Porteiro
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Manon Duquenne
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | | | - Marcos F Fondevila
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Silvia Barja-Fernández
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rosalia Gallego
- Department of Morphological Sciences, School of Medicine, University of Santiago de Compostela, S. Francisco s/n, 15782 Santiago de Compostela (A Coruña), Spain
| | - René Hernández-Bautista
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Cecilia Castelao
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ana Senra
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Patricia Seoane
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Noemi Gómez
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Psychiatry, Radiology and Public Health, Faculty of Medicine Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782 Spain; Molecular Imaging Group. Health Research Institute of Santiago de Compostela (IDIS). Travesía da Choupana s/n Santiago de Compostela. Zip Code: 15706. Spain; Nuclear Medicine Department University Clinical Hospital Santiago de Compostela (SERGAS) (CHUS), Travesía Choupana s/n. Santiago de Compostela 15706 Spain
| | - Diana Guallar
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Amparo Romero-Pico
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Roger Adan
- Brain Center Rudolf Magnus, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Clemence Blouet
- MRC Metabolic Disease Unit. Institute of Metabolic Science. University of Cambridge, UK
| | - Jose Luís Labandeira-García
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- Networking Research Center on Neurodegenerative Diseases, CIBERNED, Madrid, Spain
| | - Françoise Jeanrenaud
- Laboratory of Metabolism, Division of Endocrinology, Diabetology and Nutrition, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imre Kallo
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, HAS, 1083, Budapest, Hungary
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center (JPArc), Laboratory of Development and Plasticity of the Neuroendocrine Brain, Inserm UMR-S 1172, Lille, France
| | - Carlos Dieguez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Miguel Lopez
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Emmanuel Valjent
- IGF, Inserm, CNRS, Univ. Montpellier, F-34094 Montpellier, France
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra & IdiSNA, Pamplona, Spain
| | - Luisa M Seoane
- Grupo Fisiopatología Endocrina, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo. Hospitalario Universitario de Santiago (CHUS/SERGAS), Instituto de Investigación Sanitaria, Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Ruben Nogueiras
- CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
33
|
Reilly JJ, Hughes AR, Gillespie J, Malden S, Martin A. Physical activity interventions in early life aimed at reducing later risk of obesity and related non-communicable diseases: A rapid review of systematic reviews. Obes Rev 2019; 20 Suppl 1:61-73. [PMID: 31419046 DOI: 10.1111/obr.12773] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022]
Abstract
To identify useful components of interventions aimed at prevention of childhood obesity and related non-communicable diseases (NCDs), which included physical activity and which targeted any or all of four life-course stages: peri-conception; pregnancy; infancy and toddlerhood (0 to 23 months); and early childhood (24 to 59 months). In May 2016, WHO Geneva searched the Cochrane Library and PubMed for systematic reviews of interventions including physical activity to prevent childhood obesity or risk factors for obesity-related NCDs. Using a narrative synthesis, the efficacy of randomized controlled trials (RCTs) to alter energy balance outcomes (measures of weight status or body fatness) was characterized by life-course stage, study characteristics, intervention functions (as defined in the behaviour change wheel), and level of the socio-ecological model (SEM) targeted. The quality of included systematic reviews was assessed. We retrieved 82 reviews from the World Health Organization (WHO) search, of which 23 were eligible for the present synthesis. The number of eligible studies by life-course stage was: 0 (peri-conception); 0 (pregnancy); 8 (infancy and toddlerhood, age 0 to 23 months; seven RCTs; age); and 37 (early childhood, age 24 to 59 months; 30 RCTs;). Thus, there was a lack of evidence for physical activity interventions during peri-conception and pregnancy. Almost all relevant studies in the 0- to 23- and 24- to 59-month life-course stages were multicomponent interventions (ie, targeted physical activity, dietary, and/or sedentary behaviours). Interventions with evidence of efficacy tended to target multiple levels of the SEM, with emphasis on parents, and extend over long periods. Effective intervention elements for early life obesity prevention included classes on parenting skills, alteration of the kindergarten playground, and financial incentives. Evidence from low- and middle-income countries was scarce, and evidence for intervention effect on obesity-related NCDs was missing. Future physical activity interventions in toddlerhood and early childhood aimed at prevention of obesity should adopt the characteristics typical of effective interventions identified by the present synthesis. There is an urgent need for more evidence on physical activity interventions set in low- and middle-income countries and which target the peri-conception and pregnancy periods.
Collapse
Affiliation(s)
- John J Reilly
- School of Psychological Sciences & Health, Physical Activity for Health Group, University of Strathclyde, Glasgow, UK
| | - Adrienne R Hughes
- School of Psychological Sciences & Health, Physical Activity for Health Group, University of Strathclyde, Glasgow, UK
| | - Jennifer Gillespie
- School of Psychological Sciences & Health, Physical Activity for Health Group, University of Strathclyde, Glasgow, UK
| | - Stephen Malden
- School of Psychological Sciences & Health, Physical Activity for Health Group, University of Strathclyde, Glasgow, UK
| | - Anne Martin
- School of Psychological Sciences & Health, Physical Activity for Health Group, University of Strathclyde, Glasgow, UK.,MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights Into Potential Mechanisms. Sex Med Rev 2019; 7:575-586. [PMID: 31196764 DOI: 10.1016/j.sxmr.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Flibanserin, a multifunctional serotonin receptor agonist and antagonist, is currently approved in the United States and Canada for the treatment of acquired, generalized hypoactive sexual desire disorder (HSDD) in premenopausal women. A post hoc analysis of HSDD clinical trial data found that flibanserin treatment was associated with statistically significant weight loss relative to placebo, even though study patients were not selected for being overweight/obese and were provided no expectation for weight reduction or interventions intended to promote weight loss. AIM To understand possible mechanisms by which flibanserin may produce weight loss. METHODS A literature review was performed using Medline database for relevant publications on the mechanisms of action by which flibanserin may provide weight loss and the links between sexual function and weight management. MAIN OUTCOME MEASURES Examination of (i) biopsychosocial factors regulating sexual desire, food intake, and weight regulation; (ii) clinical pharmacology of flibanserin; (iii) neurobiology of brain reward circuitry; and (iv) identification of possible mechanisms common to flibanserin and weight loss. RESULTS Based on flibanserin clinical trial data, there was no consistent correlation between weight loss and improvement in sexual function, as assessed by HSDD outcome measures. Nausea, a common adverse event associated with flibanserin use, also did not appear to be a contributing factor to weight loss. Hypothetical links between flibanserin treatment and weight loss include modulation of peripheral 5-HT2A receptors and factors such as improved mood and improved sleep. CONCLUSION Mechanisms of flibanserin-induced weight loss have not been well characterized but may involve indirect beneficial effects on peripheral 5-HT2A receptors and central regulation of mood and sleep. Future research may better elucidate the links between sexual function and weight management and the mechanism(s) by which flibanserin use may result in weight loss. Simon JA, Kingsberg SA, Goldstein I, et al. Weight Loss in Women Taking Flibanserin for Hypoactive Sexual Desire Disorder (HSDD): Insights into Potential Mechanisms. Sex Med Rev 2019;7:575-586.
Collapse
|
35
|
Abstract
The prevalence of obesity has increased worldwide in the past ~50 years, reaching pandemic levels. Obesity represents a major health challenge because it substantially increases the risk of diseases such as type 2 diabetes mellitus, fatty liver disease, hypertension, myocardial infarction, stroke, dementia, osteoarthritis, obstructive sleep apnoea and several cancers, thereby contributing to a decline in both quality of life and life expectancy. Obesity is also associated with unemployment, social disadvantages and reduced socio-economic productivity, thus increasingly creating an economic burden. Thus far, obesity prevention and treatment strategies - both at the individual and population level - have not been successful in the long term. Lifestyle and behavioural interventions aimed at reducing calorie intake and increasing energy expenditure have limited effectiveness because complex and persistent hormonal, metabolic and neurochemical adaptations defend against weight loss and promote weight regain. Reducing the obesity burden requires approaches that combine individual interventions with changes in the environment and society. Therefore, a better understanding of the remarkable regional differences in obesity prevalence and trends might help to identify societal causes of obesity and provide guidance on which are the most promising intervention strategies.
Collapse
Affiliation(s)
- Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
36
|
Hermann P, Gál V, Kóbor I, Kirwan CB, Kovács P, Kitka T, Lengyel Z, Bálint E, Varga B, Csekő C, Vidnyánszky Z. Efficacy of weight loss intervention can be predicted based on early alterations of fMRI food cue reactivity in the striatum. NEUROIMAGE-CLINICAL 2019; 23:101803. [PMID: 30991304 PMCID: PMC6463125 DOI: 10.1016/j.nicl.2019.101803] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/24/2022]
Abstract
Increased fMRI food cue reactivity in obesity, i.e. higher responses to high- vs. low-calorie food images, is a promising marker of the dysregulated brain reward system underlying enhanced susceptibility to obesogenic environmental cues. Recently, it has also been shown that weight loss interventions might affect fMRI food cue reactivity and that there is a close association between the alteration of cue reactivity and the outcome of the intervention. Here we tested whether fMRI food cue reactivity could be used as a marker of diet-induced early changes of neural processing in the striatum that are predictive of the outcome of the weight loss intervention. To this end we investigated the relationship between food cue reactivity in the striatum measured one month after the onset of the weight loss program and weight changes obtained at the end of the six-month intervention. We observed a significant correlation between BMI change measured after six months and early alterations of fMRI food cue reactivity in the striatum, including the bilateral putamen, right pallidum, and left caudate. Our findings provide evidence for diet-induced early alterations of fMRI food cue reactivity in the striatum that can predict the outcome of the weight loss intervention.
Collapse
Affiliation(s)
- Petra Hermann
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary.
| | - Viktor Gál
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - István Kóbor
- MR Research Center, Semmelweis University, Budapest H-1085, Hungary
| | - C Brock Kirwan
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Péter Kovács
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Tamás Kitka
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Zsuzsanna Lengyel
- Obesity Research Group, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Eszter Bálint
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Balázs Varga
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Csongor Csekő
- Department of General Pharmacology, Gedeon Richter Plc., Budapest H-1103, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary.
| |
Collapse
|
37
|
Chapelot D, Charlot K. Physiology of energy homeostasis: Models, actors, challenges and the glucoadipostatic loop. Metabolism 2019; 92:11-25. [PMID: 30500561 DOI: 10.1016/j.metabol.2018.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
The aim of this review is to discuss the physiology of energy homeostasis (EH), which is a debated concept. Thus, we will see that the set-point theory is highly challenged and that other models integrating an anticipative component, such as energy allostasis, seem more relevant to experimental reports and life preservation. Moreover, the current obesity epidemic suggests that EH is poorly efficient in the modern human dietary environment. Non-homeostatic phenomena linked to hedonism and reward seem to profoundly impair EH. In this review, the apparent failed homeostatic responses to energy challenges such as exercise, cafeteria diet, overfeeding and diet-induced weight loss, as well as their putative determinants, are analyzed to highlight the mechanisms of EH. Then, the hormonal, neuronal, and metabolic factors of energy intake or energy expenditure are briefly presented. Last, this review focuses on the contributions of two of the most pivotal and often overlooked determinants of EH: the availability of endogenous energy and the pattern of energy intake. A glucoadipostatic loop model is finally proposed to link energy stored in adipose tissue to EH through changes in eating behavior via leptin and sympathetic nervous system activity.
Collapse
Affiliation(s)
- Didier Chapelot
- Université Paris 13, Centre de Recherche en Epidémiologie et Statistique, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Inserm (U1153), Inra (U1125), Cnam, Bobigny, France.
| | - Keyne Charlot
- Institut de Recherche Biomédicale des Armées, Unité de Physiologie des Exercices et Activités en Conditions Extrêmes, Département Environnements Opérationnels, Brétigny-sur-Orge, France
| |
Collapse
|
38
|
Psilopanagioti A, Nikou S, Papadaki H. Nucleobindin-2/Nesfatin-1 in the Human Hypothalamus Is Reduced in Obese Subjects and Colocalizes with Oxytocin, Vasopressin, Melanin-Concentrating Hormone, and Cocaine- and Amphetamine-Regulated Transcript. Neuroendocrinology 2019; 108:190-200. [PMID: 30625474 DOI: 10.1159/000496731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/09/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Nesfatin-1, processed from nucleobindin-2 (NUCB2), is a potent anorexigenic peptide being expressed in rodent hypothalamic nuclei and involved in the regulation of feeding behavior and body weight in animals. The present study aimed to investigate NUCB2/nesfatin-1 protein expression in the human hypothalamus as well as its correlation with body weight. METHODS Sections of hypothalamus and adjacent cholinergic basal forebrain nuclei, including the nucleus basalis of Meynert (NBM) and the diagonal band of Broca (DBB), from 25 autopsy cases (17 males, 8 females; 8 lean, 9 overweight, 8 obese) were examined using immunohistochemistry and double immunofluorescence labeling. RESULTS Prominent NUCB2/nesfatin-1 immunoexpression was detected in supraoptic, paraventricular, and infundibular nuclei, lateral hypothalamic area (LHA)/perifornical region, and NBM/DBB. NUCB2/nesfatin-1 was found to extensively colocalize with (a) oxytocin and vasopressin in paraventricular and supraoptic nuclei, (b) melanin-concentrating hormone in the LHA, and (c) cocaine- and amphetamine-regulated transcript in infundibular and paraventricular nuclei and LHA. Interestingly, in the LHA, NUCB2/nesfatin-1 protein expression was significantly decreased in obese, compared with lean (p < 0.01) and overweight (p < 0.05) subjects. CONCLUSIONS The findings of the present study are suggestive of a potential role for NUCB2/nesfatin-1 as an integral regulator of food intake and energy homeostasis in the human hypothalamus. In the LHA, an appetite- and reward-related brain area, reduced NUCB2/nesfatin-1 immunoexpression may contribute to dysregulation of homeostatic and/or hedonic feeding behavior and obesity. NUCB2/nesfatin-1 localization in NBM/DBB might imply its participation in the neuronal circuitry controlling cognitive influences on food intake and give impetus towards unraveling additional biological actions of NUCB2/nesfatin-1 in human neuronal networks.
Collapse
Affiliation(s)
- Aristea Psilopanagioti
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece,
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
39
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
40
|
Ghanemi A, Yoshioka M, St-Amand J. Broken Energy Homeostasis and Obesity Pathogenesis: The Surrounding Concepts. J Clin Med 2018; 7:E453. [PMID: 30463389 PMCID: PMC6262529 DOI: 10.3390/jcm7110453] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Obesity represents an abnormal fat accumulation resulting from energy imbalances. It represents a disease with heavy consequences on population health and society economy due to its related morbidities and epidemic proportion. Defining and classifying obesity and its related parameters of evaluation is the first challenge toward understanding this multifactorial health problem. Therefore, within this review we report selected illustrative examples of the underlying mechanisms beyond the obesity pathogenesis which is systemic rather than limited to fat accumulation. We also discuss the gut-brain axis and hormones as the controllers of energy homeostasis and report selected impacts of obesity on the key metabolic tissues. The concepts of "broken energy balance" is detailed as the obesity starting key step. Sleep shortage and psychological factors are also reported with influences on obesity development. Importantly, describing such mechanistic pathways would allow clinicians, biologists and researchers to develop and optimize approaches and methods in terms of diagnosis, classification, clinical evaluation, treatment and prognosis of obesity.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec G1V 0A6, Canada.
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec G1V 0A6, Canada.
- Functional Genomics Laboratory, CREMI, Québec Genome Center, CHUL-CHU de Québec Research Center, Québec, Québec G1V 4G2, Canada.
| |
Collapse
|
41
|
Reddon H, Patel Y, Turcotte M, Pigeyre M, Meyre D. Revisiting the evolutionary origins of obesity: lazy versus peppy-thrifty genotype hypothesis. Obes Rev 2018; 19:1525-1543. [PMID: 30261552 DOI: 10.1111/obr.12742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/31/2022]
Abstract
The recent global obesity epidemic is attributed to major societal and environmental changes, such as excessive energy intake and sedentary lifestyle. However, exposure to 'obesogenic' environments does not necessarily result in obesity at the individual level, as 40-75% of body mass index variation in population is attributed to genetic differences. The thrifty genotype theory posits that genetic variants promoting efficient food sequestering and optimal deposition of fat during periods of food abundance were evolutionarily advantageous for the early hunter-gatherer and were positively selected. However, the thrifty genotype is likely too simplistic and fails to provide a justification for the complex distribution of obesity predisposing gene variants and for the broad range of body mass index observed in diverse ethnic groups. This review proposes that gene pleiotropy may better account for the variability in the distribution of obesity susceptibility alleles across modern populations. We outline the lazy-thrifty versus peppy-thrifty genotype hypothesis and detail the body of evidence in the literature in support of this novel concept. Future population genetics and mathematical modelling studies that account for pleiotropy may further improve our understanding of the evolutionary origins of the current obesity epidemic.
Collapse
Affiliation(s)
- H Reddon
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - Y Patel
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
| | - M Pigeyre
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
42
|
Jordi J, Guggiana-Nilo D, Bolton AD, Prabha S, Ballotti K, Herrera K, Rennekamp AJ, Peterson RT, Lutz TA, Engert F. High-throughput screening for selective appetite modulators: A multibehavioral and translational drug discovery strategy. SCIENCE ADVANCES 2018; 4:eaav1966. [PMID: 30402545 PMCID: PMC6209392 DOI: 10.1126/sciadv.aav1966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
How appetite is modulated by physiological, contextual, or pharmacological influence is still unclear. Specifically, the discovery of appetite modulators is compromised by the abundance of side effects that usually limit in vivo drug action. We set out to identify neuroactive drugs that trigger only their intended single behavioral change, which would provide great therapeutic advantages. To identify these ideal bioactive small molecules, we quantified the impact of more than 10,000 compounds on an extended series of different larval zebrafish behaviors using an in vivo imaging strategy. Known appetite-modulating drugs altered feeding and a pleiotropy of behaviors. Using this multibehavioral strategy as an active filter for behavioral side effects, we identified previously unidentified compounds that selectively increased or reduced food intake by more than 50%. The general applicability of this strategy is shown by validation in mice. Mechanistically, most candidate compounds were independent of the main neurotransmitter systems. In addition, we identified compounds with multibehavioral impact, and correlational comparison of these profiles with those of known drugs allowed for the prediction of their mechanism of action. Our results illustrate an unbiased and translational drug discovery strategy for ideal psychoactive compounds and identified selective appetite modulators in two vertebrate species.
Collapse
Affiliation(s)
- Josua Jordi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Institute of Veterinary Physiology, University of Zurich, Switzerland
- Corresponding author. (J.J.); (F.E.)
| | - Drago Guggiana-Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew D Bolton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Srishti Prabha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kaitlyn Ballotti
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kristian Herrera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew J. Rennekamp
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Randall T. Peterson
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, University of Zurich, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Corresponding author. (J.J.); (F.E.)
| |
Collapse
|
43
|
Hou S, Jiao Y, Yuan Q, Zhai J, Tian T, Sun K, Chen Z, Wu Z, Zhang J. S100A4 protects mice from high-fat diet-induced obesity and inflammation. J Transl Med 2018; 98:1025-1038. [PMID: 29789685 DOI: 10.1038/s41374-018-0067-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
As a member from S100 calcium-binding protein family, S100A4 is ubiquitous and elevated in tumor progression and metastasis, but its role in regulating obesity has not been well characterized. In this study, we showed that S100A4 was mainly expressed by stromal cells in adipose tissue and the S100A4 level in adipose tissue was decreased after high-fat diet (HFD). S100A4 deficient mice exhibited aggravated symptoms of obesity and suppressed insulin signaling after 12 weeks of HFD. Aggravated obesity in S100A4 deficient mice were found to be positively correlated with higher inflammatory status of the liver. Then, we found that extracellular S100A4 or overexpressed S100A4 inhibited adipogenesis and decreased mRNA levels of inflammation gene in 3T3-L1 adipocytes in vitro; whereas small interfering RNA (siRNA)-mediated suppression of S100A4 displayed the opposite results. Additionally, the protective effect induced by S100A4 during HFD-induced obesity was tightly related with activation of Akt signaling in adipose tissues, as well as livers and muscles. Taken together, we demonstrate that S100A4 is an inhibitory factor for obesity and attenuates the inflammatory reaction, while activating the Akt signaling, which suggest that S100A4 is a potential candidate for the treatment of diet-induced obesity and its complications.
Collapse
Affiliation(s)
- Shasha Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China
| | - Ying Jiao
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China
| | - Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China
| | - Junfeng Zhai
- The Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Tian Tian
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China
| | - Kaiji Sun
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhinan Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China.,The Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, P. R. China
| | - Zhenlong Wu
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, P.R. China.
| |
Collapse
|
44
|
Du J, Zhang P, Gan M, Zhao X, Xu Y, Li Q, Jiang Y, Tang G, Li M, Wang J, Li X, Zhang S, Zhu L. MicroRNA-204-5p regulates 3T3-L1 preadipocyte proliferation, apoptosis and differentiation. Gene 2018; 668:1-7. [DOI: 10.1016/j.gene.2018.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/13/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
|
45
|
Bower RL, Yule L, Rees TA, Deganutti G, Hendrikse ER, Harris PWR, Kowalczyk R, Ridgway Z, Wong AG, Swierkula K, Raleigh DP, Pioszak AA, Brimble MA, Reynolds CA, Walker CS, Hay DL. Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacol Transl Sci 2018; 1:32-49. [PMID: 32219203 DOI: 10.1021/acsptsci.8b00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 11/30/2022]
Abstract
The pancreatic peptide hormone, amylin, plays a critical role in the control of appetite, and synergizes with other key metabolic hormones such as glucagon-like peptide 1 (GLP-1). There is opportunity to develop potent and long-acting analogues of amylin or hybrids between these and GLP-1 mimetics for treating obesity. To achieve this, interrogation of how the 37 amino acid amylin peptide engages with its complex receptor system is required. We synthesized an extensive library of peptides to profile the human amylin sequence, determining the role of its disulfide loop, amidated C-terminus and receptor "capture" and "activation" regions in receptor signaling. We profiled four signaling pathways with different ligands at multiple receptor subtypes, in addition to exploring selectivity determinants between related receptors. Distinct roles for peptide subregions in receptor binding and activation were identified, resulting in peptides with greater activity than the native sequence. Enhanced peptide activity was preserved in the brainstem, the major biological target for amylin. Interpretation of our data using full-length active receptor models supported by molecular dynamics, metadynamics, and supervised molecular dynamics simulations guided the synthesis of a potent dual agonist of GLP-1 and amylin receptors. The data offer new insights into the function of peptide amidation, how allostery drives peptide-receptor interactions, and provide a valuable resource for the development of novel amylin agonists for treating diabetes and obesity.
Collapse
Affiliation(s)
- Rebekah L Bower
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Lauren Yule
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Giuseppe Deganutti
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Erica R Hendrikse
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Katarzyna Swierkula
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Department of Structural and Molecular Biology, University College London, London WC1E 6BT, U.K
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Margaret A Brimble
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Christopher A Reynolds
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Christopher S Walker
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L Hay
- School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand.,School of Biological Sciences, School of Chemical Sciences, and Maurice Wilkins Centre, The University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
46
|
Chechi K, van Marken Lichtenbelt W, Richard D. Brown and beige adipose tissues: phenotype and metabolic potential in mice and men. J Appl Physiol (1985) 2018; 124:482-496. [PMID: 28302705 PMCID: PMC5867364 DOI: 10.1152/japplphysiol.00021.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
With the recent rediscovery of brown fat in adult humans, our outlook on adipose tissue biology has undergone a paradigm shift. While we attempt to identify, recruit, and activate classic brown fat stores in humans, identification of beige fat has also raised the possibility of browning our white fat stores. Whether such transformation of human white fat depots can be achieved to enhance the whole body oxidative potential remains to be seen. Evidence to date, however, largely points toward a major oxidative role only for classic brown fat depots, at least in rodents. White fat stores seem to provide the main fuel for sustaining thermogenesis via lipolysis. Interestingly, molecular markers consistent with both classic brown and beige fat identity can be observed in human supraclavicular depot, thereby complicating the discussion on beige fat in humans. Here, we review the recent advances made in our understanding of brown and beige fat in humans and mice. We further provide an overview of their plausible physiological relevance to whole body energy metabolism.
Collapse
Affiliation(s)
- Kanta Chechi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| | - Wouter van Marken Lichtenbelt
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Ville de Québec, Quebec , Canada
| |
Collapse
|
47
|
Sensing and Decoding Neural Signals for Closed-Loop Neuromodulation and Advanced Diagnostics in Chronic Disease and Injury. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00131-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Laperrousaz E, Denis RG, Kassis N, Contreras C, López M, Luquet S, Cruciani-Guglielmacci C, Magnan C. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Front Endocrinol (Lausanne) 2018; 9:103. [PMID: 29593657 PMCID: PMC5861133 DOI: 10.3389/fendo.2018.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/15/2022] Open
Abstract
Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔ Lpl mice with 30-35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔ Lpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔ Lpl mice remained similar to that observed at 22°C. MBHΔ Lpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Raphaël G Denis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Nadim Kassis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| |
Collapse
|
49
|
Effects of postnatal overfeeding and fish oil diet on energy expenditure in rats. Pediatr Res 2018; 83:156-163. [PMID: 28846671 DOI: 10.1038/pr.2017.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
BackgroudEarly life nutrition may have a role in the regulation of metabolism in adulthood. The present study aimed to evaluate the effects of postnatal overfeeding and a postweaning fish oil diet on energy expenditure.MethodsOn postnatal day 3, rat litters were adjusted to a litter size of three (small litters, SLs) or ten (normal litters, NLs). After weaning, SLs were fed the standard diet or a fish oil diet enriched with polyunsaturated fatty acids (SL-FOs) for 10 weeks. The metabolic parameters of rats were monitored using the TSE LabMaster at postnatal week 3 (W3) and postnatal week 13 (W13).ResultsAt W3, the O2 consumption and heat production in SLs were lower than those in NLs, while the respiratory exchange ratio (RER) was higher than NLs. SLs showed obesity, dyslipidemia, and impaired glucose tolerance at W13. The postweaning fish oil diet in SLs not only increased O2 consumption, CO2 production, heat production, and reduced the RER but it also reduced weight gain, serum triglycerides, and improved glucose tolerance at W13.ConclusionPostnatal overfeeding can decrease the level of body energy expenditure and induce obesity, but a fish oil diet can increase the energy expenditure and prevent the development of metabolic dysregulation in adults.
Collapse
|
50
|
Kharkwal H, Batool F, Koentgen F, Bell DR, Kendall DA, Ebling FJP, Duce IR. Generation and phenotypic characterisation of a cytochrome P450 4x1 knockout mouse. PLoS One 2017; 12:e0187959. [PMID: 29227996 PMCID: PMC5724839 DOI: 10.1371/journal.pone.0187959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 4x1 (Cyp4x1) is expressed at very high levels in the brain but the function of this protein is unknown. It has been hypothesised to regulate metabolism of fatty acids and to affect the activity of endocannabinoid signalling systems, which are known to influence appetite and energy metabolism. The objective of the present investigation was to determine the impact of Cyp4x1 on body weight and energy metabolism by developing a line of transgenic Cyp4x1-knock out mice. Mice were developed with a global knock-out of the gene; the full-length RNA was undetectable, and mice were viable and fertile. Both male and female Cyp4x1-knock out mice gained significantly more body weight on normal lab chow diet compared to control flox mice on the same genetic background. At necropsy, Cyp4x1-knock out male mice had significantly greater intra-abdominal fat deposits (P<0.01), and enlarged adipocytes. Metabolic rate and locomotor activity as inferred from VO2 measures and crossing of infrared beams in metabolic cages were not significantly affected by the mutation in either gender. The respiratory exchange ratio was significantly decreased in male knock out mice (P<0.05), suggesting a greater degree of fat oxidation, consistent with their higher adiposity. When mice were maintained on a high fat diet, VO2 was significantly decreased in both male and female Cyp4x1-knock out mice. We conclude that the Cyp4x1-knock out mouse strain demonstrates a mildly obese phenotype, consistent with the view that cytochrome P450 4x1 plays a role in regulating fat metabolism.
Collapse
Affiliation(s)
- Himanshu Kharkwal
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Farhat Batool
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Frank Koentgen
- Ozgene Pty Ltd., Bentley DC, Western Australia, Australia
| | - David R. Bell
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- European Chemicals Agency, Helsinki, Finland
| | - David A. Kendall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Ian R. Duce
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|