1
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Hwang JJ, Fan Z, Li L. Differences in brain spindle density during sleep between patients with and without type 2 diabetes. Comput Biol Med 2025; 184:109484. [PMID: 39622099 DOI: 10.1016/j.compbiomed.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Sleep spindles may be implicated in sensing and regulation of peripheral glucose. Whether spindle density in patients with type 2 diabetes mellitus (T2DM) differs from that of healthy subjects is unknown. METHODS Our retrospective analysis of polysomnography (PSG) studies identified 952 patients with T2DM and 952 sex-, age- and BMI-matched control subjects. We extracted spindles from PSG electroencephalograms and used rank-based statistical methods to test for differences between subjects with and without diabetes. We also explored potential modifiers of spindle density differences. We replicated our analysis on independent data from the Sleep Heart Health Study. RESULTS We found that patients with T2DM exhibited about half the spindle density during sleep as matched controls (P < 0.0001). The replication dataset showed similar trends. The patient-minus-control paired difference in spindle density for pairs where the patient had major complications were larger than corresponding paired differences in pairs where the patient lacked major complications, despite both patient groups having significantly lower spindle density compared to their respective control subjects. Patients with a prescription for a glucagon-like peptide 1 receptor agonist had significantly higher spindle density than those without one (P ≤ 0.03). Spindle density in patients with T2DM monotonically decreased as their highest recorded HbA1C level increased (P ≤ 0.003). CONCLUSIONS T2DM patients had significantly lower spindle density than control subjects; the size of that difference was correlated with markers of disease severity (complications and glycemic control). These findings expand our understanding of the relationships between sleep and glucose regulation.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Janice J Hwang
- Division of Endocrinology and Metabolism and Department of Internal Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zheng Fan
- Division of Sleep Medicine and Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Kaya E, Wegienka E, Akhtarzandi-Das A, Do H, Eban-Rothschild A, Rothschild G. Food intake enhances hippocampal sharp wave-ripples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617304. [PMID: 39416018 PMCID: PMC11482785 DOI: 10.1101/2024.10.08.617304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body's energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to influence peripheral glucose metabolism. However, whether SWRs are enhanced by recent feeding-when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation, remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and sugg-est that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.
Collapse
Affiliation(s)
- Ekin Kaya
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evan Wegienka
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Hanh Do
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Long Q, Huang P, Kuang J, Huang Y, Guan H. Diabetes exerts a causal impact on the nervous system within the right hippocampus: substantiated by genetic data. Endocrine 2024:10.1007/s12020-024-04081-y. [PMID: 39480567 DOI: 10.1007/s12020-024-04081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024]
Abstract
INTRODUCTION Diabetes and neuronal loss in the hippocampus have been observed to be correlated in several studies; however, the exact causality of this association remains uncertain. This study aims to explore the potential causal relationship between diabetes and the hippocampal nervous system. METHODS We utilized the two-sample Mendelian randomization (MR) analysis to investigate the potential causal connection between diabetes and the hippocampal nervous system. The summary statistics of Genome-wide association study (GWAS) for diabetes and hippocampus neuroimaging measurement were acquired from published GWASs, all of which were based on European ancestry. Several two-sample MR analyses were conducted in this study, utilizing inverse-variance weighted (IVW), MR Egger, and Weight-median methods. To ensure the reliability of the results and identify any horizontal pleiotropy, sensitivity analyses were undertaken using Cochran's Q test and the MR-PRESSO global test. RESULTS Causal associations were found between diabetes and the nervous system in the hippocampus. Type 1 and type 2 diabetes were both identified as having adverse causal connections with the right hippocampal nervous system. This was supported by specific ranges of IVW-OR values (P < 0.05). The consistency of the sensitivity analyses further reinforced the main findings, revealing no significant heterogeneity or presence of horizontal pleiotropy. CONCLUSIONS This study delved into the causal associations between diabetes and the hippocampal nervous system, revealing that both type 1 and type 2 diabetes have detrimental effects on the right hippocampal nervous system. Our findings have significant clinical implications as they indicate that diabetes may play a role in the decline of neurons in the right hippocampus among European populations, often resulting in cognitive decline.
Collapse
Affiliation(s)
- Qian Long
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Piao Huang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Swanson R, Chinigò E, Levenstein D, Vöröslakos M, Mousavi N, Wang XJ, Basu J, Buzsáki G. Topography of putative bidirectional interaction between hippocampal sharp wave ripples and neocortical slow oscillations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619879. [PMID: 39484611 PMCID: PMC11526890 DOI: 10.1101/2024.10.23.619879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across neocortex and the mechanisms enabling it remain unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with widefield imaging of dorsal neocortex, we found spatially and temporally precise bidirectional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability was correlated with UP/DOWN states in mouse default mode network, with highest modulation by RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN DOWN→UP transitions, while large-amplitude SWRs were often followed by DOWN states originating in RSC. We explain these electrophysiological results with a model in which HPC and RSC are weakly coupled excitable systems capable of bi-directional perturbation and suggest RSC may act as a gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of DOWN states.
Collapse
Affiliation(s)
- Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Elisa Chinigò
- Center for Neural Science, New York University, New York, NY, USA
| | - Daniel Levenstein
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Mila – The Quebec AI Institute, Montreal, QC, Canada
| | - Mihály Vöröslakos
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Navid Mousavi
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Jayeeta Basu
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Psychiatry, Langone Medical Center, New York University, New York, NY, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
5
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
6
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Haziza S, Chrapkiewicz R, Zhang Y, Kruzhilin V, Li J, Li J, Delamare G, Swanson R, Buzsáki G, Kannan M, Vasan G, Lin MZ, Zeng H, Daigle TL, Schnitzer MJ. Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607428. [PMID: 39185175 PMCID: PMC11343216 DOI: 10.1101/2024.08.15.607428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fluorescent genetically encoded voltage indicators report transmembrane potentials of targeted cell-types. However, voltage-imaging instrumentation has lacked the sensitivity to track spontaneous or evoked high-frequency voltage oscillations in neural populations. Here we describe two complementary TEMPO voltage-sensing technologies that capture neural oscillations up to ~100 Hz. Fiber-optic TEMPO achieves ~10-fold greater sensitivity than prior photometry systems, allows hour-long recordings, and monitors two neuron-classes per fiber-optic probe in freely moving mice. With it, we uncovered cross-frequency-coupled theta- and gamma-range oscillations and characterized excitatory-inhibitory neural dynamics during hippocampal ripples and visual cortical processing. The TEMPO mesoscope images voltage activity in two cell-classes across a ~8-mm-wide field-of-view in head-fixed animals. In awake mice, it revealed sensory-evoked excitatory-inhibitory neural interactions and traveling gamma and 3-7 Hz waves in the visual cortex, and previously unreported propagation directions for hippocampal theta and beta waves. These technologies have widespread applications probing diverse oscillations and neuron-type interactions in healthy and diseased brains.
Collapse
Affiliation(s)
- Simon Haziza
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Radosław Chrapkiewicz
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Yanping Zhang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Vasily Kruzhilin
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jane Li
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
| | - Jizhou Li
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Rachel Swanson
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Madhuvanthi Kannan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ganesh Vasan
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Z Lin
- Departments of Bioengineering & Pediatrics, Stanford University, Stanford CA 94305, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
8
|
Goode TD, Alipio JB, Besnard A, Pathak D, Kritzer-Cheren MD, Chung A, Duan X, Sahay A. A dorsal hippocampus-prodynorphinergic dorsolateral septum-to-lateral hypothalamus circuit mediates contextual gating of feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606427. [PMID: 39149322 PMCID: PMC11326193 DOI: 10.1101/2024.08.02.606427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive regulation of feeding depends on linkage of internal states and food outcomes with contextual cues. Human brain imaging has identified dysregulation of a hippocampal-lateral hypothalamic area (LHA) network in binge eating, but mechanistic instantiation of underlying cell-types and circuitry is lacking. Here, we identify an evolutionary conserved and discrete Prodynorphin (Pdyn)-expressing subpopulation of Somatostatin (Sst)-expressing inhibitory neurons in the dorsolateral septum (DLS) that receives primarily dorsal, but not ventral, hippocampal inputs. DLS(Pdyn) neurons inhibit LHA GABAergic neurons and confer context- and internal state-dependent calibration of feeding. Viral deletion of Pdyn in the DLS mimicked effects seen with optogenetic silencing of DLS Pdyn INs, suggesting a potential role for DYNORPHIN-KAPPA OPIOID RECEPTOR signaling in contextual regulation of food-seeking. Together, our findings illustrate how the dorsal hippocampus has evolved to recruit an ancient LHA feeding circuit module through Pdyn DLS inhibitory neurons to link contextual information with regulation of food consumption.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Devesh Pathak
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Michael D Kritzer-Cheren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
9
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Sormunen E, Tolvanen A, Salokangas RKR, Koutsouleris N, Tuominen L, Hietala J. Longitudinal study on hippocampal subfields and glucose metabolism in early psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:66. [PMID: 39085221 PMCID: PMC11291638 DOI: 10.1038/s41537-024-00475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/11/2024] [Indexed: 08/02/2024]
Abstract
Altered hippocampal morphology and metabolic pathology, but also hippocampal circuit dysfunction, are established phenomena seen in psychotic disorders. Thus, we tested whether hippocampal subfield volume deficits link with deviations in glucose metabolism commonly seen in early psychosis, and whether the glucose parameters or subfield volumes change during follow-up period using one-year longitudinal study design of 78 first-episode psychosis patients (FEP), 48 clinical high-risk patients (CHR) and 83 controls (CTR). We also tested whether hippocampal morphology and glucose metabolism relate to clinical outcome. Hippocampus subfields were segmented with Freesurfer from 3T MRI images and parameters of glucose metabolism were determined in fasting plasma samples. Hippocampal subfield volumes were consistently lower in FEPs, and findings were more robust in non-affective psychoses, with strongest decreases in CA1, molecular layer and hippocampal tail, and in hippocampal tail of CHRs, compared to CTRs. These morphometric differences remained stable at one-year follow-up. Both non-diabetic CHRs and FEPs had worse glucose parameters compared to CTRs at baseline. We found that, insulin levels and insulin resistance increased during the follow-up period only in CHR, effect being largest in the CHRs converting to psychosis, independent of exposure to antipsychotics. The worsening of insulin resistance was associated with deterioration of function and symptoms in CHR. The smaller volume of hippocampal tail was associated with higher plasma insulin and insulin resistance in FEPs, at the one-year follow-up. Our longitudinal study supports the view that temporospatial hippocampal subfield volume deficits are stable near the onset of first psychosis, being more robust in non-affective psychoses, but less prominent in the CHR group. Specific subfield defects were related to worsening glucose metabolism during the progression of psychosis, suggesting that hippocampus is part of the circuits regulating aberrant glucose metabolism in early psychosis. Worsening of glucose metabolism in CHR group was associated with worse clinical outcome measures indicating a need for heightened clinical attention to metabolic problems already in CHR.
Collapse
Grants
- Turun Yliopistollisen Keskussairaalan Koulutus- ja Tutkimussäätiö (TYKS-säätiö)
- Alfred Kordelinin Säätiö (Alfred Kordelin Foundation)
- Finnish Cultural Foundation | Varsinais-Suomen Rahasto (Varsinais-Suomi Regional Fund)
- Suomalainen Lääkäriseura Duodecim (Finnish Medical Society Duodecim)
- Turun Yliopisto (University of Turku)
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Armio received personal funding from Doctoral Programme in Clinical Research at the University of Turku, grants from State Research Funding, Turunmaa Duodecim Society, Finnish Psychiatry Research Foundation, Finnish University Society of Turku (Valto Takala Foundation), Tyks-foundation, The Finnish Medical Foundation (Maija and Matti Vaskio fund), University of Turku, The Alfred Kordelin Foundation, Finnish Cultural Foundation (Terttu Enckell fund and Ritva Helminen fund) and The Alfred Kordelin foundation. Further, Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
- This work was supported by funding for the VAMI-project (Turku University Hospital, state research funding, no. P3848), partly supported by EU FP7 grants (PRONIA, grant a # 602152 and METSY grant #602478). Dr. Tuominen received personal grant from Sigrid Juselius and Orion research foundation and NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, 20520, Turku, Finland.
- Department of Psychiatry, University of Turku, 20700, Turku, Finland.
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | - Maija Walta
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Elina Sormunen
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| | - Arvi Tolvanen
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
| | | | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, D-80336, Munich, Germany
| | - Lauri Tuominen
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
- The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, 20520, Turku, Finland
- Department of Psychiatry, University of Turku, 20700, Turku, Finland
- Department of Psychiatry, Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
10
|
Xiang LY, Chen XY, Lu LM, Kong MH, Ji Q, Xiong Y, Xie MM, Jian XL, Zhu ZR. Mechanisms of Neuronal Reactivation in Memory Consolidation: A Perspective from Pathological Conditions. Neuroscience 2024; 551:196-204. [PMID: 38810690 DOI: 10.1016/j.neuroscience.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Memory consolidation refers to a process by which labile newly formed memory traces are progressively strengthened into long term memories and become more resistant to interference. Recent work has revealed that spontaneous hippocampal activity during rest, commonly referred to as "offline" activity, plays a critical role in the process of memory consolidation. Hippocampal reactivation occurs during sharp-wave ripples (SWRs), which are events associated with highly synchronous neural firing in the hippocampus and modulation of neural activity in distributed brain regions. Memory consolidation occurs primarily through a coordinated communication between hippocampus and neocortex. Cortical slow oscillations drive the repeated reactivation of hippocampal memory representations together with SWRs and thalamo-cortical spindles, inducing long-lasting cellular and network modifications responsible for memory stabilization.In this review, we aim to comprehensively cover the field of "reactivation and memory consolidation" research by detailing the physiological mechanisms of neuronal reactivation and firing patterns during SWRs and providing a discussion of more recent key findings. Several mechanistic explanations of neuropsychiatric diseases propose that impaired neural replay may underlie some of the symptoms of the disorders. Abnormalities in neuronal reactivation are a common phenomenon and cause pathological impairment in several diseases, such as Alzheimer's disease (AD), epilepsy and schizophrenia. However, the specific pathological changes and mechanisms of reactivation in each disease are different. Recent work has also enlightened some of the underlying pathological mechanisms of neuronal reactivation in these diseases. In this review, we further describe how SWRs, ripples and slow oscillations are affected in Alzheimer's disease, epilepsy, and schizophrenia. We then compare the differences of neuronal reactivation and discuss how different reactivation abnormalities cause pathological changes in these diseases. Aberrant neural reactivation provides insights into disease pathogenesis and may even serve as biomarkers for early disease progression and treatment response.
Collapse
Affiliation(s)
- Lei-Ying Xiang
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Xiao-Yi Chen
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Li-Ming Lu
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Ming-Hui Kong
- School of Educational Sciences, Chongqing Normal University, Chongqing, PR China
| | - Qi Ji
- Department of Medical Psychology, Army Medical University, Chongqing, PR China
| | - Yu Xiong
- Department of Stomatology, Southwest Hospital, Chongqing, PR China
| | - Mei-Ming Xie
- Chinese People's Liberation Army Western Theater General Hospital, Chengdu, PR China
| | - Xin-Ling Jian
- No. 950 Hospital of the Chinese People's Liberation Army, Yecheng, PR China
| | - Zhi-Ru Zhu
- Department of Medical Psychology, Army Medical University, Chongqing, PR China.
| |
Collapse
|
11
|
Johnsen KA, Cruzado NA, Menard ZC, Willats AA, Charles AS, Markowitz JE, Rozell CJ. Bridging model and experiment in systems neuroscience with Cleo: the Closed-Loop, Electrophysiology, and Optophysiology simulation testbed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.27.525963. [PMID: 39026717 PMCID: PMC11257437 DOI: 10.1101/2023.01.27.525963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Systems neuroscience has experienced an explosion of new tools for reading and writing neural activity, enabling exciting new experiments such as all-optical or closed-loop control that effect powerful causal interventions. At the same time, improved computational models are capable of reproducing behavior and neural activity with increasing fidelity. Unfortunately, these advances have drastically increased the complexity of integrating different lines of research, resulting in the missed opportunities and untapped potential of suboptimal experiments. Experiment simulation can help bridge this gap, allowing model and experiment to better inform each other by providing a low-cost testbed for experiment design, model validation, and methods engineering. Specifically, this can be achieved by incorporating the simulation of the experimental interface into our models, but no existing tool integrates optogenetics, two-photon calcium imaging, electrode recording, and flexible closed-loop processing with neural population simulations. To address this need, we have developed Cleo: the Closed-Loop, Electrophysiology, and Optophysiology experiment simulation testbed. Cleo is a Python package enabling injection of recording and stimulation devices as well as closed-loop control with realistic latency into a Brian spiking neural network model. It is the only publicly available tool currently supporting two-photon and multi-opsin/wavelength optogenetics. To facilitate adoption and extension by the community, Cleo is open-source, modular, tested, and documented, and can export results to various data formats. Here we describe the design and features of Cleo, validate output of individual components and integrated experiments, and demonstrate its utility for advancing optogenetic techniques in prospective experiments using previously published systems neuroscience models.
Collapse
Affiliation(s)
- Kyle A. Johnsen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Zachary C. Menard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam A. Willats
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam S. Charles
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey E. Markowitz
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | |
Collapse
|
12
|
Viskaitis P, Tesmer AL, Liu Z, Karnani MM, Arnold M, Donegan D, Bracey E, Grujic N, Patriarchi T, Peleg-Raibstein D, Burdakov D. Orexin neurons track temporal features of blood glucose in behaving mice. Nat Neurosci 2024; 27:1299-1308. [PMID: 38773350 PMCID: PMC11239495 DOI: 10.1038/s41593-024-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/10/2024] [Indexed: 05/23/2024]
Abstract
Does the brain track how fast our blood glucose is changing? Knowing such a rate of change would enable the prediction of an upcoming state and a timelier response to this new state. Hypothalamic arousal-orchestrating hypocretin/orexin neurons (HONs) have been proposed to be glucose sensors, yet whether they track glucose concentration (proportional tracking) or rate of change (derivative tracking) is unknown. Using simultaneous recordings of HONs and blood glucose in behaving male mice, we found that maximal HON responses occur in considerable temporal anticipation (minutes) of glucose peaks due to derivative tracking. Analysis of >900 individual HONs revealed glucose tracking in most HONs (98%), with derivative and proportional trackers working in parallel, and many (65%) HONs multiplexed glucose and locomotion information. Finally, we found that HON activity is important for glucose-evoked locomotor suppression. These findings reveal a temporal dimension of brain glucose sensing and link neurobiological and algorithmic views of blood glucose perception in the brain's arousal orchestrators.
Collapse
Affiliation(s)
- Paulius Viskaitis
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Alexander L Tesmer
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Ziyu Liu
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mahesh M Karnani
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Myrtha Arnold
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dane Donegan
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Eva Bracey
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland.
| |
Collapse
|
13
|
Zhang Y, Karadas M, Liu J, Gu X, Vöröslakos M, Li Y, Tsien RW, Buzsáki G. Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron 2024; 112:1862-1875.e5. [PMID: 38537642 PMCID: PMC11156550 DOI: 10.1016/j.neuron.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 06/09/2024]
Abstract
A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.
Collapse
Affiliation(s)
| | | | | | - Xinyi Gu
- Neuroscience Institute, New York, NY, USA
| | | | - Yulong Li
- School of Life Science, Peking University, Beijing, China
| | - Richard W Tsien
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Neuroscience Institute, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
14
|
Iwata T, Yanagisawa T, Ikegaya Y, Smallwood J, Fukuma R, Oshino S, Tani N, Khoo HM, Kishima H. Hippocampal sharp-wave ripples correlate with periods of naturally occurring self-generated thoughts in humans. Nat Commun 2024; 15:4078. [PMID: 38778048 PMCID: PMC11111804 DOI: 10.1038/s41467-024-48367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Core features of human cognition highlight the importance of the capacity to focus on information distinct from events in the here and now, such as mind wandering. However, the brain mechanisms that underpin these self-generated states remain unclear. An emerging hypothesis is that self-generated states depend on the process of memory replay, which is linked to sharp-wave ripples (SWRs), which are transient high-frequency oscillations originating in the hippocampus. Local field potentials were recorded from the hippocampus of 10 patients with epilepsy for up to 15 days, and experience sampling was used to describe their association with ongoing thought patterns. The SWR rates were higher during extended periods of time when participants' ongoing thoughts were more vivid, less desirable, had more imaginable properties, and exhibited fewer correlations with an external task. These data suggest a role for SWR in the patterns of ongoing thoughts that humans experience in daily life.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2024:sbae059. [PMID: 38713085 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
Seenivasan P, Basak R, Narayanan R. Cross-strata co-occurrence of ripples with theta-frequency oscillations in the hippocampus of foraging rats. J Physiol 2024; 602:2315-2341. [PMID: 38654581 PMCID: PMC7615956 DOI: 10.1113/jp284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.
Collapse
Affiliation(s)
- Pavithraa Seenivasan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Reshma Basak
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
17
|
Yeung D, Talukder A, Shi M, Umbach DM, Li Y, Motsinger-Reif A, Fan Z, Li L. Differences in sleep spindle wave density between patients with diabetes mellitus and matched controls: implications for sensing and regulation of peripheral blood glucose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.11.24305676. [PMID: 38645123 PMCID: PMC11030297 DOI: 10.1101/2024.04.11.24305676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Brain waves during sleep are involved in sensing and regulating peripheral glucose level. Whether brain waves in patients with diabetes differ from those of healthy subjects is unknown. We examined the hypothesis that patients with diabetes have reduced sleep spindle waves, a form of brain wave implicated in periphery glucose regulation during sleep. Methods From a retrospective analysis of polysomnography (PSG) studies on patients who underwent sleep apnea evaluation, we identified 1,214 studies of patients with diabetes mellitus (>66% type 2) and included a sex- and age-matched control subject for each within the scope of our analysis. We similarly identified 376 patients with prediabetes and their matched controls. We extracted spindle characteristics from artifact-removed PSG electroencephalograms and other patient data from records. We used rank-based statistical methods to test hypotheses. We validated our finding on an external PSG dataset. Results Patients with diabetes mellitus exhibited on average about half the spindle density (median=0.38 spindles/min) during sleep as their matched control subjects (median=0.70 spindles/min) (P<2.2e-16). Compared to controls, spindle loss was more pronounced in female patients than in male patients in the frontal regions of the brain (P=0.04). Patients with prediabetes also exhibited signs of lower spindle density compared to matched controls (P=0.01-0.04). Conclusions Patients with diabetes have fewer spindle waves that are implicated in glucose regulation than matched controls during sleep. Besides offering a possible explanation for neurological complications from diabetes, our findings open the possibility that reversing/reducing spindle loss could improve the overall health of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Deryck Yeung
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Amlan Talukder
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Zheng Fan
- Division of Sleep Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
18
|
Chi H, Sun Y, Lin P, Zhou J, Zhang J, Yang Y, Qiao Y, Liu D. Glucose Fluctuation Inhibits Nrf2 Signaling Pathway in Hippocampal Tissues and Exacerbates Cognitive Impairment in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:5584761. [PMID: 38282656 PMCID: PMC10817812 DOI: 10.1155/2024/5584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Background This research investigated whether glucose fluctuation (GF) can exacerbate cognitive impairment in streptozotocin-induced diabetic rats and explored the related mechanism. Methods After 4 weeks of feeding with diets containing high fats plus sugar, the rat model of diabetes mellitus (DM) was established by intraperitoneal injection of streptozotocin (STZ). Then, GF was triggered by means of alternating satiety and starvation for 24 h. The weight, blood glucose level, and water intake of the rats were recorded. The Morris water maze (MWM) test was carried out to appraise the cognitive function at the end of week 12. Moreover, the morphological structure of hippocampal neurons was viewed through HE and Nissl staining, and transmission electron microscopy (TEM) was performed for ultrastructure observation. The protein expression levels of Nrf2, HO-1, NQO-1, Bax, Bcl-2, and Caspase-3 in the hippocampal tissues of rats were measured via Western blotting, and the mRNA expressions of Nrf2, HO-1, and NQO-1 were examined using qRT-PCR. Finally, Western blotting and immunohistochemistry were conducted to detect BDNF levels. Results It was manifested that GF not only aggravated the impairment of spatial memory in rats with STZ-induced type 2 DM but also stimulated the loss, shrinkage, and apoptosis of hippocampal neurons. Regarding the expressions in murine hippocampal tissues, GF depressed Nrf2, HO-1, NQO-1, Bcl-2, and BDNF but boosted Caspase-3 and Bax. Conclusions GF aggravates cognitive impairment by inhibiting the Nrf2 signaling pathway and inducing oxidative stress and apoptosis in the hippocampal tissues.
Collapse
Affiliation(s)
- Haiyan Chi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yujing Sun
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Lin
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Junyu Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yachao Yang
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Pache A, van Rossum MCW. Energetically efficient learning in neuronal networks. Curr Opin Neurobiol 2023; 83:102779. [PMID: 37672980 DOI: 10.1016/j.conb.2023.102779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Human and animal experiments have shown that acquiring and storing information can require substantial amounts of metabolic energy. However, computational models of neural plasticity only seldom take this cost into account, and might thereby miss an important constraint on biological learning. This review explores various ways to reduce energy requirements for learning in neural networks. By comparing the resulting learning rules to cognitive and neurophysiological observations, we discuss how energy efficiency might have shaped biological learning.
Collapse
Affiliation(s)
- Aaron Pache
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Mark C W van Rossum
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; School of Psychology, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
20
|
Axelrod S, Li X, Sun Y, Lincoln S, Terceros A, O’Neil J, Wang Z, Nguyen A, Vora A, Spicer C, Shapiro B, Young MW. The Drosophila blood-brain barrier regulates sleep via Moody G protein-coupled receptor signaling. Proc Natl Acad Sci U S A 2023; 120:e2309331120. [PMID: 37831742 PMCID: PMC10589661 DOI: 10.1073/pnas.2309331120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Sleep is vital for most animals, yet its mechanism and function remain unclear. We found that permeability of the BBB (blood-brain barrier)-the organ required for the maintenance of homeostatic levels of nutrients, ions, and other molecules in the brain-is modulated by sleep deprivation (SD) and can cell-autonomously effect sleep changes. We observed increased BBB permeability in known sleep mutants as well as in acutely sleep-deprived animals. In addition to molecular tracers, SD-induced BBB changes also increased the penetration of drugs used in the treatment of brain pathologies. After chronic/genetic or acute SD, rebound sleep or administration of the sleeping aid gaboxadol normalized BBB permeability, showing that SD effects on the BBB are reversible. Along with BBB permeability, RNA levels of the BBB master regulator moody are modulated by sleep. Conversely, altering BBB permeability alone through glia-specific modulation of moody, gαo, loco, lachesin, or neuroglian-each a well-studied regulator of BBB function-was sufficient to induce robust sleep phenotypes. These studies demonstrate a tight link between BBB permeability and sleep and indicate a unique role for the BBB in the regulation of sleep.
Collapse
Affiliation(s)
- Sofia Axelrod
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Xiaoling Li
- International Personalized Cancer Center, Tianjin Cancer Hospital Airport Hospital, Tianjin300308, China
| | - Yingwo Sun
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Samantha Lincoln
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrea Terceros
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Jenna O’Neil
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Andrew Nguyen
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Aabha Vora
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Carmen Spicer
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Benjamin Shapiro
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, NY10065
| |
Collapse
|
21
|
Tu X, Jain A, Parra Bueno P, Decker H, Liu X, Yasuda R. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. SCIENCE ADVANCES 2023; 9:eadg0666. [PMID: 37531435 PMCID: PMC10396292 DOI: 10.1126/sciadv.adg0666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.
Collapse
Affiliation(s)
- Xun Tu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA
| | - Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Paula Parra Bueno
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Helena Decker
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Xiaodan Liu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| |
Collapse
|
22
|
Kurki SN, Ala-Kurikka T, Lipponen A, Pospelov AS, Rolova T, Koistinaho J, Voipio J, Kaila K. A brain cytokine-independent switch in cortical activity marks the onset of sickness behavior triggered by acute peripheral inflammation. J Neuroinflammation 2023; 20:176. [PMID: 37507711 PMCID: PMC10375675 DOI: 10.1186/s12974-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1β, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.
Collapse
Affiliation(s)
- Samu N Kurki
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland.
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tommi Ala-Kurikka
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Alexey S Pospelov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Southey BR, Johnson RW, Rodriguez-Zas SL. Influence of Maternal Immune Activation and Stressors on the Hippocampal Metabolome. Metabolites 2023; 13:881. [PMID: 37623825 PMCID: PMC10456262 DOI: 10.3390/metabo13080881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Prenatal stress often results in maternal immune activation (MIA) that can impact prenatal brain development, molecular processes, and substrates and products of metabolism that participate in physiological processes at later stages of life. Postnatal metabolic and immunological stressors can affect brain metabolites later in life, independently or in combination with prenatal stressors. The effects of prenatal and postnatal stressors on hippocampal metabolites were studied using a pig model of viral MIA exposed to immunological and metabolic stressors at 60 days of age using gas chromatography mass spectrometry. Postnatal stress and MIA elicited effects (FDR-adjusted p-value < 0.1) on fifty-nine metabolites, while eight metabolites exhibited an interaction effect. The hippocampal metabolites impacted by MIA or postnatal stress include 4-aminobutanoate (GABA), adenine, fumarate, glutamate, guanine, inosine, ornithine, putrescine, pyruvate, and xanthine. Metabolites affected by MIA or postnatal stress encompassed eight significantly (FDR-adjusted p-value < 0.1) enriched Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathways. The enriched arginine biosynthesis and glutathione metabolism pathways included metabolites that are also annotated for the urea cycle and polyamine biosynthesis pathways. Notably, the prenatal and postnatal challenges were associated with disruption of the glutathione metabolism pathway and changes in the levels of glutamic acid, glutamate, and purine nucleotide metabolites that resemble patterns elicited by drugs of abuse and may underlie neuroinflammatory processes. The combination of MIA and postnatal stressors also supported the double-hit hypothesis, where MIA amplifies the impact of stressors later in life, sensitizing the hippocampus of the offspring to future challenges. The metabolites and pathways characterized in this study offer evidence of the role of immunometabolism in understanding the impact of MIA and stressors later in life on memory, spatial navigation, neuropsychiatric disorders, and behavioral disorders influenced by the hippocampus.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (R.W.J.); (S.L.R.-Z.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Niethard N, Hallschmid M. A sweet spot for the sleeping brain: Linking human sleep physiology and glucoregulation. Cell Rep Med 2023; 4:101123. [PMID: 37467713 PMCID: PMC10394251 DOI: 10.1016/j.xcrm.2023.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Vallat et al.1 demonstrate a positive association between the coupling of slow oscillations and sleep spindles, neurophysiological markers of NREM sleep, and next-morning glucose homeostasis. Extended findings in an independent dataset raise intriguing questions about its directionality and consistency.
Collapse
Affiliation(s)
- Niels Niethard
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Department of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen (IDM), Tübingen, Germany.
| |
Collapse
|
25
|
Buzsáki G, Tingley D. Cognition from the Body-Brain Partnership: Exaptation of Memory. Annu Rev Neurosci 2023; 46:191-210. [PMID: 36917822 PMCID: PMC10793243 DOI: 10.1146/annurev-neuro-101222-110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Examination of cognition has historically been approached from language and introspection. However, human language-dependent definitions ignore the evolutionary roots of brain mechanisms and constrain their study in experimental animals. We promote an alternative view, namely that cognition, including memory, can be explained by exaptation and expansion of the circuits and algorithms serving bodily functions. Regulation and protection of metabolic and energetic processes require time-evolving brain computations enabling the organism to prepare for altered future states. Exaptation of such circuits was likely exploited for exploration of the organism's niche. We illustrate that exploration gives rise to a cognitive map, and in turn, environment-disengaged computation allows for mental travel into the past (memory) and the future (planning). Such brain-body interactions not only occur during waking but also persist during sleep. These exaptation steps are illustrated by the dual, endocrine-homeostatic and memory, contributions of the hippocampal system, particularly during hippocampal sharp-wave ripples.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Center for Neural Science, New York University, New York, NY, USA
| | - David Tingley
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY, USA;
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Vallat R, Shah VD, Walker MP. Coordinated human sleeping brainwaves map peripheral body glucose homeostasis. Cell Rep Med 2023:101100. [PMID: 37421946 PMCID: PMC10394167 DOI: 10.1016/j.xcrm.2023.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Insufficient sleep impairs glucose regulation, increasing the risk of diabetes. However, what it is about the human sleeping brain that regulates blood sugar remains unknown. In an examination of over 600 humans, we demonstrate that the coupling of non-rapid eye movement (NREM) sleep spindles and slow oscillations the night before is associated with improved next-day peripheral glucose control. We further show that this sleep-associated glucose pathway may influence glycemic status through altered insulin sensitivity, rather than through altered pancreatic beta cell function. Moreover, we replicate these associations in an independent dataset of over 1,900 adults. Of therapeutic significance, the coupling between slow oscillations and spindles was the most significant sleep predictor of next-day fasting glucose, even more so than traditional sleep markers, relevant to the possibility of an electroencephalogram (EEG) index of hyperglycemia. Taken together, these findings describe a sleeping-brain-body framework of optimal human glucose homeostasis, offering a potential prognostic sleep signature of glycemic control.
Collapse
Affiliation(s)
- Raphael Vallat
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| | - Vyoma D Shah
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
27
|
Xie B, Zhen Z, Guo O, Li H, Guo M, Zhen J. Progress on the hippocampal circuits and functions based on sharp wave ripples. Brain Res Bull 2023:110695. [PMID: 37353037 DOI: 10.1016/j.brainresbull.2023.110695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Sharp wave ripples (SWRs) are high-frequency synchronization events generated by hippocampal neuronal circuits during various forms of learning and reactivated during memory consolidation and recall. There is mounting evidence that SWRs are essential for storing spatial and social memories in rodents and short-term episodic memories in humans. Sharp wave ripples originate mainly from the hippocampal CA3 and subiculum, and can be transmitted to modulate neuronal activity in cortical and subcortical regions for long-term memory consolidation and behavioral guidance. Different hippocampal subregions have distinct functions in learning and memory. For instance, the dorsal CA1 is critical for spatial navigation, episodic memory, and learning, while the ventral CA1 and dorsal CA2 may work cooperatively to store and consolidate social memories. Here, we summarize recent studies demonstrating that SWRs are essential for the consolidation of spatial, episodic, and social memories in various hippocampal-cortical pathways, and review evidence that SWR dysregulation contributes to cognitive impairments in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Boxu Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhihang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Heming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Moran Guo
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Junli Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
28
|
Buhler CM, Basso JC, English DF. Hippocampal sharp wave-ripple dynamics in NREM sleep encode motivation for anticipated physical activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532638. [PMID: 36993725 PMCID: PMC10055135 DOI: 10.1101/2023.03.14.532638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Physical activity is an integral part of every mammal's daily life, and as a driver of Darwinian fitness, required coordinated evolution of the body and brain. The decision to engage in physical activity is driven either by survival needs or by motivation for the rewarding qualities of physical activity itself. Rodents exhibit innate and learned motivation for voluntary wheel running, and over time run longer and farther, reflecting increased incentive salience and motivation for this consummatory behavior. Dynamic coordination of neural and somatic physiology are necessary to ensure the ability to perform behaviors that are motivationally variable. Hippocampal sharp wave-ripples (SWRs) have evolved both cognitive and metabolic functions, which in modern mammals may facilitate body-brain coordination. To determine if SWRs encode aspects of exercise motivation we monitored hippocampal CA1 SWRs and running behaviors in adult mice, while manipulating the incentive salience of the running experience. During non-REM (NREM) sleep, the duration of SWRs before (but not after) running positively correlated with future running duration, and larger pyramidal cell assemblies were activated in longer SWRs, suggesting that the CA1 network encodes exercise motivation at the level of neuronal spiking dynamics. Inter-Ripple-intervals (IRI) before but not after running were negatively correlated with running duration, reflecting more SWR bursting, which increases with learning. In contrast, SWR rates before and after running were positively correlated with running duration, potentially reflecting a tuning of metabolic demand for that day's anticipated and actual energy expenditure rather than motivation. These results suggest a novel role for CA1 in exercise behaviors and specifically that cell assembly activity during SWRs encodes motivation for anticipated physical activity. SIGNIFICANCE STATEMENT Darwinian fitness is increased by body-brain coordination through internally generated motivation, though neural substrates are poorly understood. Specific hippocampal rhythms (i.e., CA1 SWRs), which have a well-established role in reward learning, action planning and memory consolidation, have also been shown to modulate systemic [glucose]. Using a mouse model of voluntary physical activity that requires body-brain coordination, we monitored SWR dynamics when animals were highly motivated and anticipated rewarding exercise (i.e., when body-brain coordination is of heightened importance). We found that during non-REM sleep before exercise, SWR dynamics (which reflect cognitive and metabolic functions) were correlated with future time spent exercising. This suggests that SWRs support cognitive and metabolic facets that motivate behavior by coordinating the body and brain.
Collapse
|
29
|
Ojanen S, Kuznetsova T, Kharybina Z, Voikar V, Lauri SE, Taira T. Interneuronal GluK1 kainate receptors control maturation of GABAergic transmission and network synchrony in the hippocampus. Mol Brain 2023; 16:43. [PMID: 37210550 PMCID: PMC10199616 DOI: 10.1186/s13041-023-01035-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023] Open
Abstract
Kainate type glutamate receptors (KARs) are strongly expressed in GABAergic interneurons and have the capability of modulating their functions via ionotropic and G-protein coupled mechanisms. GABAergic interneurons are critical for generation of coordinated network activity in both neonatal and adult brain, yet the role of interneuronal KARs in network synchronization remains unclear. Here, we show that GABAergic neurotransmission and spontaneous network activity is perturbed in the hippocampus of neonatal mice lacking GluK1 KARs selectively in GABAergic neurons. Endogenous activity of interneuronal GluK1 KARs maintains the frequency and duration of spontaneous neonatal network bursts and restrains their propagation through the hippocampal network. In adult male mice, the absence of GluK1 in GABAergic neurons led to stronger hippocampal gamma oscillations and enhanced theta-gamma cross frequency coupling, coinciding with faster spatial relearning in the Barnes maze. In females, loss of interneuronal GluK1 resulted in shorter sharp wave ripple oscillations and slightly impaired abilities in flexible sequencing task. In addition, ablation of interneuronal GluK1 resulted in lower general activity and novel object avoidance, while causing only minor anxiety phenotype. These data indicate a critical role for GluK1 containing KARs in GABAergic interneurons in regulation of physiological network dynamics in the hippocampus at different stages of development.
Collapse
Affiliation(s)
- Simo Ojanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tatiana Kuznetsova
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Zoia Kharybina
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Vootele Voikar
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Huang Y, Wang JB, Parker JJ, Shivacharan R, Lal RA, Halpern CH. Spectro-spatial features in distributed human intracranial activity proactively encode peripheral metabolic activity. Nat Commun 2023; 14:2729. [PMID: 37169738 PMCID: PMC10174612 DOI: 10.1038/s41467-023-38253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023] Open
Abstract
Mounting evidence demonstrates that the central nervous system (CNS) orchestrates glucose homeostasis by sensing glucose and modulating peripheral metabolism. Glucose responsive neuronal populations have been identified in the hypothalamus and several corticolimbic regions. However, how these CNS gluco-regulatory regions modulate peripheral glucose levels is not well understood. To better understand this process, we simultaneously measured interstitial glucose concentrations and local field potentials in 3 human subjects from cortical and subcortical regions, including the hypothalamus in one subject. Correlations between high frequency activity (HFA, 70-170 Hz) and peripheral glucose levels are found across multiple brain regions, notably in the hypothalamus, with correlation magnitude modulated by sleep-wake cycles, circadian coupling, and hypothalamic connectivity. Correlations are further present between non-circadian (ultradian) HFA and glucose levels which are higher during awake periods. Spectro-spatial features of neural activity enable decoding of peripheral glucose levels both in the present and up to hours in the future. Our findings demonstrate proactive encoding of homeostatic glucose dynamics by the CNS.
Collapse
Affiliation(s)
- Yuhao Huang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeffrey B Wang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
- Medical Scientist Training Program, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jonathon J Parker
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Rajat Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Rayhan A Lal
- Department of Medicine (Endocrinology), Stanford University Medical Center, Stanford, CA, 94305, USA.
- Department of Pediatrics (Endocrinology), Stanford University Medical Center, Stanford, CA, 94305, USA.
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Li H, Guglielmetti C, Sei YJ, Zilberter M, Le Page LM, Shields L, Yang J, Nguyen K, Tiret B, Gao X, Bennett N, Lo I, Dayton TL, Kampmann M, Huang Y, Rathmell JC, Vander Heiden M, Chaumeil MM, Nakamura K. Neurons require glucose uptake and glycolysis in vivo. Cell Rep 2023; 42:112335. [PMID: 37027294 PMCID: PMC10556202 DOI: 10.1016/j.celrep.2023.112335] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Neurons require large amounts of energy, but whether they can perform glycolysis or require glycolysis to maintain energy remains unclear. Using metabolomics, we show that human neurons do metabolize glucose through glycolysis and can rely on glycolysis to supply tricarboxylic acid (TCA) cycle metabolites. To investigate the requirement for glycolysis, we generated mice with postnatal deletion of either the dominant neuronal glucose transporter (GLUT3cKO) or the neuronal-enriched pyruvate kinase isoform (PKM1cKO) in CA1 and other hippocampal neurons. GLUT3cKO and PKM1cKO mice show age-dependent learning and memory deficits. Hyperpolarized magnetic resonance spectroscopic (MRS) imaging shows that female PKM1cKO mice have increased pyruvate-to-lactate conversion, whereas female GLUT3cKO mice have decreased conversion, body weight, and brain volume. GLUT3KO neurons also have decreased cytosolic glucose and ATP at nerve terminals, with spatial genomics and metabolomics revealing compensatory changes in mitochondrial bioenergetics and galactose metabolism. Therefore, neurons metabolize glucose through glycolysis in vivo and require glycolysis for normal function.
Collapse
Affiliation(s)
- Huihui Li
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Yoshitaka J Sei
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Lauren Shields
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joyce Yang
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevin Nguyen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brice Tiret
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA
| | - Xiao Gao
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA
| | - Neal Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Talya L Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin Kampmann
- Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, San Francisco, CA 94158, USA; Department of Radiology and Biomedical Imaging, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; UCSF/UCB Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Chien HY, Chen SM, Li WC. Dopamine receptor agonists mechanism of actions on glucose lowering and their connections with prolactin actions. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:935872. [PMID: 36993818 PMCID: PMC10012161 DOI: 10.3389/fcdhc.2023.935872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/20/2023] [Indexed: 03/12/2023]
Abstract
Robust experiment evidence suggests that prolactin can enhance beta-cell proliferation and increase insulin secretion and sensitivity. Apart from acting as an endocrine hormone, it also function as an adipokine and act on adipocytes to modulate adipogenesis, lipid metabolism and inflammation. Several cross-sectional epidemiologic studies consistently showed that circulating prolactin levels positive correlated with increased insulin sensitivity, lower glucose and lipid levels, and lower prevalence of T2D and metabolic syndrome. Bromocriptine, a dopamine receptor agonist used to treat prolactinoma, is approved by Food and Drug Administration for treatment in type 2 diabetes mellitus since 2009. Prolactin lowering suppress insulin secretion and decrease insulin sensitivity, therefore dopamine receptor agonists which act at the pituitary to lower serum prolactin levels are expected to impair glucose tolerance. Making it more complicating, studies exploring the glucose-lowering mechanism of bromocriptine and cabergoline have resulted in contradictory results; while some demonstrated actions independently on prolactin status, others showed glucose lowering partly explained by prolactin level. Previous studies showed that a moderate increase in central intraventricular prolactin levels stimulates hypothalamic dopamine with a decreased serum prolactin level and improved glucose metabolism. Additionally, sharp wave-ripples from the hippocampus modulates peripheral glucose level within 10 minutes, providing evidence for a mechanistic link between hypothalamus and blood glucose control. Central insulin in the mesolimbic system have been shown to suppress dopamine levels thus comprising a feedback control loop. Central dopamine and prolactin levels plays a key role in the glucose homeostasis control, and their dysregulation could lead to the pathognomonic central insulin resistance depicted in the “ominous octet”. This review aims to provide an in-depth discussion on the glucose-lowering mechanism of dopamine receptor agonists and on the diverse prolactin and dopamine actions on metabolism targets.
Collapse
Affiliation(s)
- Hung-Yu Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Su-Mei Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
- Division of Nuclear Medicine, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Wan-Chun Li,
| |
Collapse
|
33
|
Fleeman RM, Snyder AM, Kuhn MK, Chan DC, Smith GC, Crowley NA, Arnold AC, Proctor EA. Predictive link between systemic metabolism and cytokine signatures in the brain of apolipoprotein E ε4 mice. Neurobiol Aging 2023; 123:154-169. [PMID: 36572594 PMCID: PMC9892258 DOI: 10.1016/j.neurobiolaging.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
The ε4 variant of apolipoprotein E (APOE) is the strongest and most common genetic risk factor for Alzheimer's disease (AD). While the mechanism of conveyed risk is incompletely understood, promotion of inflammation, dysregulated metabolism, and protein misfolding and aggregation are contributors to accelerating disease. Here we determined the concurrent effects of systemic metabolic changes and brain inflammation in young (3-month-old) and aged (18-month-old) male and female mice carrying the APOE4 gene. Using functional metabolic assays alongside multivariate modeling of hippocampal cytokine levels, we found that brain cytokine signatures are predictive of systemic metabolic outcomes, independent of AD proteinopathies. Male and female mice each produce different cytokine signatures as they age and as their systemic metabolic phenotype declines, and these signatures are APOE genotype dependent. Ours is the first study to identify a quantitative and predictive link between systemic metabolism and specific pathological cytokine signatures in the brain. Our results highlight the effects of APOE4 beyond the brain and suggest the potential for bi-directional influence of risk factors in the brain and periphery.
Collapse
Affiliation(s)
- Rebecca M Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Grace C Smith
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Nicole A Crowley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA; Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA; Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
34
|
Zhou Y, Wang X, Liu Y, Gu Y, Gu R, Zhang G, Lin Q. Mechanisms of abnormal adult hippocampal neurogenesis in Alzheimer's disease. Front Neurosci 2023; 17:1125376. [PMID: 36875663 PMCID: PMC9975352 DOI: 10.3389/fnins.2023.1125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system, the most common type of dementia in old age, which causes progressive loss of cognitive functions such as thoughts, memory, reasoning, behavioral abilities and social skills, affecting the daily life of patients. The dentate gyrus of the hippocampus is a key area for learning and memory functions, and an important site of adult hippocampal neurogenesis (AHN) in normal mammals. AHN mainly consists of the proliferation, differentiation, survival and maturation of newborn neurons and occurs throughout adulthood, but the level of AHN decreases with age. In AD, the AHN will be affected to different degrees at different times, and its exact molecular mechanisms are increasingly elucidated. In this review, we summarize the changes of AHN in AD and its alteration mechanism, which will help lay the foundation for further research on the pathogenesis and diagnostic and therapeutic approaches of AD.
Collapse
Affiliation(s)
- Yujuan Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xu Wang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing, China
| | - Yulu Gu
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Geng Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
- Laboratory of Clinical Applied Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
35
|
Dang J, Shi D, Li X, Ma N, Liu Y, Zhong P, Yan X, Zhang J, Lau PWC, Dong Y, Song Y, Ma J. Artificial Light-at-Night Exposure and Overweight and Obesity across GDP Levels among Chinese Children and Adolescents. Nutrients 2023; 15:nu15040939. [PMID: 36839297 PMCID: PMC9961462 DOI: 10.3390/nu15040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Evidence in adults suggests that exposure to artificial light-at-night (ALAN) leads to obesity. However, little is known about whether this effect exists in children and adolescents. We aimed to investigate whether ALAN exposure was associated with overweight and obesity in school-aged children and adolescents and whether this association varied with socioeconomic status. METHODS Data on the height and weight of 129,500 children and adolescents aged 10-18 years from 72 cities were extracted from the 2014 Chinese National Survey on Students' Constitution and Health (CNSSCH). The ALAN area percentage and average ALAN intensity were calculated using the Visible/Infrared Imager/Radiometer Suite. The subjects were separated into three categories based on the cities' gross domestic product per capita (GDPPC). A mixed-effect logistic regression model and generalized additive model (GAM) were utilized to evaluate the association between ALAN exposure and overweight and obesity in children and adolescents stratified by municipal GDPPC. RESULTS Both ALAN area (OR = 1.194, 95% CI: 1.175-1.212) and ALAN intensity (OR = 1.019, 95% CI: 1.017-1.020) were positively associated with overweight and obesity in children and adolescents, and the associations remained robust after adjusting for covariates. ORs for overweight and obesity and ALAN area decreased as GDPPC level increased (first tertile: OR = 1.457, 95% CI: 1.335-1.590; second tertile: OR = 1.350, 95% CI: 1.245-1.464; third tertile: OR = 1.100, 95% CI: 1.081-1.119). Similar results were observed for ALAN intensity. In the GAM models, thresholds existed in almost all these spline trends, indicating that ALAN might have a nonlinear association with overweight and obesity. CONCLUSIONS ALAN contributed to the development of overweight and obesity in children and adolescents and this effect differed with GDPPC. Future longitudinal studies should confirm the causal relationship between ALAN and obesity. Moreover, reducing unnecessary exposure to artificial light at night may have beneficial implications for controlling childhood and adolescent obesity, particularly in low-income areas.
Collapse
Affiliation(s)
- Jiajia Dang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Di Shi
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Xi Li
- State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430000, China
- Collaborative Innovation Centre of Geospatial Technology, Wuhan University, Wuhan 430000, China
| | - Ning Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Yunfei Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Panliang Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Xiaojin Yan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Jingshu Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Patrick W. C. Lau
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-1624
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
- National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Padamsey Z, Rochefort NL. Paying the brain's energy bill. Curr Opin Neurobiol 2023; 78:102668. [PMID: 36571958 DOI: 10.1016/j.conb.2022.102668] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/25/2022]
Abstract
How have animals managed to maintain metabolically expensive brains given the volatile and fleeting availability of calories in the natural world? Here we review studies in support of three strategies that involve: 1) a reallocation of energy from peripheral tissues and functions to cover the costs of the brain, 2) an implementation of energy-efficient neural coding, enabling the brain to operate at reduced energy costs, and 3) efficient use of costly neural resources during food scarcity. Collectively, these studies reveal a heterogeneous set of energy-saving mechanisms that make energy-costly brains fit for survival.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom.
| |
Collapse
|
37
|
Jung F, Yanovsky Y, Brankačk J, Tort ABL, Draguhn A. Respiratory entrainment of units in the mouse parietal cortex depends on vigilance state. Pflugers Arch 2023; 475:65-76. [PMID: 35982341 PMCID: PMC9816213 DOI: 10.1007/s00424-022-02727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/31/2023]
Abstract
Synchronous oscillations are essential for coordinated activity in neuronal networks and, hence, for behavior and cognition. While most network oscillations are generated within the central nervous system, recent evidence shows that rhythmic body processes strongly influence activity patterns throughout the brain. A major factor is respiration (Resp), which entrains multiple brain regions at the mesoscopic (local field potential) and single-cell levels. However, it is largely unknown how such Resp-driven rhythms interact or compete with internal brain oscillations, especially those with similar frequency domains. In mice, Resp and theta (θ) oscillations have overlapping frequencies and co-occur in various brain regions. Here, we investigated the effects of Resp and θ on neuronal discharges in the mouse parietal cortex during four behavioral states which either show prominent θ (REM sleep and active waking (AW)) or lack significant θ (NREM sleep and waking immobility (WI)). We report a pronounced state-dependence of spike modulation by both rhythms. During REM sleep, θ effects on unit discharges dominate, while during AW, Resp has a larger influence, despite the concomitant presence of θ oscillations. In most states, unit modulation by θ or Resp increases with mean firing rate. The preferred timing of Resp-entrained discharges (inspiration versus expiration) varies between states, indicating state-specific and different underlying mechanisms. Our findings show that neurons in an associative cortex area are differentially and state-dependently modulated by two fundamentally different processes: brain-endogenous θ oscillations and rhythmic somatic feedback signals from Resp.
Collapse
Affiliation(s)
- Felix Jung
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yevgenij Yanovsky
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande Do Norte, Natal, RN 59078-900, Brazil
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Matsumoto T, Murase K, Tabara Y, Minami T, Kanai O, Takeyama H, Sunadome H, Nagasaki T, Takahashi N, Nakatsuka Y, Hamada S, Handa T, Tanizawa K, Nakamoto I, Wakamura T, Komenami N, Setoh K, Kawaguchi T, Tsutsumi T, Morita S, Takahashi Y, Nakayama T, Sato S, Hirai T, Matsuda F, Chin K. Sleep disordered breathing and haemoglobin A1c levels within or over normal range and ageing or sex differences: the Nagahama study. J Sleep Res 2022; 32:e13795. [PMID: 36437403 DOI: 10.1111/jsr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Recently an association between blood glucose dysregulation and sleep disruption was suggested. The association between sleep disordered breathing, most of which is due to obstructive sleep apnea (OSA) in the general population, and diabetic severity, as well as the impact of antidiabetic treatment, remains unclear. This study aimed to investigate these associations as well as age and sex differences. This cross-sectional study evaluated 7,680 community participants as the main cohort (population-based cohort). OSA was assessed by the 3% oxygen desaturation index from pulse oximetry, which was corrected for sleep duration obtained by wrist actigraphy. For arguing the limitations for using pulse oximetry, 597 hospitalised patients, who were assessed by the apnea-hypopnea index from attended polysomnography, were also evaluated as the validation cohort (hospital-based cohort). Moderate-to-severe OSA was more prevalent as haemoglobin A1c (HbA1c) levels increased (<5.6%/5.6%-<6.5%/6.5%-<7.5%/≥7.5%, respectively) in both cohorts (p < 0.001), but only in those without antidiabetic treatment. The HbA1c level was an independent factor for moderate-to-severe OSA (population-based cohort, odds ratio [OR] 1.26, 95% confidence interval [CI] 1.10-1.45; hospital-based cohort, OR 1.69, 95% CI 1.22-2.33, per 1% increase). These associations were more prominent in the middle-aged (aged <60 years) than in the elderly (aged ≥60 years) and in women than in men in both cohorts. The prevalence of moderate-to-severe OSA in patients with antidiabetic treatment in the hospital-based cohort was ≥75% regardless of HbA1c levels. In conclusion, an association between the prevalence of OSA and HbA1c level even within or over the normal range was found only in patients without antidiabetic treatment and was more prominent in the middle-aged and in women.
Collapse
Affiliation(s)
- Takeshi Matsumoto
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
- Department of Respiratory Medicine Saiseikai‐Noe Hospital Osaka Japan
| | - Kimihiko Murase
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
- Graduate School of Public Health Shizuoka Graduate University of Public Health Shizuoka Japan
| | - Takuma Minami
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Kanai
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Hironobu Sunadome
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tadao Nagasaki
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Naomi Takahashi
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yoshinari Nakatsuka
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Satoshi Hamada
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Isuzu Nakamoto
- Nursing Science, Human Health Sciences, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Tomoko Wakamura
- Nursing Science, Human Health Sciences, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Naoko Komenami
- Department of Food and Nutrition Kyoto Women's University Kyoto Japan
| | - Kazuya Setoh
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Takanobu Tsutsumi
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Yoshimitsu Takahashi
- Department of Health Informatics Kyoto University School of Public Health Kyoto Japan
| | - Takeo Nakayama
- Department of Health Informatics Kyoto University School of Public Health Kyoto Japan
| | - Susumu Sato
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kazuo Chin
- Center for Genomic Medicine, Graduate School of Medicine Kyoto University Kyoto Japan
- Department of Sleep Medicine and Respiratory Care, Division of Sleep Medicine Nihon University of Medicine Tokyo Japan
| |
Collapse
|
39
|
Dembitskaya Y, Piette C, Perez S, Berry H, Magistretti PJ, Venance L. Lactate supply overtakes glucose when neural computational and cognitive loads scale up. Proc Natl Acad Sci U S A 2022; 119:e2212004119. [PMID: 36375086 PMCID: PMC9704697 DOI: 10.1073/pnas.2212004119] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 07/23/2023] Open
Abstract
Neural computational power is determined by neuroenergetics, but how and which energy substrates are allocated to various forms of memory engram is unclear. To solve this question, we asked whether neuronal fueling by glucose or lactate scales differently upon increasing neural computation and cognitive loads. Here, using electrophysiology, two-photon imaging, cognitive tasks, and mathematical modeling, we show that both glucose and lactate are involved in engram formation, with lactate supporting long-term synaptic plasticity evoked by high-stimulation load activity patterns and high attentional load in cognitive tasks and glucose being sufficient for less demanding neural computation and learning tasks. Indeed, we show that lactate is mandatory for demanding neural computation, such as theta-burst stimulation, while glucose is sufficient for lighter forms of activity-dependent long-term potentiation (LTP), such as spike timing-dependent plasticity (STDP). We find that subtle variations of spike number or frequency in STDP are sufficient to shift the on-demand fueling from glucose to lactate. Finally, we demonstrate that lactate is necessary for a cognitive task requiring high attentional load, such as the object-in-place task, and for the corresponding in vivo hippocampal LTP expression but is not needed for a less demanding task, such as a simple novel object recognition. Overall, these results demonstrate that glucose and lactate metabolism are differentially engaged in neuronal fueling depending on the complexity of the activity-dependent plasticity and behavior.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Hugues Berry
- AIStroSight Lab, INRIA, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69603 Villeurbanne, France
- University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France
| | - Pierre J. Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France
| |
Collapse
|
40
|
Décarie-Spain L, Liu CM, Lauer LT, Subramanian K, Bashaw AG, Klug ME, Gianatiempo IH, Suarez AN, Noble EE, Donohue KN, Cortella AM, Hahn JD, Davis EA, Kanoski SE. Ventral hippocampus-lateral septum circuitry promotes foraging-related memory. Cell Rep 2022; 40:111402. [PMID: 36170832 PMCID: PMC9605732 DOI: 10.1016/j.celrep.2022.111402] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.
Collapse
Affiliation(s)
- Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Clarissa M Liu
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Keshav Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Alexander G Bashaw
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Isabella H Gianatiempo
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, 305 Sanford Drive, Athens, GA 30602, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Alyssa M Cortella
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Joel D Hahn
- Neurobiology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Elizabeth A Davis
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, University of Southern California, 3641Watt Way, Los Angeles, CA 90089, USA.
| |
Collapse
|
41
|
Flavell SW, Gogolla N, Lovett-Barron M, Zelikowsky M. The emergence and influence of internal states. Neuron 2022; 110:2545-2570. [PMID: 35643077 PMCID: PMC9391310 DOI: 10.1016/j.neuron.2022.04.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/11/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023]
Abstract
Animal behavior is shaped by a variety of "internal states"-partially hidden variables that profoundly shape perception, cognition, and action. The neural basis of internal states, such as fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, and neural dynamics and are characterized by properties such as pleiotropy, persistence, scalability, generalizability, and valence. To date, it remains unclear how internal states and their properties are generated by nervous systems. Here, we review recent progress, which has been driven by advances in behavioral quantification, cellular manipulations, and neural population recordings. We synthesize research implicating defined subsets of state-inducing cell types, widespread changes in neural activity, and neuromodulation in the formation and updating of internal states. In addition to highlighting the significance of these findings, our review advocates for new approaches to clarify the underpinnings of internal brain states across the animal kingdom.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | - Matthew Lovett-Barron
- Division of Biological Sciences-Neurobiology Section, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Moriel Zelikowsky
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
42
|
Xu M, Liu X, Wang Q, Zhu Y, Jia C. Phosphoproteomic analysis reveals the effects of sleep deprivation on the hippocampus in mice. Mol Omics 2022; 18:677-685. [PMID: 35776070 DOI: 10.1039/d2mo00061j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sleep is essential for brain physiology, including nerve repair, neuronal activity, and metabolite clearance. The hippocampus is responsible for short-term memory, long-term memory, and spatial positioning. Herein, we investigated the effects of sleep deprivation on protein phosphorylation and related signaling pathways in the mouse hippocampus. The treatment group was sleep deprived for nine hours a day, and at the end of sleep deprivation, we removed the hippocampus for phosphoproteomic analysis. Through this analysis, we identified 65 sites and 27 proteins whose phosphorylation was significantly different between sleep-deprived animals and control animals. Differentially phosphorylated proteins (DPPs) were mainly distributed in the postsynaptic density, cytoplasm, and synapse. They participated in metabolic pathways, endocytosis, oxidative phosphorylation and other processes, and they were associated with Huntington's disease, Parkinson's disease, Alzheimer's disease, etc. Functional analysis of the phosphoproteome shows that sleep deprivation significantly affects the level of protein phosphorylation in the hippocampus of mice. This is the first reported study that has used phosphoproteomics to investigate the effects of sleep deprivation on hypothalamic regions. This study provides data resources that can serve as a valuable reference for sleep mechanism research, sleep disorder treatment, and drug development.
Collapse
Affiliation(s)
- Mengting Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xinyue Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China. .,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianqian Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Yunping Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Chenxi Jia
- State Key Laboratory of Proteomics, National Center for Protein Sciences-Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
43
|
Rayan A, Donoso JR, Mendez-Couz M, Dolón L, Cheng S, Manahan-Vaughan D. Learning shifts the preferred theta phase of gamma oscillations in CA1. Hippocampus 2022; 32:695-704. [PMID: 35920344 DOI: 10.1002/hipo.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/07/2022]
Abstract
Hippocampal neuronal oscillations reflect different cognitive processes and can therefore be used to dissect the role of hippocampal subfields in learning and memory. In particular, it has been suggested that encoding and retrieval is associated with slow gamma (25-55 Hz) and fast gamma (60-100 Hz) oscillations, respectively, which appear in a nested manner at specific phases of the ongoing theta oscillations (4-12 Hz). However, the relationship between memory demand and the theta phase of gamma oscillations remains unclear. Here, we assessed the theta phase preference of gamma oscillations in the CA1 region, at the starting and junction zones of a T-maze, while rats were learning an appetitive task. We found that the theta phase preference of slow gamma showed a ~180° phase shift when animals switched from novice to skilled performance during task acquisition. This phase-shift was not present at the junction zone, where animals chose a right or left turn within the T-maze, suggesting that a recall/decision process had already taken place at the starting zone. Our findings indicate that slow gamma oscillations support both encoding and retrieval, depending on the theta phase at which they occur. These properties are particularly evident prior to cognitive engagement in an acquired spatial task.
Collapse
Affiliation(s)
- Abdelrahman Rayan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - José R Donoso
- Faculty of Computer Science, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Marta Mendez-Couz
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Laura Dolón
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Faculty of Computer Science, Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
44
|
Abstract
When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation.
Collapse
Affiliation(s)
- Wenbo Tang
- Graduate Program in Neuroscience, Brandeis University, Waltham, Massachusetts, USA;
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
45
|
Alexandrov YI, Pletnikov MV. Neuronal metabolism in learning and memory: The anticipatory activity perspective. Neurosci Biobehav Rev 2022; 137:104664. [PMID: 35439520 DOI: 10.1016/j.neubiorev.2022.104664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 12/20/2022]
Abstract
Current research on the molecular mechanisms of learning and memory is based on the "stimulus-response" paradigm, in which the neural circuits connecting environmental events with behavioral responses are strengthened. By contrast, cognitive and systems neuroscience emphasize the intrinsic activity of the brain that integrates information, establishes anticipatory actions, executes adaptive actions, and assesses the outcome via regulatory feedback mechanisms. We believe that the difference in the perspectives of systems and molecular studies is a major roadblock to further progress toward understanding the mechanisms of learning and memory. Here, we briefly overview the current studies in molecular mechanisms of learning and memory and propose that studying the predictive properties of neuronal metabolism will significantly advance our knowledge of how intrinsic, predictive activity of neurons shapes a new learning event. We further suggest that predictive metabolic changes in the brain may also take place in non-neuronal cells, including those of peripheral tissues. Finally, we present a path forward toward more in-depth studies of the role of cell metabolism in learning and memory.
Collapse
Affiliation(s)
- Yuri I Alexandrov
- V. B. Shvyrkov Laboratory for the Neural Bases of the Mind, Institute of Psychology, the Russian Academy of Sciences, Moscow, Russia; Department of Psychology, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia.
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
46
|
Petersen PC, Vöröslakos M, Buzsáki G. Brain temperature affects quantitative features of hippocampal sharp wave ripples. J Neurophysiol 2022; 127:1417-1425. [PMID: 35389772 PMCID: PMC9109799 DOI: 10.1152/jn.00047.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Biochemical mechanisms are temperature dependent. Brain temperature shows wide variations across brain states, and such changes may explain quantitative changes in network oscillations. Here, we report on the relationship between various hippocampal sharp wave ripple features to brain temperature. Ripple frequency, occurrence rate, and duration correlated with temperature dynamics. By focal manipulation of the brain temperature in the hippocampal CA1 region, we show that ripple frequency can be increased and decreased by local heating and cooling, respectively. Changes of other parameters, such as the rate of sharp wave-ripple complex (SPW-R) and ripple duration were not consistently affected. Our findings suggest that brain temperature in the CA1 region plays a leading role in affecting ripple frequency, whereas other parameters of SPW-Rs may be determined by mechanisms upstream from the CA1 region. These findings illustrate that physiological variations of brain temperature exert important effects on hippocampal circuit operations.NEW & NOTEWORTHY During physiological conditions, brain temperature fluctuates approximately 3°C between sleep and active waking. Here, we show that features of hippocampal ripples, including the rate of occurrence, peak frequency, and duration are correlated with brain temperature variations. Focal bidirectional manipulation of temperature in the hippocampal CA1 region in awake rodents show that ripple frequency can be altered in the direction expected from the correlational observations, implying that temperature plays a significant role.
Collapse
Affiliation(s)
- Peter C Petersen
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
- Department of Neurology, School of Medicine, New York University, New York City, New York
| |
Collapse
|
47
|
Pompili MN, Todorova R. Discriminating Sleep From Freezing With Cortical Spindle Oscillations. Front Neural Circuits 2022; 16:783768. [PMID: 35399613 PMCID: PMC8988299 DOI: 10.3389/fncir.2022.783768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
In-vivo longitudinal recordings require reliable means to automatically discriminate between distinct behavioral states, in particular between awake and sleep epochs. The typical approach is to use some measure of motor activity together with extracellular electrophysiological signals, namely the relative contribution of theta and delta frequency bands to the Local Field Potential (LFP). However, these bands can partially overlap with oscillations characterizing other behaviors such as the 4 Hz accompanying rodent freezing. Here, we first demonstrate how standard methods fail to discriminate between sleep and freezing in protocols where both behaviors are observed. Then, as an alternative, we propose to use the smoothed cortical spindle power to detect sleep epochs. Finally, we show the effectiveness of this method in discriminating between sleep and freezing in our recordings.
Collapse
Affiliation(s)
- Marco N. Pompili
- Aix Marseille University, INSERM, Institut de Neurosciences des Systèmes (INS), Marseille, France
- *Correspondence: Marco N. Pompili
| | - Ralitsa Todorova
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
- Ralitsa Todorova
| |
Collapse
|
48
|
Effects of sleep manipulation on markers of insulin sensitivity: a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2022; 62:101594. [DOI: 10.1016/j.smrv.2022.101594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
|
49
|
Cav3.1-driven bursting firing in ventromedial hypothalamic neurons exerts dual control of anxiety-like behavior and energy expenditure. Mol Psychiatry 2022; 27:2901-2913. [PMID: 35318460 PMCID: PMC9156408 DOI: 10.1038/s41380-022-01513-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/22/2022]
Abstract
The central nervous system has evolved to coordinate the regulation of both the behavior response to the external environment and homeostasis of energy expenditure. Recent studies have indicated the dorsomedial ventromedial hypothalamus (dmVMH) as an important hub that regulates both innate behavior and energy homeostasis for coping stress. However, how dmVMH neurons control neuronal firing pattern to regulate chronic stress-induced anxiety and energy expenditure remains poorly understood. Here, we found enhanced neuronal activity in VMH after chronic stress, which is mainly induced by increased proportion of burst firing neurons. This enhancement of VMH burst firing is predominantly mediated by Cav3.1 expression. Optogenetically evoked burst firing of dmVMH neurons induced anxiety-like behavior, shifted the respiratory exchange ratio toward fat oxidation, and decreased food intake, while knockdown of Cav3.1 in the dmVMH had the opposite effects, suggested that Cav 3.1 as a crucial regulator. Interestingly, we found that fluoxetine (anxiolytics) could block the increase of Cav3.1 expression to inhibit the burst firing, and then rescued the anxiety-like behaviors and energy expenditure changes. Collectively, our study first revealed an important role of Cav3.1-driven bursting firing of dmVMH neurons in the control of anxiety-like behavior and energy expenditure, and provided potential therapeutic targets for treating the chronic stress-induced emotional malfunction and metabolism disorders.
Collapse
|
50
|
Internal state effects on behavioral shifts in freely behaving praying mantises (Tenodera sinensis). PLoS Comput Biol 2021; 17:e1009618. [PMID: 34928939 PMCID: PMC8751982 DOI: 10.1371/journal.pcbi.1009618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 11/05/2021] [Indexed: 11/19/2022] Open
Abstract
How we interact with our environment largely depends on both the external cues presented by our surroundings and the internal state from within. Internal states are the ever-changing physiological conditions that communicate the immediate survival needs and motivate the animal to behaviorally fulfill them. Satiety level constitutes such a state, and therefore has a dynamic influence on the output behaviors of an animal. In predatory insects like the praying mantis, hunting tactics, grooming, and mating have been shown to change hierarchical organization of behaviors depending on satiety. Here, we analyze behavior sequences of freely hunting praying mantises (Tenodera sinensis) to explore potential differences in sequential patterning of behavior as a correlate of satiety. First, our data supports previous work that showed starved praying mantises were not just more often attentive to prey, but also more often attentive to further prey. This was indicated by the increased time fraction spent in attentive bouts such as prey monitoring, head turns (to track prey), translations (closing the distance to the prey), and more strike attempts. With increasing satiety, praying mantises showed reduced time in these behaviors and exhibited them primarily towards close-proximity prey. Furthermore, our data demonstrates that during states of starvation, the praying mantis exhibits a stereotyped pattern of behavior that is highly motivated by prey capture. As satiety increased, the sequenced behaviors became more variable, indicating a shift away from the necessity of prey capture to more fluid presentations of behavior assembly.
Collapse
|