1
|
Pouleur AC, Menghoum N, Cumps J, Marino A, Badii M, Lejeune S, Legault JT, Boucher G, Gruson D, Roy C, Battault S, Mahrouche L, Pedneault-Gagnon V, Charpentier D, Furtos A, Hussin J, Rhainds D, Tardif JC, Bertrand L, Rosiers CD, Horman S, Beauloye C. Plasma myo-inositol elevation in heart failure: clinical implications and prognostic significance. Results from the BElgian and CAnadian MEtabolomics in HFpEF (BECAME-HF) research project. EBioMedicine 2024; 107:105264. [PMID: 39121579 PMCID: PMC11363489 DOI: 10.1016/j.ebiom.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The metabolic environment plays a crucial role in the development of heart failure (HF). Our prior research demonstrated that myo-inositol, a metabolite transported by the sodium-myo-inositol co-transporter 1 (SMIT-1), can induce oxidative stress and may be detrimental to heart function. However, plasmatic myo-inositol concentration has not been comprehensively assessed in large cohorts of patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF). METHODS Plasmatic myo-inositol levels were measured using mass spectrometry and correlated with clinical characteristics in no HF subjects and patients with HFrEF and HFpEF from Belgian (male, no HF, 53%; HFrEF, 84% and HFpEF, 40%) and Canadian cohorts (male, no HF, 51%; HFrEF, 92% and HFpEF, 62%). FINDINGS Myo-inositol levels were significantly elevated in patients with HF, with a more pronounced increase observed in the HFpEF population of both cohorts. After adjusting for age, sex, body mass index, hypertension, diabetes, and atrial fibrillation, we observed that both HFpEF status and impaired kidney function were associated with elevated plasma myo-inositol. Unlike HFrEF, abnormally high myo-inositol (≥69.8 μM) was linked to unfavourable clinical outcomes (hazard ratio, 1.62; 95% confidence interval, [1.05-2.5]) in patients with HFpEF. These elevated levels were correlated with NTproBNP, troponin, and cardiac fibrosis in this subset of patients. INTERPRETATION Myo-inositol is a metabolite elevated in patients with HF and strongly correlated to kidney failure. In patients with HFpEF, high myo-inositol levels predict poor clinical outcomes and are linked to markers of cardiac adverse remodelling. This suggests that myo-inositol and its transporter SMIT1 may have a role in the pathophysiology of HFpEF. FUNDING BECAME-HF was supported by Collaborative Bilateral Research Program Québec - Wallonie-Brussels Federation.
Collapse
Affiliation(s)
- Anne-Catherine Pouleur
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nassiba Menghoum
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maria Badii
- Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sibille Lejeune
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | - Gabrielle Boucher
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Damien Gruson
- Department of Clinical Biology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Clotilde Roy
- Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Louiza Mahrouche
- Department of Chemistry, Université de Montréal, Montréal, QC H3T IJ4, Canada
| | | | | | - Alexandra Furtos
- Department of Chemistry, Université de Montréal, Montréal, QC H3T IJ4, Canada
| | - Julie Hussin
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - David Rhainds
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Christine Des Rosiers
- Research Centre, Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Department of Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Department of Cardiovascular Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
2
|
Watabe E, Kawanabe A, Kamitori K, Ichihara S, Fujiwara Y. Sugar binding of sodium-glucose cotransporters analyzed by voltage-clamp fluorometry. J Biol Chem 2024; 300:107215. [PMID: 38522518 PMCID: PMC11061222 DOI: 10.1016/j.jbc.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sugar absorption is crucial for life and relies on glucose transporters, including sodium-glucose cotransporters (SGLTs). Although the structure of SGLTs has been resolved, the substrate selectivity of SGLTs across diverse isoforms has not been determined owing to the complex substrate-recognition processes and limited analysis methods. Therefore, this study used voltage-clamp fluorometry (VCF) to explore the substrate-binding affinities of human SGLT1 in Xenopus oocytes. VCF analysis revealed high-affinity binding of D-glucose and D-galactose, which are known transported substrates. D-fructose, which is not a transported substrate, also bound to SGLT1, suggesting potential recognition despite the lack of transport activity. VCF analysis using the T287N mutant of the substrate-binding pocket, which has reduced D-glucose transport capacity, showed that its D-galactose-binding affinity exceeded its D-glucose-binding affinity. This suggests that the change in the VCF signal was due to substrate binding to the binding pocket. Both D-fructose and L-sorbose showed similar binding affinities, indicating that SGLT1 preferentially binds to pyranose-form sugars, including D-fructopyranose. Electrophysiological analysis confirmed that D-fructose binding did not affect the SGLT1 transport function. The significance of the VCF assay lies in its ability to measure sugar-protein interactions in living cells, thereby bridging the gap between structural analyses and functional characterizations of sugar transporters. Our findings also provide insights into SGLT substrate selectivity and the potential for developing medicines with reduced side effects by targeting non-glucose sugars with low bioreactivity.
Collapse
Affiliation(s)
- Erika Watabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Kazuyo Kamitori
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan; International Institute of Rare Sugar Research and Education, Kagawa University, Miki-cho, Kagawa, Japan
| | - Satoko Ichihara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan; International Institute of Rare Sugar Research and Education, Kagawa University, Miki-cho, Kagawa, Japan; Laboratory of Physiology and Biophysics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Hiroshima, Japan.
| |
Collapse
|
3
|
Mathew D, Davidson S, Yellon D. The SGLT family-sodium-glucose transporters with roles beyond glucose and the kidney. J Cell Mol Med 2024; 28:e18152. [PMID: 38445802 PMCID: PMC10915822 DOI: 10.1111/jcmm.18152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- David Mathew
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Sean Davidson
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| | - Derek Yellon
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
| |
Collapse
|
4
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
6
|
Weston E, Pangilinan F, Eaton S, Orford M, Leung KY, Copp AJ, Mills JL, Molloy AM, Brody LC, Greene NDE. Investigating Genetic Determinants of Plasma Inositol Status in Adult Humans. J Nutr 2022; 152:2333-2342. [PMID: 36774100 PMCID: PMC9644178 DOI: 10.1093/jn/nxac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Myo-inositol (MI) is incorporated into numerous biomolecules, including phosphoinositides and inositol phosphates. Disturbance of inositol availability or metabolism is associated with various disorders, including neurological conditions and cancers, whereas supplemental MI has therapeutic potential in conditions such as depression, polycystic ovary syndrome, and congenital anomalies. Inositol status can be influenced by diet, synthesis, transport, utilization, and catabolism. OBJECTIVES We aimed to investigate potential genetic regulation of circulating MI status and to evaluate correlation of MI concentration with other metabolites. METHODS GC-MS was used to determine plasma MI concentration of >2000 healthy, young adults (aged 18-28 y) from the Trinity Student Study. Genotyping data were used to test association of plasma MI with single nucleotide polymorphisms (SNPs) in candidate genes, encoding inositol transporters and synthesizing enzymes, and test for genome-wide association. We evaluated potential correlation of plasma MI with d-chiro-inositol (DCI), glucose, and other metabolites by Spearman rank correlation. RESULTS Mean plasma MI showed a small but significant difference between males and females (28.5 and 26.9 μM, respectively). Candidate gene analysis revealed several nominally significant associations with plasma MI, most notably for SLC5A11 (solute carrier family 5 member 11), encoding a sodium-coupled inositol transporter, also known as SMIT2 (sodium-dependent myo-inositol transporter 2). However, these did not survive correction for multiple testing. Subsequent testing for genome-wide association with plasma MI did not identify associations of genome-wide significance (P < 5 × 10-8). However, 8 SNPs exceeded the threshold for suggestive significant association with plasma MI concentration (P < 1 × 10-5), 3 of which were located within or close to genes: MTDH (metadherin), LAPTM4B (lysosomal protein transmembrane 4 β), and ZP2 (zona pellucida 2). We found significant positive correlation of plasma MI concentration with concentration of dci and several other biochemicals including glucose, methionine, betaine, sarcosine, and tryptophan. CONCLUSIONS Our findings suggest potential for modulation of plasma MI in young adults by variation in SLC5A11, which is worthy of further investigation.
Collapse
Affiliation(s)
- Eleanor Weston
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Eaton
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Michael Orford
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - James L Mills
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne M Molloy
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland
| | - Lawrence C Brody
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
7
|
Wei Y, Huang YH, Skopelitis DS, Iyer SV, Costa AS, Yang Z, Kramer M, Adelman ER, Klingbeil O, Demerdash OE, Polyanskaya SA, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Vakoc CR. SLC5A3-Dependent Myo-inositol Auxotrophy in Acute Myeloid Leukemia. Cancer Discov 2022; 12:450-467. [PMID: 34531253 PMCID: PMC8831445 DOI: 10.1158/2159-8290.cd-20-1849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/25/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023]
Abstract
An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate-limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme. SIGNIFICANCE: We show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically defined subset of AML.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V. Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Stony Brook University, Stony Brook, New York
| | - Ana S.H. Costa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emmalee R. Adelman
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Sofya A. Polyanskaya
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Christopher R. Vakoc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Corresponding Author: Christopher R. Vakoc, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724. Phone: 516-367-5030; E-mail:
| |
Collapse
|
8
|
Yang Y, Xu G. Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:872918. [PMID: 35663316 PMCID: PMC9161673 DOI: 10.3389/fendo.2022.872918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the existing stages of diabetic kidney disease (DKD), the first stage of DKD is called the preclinical stage, characterized by glomerular hyperfiltration, an abnormally elevated glomerular filtration rate. Glomerular hyperfiltration is an independent risk factor for accelerated deterioration of renal function and progression of nephropathy, which is associated with a high risk for metabolic and cardiovascular disease. It is imperative to understand hyperfiltration and identify potential treatments to delay DKD progress. This paper summarizes the current mechanisms of hyperfiltration in early DKD. We pay close attention to the effect of glucose reabsorption mediated by sodium-glucose cotransporters and renal growth on hyperfiltration in DKD patients, as well as the mechanisms of nitric oxide and adenosine actions on renal afferent arterioles via tubuloglomerular feedback. Furthermore, we also focus on the contribution of the atrial natriuretic peptide, cyclooxygenase, renin-angiotensin-aldosterone system, and endothelin on hyperfiltration. Proposing potential treatments based on these mechanisms may offer new therapeutic opportunities to reduce the renal burden in this population.
Collapse
|
9
|
Structural basis of the selective sugar transport in sodium-glucose cotransporters. J Mol Biol 2022; 434:167464. [DOI: 10.1016/j.jmb.2022.167464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
10
|
Sędzikowska A, Szablewski L. Human Glucose Transporters in Renal Glucose Homeostasis. Int J Mol Sci 2021; 22:13522. [PMID: 34948317 PMCID: PMC8708129 DOI: 10.3390/ijms222413522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
The kidney plays an important role in glucose homeostasis by releasing glucose into the blood stream to prevent hypoglycemia. It is also responsible for the filtration and subsequent reabsorption or excretion of glucose. As glucose is hydrophilic and soluble in water, it is unable to pass through the lipid bilayer on its own; therefore, transport takes place using carrier proteins localized to the plasma membrane. Both sodium-independent glucose transporters (GLUT proteins) and sodium-dependent glucose transporters (SGLT proteins) are expressed in kidney tissue, and mutations of the genes coding for these glucose transporters lead to renal disorders and diseases, including renal cancers. In addition, several diseases may disturb the expression and/or function of renal glucose transporters. The aim of this review is to describe the role of the kidney in glucose homeostasis and the contribution of glucose transporters in renal physiology and renal diseases.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
11
|
Brain Glucose Transporters: Role in Pathogenesis and Potential Targets for the Treatment of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22158142. [PMID: 34360906 PMCID: PMC8348194 DOI: 10.3390/ijms22158142] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations.
Collapse
|
12
|
Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne) 2021; 12:632335. [PMID: 33897618 PMCID: PMC8060771 DOI: 10.3389/fendo.2021.632335] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Mounting evidence suggested that the gut microbiota has a significant role in the metabolism and disease status of the host. In particular, Type 2 Diabetes (T2D), which has a complex etiology that includes obesity and chronic low-grade inflammation, is modulated by the gut microbiota and microbial metabolites. Current literature supports that unbalanced gut microbial composition (dysbiosis) is a risk factor for T2D. In this review, we critically summarize the recent findings regarding the role of gut microbiota in T2D. Beyond these associative studies, we focus on the causal relationship between microbiota and T2D established using fecal microbiota transplantation (FMT) or probiotic supplementation, and the potential underlying mechanisms such as byproducts of microbial metabolism. These microbial metabolites are small molecules that establish communication between microbiota and host cells. We critically summarize the associations between T2D and microbial metabolites such as short-chain fatty acids (SCFAs) and trimethylamine N-Oxide (TMAO). Additionally, we comment on how host genetic architecture and the epigenome influence the microbial composition and thus how the gut microbiota may explain part of the missing heritability of T2D found by GWAS analysis. We also discuss future directions in this field and how approaches such as FMT, prebiotics, and probiotics supplementation are being considered as potential therapeutics for T2D.
Collapse
Affiliation(s)
- M. Nazmul Huda
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Myungsuk Kim
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| | - Brian J. Bennett
- Department of Nutrition, University of California Davis, Davis, CA, United States
- Obesity and Metabolism Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA, United States
| |
Collapse
|
13
|
Ayoub BM, Michel HE, Mowaka S, Hendy MS, Tadros MM. Repurposing of Omarigliptin as a Neuroprotective Agent Based on Docking with A 2A Adenosine and AChE Receptors, Brain GLP-1 Response and Its Brain/Plasma Concentration Ratio after 28 Days Multiple Doses in Rats Using LC-MS/MS. Molecules 2021; 26:molecules26040889. [PMID: 33567615 PMCID: PMC7915074 DOI: 10.3390/molecules26040889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
The authors in the current work suggested the potential repurposing of omarigliptin (OMR) for neurodegenerative diseases based on three new findings that support the preliminary finding of crossing BBB after a single dose study in the literature. The first finding is the positive results of the docking study with the crystal structures of A2A adenosine (A2AAR) and acetylcholine esterase (AChE) receptors. A2AAR is a member of non-dopaminergic GPCR superfamily receptor proteins and has essential role in regulation of glutamate and dopamine release in Parkinson’s disease while AChE plays a major role in Alzheimer’s disease as the primary enzyme responsible for the hydrolytic metabolism of the neurotransmitter acetylcholine into choline and acetate. Docking showed that OMR perfectly fits into A2AAR binding pocket forming a distinctive hydrogen bond with Threonine 256. Besides other non-polar interactions inside the pocket suggesting the future of the marketed anti-diabetic drug (that cross BBB) as a potential antiparkinsonian agent while OMR showed perfect fit inside AChE receptor binding site smoothly because of its optimum length and the two fluorine atoms that enables quite lean fitting. Moreover, a computational comparative study of OMR docking, other 12 DPP-4 inhibitors and 11 SGLT-2 inhibitors was carried out. Secondly, glucagon-like peptide-1 (GLP-1) concentration in rats’ brain tissue was determined by the authors using sandwich GLP-1 ELISA kit bio-analysis to ensure the effect of OMR after the multiple doses’ study. Brain GLP-1 concentration was elevated by 1.9-fold following oral multiple doses of OMR (5 mg/kg/day, p.o. for 28 days) as compared to the control group. The third finding is the enhanced BBB crossing of OMR after 28 days of multiple doses that had been studied using LC-MS/MS method with enhanced liquid–liquid extraction. A modified LC-MS/MS method was established for bioassay of OMR in rats’ plasma (10–3100 ng/mL) and rats’ brain tissue (15–2900 ng/mL) using liquid–liquid extraction. Alogliptin (ALP) was chosen as an internal standard (IS) due to its LogP value of 1.1, which is very close to the LogP of OMR. Extraction of OMR from samples of both rats’ plasma and rats’ brain tissue was effectively achieved with ethyl acetate as the extracting solvent after adding 1N sodium carbonate to enhance the drug migration, while choosing acetonitrile to be the diluent solvent for the IS to effectively decrease any emulsion between the layers in the stated method of extraction. Validation results were all pleasing including good stability studies with bias of value below 20%. Concentration of OMR in rats’ plasma were determined after 2 h of the latest dose from 28 days multiple doses, p.o, 5 mg/kg/day. It was found to be 1295.66 ± 684.63 ng/mL estimated from the bio-analysis regression equation. OMR passed through the BBB following oral administration and exhibited concentration of 543.56 ± 344.15 ng/g in brain tissue, taking in consideration the dilution factor of 10. The brain/plasma concentration ratio of 0.42 (543.56/1295.66) was used to illustrate the penetration power through the BBB after the multiple doses for 28 days. Results showed that OMR passed through the BBB more effectively in the multiple dose study as compared to the previously published single dose study by the authors. Thus, the present study suggests potential repositioning of OMR as antiparkinsonian agent that will be of interest for researchers interested in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bassam M. Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Correspondence: ; Tel.: +20-226-890-000; Fax: +20-226-300-010
| | - Haidy E. Michel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| | - Shereen Mowaka
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Moataz S. Hendy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; (S.M.); (M.S.H.)
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt
| | - Mariam M. Tadros
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt;
| |
Collapse
|
14
|
Ferté L, Marino A, Battault S, Bultot L, Van Steenbergen A, Bol A, Cumps J, Ginion A, Koepsell H, Dumoutier L, Hue L, Horman S, Bertrand L, Beauloye C. New insight in understanding the contribution of SGLT1 in cardiac glucose uptake: evidence for a truncated form in mice and humans. Am J Physiol Heart Circ Physiol 2021; 320:H838-H853. [PMID: 33416451 PMCID: PMC8082801 DOI: 10.1152/ajpheart.00736.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/10/2023]
Abstract
Although sodium glucose cotransporter 1 (SGLT1) has been identified as one of the major SGLT isoforms expressed in the heart, its exact role remains elusive. Evidence using phlorizin, the most common inhibitor of SGLTs, has suggested its role in glucose transport. However, phlorizin could also affect classical facilitated diffusion via glucose transporters (GLUTs), bringing into question the relevance of SGLT1 in overall cardiac glucose uptake. Accordingly, we assessed the contribution of SGLT1 in cardiac glucose uptake using the SGLT1 knockout mouse model, which lacks exon 1. Glucose uptake was similar in cardiomyocytes isolated from SGLT1-knockout (Δex1KO) and control littermate (WT) mice either under basal state, insulin, or hyperglycemia. Similarly, in vivo basal and insulin-stimulated cardiac glucose transport measured by micro-PET scan technology did not differ between WT and Δex1KO mice. Micromolar concentrations of phlorizin had no impact on glucose uptake in either isolated WT or Δex1KO-derived cardiomyocytes. However, higher concentrations (1 mM) completely inhibited insulin-stimulated glucose transport without affecting insulin signaling nor GLUT4 translocation independently from cardiomyocyte genotype. Interestingly, we discovered that mouse and human hearts expressed a shorter slc5a1 transcript, leading to SGLT1 protein lacking transmembrane domains and residues involved in glucose and sodium bindings. In conclusion, cardiac SGLT1 does not contribute to overall glucose uptake, probably due to the expression of slc5a1 transcript variant. The inhibitory effect of phlorizin on cardiac glucose uptake is SGLT1-independent and can be explained by GLUT transporter inhibition. These data open new perspectives in understanding the role of SGLT1 in the heart.NEW & NOTEWORTHY Ever since the discovery of its expression in the heart, SGLT1 has been considered as similar as the intestine and a potential contributor to cardiac glucose transport. For the first time, we have demonstrated that a slc5a1 transcript variant is present in the heart that has no significant impact on cardiac glucose handling.
Collapse
Affiliation(s)
- Laura Ferté
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alice Marino
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Sylvain Battault
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Laurent Bultot
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Van Steenbergen
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Anne Bol
- Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius von Sachs Institute, University of Würzburg, Würzburg, Germany
| | - Laure Dumoutier
- Médecine Expérimentale, Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Louis Hue
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
15
|
Głuchowska K, Pliszka M, Szablewski L. Expression of glucose transporters in human neurodegenerative diseases. Biochem Biophys Res Commun 2021; 540:8-15. [PMID: 33429199 DOI: 10.1016/j.bbrc.2020.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The central nervous system (CNS) plays an important role in the human body. It is involved in the receive, store and participation in information retrieval. It can use several substrates as a source of energy, however, the main source of energy is glucose. Cells of the central nervous system need a continuous supply of energy, therefore, transport of glucose into these cells is very important. There are three distinct families of glucose transporters: sodium-independent glucose transporters (GLUTs), sodium-dependent glucose cotransporters (SGLTs), and uniporter, SWEET protein. In the human brain only GLUTs and SGLTs were detected. In neurodegenerative diseases was observed hypometabolism of glucose due to decreased expression of glucose transporters, in particular GLUT1 and GLUT3. On the other hand, animal studies revealed, that increased levels of these glucose transporters, due to for example by the increased copy number of SLC2A genes, may have a beneficial effect and may be a targeted therapy in the treatment of patients with AD, HD and PD.
Collapse
Affiliation(s)
- Kinga Głuchowska
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Monika Pliszka
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| | - Leszek Szablewski
- Medical University of Warsaw, Chair and Department of General Biology and Parasitology, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
16
|
Monastra G, Vucenik I, Harrath AH, Alwasel SH, Kamenov ZA, Laganà AS, Monti N, Fedeli V, Bizzarri M. PCOS and Inositols: Controversial Results and Necessary Clarifications. Basic Differences Between D-Chiro and Myo-Inositol. Front Endocrinol (Lausanne) 2021; 12:660381. [PMID: 33889133 PMCID: PMC8056130 DOI: 10.3389/fendo.2021.660381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Monastra
- Systems Biology Group Lab (SBGLab), Sapienza University, Rome, Italy
| | - Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh H. Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zdravko A. Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Varese, Italy
| | - Noemi Monti
- Department of Experimental Medicine, Systems Biology Group Lab, University Sapienza, Rome, Italy
| | - Valeria Fedeli
- Department of Experimental Medicine, Systems Biology Group Lab, University Sapienza, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, University Sapienza, Rome, Italy
- *Correspondence: Mariano Bizzarri,
| |
Collapse
|
17
|
SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med Chem 2020; 12:1961-1990. [DOI: 10.4155/fmc-2020-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a chronic progressive metabolic disease caused by insulin deficiency or insulin resistance. In spite of the availability of several antihyperglycaemics, there is a need for the development of safer antidiabetic drugs due to their undesirable effects. Sodium-glucose cotransporter-2 inhibitors are a class of antidiabetics, which hinder the reabsorption of glucose in the kidneys, causing excretion of glucose via urine. Sodium-glucose cotransporter-2 inhibitors are a well-tolerated class with no significant adverse effects and are found to be favorable in certain conditions, which may be rudimentary to cardiovascular and renal diseases. The current advancements in their design and development, their mechanism of action, structure–activity relationship, synthesis and in silico development along with their auxiliary roles have been extensively reviewed.
Collapse
|
18
|
Cao D, Li J, Huang B, Zhang J, Pan C, Huang J, Zhou H, Ma Q, Chen G, Wang Z. RNA-seq analysis reveals divergent adaptive response to hyper- and hypo-salinity in cobia, Rachycentron canadum. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1713-1727. [PMID: 32514851 DOI: 10.1007/s10695-020-00823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Salinity is an important abiotic stress that affects metabolic and physiological activities, breed, development, and growth of marine fish. Studies have shown that cobia (Rachycentron canadum), a euryhaline marine teleost fish, possesses the ability of rapid and effective hyper/hypo iono- and osmoregulation. However, genomic studies on this species are lacking and it has not been studied at the transcriptome level to identify the genes responsible for salinity regulation, which affects the understanding of the fundamental mechanism underlying adaptation to fluctuations in salinity. To describe the molecular response of cobia to different salinity levels, we used RNA-seq analysis to identify genes and biological processes involved in response to salinity changes. In the present study, 395,080,114 clean reads were generated and then assembled into 65,318 unigenes with an N50 size of 2758 bp. There were 20,671 significantly differentially expressed genes (DEGs) including 8805 genes adapted to hypo-salinity and 11,866 genes adapted to hyper-salinity. These DEGs were highly represented in steroid biosynthesis, unsaturated fatty acid metabolism, glutathione metabolism, energy metabolism, osmoregulation, and immune response. The candidate genes identified in cobia provide valuable information for studying the molecular mechanism of salinity adaptation in marine fish. Furthermore, the transcriptomic sequencing data acts not only as an important resource for the identification of novel genes but also for further investigations regarding cobia biology.
Collapse
Affiliation(s)
- Danyu Cao
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jinfeng Li
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Baosong Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiandong Zhang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Chuanhao Pan
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Jiansheng Huang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Hui Zhou
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Qian Ma
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Gang Chen
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Zhongliang Wang
- Department of Aquaculture, College of Fisheries Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Wang Y, Song W, Wang J, Wang T, Xiong X, Qi Z, Fu W, Yang X, Chen YG. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med 2020; 217:jem.20191130. [PMID: 31753849 PMCID: PMC7041720 DOI: 10.1084/jem.20191130] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Single-cell transcriptome analysis of epithelial cells from human ileum, colon, and rectum reveals different nutrient-absorption preferences in the small and large intestine, providing a rich resource for further characterization of human intestine cell constitution and functions. The intestine plays an important role in nutrient digestion and absorption, microbe defense, and hormone secretion. Although major cell types have been identified in the mouse intestinal epithelium, cell type–specific markers and functional assignments are largely unavailable for human intestine. Here, our single-cell RNA-seq analyses of 14,537 epithelial cells from human ileum, colon, and rectum reveal different nutrient absorption preferences in the small and large intestine, suggest the existence of Paneth-like cells in the large intestine, and identify potential new marker genes for human transient-amplifying cells and goblet cells. We have validated some of these insights by quantitative PCR, immunofluorescence, and functional analyses. Furthermore, we show both common and differential features of the cellular landscapes between the human and mouse ilea. Therefore, our data provide the basis for detailed characterization of human intestine cell constitution and functions, which would be helpful for a better understanding of human intestine disorders, such as inflammatory bowel disease and intestinal tumorigenesis.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanlu Song
- The MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jilian Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Ting Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaochen Xiong
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhen Qi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xuerui Yang
- The MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
20
|
D'Souza SW, Copp AJ, Greene NDE, Glazier JD. Maternal Inositol Status and Neural Tube Defects: A Role for the Human Yolk Sac in Embryonic Inositol Delivery? Adv Nutr 2020; 12:212-222. [PMID: 32892218 PMCID: PMC7849949 DOI: 10.1093/advances/nmaa100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Supplementation with myo-inositol during the periconceptional period of pregnancy may ameliorate the recurrence risk of having a fetus affected by a neural tube defect (NTD; e.g., spina bifida). This could be of particular importance in providing a means for preventing NTDs that are unresponsive to folic acid. This review highlights the characteristics of inositol and describes the role of myo-inositol in the prevention of NTDs in rodent studies and the evidence for its efficacy in reducing NTD risk in human pregnancy. The possible reduction in NTD risk by maternal myo-inositol implies functional and developmentally important maternal-embryonic inositol interrelationships and also suggests that embryonic uptake of myo-inositol is crucial for embryonic development. The establishment of active myo-inositol cellular uptake mechanisms in the embryonic stages of human pregnancy, when the neural tube is closing, is likely to be an important determinant of normal development. We draw attention to the generation of materno-fetal inositol concentration gradients and relationships, and outline a transport pathway by which myo-inositol may be delivered to the early developing human embryo. These considerations provide novel insights into the mechanisms that may underpin inositol's ability to confer embryonic developmental benefit.
Collapse
Affiliation(s)
- Stephen W D'Souza
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | | |
Collapse
|
21
|
Hughes DA, Bacigalupe R, Wang J, Rühlemann MC, Tito RY, Falony G, Joossens M, Vieira-Silva S, Henckaerts L, Rymenans L, Verspecht C, Ring S, Franke A, Wade KH, Timpson NJ, Raes J. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat Microbiol 2020; 5:1079-1087. [PMID: 32572223 PMCID: PMC7610462 DOI: 10.1038/s41564-020-0743-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Recent population-based1-4 and clinical studies5 have identified a range of factors associated with human gut microbiome variation. Murine quantitative trait loci6, human twin studies7 and microbiome genome-wide association studies1,3,8-12 have provided evidence for genetic contributions to microbiome composition. Despite this, there is still poor overlap in genetic association across human studies. Using appropriate taxon-specific models, along with support from independent cohorts, we show an association between human host genotype and gut microbiome variation. We also suggest that interpretation of applied analyses using genetic associations is complicated by the probable overlap between genetic contributions and heritable components of host environment. Using faecal 16S ribosomal RNA gene sequences and host genotype data from the Flemish Gut Flora Project (n = 2,223) and two German cohorts (FoCus, n = 950; PopGen, n = 717), we identify genetic associations involving multiple microbial traits. Two of these associations achieved a study-level threshold of P = 1.57 × 10-10; an association between Ruminococcus and rs150018970 near RAPGEF1 on chromosome 9, and between Coprococcus and rs561177583 within LINC01787 on chromosome 1. Exploratory analyses were undertaken using 11 other genome-wide associations with strong evidence for association (P < 2.5 × 10-8) and a previously reported signal of association between rs4988235 (MCM6/LCT) and Bifidobacterium. Across these 14 single-nucleotide polymorphisms there was evidence of signal overlap with other genome-wide association studies, including those for age at menarche and cardiometabolic traits. Mendelian randomization analysis was able to estimate associations between microbial traits and disease (including Bifidobacterium and body composition); however, in the absence of clear microbiome-driven effects, caution is needed in interpretation. Overall, this work marks a growing catalogue of genetic associations that will provide insight into the contribution of host genotype to gut microbiome. Despite this, the uncertain origin of association signals will likely complicate future work looking to dissect function or use associations for causal inference analysis.
Collapse
Affiliation(s)
- David A Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rodrigo Bacigalupe
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Jun Wang
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Raul Y Tito
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Marie Joossens
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Liesbet Henckaerts
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- Department of General Internal Medicine, KU Leuven-University Hospitals Leuven, Leuven, Belgium
| | - Leen Rymenans
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Chloë Verspecht
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Bioresource Laboratories, University of Bristol, Bristol, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Microbiology, VIB, Leuven, Belgium.
| |
Collapse
|
22
|
Wang X, Guo K, Huang B, Lin Z, Cai Z. Role of Glucose Transporters in Drug Membrane Transport. Curr Drug Metab 2020; 21:947-958. [PMID: 32778021 DOI: 10.2174/1389200221666200810125924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glucose is the main energy component of cellular activities. However, as a polar molecule, glucose cannot freely pass through the phospholipid bilayer structure of the cell membrane. Thus, glucose must rely on specific transporters in the membrane. Drugs with a similar chemical structure to glucose may also be transported through this pathway. METHODS This review describes the structure, distribution, action mechanism and influencing factors of glucose transporters and introduces the natural drugs mediated by these transporters and drug design strategies on the basis of this pathway. RESULTS The glucose transporters involved in glucose transport are of two major types, namely, Na+-dependent and Na+-independent transporters. Glucose transporters can help some glycoside drugs cross the biological membrane. The transmembrane potential is influenced by the chemical structure of drugs. Glucose can be used to modify drugs and improve their ability to cross biological barriers. CONCLUSION The membrane transport mechanism of some glycoside drugs may be related to glucose transporters. Glucose modification may improve the oral bioavailability of drugs or achieve targeted drug delivery.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kunkun Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baolin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zimin Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab 2020; 318:E237-E248. [PMID: 31874063 DOI: 10.1152/ajpendo.00162.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder characterized by hyperandrogenism and ovulatory dysfunction but also obesity and hyperinsulinemia. These characteristics induce an insulin-resistant state in tissues such as the endometrium, affecting its reproductive functions. Myo-inositol (MYO) is an insulin-sensitizing compound used in PCOS patients; however, its insulin-sensitizing mechanism is unclear. To understand the relationship of MYO with insulin action in endometrial cells, sodium/myo-inositol transporter 1 (SMIT-1) (MYO-transporter), and MYO effects on protein levels related to the insulin pathway were evaluated. SMIT-1 was assessed in endometrial tissue from women with normal weight, obesity, insulin resistance, and PCOS; additionally, using an in vitro model of human endometrial cells exposed to an environment resembling hyperinsulinemic-obese-PCOS, MYO effect was evaluated on p-AMPK and GLUT-4 levels and glucose uptake by Western blot, immunocytochemistry, and confocal microscopy, respectively. SMIT-1 was detected in endometrial tissue from all groups and decreased in PCOS and obesity (P < 0.05 vs. normal weight). In the in vitro model, PCOS conditions decreased p-AMPK levels, while they were restored with MYO (P < 0.05). The diminished GLUT-4 protein levels promoted by PCOS environment were restored by MYO through SMIT-1 and p-AMPK-dependent mechanism (P < 0.05). Also, MYO restored glucose uptake in cells under PCOS condition through a p-AMPK-dependent mechanism. Finally, these results were similar to those obtained with metformin treatment in the same in vitro conditions. Consequently, MYO could be a potential insulin sensitizer through its positive effects on insulin-resistant tissues as PCOS-endometrium, acting through SMIT-1, provoking AMPK activation and elevated GLUT-4 levels and, consequently, increase glucose uptake by human endometrial cells. Therefore, MYO may be used as an effective treatment option in insulin-resistant PCOS women.
Collapse
Affiliation(s)
- Heidy Cabrera-Cruz
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Bioanalysis and Immunology, Faculty of Sciences, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Lorena Oróstica
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Francisca Plaza-Parrochia
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Ignacio Torres-Pinto
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Margarita Vega
- Laboratory of Endocrinology and Reproductive Biology, Clinical Hospital, University of Chile, Santiago, Chile
- Department of Obstetrics and Gynecology, Clinical Hospital, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
24
|
Lizák B, Szarka A, Kim Y, Choi KS, Németh CE, Marcolongo P, Benedetti A, Bánhegyi G, Margittai É. Glucose Transport and Transporters in the Endomembranes. Int J Mol Sci 2019; 20:ijms20235898. [PMID: 31771288 PMCID: PMC6929180 DOI: 10.3390/ijms20235898] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Glucose is a basic nutrient in most of the creatures; its transport through biological membranes is an absolute requirement of life. This role is fulfilled by glucose transporters, mediating the transport of glucose by facilitated diffusion or by secondary active transport. GLUT (glucose transporter) or SLC2A (Solute carrier 2A) families represent the main glucose transporters in mammalian cells, originally described as plasma membrane transporters. Glucose transport through intracellular membranes has not been elucidated yet; however, glucose is formed in the lumen of various organelles. The glucose-6-phosphatase system catalyzing the last common step of gluconeogenesis and glycogenolysis generates glucose within the lumen of the endoplasmic reticulum. Posttranslational processing of the oligosaccharide moiety of glycoproteins also results in intraluminal glucose formation in the endoplasmic reticulum (ER) and Golgi. Autophagic degradation of polysaccharides, glycoproteins, and glycolipids leads to glucose accumulation in lysosomes. Despite the obvious necessity, the mechanism of glucose transport and the molecular nature of mediating proteins in the endomembranes have been hardly elucidated for the last few years. However, recent studies revealed the intracellular localization and functional features of some glucose transporters; the aim of the present paper was to summarize the collected knowledge.
Collapse
Affiliation(s)
- Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - András Szarka
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
| | - Yejin Kim
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Kyu-sung Choi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
| | - Csilla E. Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Paola Marcolongo
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Angelo Benedetti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (P.M.); (A.B.)
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1094 Budapest, Hungary; (B.L.); (C.E.N.); (G.B.)
| | - Éva Margittai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (Y.K.); (K.-s.C.)
- Correspondence: ; Tel.: +36-459-1500 (ext. 60311); Fax: +36-1-2662615
| |
Collapse
|
25
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
26
|
Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA, Behrendt CL, Olson EN, Hooper LV. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 2019; 365:1428-1434. [PMID: 31604271 PMCID: PMC7158748 DOI: 10.1126/science.aaw3134] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
Abstract
Circadian rhythmicity is a defining feature of mammalian metabolism that synchronizes metabolic processes to day-night light cycles. Here, we show that the intestinal microbiota programs diurnal metabolic rhythms in the mouse small intestine through histone deacetylase 3 (HDAC3). The microbiota induced expression of intestinal epithelial HDAC3, which was recruited rhythmically to chromatin, and produced synchronized diurnal oscillations in histone acetylation, metabolic gene expression, and nutrient uptake. HDAC3 also functioned noncanonically to coactivate estrogen-related receptor α, inducing microbiota-dependent rhythmic transcription of the lipid transporter gene Cd36 and promoting lipid absorption and diet-induced obesity. Our findings reveal that HDAC3 integrates microbial and circadian cues for regulation of diurnal metabolic rhythms and pinpoint a key mechanism by which the microbiota controls host metabolism.
Collapse
Affiliation(s)
- Zheng Kuang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhao Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cunqi Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cassie L Behrendt
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
|
28
|
Garzon S, Laganà AS, Monastra G. Risk of reduced intestinal absorption of myo-inositol caused by D-chiro-inositol or by glucose transporter inhibitors. Expert Opin Drug Metab Toxicol 2019; 15:697-703. [DOI: 10.1080/17425255.2019.1651839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Simone Garzon
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Varese, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Cannizzaro M, Jarošová J, De Paepe B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J Appl Genet 2019; 60:305-317. [PMID: 31286439 DOI: 10.1007/s13353-019-00502-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 01/12/2023]
Abstract
The solute carrier (SLC) group of membrane transport proteins is crucial for cells via their control of import and export of vital molecules across the cellular membrane. Defects in these transporters with narrow substrate specificities cause monogenic disorders, giving us essential clues of their precise roles in cellular functioning. The SLC5 family in particular has been linked to various human diseases, of mild and severe phenotype as well as high and low prevalence. In this review, we describe the effects on health of SLC5 dysfunction and dysregulation by summarizing findings in patients with transporter gene defects. Patients display a plethora of pathologies which include glucose/galactose malabsorption, familiar renal glycosuria, thyroid dyshormonogenesis, and distal hereditary motor neuronopathies. In addition, the therapeutic potential of intervening in transporter activities for treating common diseases such as diabetes and cancer is explored.
Collapse
Affiliation(s)
- Miryam Cannizzaro
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jana Jarošová
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology & Neuromuscular Reference Center, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
30
|
Pandey J, Tamrakar AK. SGLT2 inhibitors for the treatment of diabetes: a patent review (2013-2018). Expert Opin Ther Pat 2019; 29:369-384. [DOI: 10.1080/13543776.2019.1612879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jyotsana Pandey
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
31
|
Subramaniam M, Weber LP, Loewen ME. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5A-associated kinetic segmental segregation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R222-R234. [PMID: 30601703 PMCID: PMC6459381 DOI: 10.1152/ajpregu.00304.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
32
|
Köttgen A, Raffler J, Sekula P, Kastenmüller G. Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Semin Nephrol 2019; 38:151-174. [PMID: 29602398 DOI: 10.1016/j.semnephrol.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolites are small molecules that are intermediates or products of metabolism, many of which are freely filtered by the kidneys. In addition, the kidneys have a central role in metabolite anabolism and catabolism, as well as in active metabolite reabsorption and/or secretion during tubular passage. This review article illustrates how the coupling of genomics and metabolomics in genome-wide association analyses of metabolites can be used to illuminate mechanisms underlying human metabolism, with a special focus on insights relevant to nephrology. First, genetic susceptibility loci for reduced kidney function and chronic kidney disease (CKD) were reviewed systematically for their associations with metabolite concentrations in metabolomics studies of blood and urine. Second, kidney function and CKD-associated metabolites reported from observational studies were interrogated for metabolite-associated genetic variants to generate and discuss complementary insights. Finally, insights originating from the simultaneous study of both blood and urine or by modeling intermetabolite relationships are summarized. We also discuss methodologic questions related to the study of metabolite concentrations in urine as well as among CKD patients. In summary, genome-wide association analyses of metabolites using metabolite concentrations quantified from blood and/or urine are a promising avenue of research to illuminate physiological and pathophysiological functions of the kidney.
Collapse
Affiliation(s)
- Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
33
|
Baader-Pagler T, Eckhardt M, Himmelsbach F, Sauer A, Stierstorfer BE, Hamilton BS. SGLT6 - A pharmacological target for the treatment of obesity? Adipocyte 2018; 7:277-284. [PMID: 30161013 DOI: 10.1080/21623945.2018.1516098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite increased knowledge of nutrient intake regulation and energy homeostasis, treatment options for obesity remain limited. Food reward consists of two branches: gustatory and post-ingestive nutritive information. Drosophila lacking dSLC5A11 (sodium/glucose cotransporter 6-SGLT6) prefer L-glucose over D-glucose independently of their state of satiety. Human SGLT6 is an active transporter of myo-inositol and D-glucose. We investigated expression of SGLT6 in human tissue and found a significant expression in the small intestine and brain. The preference between a metabolizable and a non-metabolizable sugar was tested in 3 mouse models with a selective and potent SGLT6 inhibitor. No influence on sugar preference was seen with SGLT6 inhibition. These studies suggest that SGLT6 does not play a significant role in nutrient sensing in mammals.
Collapse
Affiliation(s)
- Tamara Baader-Pagler
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthias Eckhardt
- Medicinal Chemistry, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Frank Himmelsbach
- Medicinal Chemistry, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Achim Sauer
- Drug Discovery Sciences, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Birgit E. Stierstorfer
- Drug Discovery Sciences, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bradford S. Hamilton
- CardioMetabolic Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
34
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
35
|
Saiardi A, Mudge AW. Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: a new view of their mechanisms of action in bipolar disorder. Transl Psychiatry 2018; 8:175. [PMID: 30171184 PMCID: PMC6119186 DOI: 10.1038/s41398-018-0235-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Lithium is widely used to treat bipolar disorder, but its primary mechanism of action is uncertain. One proposal has been that lithium's ability to inhibit the enzyme inositol monophosphatase (IMPase) reduces the supply of recycled inositol used for membrane phosphoinositide (PIns) synthesis. This 28-year-old hypothesis is still widely debated, however, largely because total levels of PIns in brain or in cultured neurons do not decrease after lithium treatment. Here we use mature cultured cortical neurons to show that, although lithium has little effect on steady-state levels of either inositol or PIns, it markedly inhibits the rate of PIns synthesis. Moreover, we show that rapid synthesis of membrane PIns preferentially uses inositol newly imported from the extracellular space. Unexpectedly, we also find that the antidepressant drug fluoxetine (FLUO: Prozac) stimulates the rate of PIns synthesis. The convergence of both lithium and FLUO in regulating the rate of synthesis of PIns in opposite ways highlights PIns turnover in neurons as a potential new drug target, as well as for understanding mood control in BD. Our results also indicate new avenues for investigation of how neurons regulate their supply of inositol.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Anne W. Mudge
- 0000000121901201grid.83440.3bMedical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
36
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
37
|
Schneebauer G, Mauracher D, Fiechtner B, Pelster B. Transcript levels of members of the SLC2 and SLC5 families of glucose transport proteins in eel swimbladder tissue: the influence of silvering and the influence of a nematode infection. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:599-613. [PMID: 29327317 PMCID: PMC5862955 DOI: 10.1007/s10695-017-0456-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The rate of glucose metabolism has been shown to be correlated to glucose uptake in swimbladder gas gland cells. Therefore, it is assumed that in the European eel silvering, i.e., the preparation of the eel for the spawning migration to the Sargasso Sea, coincides with an enhanced capacity for glucose uptake. To test this hypothesis expression of all known glucose transport proteins has been assessed at the transcript level in yellow and in silver eels, and we also included Anguillicola crassus infected swimbladders. Glucose uptake by rete mirabile endothelial cells could be crucial for the countercurrent exchange capacity of the rete. Therefore, this tissue was also included in our analysis. The results revealed expression of ten different members of the slc2 family of glucose transporters, of four slc5 family members, and of kiaa1919 in gas gland tissue. Glucose transporters of the slc2 family were expressed at very high level, and slc2a1b made up about 80% of all slc2 family members, irrespective of the developmental state or the infection status of the eel. Overall, the slc5 family contributed to only about 8% of all detected glucose transport transcripts in gas gland tissue, and the slc2 family to more than 85%. In rete capillaries, the contribution of sodium-dependent glucose transporters was significantly higher, leaving only 66% for the slc2 family of glucose transporters. Neither silvering nor the infection status had a significant effect on the expression of glucose transporters in swimbladder gas gland tissue, suggesting that glucose metabolism of eel gas gland cells may not be related to transcriptional changes of glucose transport proteins.
Collapse
Affiliation(s)
- Gabriel Schneebauer
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - David Mauracher
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Birgit Fiechtner
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Bernd Pelster
- Institute of Zoology, Leopold-Franzens-Universität Innsbruck, Technikerstr.25, 6020, Innsbruck, Austria.
- Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
38
|
Differential localizations of the myo-inositol transporters HMIT and SMIT1 in the cochlear stria vascularis. Neurosci Lett 2018; 674:88-93. [PMID: 29551423 DOI: 10.1016/j.neulet.2018.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/28/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022]
Abstract
The cochlear stria vascularis produces endolymph and thereby plays an active role in inner ear homeostasis. We recently reported that the H+/myo-inositol cotransporter (HMIT) gene is expressed in the stria vascularis. Here, we examined the protein localization of HMIT and Na+/myo-inositol cotransporter 1 (SMIT1) in the stria vascularis by immunohistochemistry. HMIT and SMIT1 were detected in the lateral wall of the cochlear duct. HMIT was widely detected throughout the stria vascularis, while SMIT1 was enriched in the strial basal cells. To examine the localization of HMIT in the stria vascularis in more detail, dissociated strial cells were immunostained, which resulted in the detection of HMIT immunoreactivity in marginal cells. These results indicate that HMIT is expressed in marginal cells and basal cells of the stria vascularis, while SMIT1 expression is enriched in basal cells. We speculate that HMIT and SMIT1 may play important roles in the homeostasis of cochlear fluids, for example by participating in pH regulation and osmoregulation.
Collapse
|
39
|
Sproles AE, Kirk NL, Kitchen SA, Oakley CA, Grossman AR, Weis VM, Davy SK. Phylogenetic characterization of transporter proteins in the cnidarian-dinoflagellate symbiosis. Mol Phylogenet Evol 2017; 120:307-320. [PMID: 29233707 DOI: 10.1016/j.ympev.2017.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 10/22/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Nathan L Kirk
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
40
|
Szablewski L. Distribution of glucose transporters in renal diseases. J Biomed Sci 2017; 24:64. [PMID: 28854935 PMCID: PMC5577680 DOI: 10.1186/s12929-017-0371-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Kidneys play an important role in glucose homeostasis. Renal gluconeogenesis prevents hypoglycemia by releasing glucose into the blood stream. Glucose homeostasis is also due, in part, to reabsorption and excretion of hexose in the kidney.Lipid bilayer of plasma membrane is impermeable for glucose, which is hydrophilic and soluble in water. Therefore, transport of glucose across the plasma membrane depends on carrier proteins expressed in the plasma membrane. In humans, there are three families of glucose transporters: GLUT proteins, sodium-dependent glucose transporters (SGLTs) and SWEET. In kidney, only GLUTs and SGLTs protein are expressed. Mutations within genes that code these proteins lead to different renal disorders and diseases. However, diseases, not only renal, such as diabetes, may damage expression and function of renal glucose transporters.
Collapse
Affiliation(s)
- Leszek Szablewski
- Medical University of Warsaw, Chair & Department of General Biology & Parasitology, Center for Biostructure Research, 5 Chalubinskiego Str., 02-004, Warsaw, Poland.
| |
Collapse
|
41
|
Mizagliflozin, a novel selective SGLT1 inhibitor, exhibits potential in the amelioration of chronic constipation. Eur J Pharmacol 2017; 806:25-31. [DOI: 10.1016/j.ejphar.2017.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
42
|
Sortino MA, Salomone S, Carruba MO, Drago F. Polycystic Ovary Syndrome: Insights into the Therapeutic Approach with Inositols. Front Pharmacol 2017. [PMID: 28642705 PMCID: PMC5463048 DOI: 10.3389/fphar.2017.00341] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hormonal abnormalities that cause menstrual irregularity and reduce ovulation rate and fertility, associated to insulin resistance. Myo-inositol (cis-1,2,3,5-trans-4,6-cyclohexanehexol, MI) and D-chiro-inositol (cis-1,2,4-trans-3,5,6-cyclohexanehexol, DCI) represent promising treatments for PCOS, having shown some therapeutic benefits without substantial side effects. Because the use of inositols for treating PCOS is widespread, a deep understanding of this treatment option is needed, both in terms of potential mechanisms and efficacy. This review summarizes the current knowledge on the biological effects of MI and DCI and the results obtained from relevant intervention studies with inositols in PCOS. Based on the published results, both MI and DCI represent potential valid therapeutic approaches for the treatment of insulin resistance and its associated metabolic and reproductive disorders, such as those occurring in women affected by PCOS. Furthermore, the combination MI/DCI seems also effective and might be even superior to either inositol species alone. However, based on available data, a particular MI:DCI ratio to be administered to PCOS patients cannot be established. Further studies are then necessary to understand the real contents of MI or DCI uptaken by the ovary following oral administration in order to identify optimal doses and/or combination ratios.
Collapse
Affiliation(s)
- Maria A Sortino
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Salvatore Salomone
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| | - Michele O Carruba
- Center for the Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of MilanMilan, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, School of Medicine, Catania UniversityCatania, Italy
| |
Collapse
|
43
|
Li SYT, Cheng STW, Zhang D, Leung PS. Identification and Functional Implications of Sodium/ Myo-Inositol Cotransporter 1 in Pancreatic β-Cells and Type 2 Diabetes. Diabetes 2017; 66:1258-1271. [PMID: 28202581 DOI: 10.2337/db16-0880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022]
Abstract
Myo-inositol (MI), the precursor of the second messenger phosphoinositide (PI), mediates multiple cellular events. Rat islets exhibit active transport of MI, although the mechanism involved remains elusive. Here, we report, for the first time, the expression of sodium/myo-inositol cotransporter 1 (SMIT1) in rat islets and, specifically, β-cells. Genetic or pharmacological inhibition of SMIT1 impaired glucose-stimulated insulin secretion by INS-1E cells, probably via downregulation of PI signaling. In addition, SMIT1 expression in INS-1E cells and isolated islets was augmented by acute high-glucose exposure and reduced in chronic hyperglycemia conditions. In corroboration, chronic MI treatment improved the disease phenotypes of diabetic rats and islets. On the basis of our results, we postulate that the MI transporter SMIT1 is required to maintain a stable PI pool in β-cells in order that PI remains available despite its rapid turnover.
Collapse
Affiliation(s)
- Stephen Yu Ting Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sam Tsz Wai Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Neverisky DL, Abbott GW. KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk. FASEB J 2017; 31:2828-2838. [PMID: 28283543 DOI: 10.1096/fj.201601334r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
Voltage-gated potassium channels formed by KCNQ2 and KCNQ3 are essential for normal neuronal excitability. KCNQ2/3 channel activity is augmented in vivo by phosphatidylinositol 4,5-bisphosphate (PIP2), which is generated from myo-inositol, an osmolyte transported into cells by sodium-dependent myo-inositol transporters (SMITs). Here, we discovered that KCNQ2/3 channels isoform-specifically colocalize with SMIT1 and SMIT2 at sciatic nerve nodes of Ranvier and in axon initial segments, and form channel-transporter complexes in vitro and in vivo KCNQ2/3 coexpression protected SMIT1 activity from the otherwise inhibitory effects of cellular depolarization imposed by elevating extracellular [K+], and KCNQ2 was required for potentiation of SMIT activity by myo-inositol preincubation. Cytoskeletal disruption, which speeds PIP2 dispersion, attenuated potentiation of KCNQ2/3 currents by SMIT1-mediated myo-inositol uptake, suggesting close channel-transporter juxtaposition ensures KCNQ2/3 exposure to locally high myo-inositol-derived PIP2 concentrations. Thus, KCNQ2/3-SMIT1/2 coassembly permits cross talk via physical interaction, and may also be required for optimal, reciprocal indirect regulation via membrane potential and PIP2, especially within the specialized architecture of axons.-Neverisky, D. L., Abbott, G. W. KCNQ-SMIT complex formation facilitates ion channel-solute transporter cross talk.
Collapse
Affiliation(s)
- Daniel L Neverisky
- Bioelectricity Laboratory, Department of Pharmacology, and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Pharmacology, and Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
45
|
Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer’s Disease. J Alzheimers Dis 2016; 55:1307-1320. [DOI: 10.3233/jad-160841] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Coady MJ, El Tarazi A, Santer R, Bissonnette P, Sasseville LJ, Calado J, Lussier Y, Dumayne C, Bichet DG, Lapointe JY. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2. J Am Soc Nephrol 2016; 28:85-93. [PMID: 27288013 DOI: 10.1681/asn.2015111282] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/05/2016] [Indexed: 11/03/2022] Open
Abstract
The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na+-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17-SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na+/H+ exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters.
Collapse
Affiliation(s)
- Michael J Coady
- Physics Department & Groupe d'étude des protéines membranaires
| | - Abdulah El Tarazi
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Pierre Bissonnette
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | | | - Joaquim Calado
- Department of Nephrology, ToxOmics, Centre for Toxicogenomics and Human Health, NOVA Medical School, New University of Lisbon, Lisbon, Portugal
| | - Yoann Lussier
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - Christopher Dumayne
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and
| | - Daniel G Bichet
- Departement of Molecular and Integrative Physiology & Groupe d'étude des protéines membranaires, and.,Department of Medicine, Centre de recherche de l'Hôpital du Sacré-Cœur, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
47
|
Kalujnaia S, Hazon N, Cramb G. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation. Am J Physiol Regul Integr Comp Physiol 2016; 311:R287-98. [PMID: 27252471 PMCID: PMC5008666 DOI: 10.1152/ajpregu.00056.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.
Collapse
Affiliation(s)
- Svetlana Kalujnaia
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| | - Neil Hazon
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Gordon Cramb
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom; and
| |
Collapse
|
48
|
Gavrilov SN, Stracke C, Jensen K, Menzel P, Kallnik V, Slesarev A, Sokolova T, Zayulina K, Bräsen C, Bonch-Osmolovskaya EA, Peng X, Kublanov IV, Siebers B. Isolation and Characterization of the First Xylanolytic Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1 and Its Unusual Multidomain Glycosidase. Front Microbiol 2016; 7:552. [PMID: 27199905 PMCID: PMC4853606 DOI: 10.3389/fmicb.2016.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/04/2016] [Indexed: 12/12/2022] Open
Abstract
Enzymes from (hyper)thermophiles “Thermozymes” offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability toward high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of, e.g., denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago). Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC), amorphous cellulose (AMC), xyloglucan, and chitin. The protein fraction extracted from the cells surface with Tween 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa) with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction). The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG) was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β- 1,3/1,4-glucoside), followed by that for CMC (β-1,4-glucoside), cellooligosaccharides and galactomannan. The results reported here indicate that the modular MDG structure with multiple glycosidase and carbohydrate-binding domains not only extends the substrate spectrum, but also seems to allow the degradation of partially soluble and insoluble polymers in a processive manner. This report highlights the great potential in a multi-pronged approach consisting of a combined in situ enrichment, (comparative) genomics, and biochemistry strategy for the screening for novel enzymes of biotechnological relevance.
Collapse
Affiliation(s)
- Sergey N Gavrilov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | | | - Peter Menzel
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Verena Kallnik
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | - Alexei Slesarev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of SciencesMoscow, Russia; Fidelity Systems, Inc., GaithersburgMD, USA
| | - Tatyana Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Kseniya Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| | | | - Xu Peng
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences Moscow, Russia
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, University Duisburg-Essen Essen, Germany
| |
Collapse
|
49
|
Abstract
All living cells require membrane proteins that act as conduits for the regulated transport of ions, solutes and other small molecules across the cell membrane. Ion channels provide a pore that permits often rapid, highly selective and tightly regulated movement of ions down their electrochemical gradient. In contrast, active transporters can move moieties up their electrochemical gradient. The secondary active transporters (such as SLC superfamily solute transporters) achieve this by coupling uphill movement of the substrate to downhill movement of another ion, such as sodium. The primary active transporters (including H(+)/K(+)-ATPases and Na(+)/K(+)-ATPases) utilize ATP hydrolysis as an energy source to power uphill transport. It is well known that proteins in each of these classes work in concert with members of the other classes to ensure, for example, ion homeostasis, ion secretion and restoration of ion balance following action potentials. More recently, evidence is emerging of direct physical interaction between true ion channels, and some primary or secondary active transporters. Here, we review the first known members of this new class of macromolecular complexes that we term "chansporters", explore their biological roles and discuss the pathophysiological consequences of their disruption. We compare functional and/or physical interactions between the ubiquitous KCNQ1 potassium channel and various active transporters, and examine other newly discovered chansporter complexes that suggest we may be seeing the tip of the iceberg in a newly emerging signaling modality.
Collapse
Affiliation(s)
- Daniel L Neverisky
- a Bioelectricity Laboratory, Departments of Pharmacology and Physiology and Biophysics, School of Medicine, University of California , Irvine , CA , USA
| | - Geoffrey W Abbott
- a Bioelectricity Laboratory, Departments of Pharmacology and Physiology and Biophysics, School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
50
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|