1
|
Yan Z, Liu C, Zhang X, Wen C, Olatunji OJ, Lee CC, Ashaolu TJ. Plant-based Meat Analogs: Perspectives on Their Meatiness, Nutritional Profile, Environmental Sustainability, Acceptance and Challenges. Curr Nutr Rep 2024; 13:921-936. [PMID: 39340729 DOI: 10.1007/s13668-024-00575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW Plant-based meat analogs (PBMAs) have been the subject of interest over the past few years due to consumers' demand for environmentally friendly, healthful, and non-animal-based foods. A better comprehension of the composition, structure, texture, nutrition, and sustainability of these PBMAs is necessary. RECENT FINDINGS This review articulates the protein sources and composition of PBMAs and their "meatiness" with respect to texture, structure, and flavor enhancement. The components used in the analogs, such as unsaturated fats, fibers, vitamins, minerals, carbohydrates, and plant-based oils enriching their nutritional profile, are described. The study identifies the environmental and sustainability impact of PBMAs, as crucial to the survival and maintenance of biodiversity. More studies are warranted to scope and underscore the significance of the analogs and comprehend the texture or structure-function relationships. Further product development and testing thereof may ultimately result in quality meat analogs that respect meat taste, health and acceptance of consumers, environmental sustainability, animal welfare, and current challenges.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Wuhu City, Anhui Province, China
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Wuhu City, Anhui Province, China
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Wuhu City, Anhui Province, China
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City, Anhui, China
| | | | - Chi-Ching Lee
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul Sabahattin Zaim University, Istanbul, Türkiye
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Vietnam.
- Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
2
|
Pettersson J, Post A, Elf M, Wollmar M, Sjöberg A. Meat substitutes in Swedish school meals: nutritional quality, ingredients, and insights from meal planners. Int J Food Sci Nutr 2024; 75:637-649. [PMID: 39229696 DOI: 10.1080/09637486.2024.2395810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
This study provides an overview of the ingredients, origin, processing level, nutritional quality and practitioners' insights of commonly used meat substitutes in Swedish school meals. Using quantitative and qualitative data, this study evaluated 59 meat substitutes from 19 brands using Percentage Nutrient Contribution (%NC) to a Swedish school meal based on 30% of the recommended and maximum nutrient intake for teenagers and the NOVA processing framework. Meat substitutes were mince, balls, breaded, burgers, strips, or sausages. Interviews with meal planners (n = 7) revealed experiences with meat substitutes in schools. Most meat substitutes (86%) were classified as ultra-processed foods, with low contributions to saturated fat and free sugars, but high contributions to fibre and salt intakes. Limited micronutrient data suggested significant contributions of potassium, folate, and iron. Meal planners chose meat substitutes for climate reasons, familiarity, and acceptability. Meat substitutes have potential, but processing effects, bioavailability and fortification require further research.
Collapse
Affiliation(s)
- Josephine Pettersson
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Anna Post
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Maja Elf
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Mari Wollmar
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Sjöberg
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Sciarrillo CM, Guo J, Hengist A, Darcey VL, Hall KD. Diet order significantly affects energy balance for diets varying in macronutrients but not ultraprocessing in crossover studies without a washout period. Am J Clin Nutr 2024; 120:953-963. [PMID: 39163976 PMCID: PMC11473439 DOI: 10.1016/j.ajcnut.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Crossover studies can induce order effects, especially when they lack a washout period. OBJECTIVES We performed secondary analyses comparing groups of subjects randomly assigned to different diet orders in 2 inpatient crossover studies originally designed to compare within-subject differences in ad libitum energy intake. One study compared minimally processed low-carbohydrate (LC) compared with low-fat (LF) diets, and the other matched macronutrients and compared minimally processed food (MPF) with ultraprocessed food (UPF) diets. METHODS Diet order group comparisons of changes in body weight and body composition, and differences in energy expenditure and food intake were assessed over 4 wk in 20 adults randomly assigned to either the LC followed immediately by the LF diet (LC → LF) or the opposite order (LF → LC), and 20 adults randomly assigned to either the MPF followed by the UPF (MPF → UPF) diets or the opposite order (UPF → MPF). RESULTS Subjects randomly assigned to LC → LF lost 2.9 ± 1.1 kg more body weight (P <0.001) and 1.5 ± 0.6 kg more body fat (P = 0.03) than the LF → LC group, likely because the LC → LF group consumed 921 ± 304 kcal/d less than the LF → LC group (P = 0.003). These energy intake differences were driven by the last 2 wk (-1610 ± 312 kcal/d; P < 0.0001), perhaps because of carryover effects of gut adaptations during the first 2 wk arising from large differences in the mass of food (1296 ± 215 g/d; P <0.00001) and fiber consumed (58 ± 6 g/d; P <0.00001). There were no significant diet order effects on energy intake, body weight, or body composition changes between UPF → MPF and MPF → UPF groups. CONCLUSIONS Diet order significantly affected energy intake, body weight, and body fat in a 4-wk crossover inpatient diet study varying in macronutrients, but not in a similarly structured study varying in ultraprocessed foods. This trial was registered at clinicaltrials.gov as NCT03407053 and NCT03878108.
Collapse
Affiliation(s)
- Christina M Sciarrillo
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Aaron Hengist
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Kevin D Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States.
| |
Collapse
|
5
|
Shokri-Mashhadi N, Baechle C, Schiemann T, Schaefer E, Barbaresko J, Schlesinger S. Effects of carotenoid supplementation on glycemic control: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Nutr 2024:10.1038/s41430-024-01511-y. [PMID: 39327454 DOI: 10.1038/s41430-024-01511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES We conducted a systematic review and meta-analysis to assess the effects of carotenoid supplementation on glycemic indices, and the certainty of evidence. METHODS A systematic literature search in PubMed, SCOPUS, ISI-Web of Science, and Cochrane Library was conducted from inception up to Jun 17, 2024. Randomized controlled trials (RCTs) investigating the effect of carotenoid supplementation on circulating glycemic parameters were included. Records were excluded when studies reported the effect of co-interventions with other nutrients, did not provide mean differences (MDs) and standard deviations (SD) for outcomes, or administered whole food rather than supplements of carotenoids. Summary mean differences (MDs) and 95% CI between intervention and control groups were estimated using a random-effects model. The risk of bias of the included studies was assessed using the Risk of Bias 2.0 (RoB 2.0) tool. RESULTS Overall, 36 publications with 45 estimated effect sizes were included in the meta-analyses. The overall findings showed an improvement in fasting blood glucose (FBG) (MD = -4.54 mg/dl; 95% CI: -5.9, -3.2; n = 45), and hemoglobin A1C (HbA1C) (MD = -0.25% (95% CI: -0.4, -0.11; n = 22) in the intervention group in comparison with the control group. Moreover, in individuals with type 2 diabetes (T2D), interventions with astaxanthin and fucoxanthin led to a reduction in FBG by 4.36 mg/dl (95% CI: -6.13, -2.6; n = 10). The findings also showed that the intervention with crocin reduced FBG levels by 13.5 mg/dl (95% CI: -15.5, -7.8; n = 5), and HbA1C by 0.55% (95% CI: -0.77, -0.34; n = 5) in individuals with T2D. However, the certainty of evidence was very low. CONCLUSION Carotenoid's supplementation improved glycemic parameters especially in people with T2D. However. the certainty of evidence was very low, mainly due to small sample size, and indirectness. Therefore, no specific recommendations can be provided at present and well-designed RCTs are required. REGISTRY URL: https://www.crd.york.ac.uk/PROSPERO/ REGISTRY NUMBER: CRD42021285084 REGISTRY AND REGISTRY NUMBER FOR SYSTEMATIC REVIEWS OR META-ANALYSES: PROSPERO ID: CRD42021285084.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany.
| | - Christina Baechle
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| | - Tim Schiemann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Edyta Schaefer
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| | - Janett Barbaresko
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Muenchen-Neuherberg, Düsseldorf, Germany
| |
Collapse
|
6
|
Iannotti L, Rueda García AM, Palma G, Fontaine F, Scherf B, Neufeld LM, Zimmerman R, Fracassi P. Terrestrial Animal Source Foods and Health Outcomes for Those with Special Nutrient Needs in the Life Course. Nutrients 2024; 16:3231. [PMID: 39408199 PMCID: PMC11478082 DOI: 10.3390/nu16193231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background. Animal source foods are under scrutiny for their role in human health, yet some nutritionally vulnerable populations are largely absent from consideration. Methods. Applying a Population Intervention/Exposure Comparator Outcome (PICO/PECO) framework and prioritizing systematic review and meta-analyses, we reviewed the literature on terrestrial animal source foods (TASFs) and human health, by life course phase. Results. There were consistent findings for milk and dairy products on positive health outcomes during pregnancy and lactation, childhood, and among older adults. Eggs were found to promote early childhood growth, depending on context. Unprocessed meat consumption was associated with a reduced risk for anemia during pregnancy, improved cognition among school-age children, and muscle health in older adults. Milk and eggs represent a risk for food sensitivities/allergies, though prevalence is low, and individuals tend to outgrow the allergies. TASFs affect the human microbiome and associated metabolites with both positive and negative health repercussions, varying by type and quantity. Conclusions. There were substantial gaps in the evidence base for studies limiting our review, specifically for studies in populations outside high-income countries and for several TASF types (pig, poultry, less common livestock species, wild animals, and insects). Nonetheless, sufficient evidence supports an important role for TASFs in health during certain periods of the life course.
Collapse
Affiliation(s)
- Lora Iannotti
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Ana María Rueda García
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Giulia Palma
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Fanette Fontaine
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Beate Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Lynnette M. Neufeld
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| | - Rachel Zimmerman
- E3 Nutrition Lab, Brown School, Washington University, St. Louis, MO 63130, USA;
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy; (A.M.R.G.); (G.P.); (F.F.); (B.S.); (L.M.N.); (P.F.)
| |
Collapse
|
7
|
Soldán M, Argalášová Ľ, Hadvinová L, Galileo B, Babjaková J. The Effect of Dietary Types on Gut Microbiota Composition and Development of Non-Communicable Diseases: A Narrative Review. Nutrients 2024; 16:3134. [PMID: 39339734 PMCID: PMC11434870 DOI: 10.3390/nu16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION The importance of diet in shaping the gut microbiota is well established and may help improve an individual's overall health. Many other factors, such as genetics, age, exercise, antibiotic therapy, or tobacco use, also play a role in influencing gut microbiota. AIM This narrative review summarizes how three distinct dietary types (plant-based, Mediterranean, and Western) affect the composition of gut microbiota and the development of non-communicable diseases (NCDs). METHODS A comprehensive literature search was conducted using the PubMed, Web of Science, and Scopus databases, focusing on the keywords "dietary pattern", "gut microbiota" and "dysbiosis". RESULTS Both plant-based and Mediterranean diets have been shown to promote the production of beneficial bacterial metabolites, such as short-chain fatty acids (SCFAs), while simultaneously lowering concentrations of trimethylamine-N-oxide (TMAO), a molecule associated with negative health outcomes. Additionally, they have a positive impact on microbial diversity and therefore are generally considered healthy dietary types. On the other hand, the Western diet is a typical example of an unhealthy nutritional approach leading to an overgrowth of pathogenic bacteria, where TMAO levels rise and SCFA production drops due to gut dysbiosis. CONCLUSION The current scientific literature consistently highlights the superiority of plant-based and Mediterranean dietary types over the Western diet in promoting gut health and preventing NCDs. Understanding the influence of diet on gut microbiota modulation may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Ľubica Argalášová
- Institute of Hygiene, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia; (M.S.); (L.H.); (B.G.); (J.B.)
| | | | | | | |
Collapse
|
8
|
Landry MJ, Ward CP. Health Benefits of a Plant-Based Dietary Pattern and Implementation in Healthcare and Clinical Practice. Am J Lifestyle Med 2024; 18:657-665. [PMID: 39309320 PMCID: PMC11412377 DOI: 10.1177/15598276241237766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The American College of Lifestyle Medicine recommends eating a predominantly plant-based diet with a variety of minimally processed vegetables, fruits, whole grains, legumes, nuts and seeds. At any level, adoption of a plant-based diet can improve one's health through a variety of mechanisms. Increasing intake of plant-based foods often results in increases in fiber intake, decreases in saturated fat intake, and increased intake of essential vitamins and minerals, among other healthful benefits. Despite such potential benefits, many individuals are reluctant or resistant to change their usual dietary behaviors or unable to sustain diet changes over time. This is largely because an individual's decision to adopt a plant-based diet is influenced by a diverse array of motivating factors, priorities, and/or misconceptions about nutrient adequacy of plant-based diets. Here, we discuss key points from a session at the American College of Lifestyle Medicine's annual conference LM2023. Specifically, we review common preconceptions about plant-based diets, provide guidance on removing the barriers to adopting and adhering to plant-based diets, and highlight key literature findings supporting the health benefits of plant-based diets. Last, we discuss how plant-based diets are increasingly being implemented within health care and clinical practice to support Food is/as Medicine approaches.
Collapse
Affiliation(s)
- Matthew J. Landry
- Department of Population Health and Disease Prevention, Program in Public Health, University of California, Irvine, CA, USA (ML)
| | - Catherine P. Ward
- Stanford Prevention Research Center, School of Medicine, Palo Alto, CA, USA (CW)
| |
Collapse
|
9
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
10
|
Partanen M, Luhio P, Gómez-Gallego C, Kolehmainen M. The role of fiber in modulating plant protein-induced metabolic responses. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39154210 DOI: 10.1080/10408398.2024.2392149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The rising consumption of plant protein foods and the emergence of meat alternatives have prompted interest in the health benefits of such products, which contain fiber in addition to protein. This review investigates the effect of fiber on plant-based protein metabolism and evaluates its contribution to gut-derived health impacts. Plant proteins, which often come with added fiber, can have varying health outcomes. Factors such as processing and the presence of fiber and starch influence the digestibility of plant proteins, potentially leading to increased proteolytic fermentation in the gut and the production of harmful metabolites. However, fermentable fiber can counteract this effect by serving as a primary substrate for gut microbes, decreasing proteolytic activity. The increased amount of fiber, rather than the protein source itself, plays a significant role in the observed health benefits of plant-based diets in human studies. Differences between extrinsic and intrinsic fiber in the food matrix further impact protein fermentation and digestibility. Thus, in novel protein products without naturally occurring fiber, the health impact may differ from conventional plant protein sources. The influence of various fibers on plant-based protein metabolism throughout the gastrointestinal tract is not fully understood, necessitating further research.
Collapse
Affiliation(s)
- Moona Partanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Petri Luhio
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Jang J, Lee DW. Advancements in plant based meat analogs enhancing sensory and nutritional attributes. NPJ Sci Food 2024; 8:50. [PMID: 39112506 PMCID: PMC11306346 DOI: 10.1038/s41538-024-00292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The burgeoning demand for plant-based meat analogs (PBMAs) stems from environmental, health, and ethical concerns, yet replicating the sensory attributes of animal meat remains challenging. This comprehensive review explores recent innovations in PBMA ingredients and methodologies, emphasizing advancements in texture, flavor, and nutritional profiles. It chronicles the transition from soy-based first-generation products to more diversified second- and third-generation PBMAs, showcasing the utilization of various plant proteins and advanced processing techniques to enrich sensory experiences. The review underscores the crucial role of proteins, polysaccharides, and fats in mimicking meat's texture and flavor and emphasizes research on new plant-based sources to improve product quality. Addressing challenges like production costs, taste, texture, and nutritional adequacy is vital for enhancing consumer acceptance and fostering a more sustainable food system.
Collapse
Affiliation(s)
- Jiwon Jang
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Dong-Woo Lee
- Graduate Program in Bio-industrial Engineering, Yonsei University, Seoul, 03722, South Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
12
|
Krenek AM, Mathews A, Guo J, Courville AB, Pepine CJ, Chung ST, Aggarwal M. Recipe for Heart Health: A Randomized Crossover Trial on Cardiometabolic Effects of Extra Virgin Olive Oil Within a Whole-Food Plant-Based Vegan Diet. J Am Heart Assoc 2024; 13:e035034. [PMID: 39045758 DOI: 10.1161/jaha.124.035034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Whole-food, plant-based vegan diets, low in oils, and Mediterranean diets, rich in extra virgin olive oil (EVOO), reduce cardiovascular disease risk factors. Optimal quantity of dietary fat, particularly EVOO, is unclear. METHODS AND RESULTS In a randomized crossover trial with weekly cooking classes, adults with ≥5% cardiovascular disease risk followed a high (4 tablespoons/day) to low (<1 teaspoon/day) or low to high EVOO whole-food, plant-based diet for 4 weeks each, separated by a 1-week washout. The primary outcome was difference in low-density lipoprotein cholesterol (LDL-C) from baseline. Secondary measures were changes in additional cardiometabolic markers. Linear mixed models assessed changes from baseline between phases, with age, sex, and body weight change as covariates. In 40 participants, fat intake comprised 48% and 32% of energy during high and low EVOO phases, respectively. Both diets resulted in comparable reductions in LDL-C, total cholesterol, apolipoprotein B, high-density lipoprotein cholesterol, glucose, and high-sensitivity C-reactive protein (all P<0.05). With diet-sequence interactions for LDL-C, differences were detected between diets by diet order (mean±SEM high to low: Δ-12.7[5.9] mg/dL, P=0.04 versus low to high: Δ+15.8[6.8] mg/dL, P=0.02). Similarly, low to high order led to increased glucose, total cholesterol, and high-density lipoprotein cholesterol (all P<0.05). Over period 1, LDL-C reductions were -25.5(5.1) post-low versus -16.7(4.2) mg/dL post-high EVOO, P=0.162, which diminished over period 2. CONCLUSIONS Both plant-based diet patterns improved cardiometabolic risk profiles compared with baseline diets, with more pronounced decreases in LDL-C after the low EVOO diet. Addition of EVOO after following a low intake pattern may impede further lipid reductions. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04828447.
Collapse
Affiliation(s)
- Andrea M Krenek
- Food Science and Human Nutrition Department University of Florida Gainesville FL USA
- National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA
| | - Anne Mathews
- Food Science and Human Nutrition Department University of Florida Gainesville FL USA
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA
| | - Amber B Courville
- National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA
| | - Carl J Pepine
- Division of Cardiology University of Florida Gainesville FL USA
| | - Stephanie T Chung
- National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA
| | - Monica Aggarwal
- Division of Cardiology University of Florida Gainesville FL USA
| |
Collapse
|
13
|
Del Bo’ C, Chehade L, Tucci M, Canclini F, Riso P, Martini D. Impact of Substituting Meats with Plant-Based Analogues on Health-Related Markers: A Systematic Review of Human Intervention Studies. Nutrients 2024; 16:2498. [PMID: 39125378 PMCID: PMC11314210 DOI: 10.3390/nu16152498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The growing drive towards more sustainable dietary patterns has led to an increased demand for and availability of plant-based meat analogues (PBMAs). This systematic review aims to summarize the currently available evidence from human intervention studies investigating the impact of substituting animal meat (AM) with PBMAs in adults. A total of 19 studies were included. Overall, an increase in satiety following PBMA intake was reported, albeit to different extents and not always accompanied by changes in leptin and ghrelin. PBMAs generally resulted in lower protein bioavailability and a smaller increase in plasma essential amino acids in comparison to AM. However, muscle protein synthesis and physical performance were not affected. Finally, conflicting results have been reported for other outcomes, such as pancreatic and gastrointestinal hormones, oxidative stress and inflammation, vascular function, and microbiota composition. In conclusion, we documented that the impact of substituting AM with PBMA products has been scarcely investigated. In addition, the heterogeneity found in terms of study design, population, outcomes, and findings suggests the need for additional high-quality intervention trials, particularly long-term ones, to better clarify the advantages and potential critical issues of such substitutions within sustainable healthy diets.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, 20133 Milano, Italy (L.C.); (F.C.); (D.M.)
| | | |
Collapse
|
14
|
Nagra M, Tsam F, Ward S, Ur E. Animal vs Plant-Based Meat: A Hearty Debate. Can J Cardiol 2024; 40:1198-1209. [PMID: 38934982 DOI: 10.1016/j.cjca.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024] Open
Abstract
Plant-based meat alternatives (PBMAs) are highly processed food products that typically replace meat in the diet. In Canada, the growing demand for PBMAs coincides with public health recommendations to reduce ultra-processed food consumption, which prompts the need to investigate the long-term health implications of PBMAs. This review assesses the available literature on PBMAs and cardiovascular disease (CVD), including an evaluation of their nutritional profile and impact on CVD risk factors. Overall, the nutritional profiles of PBMAs vary considerably but generally align with recommendations for improving cardiovascular health; compared with meat, PBMAs are usually lower in saturated fat and higher in polyunsaturated fat and dietary fibre. Some dietary trials that have replaced meat with PBMAs have reported improvements in CVD risk factors, including total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B-100, and body weight. No currently available evidence suggests that the concerning aspects of PMBAs (eg, food processing and high sodium content) negate the potential cardiovascular benefits. We conclude that replacing meat with PBMAs may be cardioprotective; however, long-term randomised controlled trials and prospective cohort studies that evaluate CVD events (eg, myocardial infarction, stroke) are essential to draw more definitive conclusions.
Collapse
Affiliation(s)
- Matthew Nagra
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Felicia Tsam
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Shaun Ward
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ehud Ur
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Kennedy J, Alexander P, Taillie LS, Jaacks LM. Estimated effects of reductions in processed meat consumption and unprocessed red meat consumption on occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the USA: a microsimulation study. Lancet Planet Health 2024; 8:e441-e451. [PMID: 38969472 DOI: 10.1016/s2542-5196(24)00118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population. METHODS We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015-16 and one conducted during 2017-18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis. FINDINGS The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500-359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600-99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400-55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300-17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700-740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900-298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500-32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300-47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100-1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100-391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100-86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600-64 400) fewer all-cause deaths during the 10-year period. INTERPRETATION Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption. FUNDING The Wellcome Trust.
Collapse
Affiliation(s)
- Joe Kennedy
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, UK.
| | - Peter Alexander
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, UK; School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Lindsey Smith Taillie
- Carolina Population Center, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
16
|
Xie Y, Cai L, Zhou G, Li C. Comparison of nutritional profile between plant-based meat analogues and real meat: A review focusing on ingredients, nutrient contents, bioavailability, and health impacts. Food Res Int 2024; 187:114460. [PMID: 38763688 DOI: 10.1016/j.foodres.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
In order to fully understand the nutritional heterogeneity of plant-based meat analogues and real meat, this review summarized their similarities and differences in terms of ingredients, nutrient contents, bioavailability and health impacts. Plant-based meat analogues have some similarities to real meat. However, plant-based meat analogues are lower in protein, cholesterol and VB12 but higher in dietary fiber, carbohydrates, sugar, salt and various food additives than real meat. Moreover, some nutrients in plant-based meat analogues, such as protein and iron, are less bioavailable. There is insufficient evidence that plant-based meat analogues are healthier, which may be related to the specific attributes of these products such as formulation and degree of processing. As things stand, it is necessary to provide comprehensive nutrition information on plant-based meat products so that consumers can make informed choices based on their nutritional needs.
Collapse
Affiliation(s)
- Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Toh DWK, Fu AS, Mehta KA, Lam NYL, Haldar S, Henry CJ. Plant-Based Meat Analogs and Their Effects on Cardiometabolic Health: An 8-Week Randomized Controlled Trial Comparing Plant-Based Meat Analogs With Their Corresponding Animal-Based Foods. Am J Clin Nutr 2024; 119:1405-1416. [PMID: 38599522 DOI: 10.1016/j.ajcnut.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND With the growing popularity of plant-based meat analogs (PBMAs), an investigation of their effects on health is warranted in an Asian population. OBJECTIVES This research investigated the impact of consuming an omnivorous animal-based meat diet (ABMD) compared with a PBMAs diet (PBMD) on cardiometabolic health among adults with elevated risk of diabetes in Singapore. METHODS In an 8-wk parallel design randomized controlled trial, participants (n = 89) were instructed to substitute habitual protein-rich foods with fixed quantities of either PBMAs (n = 44) or their corresponding animal-based meats (n = 45; 2.5 servings/d), maintaining intake of other dietary components. Low-density lipoprotein (LDL) cholesterol served as primary outcome, whereas secondary outcomes included other cardiometabolic disease-related risk factors (e.g. glucose and fructosamine), dietary data, and within a subpopulation, ambulatory blood pressure measurements (n = 40) at baseline and postintervention, as well as a 14-d continuous glucose monitor (glucose homeostasis-related outcomes; n = 37). RESULTS Data from 82 participants (ABMD: 42 and PBMD: 40) were examined. Using linear mixed-effects model, there were significant interaction (time × treatment) effects for dietary trans-fat (increased in ABMD), dietary fiber, sodium, and potassium (all increased in PBMD; P-interaction <0.001). There were no significant effects on the lipid-lipoprotein profile, including LDL cholesterol. Diastolic blood pressure (DBP) was lower in the PBMD group (P-interaction=0.041), although the nocturnal DBP dip markedly increased in ABMD (+3.2% mean) and was reduced in PBMD (-2.6%; P-interaction=0.017). Fructosamine (P time=0.035) and homeostatic model assessment for β-cell function were improved at week 8 (P time=0.006) in both groups. Glycemic homeostasis was better regulated in the ABMD than PBMD groups as evidenced by interstitial glucose time in range (ABMD median: 94.1% (Q1:87.2%, Q3:96.7%); PBMD: 86.5% (81.7%, 89.4%); P = 0.041). The intervention had no significant effect on the other outcomes examined. CONCLUSIONS An 8-wk PBMA diet did not show widespread cardiometabolic health benefits compared with a corresponding meat based diet. Nutritional quality is a key factor to be considered for next generation PBMAs. This trial was registered at https://clinicaltrials.gov/as NCT05446753.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore.
| | - Amanda Simin Fu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Kervyn Ajay Mehta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Nicole Yi Lin Lam
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Sumanto Haldar
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| | - Christiani Jeyakumar Henry
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
18
|
Xia P, Zheng Y, Sun L, Chen W, Shang L, Li J, Hou T, Li B. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review. Carbohydr Polym 2024; 331:121849. [PMID: 38388033 DOI: 10.1016/j.carbpol.2024.121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
The physicochemical properties of dietary fiber in the gastrointestinal tract, such as hydration properties, adsorption properties, rheological properties, have an important influence on the physiological process of host digestion and absorption, leading to the differences in satiety and glucose and lipid metabolisms. Based on the diversified physicochemical properties of konjac glucomannan (KGM), it is meaningful to review the relationship of structural characteristics, physicochemical properties and glycose and lipid metabolism. Firstly, this paper bypassed the category of intestinal microbes, and explained the potential of dietary fiber in regulating glucose and lipid metabolism during nutrient digestion and absorption from the perspective of colloidal nutrition. Secondly, the modification methods of KGM to regulate its physicochemical properties were discussed and the relationship between KGM's molecular structure types and glycose and lipid metabolism were summarized. Finally, based on the characteristics of KGM, the application of KGM in the main material and ingredients of fat reduction food was reviewed. We hope this work could provide theoretical basis for the study of dietary fiber colloid nutrition science.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
19
|
Şahin Bayram S. A Narrative Review of the Significance of Popular Diets in Diabetes Mellitus Management. Cureus 2024; 16:e61045. [PMID: 38800782 PMCID: PMC11127507 DOI: 10.7759/cureus.61045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus is a collection of metabolic disorders marked by elevated levels of glucose in the blood due to irregularities in the generation or functioning of insulin. Medical nutrition therapy and weight loss are crucial elements in the management of diabetes and the prevention of complications. Several diets have become popular over time for the goal of achieving weight loss, but their popularity has declined due to a lack of reliable scientific evidence. This study classifies popular diets into three categories: diets that manage the composition of macronutrients, diets that restrict specific foods or food groups, and diets that manipulate meal timing. The review includes research studies that investigated the effects of popular diets on the prevention, management, and complications of diabetes. It is clear that different popular diets can have positive effects on both preventing and treating diabetes and preventing and treating complications related to diabetes. However, it is not practical to determine which diet is the most effective option for preventing or controlling diabetes. Thus, the main focus should be on common underlying factors that support well-being, such as decreasing the intake of refined grains and added sugar, choosing non-starchy vegetables, and giving priority to whole foods over processed foods whenever possible, until there is stronger evidence supporting the specific benefits of different dietary patterns.
Collapse
|
20
|
El Sadig R, Wu J. Are novel plant-based meat alternatives the healthier choice? Food Res Int 2024; 183:114184. [PMID: 38760126 DOI: 10.1016/j.foodres.2024.114184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
The global market for plant-based meat alternatives (PBMAs) is expanding quickly. In this narrative review, analysis of the most recent scientific literature was achieved to understand the nutritional profile, health implications, and the challenges faced by PBMAs. On the positive side, most PBMAs are good sources of dietary fiber, contain phytochemicals, have comparable levels of iron, and are lower in calories, saturated fat, and cholesterol than meat. However, PBMAs frequently contain anti-nutrients, have less protein, iron, and vitamin B12, are lower in protein quality, and also have higher amounts of sodium. Substituting PBMAs for meats may cause iron, vitamin B12, and less likely protein deficiency for these vulnerable population such as women, older adults, and individuals with disorders. PBMAs fall into the category of ultra-processed foods, indicating a need to develop minimally processed, clean-label products. Replacing red meat with healthy plant-based foods is associated with lower risks of cardiovascular diseases, type 2 diabetes, and total mortality. There is a lack of robust, long-term evidence on the role of PBMAs consumption in health. As the nutrient contents of PBMAs can vary, consumers must read nutrition facts labels and ingredient lists to select a product that best fits their nutritional and health objectives.
Collapse
Affiliation(s)
- Rowan El Sadig
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
21
|
Nájera Espinosa S, Hadida G, Jelmar Sietsma A, Alae-Carew C, Turner G, Green R, Pastorino S, Picetti R, Scheelbeek P. Mapping the evidence of novel plant-based foods: a systematic review of nutritional, health, and environmental impacts in high-income countries. Nutr Rev 2024:nuae031. [PMID: 38657969 DOI: 10.1093/nutrit/nuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
CONTEXT Shifting from current dietary patterns to diets rich in plant-based (PB) foods and lower in animal-based foods (ABFs) is generally regarded as a suitable strategy to improve nutritional health and reduce environmental impacts. Despite the recent growth in supply of and demand for novel plant-based foods (NPBFs), a comprehensive overview is lacking. OBJECTIVES This review provides a synthesis of available evidence, highlights challenges, and informs public health and environmental strategies for purposeful political decision-making by systematically searching, analyzing, and summarizing the available literature. DATA SOURCES Five peer-reviewed databases and grey literature sources were rigorously searched for publications. DATA EXTRACTION Study characteristics meeting the inclusion criteria regarding NPBF nutrient composition and health and environmental outcomes in high-income countries were extracted. DATA ANALYSIS Fifty-seven peer-reviewed and 36 grey literature sources were identified; these were published in 2016-2022. NPBFs typically have substantially lower environmental impacts than ABFs, but the nutritional contents are complex and vary considerably across brands, product type, and main primary ingredient. In the limited evidence on the health impacts, shifts from ABFs to PB meats were associated with positive health outcomes. However, results were mixed for PB drinks, with links to micronutrient deficiencies. CONCLUSION If carefully selected, certain NPBFs have the potential to be healthier and nutrient-rich alternatives to ABFs and typically have smaller environmental footprints. More disaggregated categorization of various types of NPBFs would be a helpful step in guiding consumers and key stakeholders to make informed decisions. To enable informed policymaking on the inclusion of NPBFs in dietary transitions as part of a wider net-zero and health strategy, future priorities should include nutritional food standards, labelling, and subdivisions or categorizations of NPBFs, as well as short- and long-term health studies evaluating dietary shifts from ABFs to NPBFs and standardized environmental impact assessments, ideally from independent funders.
Collapse
Affiliation(s)
- Sarah Nájera Espinosa
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Genevieve Hadida
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Anne Jelmar Sietsma
- Priestley International Centre for Climate, University of Leeds, Leeds, United Kingdom
| | - Carmelia Alae-Carew
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grace Turner
- Department of Public Health, Environment and Society, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rosemary Green
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Silvia Pastorino
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Roberto Picetti
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Pauline Scheelbeek
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
22
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
23
|
Franca P, Pierucci AP, Boukid F. Analysis of ingredient list and nutrient composition of plant-based burgers available in the global market. Int J Food Sci Nutr 2024; 75:159-172. [PMID: 38230681 DOI: 10.1080/09637486.2024.2303029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
The nutrient composition of plant-based burgers is a key factor when making their purchase/consumption decision to maintain a balanced diet. For this reason, ingredient list and nutritional information of burgers launched in the global market were retrieved from their labels. Products were classified based on the technology development, market position and region of the manufacturer. From the ingredient analysis, we observed a high heterogeneity in the ingredients used, a predominance of soy and wheat as main sources of proteins, and the increasing use of new protein sources (e.g. peas, other types of beans and pseudo-cereals). Oil was the most cited ingredient followed by salt. Nutritional composition varied mainly depending on the region with no clear pattern among countries. To less extent, technology development resulted in traditional products with lower amounts of protein and higher amounts of carbohydrates. Vegan and vegetarian products showed limited differences due to the high intra-heterogenicity.
Collapse
Affiliation(s)
- Paula Franca
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Paola Pierucci
- Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
24
|
Diao Z, Molludi J, Latef Fateh H, Moradi S. Comparison of the low-calorie DASH diet and a low-calorie diet on serum TMAO concentrations and gut microbiota composition of adults with overweight/obesity: a randomized control trial. Int J Food Sci Nutr 2024; 75:207-220. [PMID: 38149315 DOI: 10.1080/09637486.2023.2294685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
This study compares two diets, Dietary Approaches to Stop Hypertension (DASH) and a Low-Calorie Diet on Trimethylamine N-oxide (TMAO) levels and gut microbiota. 120 obese adults were randomly allocated to these three groups: a low-calorie DASH diet, a Low-Calorie diet, or a control group for 12 weeks. Outcomes included plasma TMAO, lipopolysaccharides (LPS), and gut microbiota profiles. After the intervention, the low-calorie DASH diet group demonstrated a greater decrease in TMAO levels (-20 ± 8.1 vs. -10.63 ± 4.6 μM) and a significant decrease in LPS concentration (-19.76 ± 4.2 vs. -5.68 ± 2.3) compared to the low-calorie diet group. Furthermore, the low-calorie DASH diet showed a higher decrease in the Firmicutes and Bactericides (F/B) ratio, which influenced TMAO levels, compared to the Low-Calorie diet (p = 0.028). The current study found the low-calorie DASH diet improves TMAO and LPS in comparison to a Low-Calorie diet.
Collapse
Affiliation(s)
- Zhipeng Diao
- Tianjin Yite Life Science R&D Co. LTD, Tianjin, China
| | - Jalall Molludi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hawal Latef Fateh
- Nursing Department, Kalar Technical College, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
- Nursing Department, Kalar Technical College, Garmian Polytechnic University, Kalar, Iraq
| | - Sara Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Meinilä J, Virtanen JK. Meat and meat products - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10538. [PMID: 38449706 PMCID: PMC10916397 DOI: 10.29219/fnr.v68.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/22/2022] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Meat is not only a source of several nutrients but also a proposed risk factor for several non-communicable diseases. Here, we describe the totality of evidence for the role of meat intake for chronic disease outcomes, discuss potential mechanistic pathways, knowledge gaps, and limitations of the literature. Use of the scoping review is based on a de novo systematic review (SR) and meta-analysis on the association between poultry intake and cardiovascular disease (CVD) and type 2 diabetes (T2D), qualified SRs (as defined in the Nordic Nutrition Recommendations 2023 project) on meat intake and cancer by the World Cancer Research Fund (WCRF), the International Agency for Research on Cancer (IARC), and a systematic literature search of SRs and meta-analyses. The quality of the SRs was evaluated using a modified AMSTAR 2 tool, and the strength of evidence was evaluated based on a predefined criteria developed by the WCRF. The quality of the SRs was on average critically low. Our findings indicate that the evidence is too limited for conclusions for most of the chronic disease outcomes. However, findings from qualified SRs indicate strong evidence that processed meat increases the risk of colorectal cancer and probable evidence that red meat (unprocessed, processed, or both) increases the risk. The evidence suggests that both unprocessed red meat and processed meat (also including processed poultry meat) are probable risk factors for CVD mortality and stroke, and that total red meat and processed meat are risk factors for CHD. We found no sufficient evidence suggesting that unprocessed red meat, processed red meat, total red meat, or processed meat (including red and white meat) would be protective of any chronic disease. There was also no sufficient evidence to conclude on protective effect of poultry on any chronic diseases; effects on the risk of CVD, stroke, and T2D, to any direction, were regarded as unlikely.
Collapse
Affiliation(s)
- Jelena Meinilä
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jyrki K. Virtanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
26
|
Soh BXP, Smith NW, R von Hurst P, McNabb WC. Evaluation of Protein Adequacy From Plant-Based Dietary Scenarios in Simulation Studies: A Narrative Review. J Nutr 2024; 154:300-313. [PMID: 38000662 DOI: 10.1016/j.tjnut.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Although a diet high in plant foods can provide beneficial nutritional outcomes, unbalanced and restrictive plant-based diets may cause nutrient deficiencies. Protein intake from these diets is widely discussed, but the comparison of animal and plant proteins often disregards amino acid composition and digestibility as measurements of protein quality. Poor provision of high-quality protein may result in adverse outcomes, especially for individuals with increased nutrient requirements. Several dietary modeling studies have examined protein adequacy when animal-sourced proteins are replaced with traditional and novel plant proteins, but no review consolidating these findings are available. This narrative review aimed to summarize the approaches of modeling studies for protein intake and protein quality when animal-sourced proteins are replaced with plant foods in diet simulations and examine how these factors vary across age groups. A total of 23 studies using dietary models to predict protein contribution from plant proteins were consolidated and categorized into the following themes-protein intake, protein quality, novel plant-based alternatives, and plant-based diets in special populations. Protein intake from plant-based diet simulations was lower than from diets with animal-sourced foods but met country-specific nutrient requirements. However, protein adequacy from some plant-sourced foods were not met for simulated diets of children and older adults. Reduced amino acid adequacy was observed with increasing intake of plant foods in some scenarios. Protein adequacy was generally dependent on the choice of substitution with legumes, nuts, and seeds providing greater protein intake and quality than cereals. Complete replacement of animal to plant-sourced foods reduced protein adequacy when compared with baseline diets and partial replacements.
Collapse
Affiliation(s)
- Bi Xue Patricia Soh
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nick W Smith
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Pamela R von Hurst
- School of Sport Exercise and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - Warren C McNabb
- Sustainable Nutrition Initiative, Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
27
|
Mirzababaei A, Mahmoodi M, Keshtkar A, Ashraf H, Abaj F, Soveid N, Hajmir MM, Radmehr M, Khalili P, Mirzaei K. Serum levels of trimethylamine N-oxide and kynurenine novel biomarkers are associated with adult metabolic syndrome and its components: a case-control study from the TEC cohort. Front Nutr 2024; 11:1326782. [PMID: 38321994 PMCID: PMC10844432 DOI: 10.3389/fnut.2024.1326782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Background Epidemiologic research suggests that gut microbiota alteration (dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS). Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-derived metabolite, as well as kynurenine pathways (KP), which are known as a new marker for an early predictor of chronic diseases. Hence, the current study aimed to investigate the association between KYN and TMAO with MetS and its components. Methods This case-control study was conducted on 250 adults aged 18 years or over of Tehran University of Medical Sciences (TUMS) Employee's Cohort study (TEC) in the baseline phase. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ) and dietary intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were measured by standard protocol. Result The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were directly correlated, after adjusting for confounding factors, the odds of MetS in individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31-4.28, P-value = 0.004), also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times, which is statistically significant (OR: 1.48, 95% CI: 0.83-2.63, P-value = 0.04). High levels of TMAO compared with the reference group increased the odds of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05). Additionally, there was a statistically significant high level of KYN increased odds of abdominal obesity (P < 0.05). Conclusion Our study revealed a positive association between serum TMAO and KYN levels and MetS and some of its components. For underlying mechanisms and possible clinical implications of the differences. Prospective studies in healthy individuals are necessary.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Keshtkar
- Department of Disaster and Emergency Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Neda Soveid
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Mehri Hajmir
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Radmehr
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
León-Letelier RA, Dou R, Vykoukal J, Yip-Schneider MT, Maitra A, Irajizad E, Wu R, Dennison JB, Do KA, Zhang J, Schmidt CM, Hanash S, Fahrmann JF. Contributions of the Microbiome-Derived Metabolome for Risk Assessment and Prognostication of Pancreatic Cancer. Clin Chem 2024; 70:102-115. [PMID: 38175578 DOI: 10.1093/clinchem/hvad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response. CONTENT The occurrence of microbial metabolites in biofluids thereby enables risk assessment and prognostication of PDAC, as well as having potential for design of interception strategies. In this review, we first highlight the relevance of the microbiome for progression of precancerous lesions in the pancreas and, using liquid chromatography-mass spectrometry, provide supporting evidence that microbe-derived metabolites manifest in pancreatic cystic fluid and are associated with malignant progression of intraductal papillary mucinous neoplasm(s). We secondly summarize the biomarker potential of microbe-derived metabolite signatures for (a) identifying individuals at high risk of developing or harboring PDAC and (b) predicting response to treatment and disease outcomes. SUMMARY The microbiome-derived metabolome holds considerable promise for risk assessment and prognostication of PDAC.
Collapse
Affiliation(s)
- Ricardo A León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kim-An Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jianjun Zhang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, United States
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
29
|
Hoffman R. Defining "plant-based meats". Eur J Clin Nutr 2024; 78:72-73. [PMID: 37679569 DOI: 10.1038/s41430-023-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Richard Hoffman
- School of Life Sciences, University of Hertfordshire, Hatfield, Herts, AL10 9AB, UK.
| |
Collapse
|
30
|
Sooampon S, Sooampon S. Voices of Thai Patients With Non-Communicable Diseases Towards Healthy and Ready Meal Products: A Mixed-Methods Research. SAGE Open Nurs 2024; 10:23779608241293688. [PMID: 39478955 PMCID: PMC11523148 DOI: 10.1177/23779608241293688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Healthy diets reduce the risk of several non-communicable diseases (NCDs) from diabetes to heart disease and hypertension to cancer. Given their busy lifestyles, it is difficult for individuals to routinely prepare healthy food. Therefore, healthy and ready meal products have been developed and commercially launched in Thailand. Objectives Considering ready and healthy meals as an innovative product line in the Thai market, the aim of this study was to identify the factors that influence NCD patients to adopt this product innovation. Methods This study used a mixed-methods approach based on Roger's model of innovation adoption. Two hundred and twenty NCD patients completed a questionnaire regarding their expectations towards healthy meal products. In-depth interviews were conducted with 20 respondents to explore the underlying reasons behind their scoring decisions in the questionnaires. Results The findings revealed that the highest rated items were the expectation that healthy meals reduce the severity of disease, help avoid high-cholesterol food, and comprise a variety of meal choices. Instead of celebrity marketing and corporate branding, the patients preferred healthy meals that are recommended by health professionals and produced by university research teams. The qualitative findings also demonstrated that most patients welcomed healthy menus as a preventive treatment, but still have concerns regarding the availability and quality of the products. Conclusion This study reveals the expectations of prospective consumers, specifically NCD patients, towards healthy and ready meal products. It adds key information for food producers, health professionals, and policymakers to foster healthy food innovation, especially in the context of emerging economies like Thailand where healthy food choices are limited.
Collapse
Affiliation(s)
- Sireerat Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sutti Sooampon
- Business School, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| |
Collapse
|
31
|
Dimina L, Tremblay-Franco M, Deveaux A, Tardivel C, Fouillet H, Polakof S, Martin JC, Mariotti F. Plasma Metabolome Analysis Suggests That L-Arginine Supplementation Affects Microbial Activity Resulting in a Decrease in Trimethylamine N-oxide-A Randomized Controlled Trial in Healthy Overweight Adults with Cardiometabolic Risk Factors. Curr Dev Nutr 2023; 7:102038. [PMID: 38162999 PMCID: PMC10754708 DOI: 10.1016/j.cdnut.2023.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Background The effects of supplementation with L-arginine (L-arg), the precursor of nitric oxide (NO), on vascular and cardiometabolic health have largely been explored. Whether other mechanisms of the action of L-arg exist remains unknown, as arginine metabolism is complicated. Objective We aimed to characterize the effect of low dose L-arg supplementation on overall human metabolism both in a fasting state and in response to an allostatic stress. Methods In a randomized, double-blind, crossover study, 32 healthy overweight adults (mean age 45 y) with cardiometabolic risk (fasting plasma triglycerides >150 mg/dL; waist circumference >94 cm [male] or >80 cm [female]) were treated with 1.5 g sustained-release L-arg 3 times/d (4.5 g/d) or placebo for 4 wk. On the last day of treatment, volunteers consumed a high-fat meal challenge (900 kcal, 80% as fat, 13% as carbohydrate, and 7% as protein). Plasma was collected at fasting, 2, 4, and 6 h after the challenge, and the metabolome was analyzed by high-resolution liquid chromatography-mass spectrometry. Metabolic profiles were analyzed using linear mixed models-principal component analysis. Results The challenge meal explained most of the changes in the metabolome. The overall effect of L-arg supplementation significantly explained 0.5% of the total variance, irrespective of the response to the challenge meal (P < 0.05). Among the metabolites that explain most of the L-arg effect, we found many amino acids, including branched-chain amino acids, that were decreased by L-arg supplementation. L-arg also decreased trimethylamine N-oxide (TMAO). Other changes suggest that L-arg increased methyl demand. Conclusions Analysis of the effect of 4 wk of L-arg supplementation on the metabolome reveals important effects on methyl balance and gut microbiota activity, such as a decrease in TMAO. Further studies are needed to investigate those mechanisms and the implications of these changes for long-term health.This trial was registered at clinicaltrials.gov as NCT02354794.
Collapse
Affiliation(s)
- Laurianne Dimina
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, Toulouse, France
- Metatoul-AXIOM platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, Toulouse, France
| | - Ambre Deveaux
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | | | - Hélène Fouillet
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Sergio Polakof
- Université Clermont Auvergne, INRAE, UMR 1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | | | - François Mariotti
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| |
Collapse
|
32
|
Farsi DN, Gallegos JL, Finnigan TJA, Cheung W, Munoz JM, Commane DM. The effects of substituting red and processed meat for mycoprotein on biomarkers of cardiovascular risk in healthy volunteers: an analysis of secondary endpoints from Mycomeat. Eur J Nutr 2023; 62:3349-3359. [PMID: 37624376 PMCID: PMC10611638 DOI: 10.1007/s00394-023-03238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Mycoprotein is a relatively novel food source produced from the biomass of Fusarium venenatum. It has previously been shown to improve CVD risk markers in intervention trials when it is compared against total meat. It has not hitherto been assessed specifically for benefits relative to red and processed meat. METHODS We leveraged samples from Mycomeat, an investigator-blind randomised crossover controlled trial in metabolically healthy male adults (n = 20), randomised to consume 240 g/day of red and processed meat for 14 days followed by mycoprotein, or vice versa. Blood biochemical indices were a priori defined secondary endpoints. RESULTS Mycoprotein consumption led to a 6.74% reduction in total cholesterol (P = 0.02) and 12.3% reduction in LDL cholesterol (P = 0.02) from baseline values. Change in fasted triglycerides was not significantly different between diets (+ 0.19 ± 0.11 mmol/l with mycoprotein, P = 0.09). There was a small but significant reduction in waist circumference for mycoprotein relative to meat (- 0.95 ± 0.42 cm, P = 0.04). Following the mycoprotein diet, mean systolic (- 2.41 ± 1.89 mmHg, P = 0.23) and diastolic blood pressure (- 0.80 ± 1.23 mmHg, P = 0.43) were reduced from baseline. There were no statistically significant effects of the intervention on urinary sodium, nitrite or TMAO; while urinary potassium (+ 126.12 ± 50.30 mmol/l, P = 0.02) and nitrate (+ 2.12 ± 0.90 mmol/l, P = 0.04) were both significantly higher with mycoprotein relative to meat. The study population comprised metabolically healthy adults, therefore, changes in plasma lipids had little effect on cardiovascular risk scores (- 0.34% FRS for mycoprotein P = 0.24). CONCLUSIONS These results confirm potential cardiovascular benefits when displacing red and processed meat with mycoprotein in the diet. Longer trials in higher risk study populations are needed to fully elucidate suggested benefits for blood pressure and body composition. CLINICALTRIALS gov Identifier: NCT03944421.
Collapse
Affiliation(s)
- Dominic N Farsi
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jose Lara Gallegos
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
- NUTRAN, Northumbria University, Newcastle upon Tyne, UK
| | | | - William Cheung
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| | - Jose Munoz Munoz
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| | - Daniel M Commane
- Applied and Health Sciences, University of Northumbria, Sutherland Building, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
33
|
Woodside JV, Lindberg L, Nugent AP. Harnessing the power on our plates: sustainable dietary patterns for public and planetary health. Proc Nutr Soc 2023; 82:437-453. [PMID: 37905409 DOI: 10.1017/s0029665123004809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Globally, diet quality is poor, with populations failing to achieve national dietary guidelines. Such failure has been consistently linked with malnutrition and poorer health outcomes. In addition to the impact of diet on health outcomes, it is now accepted that what we eat, and the resulting food system, has significant environmental or planetary health impacts. Changes are required to our food systems to reduce these impacts and mitigate the impact of climate change on our food supply. Given the complexity of the interactions between climate change, food and health, and the different actors and drivers that influence these, a systems-thinking approach to capture such complexity is essential. Such an approach will help address the challenges set by the UN 2030 Agenda for sustainable development in the form of the sustainable development goals (SDG). Progress against SDG has been challenging, with an ultimate target of 2030. While the scientific uncertainties regarding diet and public and planetary health need to be addressed, equal attention needs to be paid to the structures and systems, as there is a need for multi-level, coherent and sustained structural interventions and policies across the full food system/supply chain to effect behaviour change. Such systems-level change must always keep nutritional status, including impact on micronutrient status, in mind. However, benefits to both population and environmental health could be expected from achieving dietary behaviour change towards more sustainable diets.
Collapse
Affiliation(s)
- Jayne V Woodside
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT12 6BJ, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Leona Lindberg
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT12 6BJ, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Anne P Nugent
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Davies KP, Gibney ER, O'Sullivan AM. Moving towards more sustainable diets: Is there potential for a personalised approach in practice? J Hum Nutr Diet 2023; 36:2256-2267. [PMID: 37545042 DOI: 10.1111/jhn.13218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Discourse on the relationship between food production, healthy eating and sustainability has become increasingly prominent and controversial in recent years. Research groups often take one perspective when reporting on sustainable diets, and several often neglect considerations for the multiple aspects that make a diet truly sustainable, such as cultural acceptability, differences in nutritional requirements amongst the population and the efficiency of long-term dietary change. Plant-based diets are associated with lower greenhouse gas emissions (GHGEs) and have been linked with better health outcomes, including lower risk of diet-related chronic disease. However, foods associated with higher GHGE, such as lean red meat, fish and dairy, have beneficial nutritional profiles and contribute significantly to micronutrient intakes. Some research has shown that diets associated with lower GHGE can be less nutritionally adequate. Several countries now include sustainability recommendations in dietary guidelines but use vague language such as "increase" or "consume regularly" when referring to plant-based foods. General population-based nutrition advice has poor adherence and does not consider differences in nutritional needs. Although modelling studies show potential to significantly reduce environmental impact with dietary changes, personalising such dietary recommendations has not been studied. Adapting recommendations to the individual through reproducible methods of personalised nutrition has been shown to lead to more favourable and longer-lasting dietary changes compared to population-based nutrition advice. When considering sustainable healthy dietary guidelines, personalised feedback may increase the acceptability, effectiveness and nutritional adequacy of the diet. A personalised approach has the potential for delivering a new structure of more sustainable healthy food-based dietary guidelines. This review evaluates the potential to develop personalised sustainable healthy food-based dietary guidelines and discusses potential implications for policy and practice.
Collapse
Affiliation(s)
- Katie P Davies
- UCD Institute of Food and Health, School of Agriculture and Food Science, Dublin, Ireland
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, Dublin, Ireland
| | - Aifric M O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, Dublin, Ireland
| |
Collapse
|
35
|
Gu X, Drouin-Chartier JP, Sacks FM, Hu FB, Rosner B, Willett WC. Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males. Am J Clin Nutr 2023; 118:1153-1163. [PMID: 38044023 PMCID: PMC10739777 DOI: 10.1016/j.ajcnut.2023.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Studies with methodological advancements are warranted to confirm the relation of red meat consumption to the incidence of type 2 diabetes (T2D). OBJECTIVE We aimed to assess the relationships of intakes of total, processed, and unprocessed red meat to risk of T2D and to estimate the effects of substituting different protein sources for red meats on T2D risk. METHODS Our study included 216,695 participants (81% females) from the Nurses' Health Study (NHS), NHS II, and Health Professionals Follow-up Study (HPFS). Red meat intakes were assessed with semiquantitative food frequency questionnaires (FFQs) every 2 to 4 y since the study baselines. We used multivariable-adjusted proportional hazards models to estimate the associations between red meats and T2D. RESULTS Over 5,483,981 person-years of follow-up, we documented 22,761 T2D cases. Intakes of total, processed, and unprocessed red meat were positively and approximately linearly associated with higher risks of T2D. Comparing the highest to the lowest quintiles, hazard ratios (HR) were 1.62 (95% confidence interval [CI]: 1.53, 1.71) for total red meat, 1.51 (95% CI: 1.44, 1.58) for processed red meat, and 1.40 (95% CI: 1.33, 1.47) for unprocessed red meat. The percentage lower risk of T2D associated with substituting 1 serving/d of nuts and legumes for total red meat was 30% (HR = 0.70, 95% CI: 0.66, 0.74), for processed red meat was 41% (HR = 0.59, 95% CI: 0.55, 0.64), and for unprocessed red meat was 29% (HR = 0.71, 95% CI: 0.67, 0.75); Substituting 1 serving/d of dairy for total, processed, or unprocessed red meat was also associated with significantly lower risk of T2D. The observed associations became stronger after we calibrated dietary intakes to intakes assessed by weighed diet records. CONCLUSIONS Our study supports current dietary recommendations for limiting consumption of red meat intake and emphasizes the importance of different alternative sources of protein for T2D prevention.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jean-Philippe Drouin-Chartier
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada; Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
36
|
Coffey AA, Lillywhite R, Oyebode O. Meat versus meat alternatives: which is better for the environment and health? A nutritional and environmental analysis of animal-based products compared with their plant-based alternatives. J Hum Nutr Diet 2023; 36:2147-2156. [PMID: 37534713 DOI: 10.1111/jhn.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Poor diets lead to negative health outcomes, including increased risk of noncommunicable diseases. Food systems, most notably agriculture, contribute to greenhouse gas emissions (GHGE) that lead to climate change. Meat consumption plays a role in both health and environmental burden. Consumption of meat alternatives may reduce these harms. The aim was to compare meat products and their plant-based alternatives on nutritional parameters, GHGE and price to examine if it is feasible and beneficial for policymakers and health professionals to recommend meat alternatives. METHODS Data on nutritional information and cost for 99 selected products were collected from five UK supermarkets. Estimates for GHGEs for 97 of these products were found through secondary articles. Median values for nutritional value, GHGE (kgCO2 e) and price per 100 g were calculated to allow comparisons between meat products and their alternatives. Mann-Whitney U tests were used to look for significant differences for each nutrient, emissions and price. RESULTS Meat alternatives contained significantly more fibre and sugar and were significantly higher in price compared to the equivalent meat products. Meat alternatives had a significantly lower number of calories, saturated fat, protein and kgCO2 e than meat products. There was no significant difference in the amount of salt between meat and meat alternatives. CONCLUSIONS Overall, this paper found that meat alternatives are likely to be better for health according to most parameters, while also being more environmentally friendly, with lower GHGEs. However, the higher price of these products may be a barrier to switching to meat alternatives for the poorest in society.
Collapse
Affiliation(s)
- Alice A Coffey
- Department of Public Health, University of Warwick Medical School, Coventry, UK
| | - Robert Lillywhite
- Department of Public Health, University of Warwick School of Life Sciences, Coventry, UK
| | - Oyinlola Oyebode
- Department of Public Health, University of Warwick Medical School, Coventry, UK
| |
Collapse
|
37
|
Landry MJ, Ward CP, Cunanan KM, Durand LR, Perelman D, Robinson JL, Hennings T, Koh L, Dant C, Zeitlin A, Ebel ER, Sonnenburg ED, Sonnenburg JL, Gardner CD. Cardiometabolic Effects of Omnivorous vs Vegan Diets in Identical Twins: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2344457. [PMID: 38032644 PMCID: PMC10690456 DOI: 10.1001/jamanetworkopen.2023.44457] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Importance Increasing evidence suggests that, compared with an omnivorous diet, a vegan diet confers potential cardiovascular benefits from improved diet quality (ie, higher consumption of vegetables, legumes, fruits, whole grains, nuts, and seeds). Objective To compare the effects of a healthy vegan vs healthy omnivorous diet on cardiometabolic measures during an 8-week intervention. Design, Setting, and Participants This single-center, population-based randomized clinical trial of 22 pairs of twins (N = 44) randomized participants to a vegan or omnivorous diet (1 twin per diet). Participant enrollment began March 28, 2022, and continued through May 5, 2022. The date of final follow-up data collection was July 20, 2022. This 8-week, open-label, parallel, dietary randomized clinical trial compared the health impact of a vegan diet vs an omnivorous diet in identical twins. Primary analysis included all available data. Intervention Twin pairs were randomized to follow a healthy vegan diet or a healthy omnivorous diet for 8 weeks. Diet-specific meals were provided via a meal delivery service from baseline through week 4, and from weeks 5 to 8 participants prepared their own diet-appropriate meals and snacks. Main Outcomes and Measures The primary outcome was difference in low-density lipoprotein cholesterol concentration from baseline to end point (week 8). Secondary outcome measures were changes in cardiometabolic factors (plasma lipids, glucose, and insulin levels and serum trimethylamine N-oxide level), plasma vitamin B12 level, and body weight. Exploratory measures were adherence to study diets, ease or difficulty in following the diets, participant energy levels, and sense of well-being. Results A total of 22 pairs (N = 44) of twins (34 [77.3%] female; mean [SD] age, 39.6 [12.7] years; mean [SD] body mass index, 25.9 [4.7]) were enrolled in the study. After 8 weeks, compared with twins randomized to an omnivorous diet, the twins randomized to the vegan diet experienced significant mean (SD) decreases in low-density lipoprotein cholesterol concentration (-13.9 [5.8] mg/dL; 95% CI, -25.3 to -2.4 mg/dL), fasting insulin level (-2.9 [1.3] μIU/mL; 95% CI, -5.3 to -0.4 μIU/mL), and body weight (-1.9 [0.7] kg; 95% CI, -3.3 to -0.6 kg). Conclusions and Relevance In this randomized clinical trial of the cardiometabolic effects of omnivorous vs vegan diets in identical twins, the healthy vegan diet led to improved cardiometabolic outcomes compared with a healthy omnivorous diet. Clinicians can consider this dietary approach as a healthy alternative for their patients. Trial Registration ClinicalTrials.gov Identifier: NCT05297825.
Collapse
Affiliation(s)
- Matthew J. Landry
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
- Department of Population Health and Disease Prevention, Program in Public Health, University of California, Irvine
| | - Catherine P. Ward
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Kristen M. Cunanan
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, California
| | - Lindsay R. Durand
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Dalia Perelman
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Jennifer L. Robinson
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Tayler Hennings
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Linda Koh
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Christopher Dant
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Amanda Zeitlin
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| | - Emily R. Ebel
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford University, Palo Alto, California
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford University, Palo Alto, California
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford University, Palo Alto, California
- Chan Zuckerberg Biohub, San Francisco, California
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, California
| | - Christopher D. Gardner
- Stanford Prevention Research Center, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California
| |
Collapse
|
38
|
Sciarrillo CM, Guo J, Hengist A, Darcey VL, Hall KD. Diet order affects energy balance in randomized crossover feeding studies that vary in macronutrients but not ultra-processing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.03.23296501. [PMID: 37986904 PMCID: PMC10659501 DOI: 10.1101/2023.10.03.23296501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Crossover studies can induce order effects, especially when they lack a wash-out period. OBJECTIVE To explore diet order effects on energy balance and food intake between randomized diet order groups in two inpatient crossover studies originally designed to compare within-subject differences in ad libitum energy intake between either minimally processed low carbohydrate (LC) versus low fat (LF) diets or macronutrient-matched diets composed of mostly minimally processed food (MPF) or ultra-processed food (UPF). METHODS Diet order group comparisons of changes in body weight, body composition, and differences in energy expenditure, and food intake were assessed over four weeks in 20 adults randomized to either the LC followed immediately by the LF diet (LC→LF) or the opposite order (LF→LC) as well as 20 adults randomized to either the MPF followed by UPF (MPF→UPF) diets or the opposite order (UPF→MPF). RESULTS Subjects randomized to LC→LF lost 2.9 ± 1.1 kg more body weight (p < 0.001) and 1.5 ± 0.6 kg more body fat (p = 0.03) than the LF→LC group likely because the LC→LF group consumed 922 ± 304 kcal/d less than the LF→LC group (p = 0.0024). Reduced energy intake in LC→LF vs LF→LC was driven by the last two weeks (-1610 ± 306 kcal/d; p<0.00001) perhaps due to carryover effects of gut adaptations over the first two weeks arising from large differences in the mass of food (1295 ± 209 g/d; p<0.00001) and fiber intake (58 ± 5 g/d; p<0.00001). There were no diet order effects on ad libitum energy intake, body weight, or body composition change between UPF→MPF versus MPF→UPF groups. CONCLUSIONS Diet order influences daily ad libitum energy intake, body weight change, and fat change within the context of a 4-week crossover inpatient diet study varying in macronutrients, but not varying in extent and purpose of processing. Funding sources Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health. Clinical Trial Registration NCT03407053 and NCT03878108.
Collapse
Affiliation(s)
| | - Juen Guo
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Aaron Hengist
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Valerie L. Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Kevin D. Hall
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
39
|
Zarantonello D, Brunori G. The Role of Plant-Based Diets in Preventing and Mitigating Chronic Kidney Disease: More Light than Shadows. J Clin Med 2023; 12:6137. [PMID: 37834781 PMCID: PMC10573653 DOI: 10.3390/jcm12196137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a non-communicable disease that affects >10% of the general population worldwide; the number of patients affected by CKD is increasing due in part to the rise in risk factors such as obesity, hypertension, and diabetes mellitus. As many studies show, diet can be an important tool for preventing and mitigating the onset of non-communicable diseases. Plant-based diets (PBDs) are those that emphasize the consumption of plant foods and may or may not include small or moderate amounts of animal foods. Recently, these diets have received increasing interest because they have been associated with favourable effects on health and also appear to protect against the development and progression of CKD. PBDs, which are associated with protein restrictions, seem to offer adjunctive advantages in patients with chronic kidney disease, as compared to conventional low-protein diets that include animal proteins. The principal aims of this review are to provide a comprehensive overview of the existing literature regarding the role of plant-based diets and low-protein, plant-based diets in the context of chronic kidney disease. Moreover, we try to clarify the definition of plant-based diets, and then we analyse possible concerns about the use of PBDs in patients with chronic kidney disease (nutritional deficiency and hyperkalaemia risk). Finally, we offer some strategies to increase the nutritional value of plant-based low-protein diets. In the Materials and Methods section, many studies about plant-based diets and low-protein plant-based diets (e.g., the very-low-protein diet and vegan low-protein diet, LPD) in chronic kidney disease were considered. In the Results and Conclusion section, current data, most from observational studies, agree upon the protective effect of plant-based diets on kidney function. Moreover, in patients with advanced CKD, low-protein plant-based options, especially a very-low-protein diet supplemented with heteroanalogues (VLPDs), compared to a conventional LPD appear to offer adjunctive advances in terms of delaying dialysis and mitigating metabolic disturbances. However, further studies are necessary to better investigate the possible metabolic and cardiovascular advantages of plant-based LPDs versus conventional LPDs.
Collapse
Affiliation(s)
- Diana Zarantonello
- Department of Nephrology, Santa Chiara Hospital, APSS, 38122 Trento, Italy;
| | | |
Collapse
|
40
|
Flint M, Bowles S, Lynn A, Paxman JR. Novel plant-based meat alternatives: future opportunities and health considerations. Proc Nutr Soc 2023; 82:370-385. [PMID: 36603854 DOI: 10.1017/s0029665123000034] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Present food systems threaten population and environmental health. Evidence suggests reduced meat and increased plant-based food consumption would align with climate change and health promotion priorities. Accelerating this transition requires greater understanding of determinants of plant-based food choice. A thriving plant-based food industry has emerged to meet consumer demand and support dietary shift towards plant-based eating. 'Traditional' plant-based diets are low-energy density, nutrient dense, low in saturated fat and purportedly associated with health benefits. However, fast-paced contemporary lifestyles continue to fuel growing demand for meat-mimicking plant-based convenience foods which are typically ultra-processed. Processing can improve product safety and palatability and enable fortification and enrichment. However, deleterious health consequences have been associated with ultra-processing, though there is a paucity of equivocal evidence regarding the health value of novel plant-based meat alternatives (PBMAs) and their capacity to replicate the nutritional profile of meat-equivalents. Thus, despite the health halo often associated with plant-based eating, there is a strong rationale to improve consumer literacy of PBMAs. Understanding the impact of extensive processing on health effects may help to justify the use of innovative methods designed to maintain health benefits associated with particular foods and ingredients. Furthering knowledge regarding the nutritional value of novel PBMAs will increase consumer awareness and thus support informed choice. Finally, knowledge of factors influencing engagement of target consumer subgroups with such products may facilitate production of desirable, healthier PBMAs. Such evidence-based food manufacturing practice has the potential to positively influence future individual and planetary health.
Collapse
Affiliation(s)
- Megan Flint
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Simon Bowles
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Anthony Lynn
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Jenny R Paxman
- Food and Nutrition Subject Group, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
41
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
42
|
Zhang Q, Liu Y, He C, Zhu R, Li M, Lam HM, Wong WT. Nutritional Assessment of Plant-Based Meat Products Available on Hong Kong Market: A Cross-Sectional Survey. Nutrients 2023; 15:3684. [PMID: 37686716 PMCID: PMC10489762 DOI: 10.3390/nu15173684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Plant-based meat (PBM) takes up ever-increasing market shares and draws great attention from both customers and retailers these days. However, little is known about the nutritional quality of PBM products. OBJECTIVE This study intended to profile and evaluate the overview nutrition of PBM with equivalent meat products on the Hong Kong market. METHODS We conducted a cross-sectional survey of 274 PBM and 151 meat products from 27 different brands on the Hong Kong market in October 2022. The nutritional differences between PBM and meat products were assessed using analysis of covariance (ANCOVA) and two independent sample t-test. The nutritional quality of PBMs was evaluated according to nutrient reference value, front-of-package (FoP) criteria and nutritional score. RESULTS PBM had relatively lower energy density, total fat, saturated fat, protein, and salt compared to meat. According to the FoP criteria, 91.36%, 17.88%, and 99.34% of PBMs were labeled as medium to high in fat, salt, and sugar, respectively. Through ingredient analysis of 81 PBM products, soy and canola were the main source of protein and fat. CONCLUSIONS PBM products have a roughly better nutrient quality compared to muscle-based meat, though there is still potential for further refinement in terms of production, consumption, and regulation.
Collapse
Affiliation(s)
- Qile Zhang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (Q.Z.); (C.H.); (R.Z.)
| | - Yilin Liu
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Chufeng He
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (Q.Z.); (C.H.); (R.Z.)
| | - Ruiwen Zhu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (Q.Z.); (C.H.); (R.Z.)
| | - Minghui Li
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Hon-Ming Lam
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (Q.Z.); (C.H.); (R.Z.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Tak Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China; (Q.Z.); (C.H.); (R.Z.)
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Hess JM, Comeau ME, Casperson S, Slavin JL, Johnson GH, Messina M, Raatz S, Scheett AJ, Bodensteiner A, Palmer DG. Dietary Guidelines Meet NOVA: Developing a Menu for A Healthy Dietary Pattern Using Ultra-Processed Foods. J Nutr 2023; 153:2472-2481. [PMID: 37356502 DOI: 10.1016/j.tjnut.2023.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND A proposed topic for the 2025 Dietary Guidelines for Americans (DGA) Scientific Advisory Committee to address is the relationship between dietary patterns with ultra-processed foods (UPF) and body composition and weight status. Implementing the NOVA system, the most commonly applied framework for determining whether a food is "ultra-processed," in dietary guidance could omit several nutrient-dense foods from recommended healthy diets in the DGA. OBJECTIVE The purpose of this proof-of-concept study was to determine the feasibility of building a menu that aligns with recommendations for a healthy dietary pattern from the 2020 DGA and includes ≥80% kcal from UPF as defined by NOVA. DESIGN To accomplish this objective, we first developed a list of foods that fit NOVA criteria for UPF, fit within dietary patterns in the 2020 DGA, and are commonly consumed by Americans. We then used these foods to develop a 7-d, 2000 kcal menu modeled on MyPyramid sample menus and assessed this menu for nutrient content as well as for diet quality using the Healthy Eating Index-2015 (HEI-2015). RESULTS In the ultra-processed DGA menu that was created, 91% of kcal were from UPF, or NOVA category 4. The HEI-2015 score was 86 out of a possible 100 points. This sample menu did not achieve a perfect score due primarily to excess sodium and an insufficient amount of whole grains. This menu provided adequate amounts of all macro- and micronutrients except vitamin D, vitamin E, and choline. CONCLUSIONS Healthy dietary patterns can include most of their energy from UPF, still receive a high diet quality score, and contain adequate amounts of most macro- and micronutrients.
Collapse
Affiliation(s)
- Julie M Hess
- US Department of Agriculture, Agriculture Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States.
| | - Madeline E Comeau
- US Department of Agriculture, Agriculture Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States
| | - Shanon Casperson
- US Department of Agriculture, Agriculture Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States
| | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN, United States
| | - Guy H Johnson
- Johnson Nutrition Solutions, LLC, Minneapolis, MN, United States
| | - Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Susan Raatz
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN, United States
| | - Angela J Scheett
- US Department of Agriculture, Agriculture Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States; University of North Dakota, Grand Forks, ND, United States
| | - Anne Bodensteiner
- University of North Dakota, Department of Nutrition and Dietetics, Grand Forks, North Dakota, United States
| | - Daniel G Palmer
- US Department of Agriculture, Agriculture Research Services, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States; University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
44
|
Shi W, Huang X, Schooling CM, Zhao JV. Red meat consumption, cardiovascular diseases, and diabetes: a systematic review and meta-analysis. Eur Heart J 2023; 44:2626-2635. [PMID: 37264855 DOI: 10.1093/eurheartj/ehad336] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
AIMS Observational studies show inconsistent associations of red meat consumption with cardiovascular disease (CVD) and diabetes. Moreover, red meat consumption varies by sex and setting, however, whether the associations vary by sex and setting remains unclear. METHODS AND RESULTS This systematic review and meta-analysis was conducted to summarize the evidence concerning the associations of unprocessed and processed red meat consumption with CVD and its subtypes [coronary heart disease (CHD), stroke, and heart failure], type two diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM) and to assess differences by sex and setting (western vs. eastern, categorized based on dietary pattern and geographic region). Two researchers independently screened studies from PubMed, Web of Science, Embase, and the Cochrane Library for observational studies and randomized controlled trials (RCTs) published by 30 June 2022. Forty-three observational studies (N = 4 462 810, 61.7% women) for CVD and 27 observational studies (N = 1 760 774, 64.4% women) for diabetes were included. Red meat consumption was positively associated with CVD [hazard ratio (HR) 1.11, 95% confidence interval (CI) 1.05 to 1.16 for unprocessed red meat (per 100 g/day increment); 1.26, 95% CI 1.18 to 1.35 for processed red meat (per 50 g/day increment)], CVD subtypes, T2DM, and GDM. The associations with stroke and T2DM were higher in western settings, with no difference by sex. CONCLUSION Unprocessed and processed red meat consumption are both associated with higher risk of CVD, CVD subtypes, and diabetes, with a stronger association in western settings but no sex difference. Better understanding of the mechanisms is needed to facilitate improving cardiometabolic and planetary health.
Collapse
Affiliation(s)
- Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| | - Xin Huang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| | - C Mary Schooling
- School of Public Health and Health Policy, City University of New York, 55 W 125th St, New York, NY 10027, USA
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Road, Southern District, Hong Kong SAR, China
| |
Collapse
|
45
|
McClements IF, McClements DJ. Designing healthier plant-based foods: Fortification, digestion, and bioavailability. Food Res Int 2023; 169:112853. [PMID: 37254427 DOI: 10.1016/j.foodres.2023.112853] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Many consumers are incorporating more plant-based foods into their diets as a result of concerns about the environmental, ethical, and health impacts of animal sourced foods like meat, seafood, egg, and dairy products. Foods derived from animals negatively impact the environment by increasing greenhouse gas emissions, land use, water use, pollution, deforestation, and biodiversity loss. The livestock industry confines and slaughters billions of livestock animals each year. There are concerns about the negative impacts of some animal sourced foods, such as red meat and processed meat, on human health. The livestock industry is a major user of antibiotics, which is leading to a rise in the resistance of several pathogenic microorganisms to antibiotics. It is often assumed that a plant-based diet is healthier than one containing more animal sourced foods, but this is not necessarily the case. Eating more fresh fruits, vegetables, nuts, and whole grain cereals has been linked to improved health outcomes but it is unclear whether next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs are healthier than the products they are designed to replace. Many of these new products are highly processed foods that contain high levels of saturated fat, sugar, starch, and salt, and low levels of micronutrients, nutraceuticals, and dietary fibers. Moreover, they are often rapidly digested in the gastrointestinal tract because processing disrupts plant tissues and releases the macronutrients. Consequently, it is important to formulate plant-based foods to reduce the levels of nutrients linked to adverse health effects and increase the levels linked to beneficial health effects. Moreover, it is important to design the food matrix so that the macronutrients are not digested and absorbed too quickly, but the micronutrients are highly bioavailable. In this article, we discuss how next-generation plant-based foods can be made healthier by controlling their nutrient profile, digestibility, and bioavailability.
Collapse
|
46
|
Shahid M, Gaines A, Coyle D, Alessandrini R, Finnigan T, Frost G, Marklund M, Neal B. The effect of mycoprotein intake on biomarkers of human health: a systematic review and meta-analysis. Am J Clin Nutr 2023; 118:141-150. [PMID: 37407163 DOI: 10.1016/j.ajcnut.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Mycoprotein is a fungal source of protein that is increasingly consumed as an ingredient in meat analogs. OBJECTIVES This study aimed to systematically review and meta-analyze the effects of mycoprotein intake on selected biomarkers of human health. METHODS This study was registered in PROSPERO (CRD42022308980). We searched the PubMed, Scopus, and Embase databases to identify randomized control trials in any language until 16 August, 2022. Trials were included if they administered a mycoprotein intervention against a nonmycoprotein control arm and if reported outcomes included blood lipids, blood glucose, insulin, blood pressure, or body weight. Eligible trials were assessed for risk of bias using the Cochrane risk-of-bias tool for randomized trials. An inverse-variance-weighted, random-effects meta-analysis model was used to assess the effects of intake across each biomarker. RESULTS Nine trials that included 178 participants with a mean follow-up of 13 d were included, with 4 reporting on blood lipids and 5 reporting on postprandial blood glucose or insulin. The overall reduction of total cholesterol was -0.55 mmol/L (95% CI: -0.85 to -0.26; P < 0.001) in the mycoprotein group compared to control, but no clear effects on HDL cholesterol, LDL cholesterol, or TGs were found (all P > 0.05). There were no reductions in postprandial blood glucose concentrations at 30, 60, 90 or 120 min. Postprandial blood insulin concentration was reduced by -76.51 pmol/L (95% CI: -150.75 to -2.28; P = 0.043) at 30 min, with no detectable effects at 60, 90, or 120 min. CONCLUSIONS Mycoprotein intake may have important effects on blood lipids, but the evidence base is limited by the small sample sizes and short intervention periods of the contributing trials. The protocol for this systematic review has been registered in PROSPERO as CRD42022308980.
Collapse
Affiliation(s)
- Maria Shahid
- The George Institute for Global Health, University of New South Wales, Sydney, Australia.
| | - Allison Gaines
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Daisy Coyle
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Roberta Alessandrini
- Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | | | - Gary Frost
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Matti Marklund
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Bruce Neal
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Venkatraman DR, Hernández Ruiz MP, Lawrence DAS, Lei J, Nagpal A. Transforming practice chains through ideological objects: How plant-based meats impact consumers' everyday food practices. Appetite 2023:106765. [PMID: 37385472 DOI: 10.1016/j.appet.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
This research investigates the impact of the introduction of plant-based meats (PBMs) on consumers' food practices. Based on the results of 21 in-depth interviews with consumers who use PBMs, this research uses practice theory to explore how the adoption of PBMs affects linked food practices and the meanings associated with these practices. We find that consumers adopt PBMs due to either a desire for meaning coherence or for practicality. Subsequently there are social and embodied ripple consequences associated with this adoption, with consumers revising their social food practices, reconfiguring their understandings of health, and re-orienting their relationship to their body. Our findings extend the research on practice theory by examining how the adoption of a new category of ideological objects shapes other linked consumption practices. Practically, our findings provide important insights for dietary, marketing and health practitioners to understand the overall impact of PBM adoption on consumers' dietary patterns and practices, and their perception about health and body.
Collapse
Affiliation(s)
- Dr Rohan Venkatraman
- Department of Marketing, Birmingham Business School, University of Birmingham, Room 157, University House, Edgbaston, Birmingham, B15 2TY, United Kingdom.
| | | | - Dr Anita S Lawrence
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Australia.
| | - Jing Lei
- Department of Management and Marketing, Faculty of Business and Economics, University of Melbourne, Australia.
| | - Anish Nagpal
- Department of Management and Marketing, Faculty of Business and Economics, University of Melbourne, Australia.
| |
Collapse
|
48
|
Wang Y, Jian C. Novel plant-based meat alternatives: Implications and opportunities for consumer nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:241-274. [PMID: 37722774 DOI: 10.1016/bs.afnr.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Against the backdrop of the global protein transition needed to remain within planetary boundaries, there is an influx of plant-based meat alternatives that seek to approximate the texture, flavor and/or nutrient profiles of conventional animal meat. These novel plant-based meat alternatives, enabled by advances in food technology, can be fundamentally different from the whole-plant foods from which they are derived. One of the reasons is the necessity to use food additives on various occasions, since consumers' acceptance of plant-based meat products primarily depends on the organoleptic properties. Consequently, a high degree of heterogeneity in formulation and nutritional profiles exists both within and between product categories of plant-based meat alternatives with unknown effects on several aspects of human health. This is further complicated by the differences in digestibility and bioavailability between proteins from animal and plant sources, which have a profound impact on colonic fermentation, nutritional adequacy and potential health effects. On the other hand, emerging strategies provide opportunities to develop affordable, delicious and nutritious plant-based meat alternatives that align with consumer interests.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - Ching Jian
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
49
|
Gillies NA, Worthington A, Li L, Conner TS, Bermingham EN, Knowles SO, Cameron-Smith D, Hannaford R, Braakhuis A. Adherence and eating experiences differ between participants following a flexitarian diet including red meat or a vegetarian diet including plant-based meat alternatives: findings from a 10-week randomised dietary intervention trial. Front Nutr 2023; 10:1174726. [PMID: 37388633 PMCID: PMC10305861 DOI: 10.3389/fnut.2023.1174726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Background Flexitarian, vegetarian and exclusively plant-based diets are increasingly popular, particularly amongst young adults. This is the first randomised dietary intervention to investigate the health, wellbeing, and behavioural implications of consuming a basal vegetarian diet that additionally includes low-to-moderate amounts of red meat (flexitarian) compared to one containing plant-based meat alternatives (PBMAs, vegetarian) in young adults (ClinicalTrials.gov NCT04869163). The objective for the current analysis is to measure adherence to the intervention, nutrition behaviours, and participants' experience with their allocated dietary group. Methods Eighty healthy young adults participated in this 10-week dietary intervention as household pairs. Household pairs were randomised to receive either approximately three serves of red meat (average of 390 g cooked weight per individual, flexitarian group) or PBMAs (350-400 g per individual, vegetarian group) per week on top of a basal vegetarian diet. Participants were supported to adopt healthy eating behaviours, and this intervention was developed and implemented using a behaviour change framework. Adherence (eating allocated red meat or PBMA, abstaining from animal-based foods not provided by researchers) was continuously monitored, with total scores calculated at the end of the 10-week intervention period. Eating experiences were measured by the Positive Eating Scale and a purpose-designed exit survey, and a food frequency questionnaire measured dietary intake. Analyses used mixed effects modeling taking household clustering into account. Results The total average adherence score was 91.5 (SD = 9.0) out of a possible 100, with participants in the flexitarian group scoring higher (96.1, SD = 4.6, compared to 86.7, SD = 10.0; p < 0.001). Those receiving red meat were generally more satisfied with this allocation compared to those receiving the PBMAs, even though a leading motivation for participants joining the study was an opportunity to try plant-based eating (35% expressed that their interest in taking part was related to trying plant-based eating). Participants in both intervention groups had increased vegetable intake (p < 0.001), and reported more positive eating experiences (p = 0.020) and satisfaction with eating (p = 0.021) at the end of the 10-week intervention relative to baseline values. Conclusion Methods to encourage engagement with the trial were successful, as participants demonstrated excellent adherence to the intervention. Observed differences in participants' adherence and experiences between flexitarian and vegetarian groups holds implications for the adoption of healthy, sustainable dietary patterns beyond this study alone.
Collapse
Affiliation(s)
- Nicola A. Gillies
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna Worthington
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Larissa Li
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Tamlin S. Conner
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Emma N. Bermingham
- Smart Foods and Bioproducts Group, AgResearch Ltd., Palmerston North, New Zealand
| | - Scott O. Knowles
- Smart Foods and Bioproducts Group, AgResearch Ltd., Palmerston North, New Zealand
| | - David Cameron-Smith
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Sydney, NSW, Australia
| | - Rina Hannaford
- Digital Agriculture Group, AgResearch Ltd., Palmerston North, New Zealand
| | - Andrea Braakhuis
- Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Feiertag N, Tawfik MM, Loloi J, Patel RD, Green B, Zhu M, Klyde D, Small AC, Watts KL. Should Men Eat More Plants? A Systematic Review of the Literature on the Effect of Plant-Forward Diets on Men's Health. Urology 2023; 176:7-15. [PMID: 36963667 DOI: 10.1016/j.urology.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To perform a systematic review of the literature on plant-based and plant-forward diets and the prevention/treatment of the following common men's health conditions: prostate cancer (PCa), erectile dysfunction (ED), and benign prostatic hyperplasia (BPH). METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses system criteria were utilized to search PubMed and Medline databases for the following search terms: "Diet (Mesh)" OR "Diet Therapy (Mesh)" AND "Prostatic Hyperplasia (Mesh)" OR "Prostatic Neoplasm (Mesh)" OR "Erectile Dysfunction (Mesh)." Articles in English published from 1989 to 2022 using human participants were analyzed, data summarized, and assessed for bias. RESULTS Studies reporting on plant-based or vegetable-forward diets (Mediterranean) as an intervention were included. Cohort and cross-sectional studies using food frequency questionnaires or diet classification indices to quantify plant-based food intake patterns were included in the study. Ultimately, 12 PCa articles, 4 BPH articles, 6 ED articles, and 2 articles related to both BPH and ED were reviewed. Overall, the literature suggests plant-forward diets confer a protective effect on the men's health conditions reviewed. CONCLUSIONS Evaluation of the literature on the impact of plant-forward diets on urologic conditions includes a heterogenous range of dietary patterns and study designs. The greatest amount of research has evaluated the application of plant-forward diets for PCa. While there is currently a lack of high-quality evidence for the use of plant-forward diets as prevention and/or treatment for PCa, ED, or BPH, reported outcomes suggest a consistent small beneficial impact alongside well-established benefits for common chronic conditions.
Collapse
Affiliation(s)
| | | | - Justin Loloi
- Department of Urology, Montefiore Medical Center, Bronx, NY
| | - Rutul D Patel
- Department of Urology, Montefiore Medical Center, Bronx, NY
| | | | - Michael Zhu
- Albert Einstein College of Medicine, Bronx, NY
| | | | - Alexander C Small
- Department of Urology, Montefiore Medical Center, Bronx, NY; Albert Einstein College of Medicine, Bronx, NY
| | - Kara L Watts
- Department of Urology, Montefiore Medical Center, Bronx, NY; Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|