1
|
Xiao N, Ma H, Wang W, Sun Z, Li P, Xia T. Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. PLANTA 2024; 259:43. [PMID: 38277077 DOI: 10.1007/s00425-024-04336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
MAIN CONCLUSION ZmSUS1 improved drought tolerance of maize by regulating sucrose metabolism and increasing soluble sugar content, and endowing transgenic maize with higher relative water content and photosynthesis levels. Sucrose synthase (SUS), a key enzyme of sugar metabolism, plays an important role in the regulation of carbon partitioning in plant, and affects important agronomic traits and abiotic responses to adversity. However, the function of ZmSUS1 in plant drought tolerance is still unknown. In this study, the expression patterns of ZmSUS1 in different tissues and under drought stress were analyzed in maize (Zea mays L.). It was found that ZmSUS1 was highly expressed during kernel development but also in leaves and roots of maize, and ZmSUS1 was induced by drought stress. Homozygous transgenic maize lines overexpressing ZmSUS1 increased the content and activity of SUS under drought stress and exhibited higher relative water content, proline and abscisic acid content in leaves. Specifically, the net photosynthetic rate and the soluble sugar contents including sucrose, glucose, fructose and SUS decomposition products including UDP-glucose (UDP-G) and ADP-glucose (ADP-G) in transgenic plants were significantly improved after drought stress. RNA-seq analysis showed that overexpressing of ZmSUS1 mainly affected the expression level of carbon metabolism-related genes. Especially the expression level of sucrose metabolism-related genes including sucrose phosphatase gene (SPP), sucrose phosphate synthase gene (SPS) and invertase gene (INV) were significantly up-regulated in transgenic maize. Overall, these results suggested that ZmSUS1 improved drought tolerance by regulating sucrose metabolism and increasing the soluble sugar content, and endowing transgenic maize with higher relative water content and photosynthesis levels, which can serve as a new gene candidate for cultivating drought-resistant maize varieties.
Collapse
Affiliation(s)
- Ning Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Wanxia Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Zengkun Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China.
| |
Collapse
|
2
|
Li S, Wang Y, Liu Y, Liu C, Xu W, Lu Y, Ye Z. Sucrose synthase gene SUS3 could enhance cold tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2024; 14:1324401. [PMID: 38333039 PMCID: PMC10850397 DOI: 10.3389/fpls.2023.1324401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Tomatoes are susceptible to damage from cold temperatures in all stages of growth. Therefore, it is important to identify genetic resources and genes that can enhance tomato's ability to tolerate cold. In this study, a population of 223 tomato accessions was used to identify the sensitivity or tolerance of plants to cold stress. Transcriptome analysis of these accessions revealed that SUS3, a member of the sucrose synthase gene family, was induced by cold stress. We further investigated the role of SUS3 in cold stress by overexpression (OE) and RNA interference (RNAi). Compared with the wild type, SUS3-OE lines accumulated less MDA and electrolyte leakage and more proline and soluble sugar, maintained higher activities of SOD and CAT, reduced superoxide radicals, and suffered less membrane damage under cold. Thus, our findings indicate that SUS3 plays a crucial role in the response to cold stress. This study indicates that SUS3 may serve as a direct target for genetic engineering and improvement projects, which aim to augment the cold tolerance of tomato crops.
Collapse
Affiliation(s)
- Shouming Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Facility Horticulture Research Institute, Shihezi Academy of Agriculture Science, Shihezi, China
| | - Ying Wang
- Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Changhao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization (Xinjiang Production and Construction Crops), College of Agriculture, Shihezi University, Shihezi, China
| | - Yongen Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Zhuang H, Qin M, Liu B, Li R, Li Z. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108201. [PMID: 37995577 DOI: 10.1016/j.plaphy.2023.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Although microplastic pollution has been widely studied, the mechanism by which they influence plant photosynthesis and carbon and nitrogen metabolism remains unclear. We aimed to explore the effects of polystyrene microplastics (PS) on photosynthesis and carbon and nitrogen metabolism in cucumber using 5 μm and 0.1 μm PS particles. The PS treatments significantly reduced the stability of cucumber mesophyll cells and photosynthetic parameters and increased the soluble sugar content in cucumber leaves. The 5 μm PS affected the photosynthetic pathway by changing the expression of enzyme genes required for the synthesis of NADPH and ATP, which decreased the photosynthetic capacity in cucumber leaves. However, 0.1 μm PS altered the genes expression of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC), which affected the intercellular CO2 concentration and attenuated the negative effects on photosynthetic efficiency. Additionally, PS reduced the expression levels of nitrate/nitrite transporter (NRT) and nitrate reductase (NR), reducing the nitrogen use efficiency in cucumber leaves and mesophyll cells damage through increased accumulation of reduced glutathione (GSH), γ-glutamylcysteine (γ-GC), and citrulline. This study provides a new scientific basis for exploring the effects of microplastics on plant photosynthesis and carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Mengru Qin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Ruijing Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Liu B, Wang T, Liu L, Xiao D, Yang Y, Yuan L, Zhang A, Xu K, Liu S, Liu K, Chen L. MYB6/bHLH13-AbSUS2 involved in sugar metabolism regulates root hair initiation of Abies beshanzuensis. THE NEW PHYTOLOGIST 2023; 240:2386-2403. [PMID: 37817383 DOI: 10.1111/nph.19301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/16/2023] [Indexed: 10/12/2023]
Abstract
Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.
Collapse
Affiliation(s)
- Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingjuan Liu
- Longquan Preserve Center of Qianjiangyuan-Baishanzu National Park, Longquan, Zhejiang, 323714, China
| | - Duohong Xiao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Yang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shenglong Liu
- Longquan Preserve Center of Qianjiangyuan-Baishanzu National Park, Longquan, Zhejiang, 323714, China
| | - Ke Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
5
|
Mira MM, Hill RD, Hilo A, Langer M, Robertson S, Igamberdiev AU, Wilkins O, Rolletschek H, Stasolla C. Plant stem cells under low oxygen: metabolic rewiring by phytoglobin underlies stem cell functionality. PLANT PHYSIOLOGY 2023; 193:1416-1432. [PMID: 37311198 DOI: 10.1093/plphys/kiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.
Collapse
Affiliation(s)
- Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
- Department of Botany and Microbiology, Tanta University, Tanta 31527, Egypt
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Matthias Langer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sean Robertson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
| | - Olivia Wilkins
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
6
|
Jiang Z, Zhang H, Gao S, Zhai H, He S, Zhao N, Liu Q. Genome-Wide Identification and Expression Analysis of the Sucrose Synthase Gene Family in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2023; 24:12493. [PMID: 37569874 PMCID: PMC10420203 DOI: 10.3390/ijms241512493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Z.J.); (H.Z.); (S.G.); (H.Z.); (S.H.); (N.Z.)
| |
Collapse
|
7
|
Wang Y, Xu Y, Xu J, Sun W, Lv Z, Manzoor MA, Liu X, Shen Z, Wang J, Liu R, Whiting MD, Jiu S, Zhang C. Oxygenation alleviates waterlogging-caused damages to cherry rootstocks. MOLECULAR HORTICULTURE 2023; 3:8. [PMID: 37789432 PMCID: PMC10515082 DOI: 10.1186/s43897-023-00056-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 10/05/2023]
Abstract
Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that 'Gisela 12' and 'Colt' were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyu Shen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Matthew D Whiting
- Department of Horticulture, Washington State University, Prosser, WA, 99350, USA
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Luan H, Li H, Li Y, Chen C, Li S, Wang Y, Yang J, Xu M, Shen H, Qiao H, Wang J. Transcriptome analysis of barley (Hordeum vulgare L.) under waterlogging stress, and overexpression of the HvADH4 gene confers waterlogging tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:62. [PMID: 36710329 PMCID: PMC9885653 DOI: 10.1186/s12870-023-04081-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Waterlogging is one of the major abiotic stresses in barley and greatly reduces grain yield and quality. To explore the mechanism controlling waterlogging tolerance in barley, physiological, anatomical and transcriptional analyses were performed in two contrasting barley varieties, viz. Franklin (susceptible) and TX9425 (tolerant). RESULTS Compared to Franklin, TX9425 had more adventitious roots and aerenchymas and higher antioxidant enzyme activities. A total of 3064 and 5693 differentially expressed genes (DEGs) were identified in TX9425 after 24 h and 72 h of waterlogging treatment, respectively, while 2297 and 8462 DEGs were identified in Franklin. The results suggested that TX9425 was less affected by waterlogging stress after 72 h of treatment. The DEGs were enriched mainly in energy metabolism, hormone regulation, reactive oxygen species (ROS) scavenging, and cell wall-modifying enzymes. Alcohol dehydrogenase (ADH) plays an important role in response to waterlogging stress. We found that HvADH4 was significantly upregulated under waterlogging stress in TX9425. Transgenic Arabidopsis overexpressing HvADH4 displayed higher activity of antioxidant enzymes and was more tolerant to waterlogging than the wild type (WT). CONCLUSIONS The current results provide valuable information that will be of great value for the exploration of new candidate genes for molecular breeding of waterlogging tolerance in barley.
Collapse
Affiliation(s)
- Haiye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, 224002 Jiangsu China
| | - Hongtao Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000 China
| | - Yu Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
| | - Changyu Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
| | - Shufeng Li
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000 China
| | - Yu Wang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
| | - Meng Xu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, 224002 Jiangsu China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002 China
| | - Hailong Qiao
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, 224002 China
| | - Jun Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000 China
| |
Collapse
|
9
|
Waterlogging Priming Enhances Hypoxia Stress Tolerance of Wheat Offspring Plants by Regulating Root Phenotypic and Physiological Adaption. PLANTS 2022; 11:plants11151969. [PMID: 35956447 PMCID: PMC9370225 DOI: 10.3390/plants11151969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
With global climate change, waterlogging stress is becoming more frequent. Waterlogging stress inhibits root growth and physiological metabolism, which ultimately leads to yield loss in wheat. Waterlogging priming has been proven to effectively enhance waterlogging tolerance in wheat. However, it is not known whether waterlogging priming can improve the offspring’s waterlogging resistance. Here, wheat seeds that applied waterlogging priming for one generation, two generations and three generations are separately used to test the hypoxia stress tolerance in wheat, and the physiological mechanisms are evaluated. Results found that progeny of primed plants showed higher plant biomass by enhancing the net photosynthetic rate and antioxidant enzyme activity. Consequently, more sugars are transported to roots, providing a metabolic substrate for anaerobic respiration and producing more ATP to maintain the root growth in the progeny of primed plants compared with non-primed plants. Furthermore, primed plants’ offspring promote ethylene biosynthesis and further induce the formation of a higher rate of aerenchyma in roots. This study provides a theoretical basis for improving the waterlogging tolerance of wheat.
Collapse
|
10
|
Tsuchiya Y, Nakamura T, Izumi Y, Okazaki K, Shinano T, Kubo Y, Katsuhara M, Sasaki T, Yamamoto Y. Physiological Role of Aerobic Fermentation Constitutively Expressed in an Aluminum-Tolerant Cell Line of Tobacco (Nicotiana tabacum). PLANT & CELL PHYSIOLOGY 2021; 62:1460-1477. [PMID: 34184745 PMCID: PMC8981456 DOI: 10.1093/pcp/pcab098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al)-tolerant tobacco cell line ALT301 derived from SL (wild-type) hardly exhibits Al-triggered reactive oxygen species (ROS) compared with SL. Molecular mechanism leading to this phenotype was investigated comparatively with SL. Under normal growth condition, metabolome data suggested the activation of glycolysis and lactate fermentation but the repression of the tricarboxylic acid (TCA) cycle in ALT301, namely aerobic fermentation, which seemed to be transcriptionally controlled partly by higher expression of genes encoding lactate dehydrogenase and pyruvate dehydrogenase kinase. Microarray and gene ontology analyses revealed the upregulation of the gene encoding related to APETALA2.3 (RAP2.3)-like protein, one of the group VII ethylene response factors (ERFVIIs), in ALT301. ERFVII transcription factors are known to be key regulators for hypoxia response that promotes substrate-level ATP production by glycolysis and fermentation. ERFVIIs are degraded under normoxia by the N-end rule pathway of proteolysis depending on both oxygen and nitric oxide (NO), and NO is produced mainly by nitrate reductase (NR) in plants. In ALT301, levels of the NR gene expression (NIA2), NR activity and NO production were all lower compared with SL. Consistently, the known effects of NO on respiratory pathways were also repressed in ALT301. Under Al-treatment condition, NO level increased in both lines but was lower in ALT301. These results suggest that the upregulation of the RAP2.3-like gene and the downregulation of the NIA2 gene and resultant NO depletion in ALT301 coordinately enhance aerobic fermentation, which seems to be related to a higher capacity to prevent ROS production in mitochondria under Al stress.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Institute of Plant Science and Resources, Okayama
University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Takuji Nakamura
- Lowland Crop Rotation System Group, Division of
Lowland Farming Research, Hokkaido Agricultural Research Center (HARC),
NARO, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yohei Izumi
- Institute of Plant Science and Resources, Okayama
University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Keiki Okazaki
- Central Region Agricultural Research Center, NARO
(CARC/NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Takuro Shinano
- Laboratory of Plant Nutrition, Graduate School of
Agriculture, Hokkaido University, N9, W9, Kitaku, Sapporo, Hokkaido
060-8589, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life
Science, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama
University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama
University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama
University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
11
|
Zhang H, Li G, Yan C, Cao N, Yang H, Le M, Zhu F. Depicting the molecular responses of adventitious rooting to waterlogging in melon hypocotyls by transcriptome profiling. 3 Biotech 2021; 11:351. [PMID: 34221821 DOI: 10.1007/s13205-021-02866-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Waterlogging is a severe abiotic stressor that inhibits crop growth and productivity owing to the decline in the amount of oxygen available to the waterlogged organs. Although melon (Cucumis melo L.) is sensitive to waterlogging, its ability to form adventitious roots facilitates the diffusion of oxygen and allows the plant to survive waterlogging. To provide comprehensive insight into the adventitious rooting in response to waterlogging of melon, global transcriptome changes during this process were investigated. Of the 17,146 genes expressed during waterlogging, 7363 of them were differentially expressed in the pairwise comparisons between different waterlogging treatment time points. A further analysis suggested that the genes involved in sugar cleavage, glycolysis, fermentation, reactive oxygen species scavenging, cell wall modification, cell cycle governing, microtubule remodeling, hormone signals and transcription factors could play crucial roles in the adventitious root production induced by waterlogging. Additionally, ethylene and ERFs were found to be vital factors that function in melon during adventitious rooting. This study broadens our understanding of the mechanisms that underlie adventitious rooting induced by waterlogging and lays the theoretical foundation for further molecular breeding of waterlogging-tolerant melon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02866-w.
Collapse
Affiliation(s)
- Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Guoquan Li
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Chengpu Yan
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Na Cao
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Huidong Yang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Meiwang Le
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Fanghong Zhu
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
12
|
Sanclemente MA, Ma F, Liu P, Della Porta A, Singh J, Wu S, Colquhoun T, Johnson T, Guan JC, Koch KE. Sugar modulation of anaerobic-response networks in maize root tips. PLANT PHYSIOLOGY 2021; 185:295-317. [PMID: 33721892 PMCID: PMC8133576 DOI: 10.1093/plphys/kiaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
Sugar supply is a key component of hypoxia tolerance and acclimation in plants. However, a striking gap remains in our understanding of mechanisms governing sugar impacts on low-oxygen responses. Here, we used a maize (Zea mays) root-tip system for precise control of sugar and oxygen levels. We compared responses to oxygen (21 and 0.2%) in the presence of abundant versus limited glucose supplies (2.0 and 0.2%). Low-oxygen reconfigured the transcriptome with glucose deprivation enhancing the speed and magnitude of gene induction for core anaerobic proteins (ANPs). Sugar supply also altered profiles of hypoxia-responsive genes carrying G4 motifs (sources of regulatory quadruplex structures), revealing a fast, sugar-independent class followed more slowly by feast-or-famine-regulated G4 genes. Metabolite analysis showed that endogenous sugar levels were maintained by exogenous glucose under aerobic conditions and demonstrated a prominent capacity for sucrose re-synthesis that was undetectable under hypoxia. Glucose abundance had distinctive impacts on co-expression networks associated with ANPs, altering network partners and aiding persistence of interacting networks under prolonged hypoxia. Among the ANP networks, two highly interconnected clusters of genes formed around Pyruvate decarboxylase 3 and Glyceraldehyde-3-phosphate dehydrogenase 4. Genes in these clusters shared a small set of cis-regulatory elements, two of which typified glucose induction. Collective results demonstrate specific, previously unrecognized roles of sugars in low-oxygen responses, extending from accelerated onset of initial adaptive phases by starvation stress to maintenance and modulation of co-expression relationships by carbohydrate availability.
Collapse
Affiliation(s)
- Maria-Angelica Sanclemente
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584CH, The Netherlands
- Author for communication:
| | - Fangfang Ma
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Adriana Della Porta
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Jugpreet Singh
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Shan Wu
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Thomas Colquhoun
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Timothy Johnson
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Environmental Horticulture, University of Florida, Gainesville, Florida, USA
| | - Jiahn-Chou Guan
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Karen E Koch
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
13
|
Zhang Y, Zhou J, Wei F, Song T, Yu Y, Yu M, Fan Q, Yang Y, Xue G, Zhang X. Nucleoredoxin Gene TaNRX1 Positively Regulates Drought Tolerance in Transgenic Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:756338. [PMID: 34868149 PMCID: PMC8632643 DOI: 10.3389/fpls.2021.756338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
Drought is the main abiotic stress factor limiting the growth and yield of wheat (Triticum aestivum L.). Therefore, improving wheat tolerance to drought stress is essential for maintaining yield. Previous studies have reported on the important role of TaNRX1 in conferring drought stress tolerance. Therefore, to elucidate the regulation mechanism by which TaNRX1 confers drought resistance in wheat, we generated TaNRX1 overexpression (OE) and RNA interference (RNAi) wheat lines. The results showed that the tolerance of the OE lines to drought stress were significantly enhanced. The survival rate, leaf chlorophyll, proline, soluble sugar content, and activities of the antioxidant enzymes (catalase, superoxide dismutase, and peroxidase) of the OE lines were higher than those of the wild type (WT); however, the relative electrical conductivity and malondialdehyde, hydrogen peroxide, and superoxide anion levels of the OE lines were lower than those of the WT; the RNAi lines showed the opposite results. RNA-seq results showed that the common differentially expressed genes of TaNRX1 OE and RNAi lines, before and after drought stress, were mainly distributed in the plant-pathogen interaction, plant hormone signal transduction, phenylpropane biosynthesis, starch and sucrose metabolism, and carbon metabolism pathways and were related to the transcription factors, including WRKY, MYB, and bHLH families. This study suggests that TaNRX1 positively regulates drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Yunrui Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Fan Wei
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ming Yu
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiru Fan
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yanning Yang
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Gang Xue
- College of Tobacco, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Gang Xue,
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Xianyang, China
- Xiaoke Zhang,
| |
Collapse
|
14
|
Dominguez PG, Donev E, Derba-Maceluch M, Bünder A, Hedenström M, Tomášková I, Mellerowicz EJ, Niittylä T. Sucrose synthase determines carbon allocation in developing wood and alters carbon flow at the whole tree level in aspen. THE NEW PHYTOLOGIST 2021; 229:186-198. [PMID: 32491203 DOI: 10.1111/nph.16721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Despite the ecological and industrial importance of biomass accumulation in wood, the control of carbon (C) allocation to this tissue and to other tree tissues remain poorly understood. We studied sucrose synthase (SUS) to clarify its role in biomass formation and C metabolism at the whole tree level in hybrid aspen (Populus tremula × tremuloides). To this end, we analysed source leaves, phloem, developing wood, and roots of SUSRNAi trees using a combination of metabolite profiling, 13 CO2 pulse labelling experiments, and long-term field experiments. The glasshouse grown SUSRNAi trees exhibited a mild stem phenotype together with a reduction in wood total C. The 13 CO2 pulse labelling experiments showed an alteration in the C flow in all the analysed tissues, indicating that SUS affects C metabolism at the whole tree level. This was confirmed when the SUSRNAi trees were grown in the field over a 5-yr period; their stem height, diameter and biomass were substantially reduced. These results establish that SUS influences C allocation to developing wood, and that it affects C metabolism at the whole tree level.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Evgeniy Donev
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Anne Bünder
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | | | - Ivana Tomášková
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Totte Niittylä
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| |
Collapse
|
15
|
Deng Y, Wang J, Zhang Z, Wu Y. Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1897-1907. [PMID: 32004404 PMCID: PMC7415785 DOI: 10.1111/pbi.13349] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 05/22/2023]
Abstract
The endosperm-specific transcription factor Opaque2 (O2) acts as a central regulator for endosperm filling, but its functions have not been fully defined. Regular o2 mutants exhibit a non-vitreous phenotype, so we used its vitreous variety Quality Protein Maize to create EMS-mutagenesis mutants for screening o2 enhancers (oen). A mutant (oen1) restored non-vitreousness and produced a large cavity in the seed due to severely depleted endosperm filling. When oen1 was introgressed into inbred W64A with a normal O2 gene, the seeds appeared vitreous but had a shrunken crown. oen1 was determined to encode Shrunken1 (Sh1), a sucrose synthase (SUS, EC 2.4.1.13). Maize contains three SUS-encoding genes (Sh1, Sus1, and Sus2) with Sh1 contributing predominantly to the endosperm. We determined SUS activity and found a major and minor reduction in oen1 and o2, respectively. In o2;oen1-1, SUS activity was further decreased. We found all Sus gene promoters contain at least one O2 binding element that can be specifically recognized and be transactivated by O2. Sus1 and Sus2 promoters had a much stronger O2 transactivation than Sh1, consistent with their transcript reduction in o2 endosperm. Although sus1 and sus2 alone or in combination had no perceptible phenotype, either of them could dramatically enhance seed opacity and cavity in sh1, indicating that transactivation of Sus1 and Sus2 by O2 supplements SUS-mediated endosperm filling in maize. Our findings demonstrate that O2 transcriptionally regulates the metabolic source entry for protein and starch synthesis during endosperm filling.
Collapse
Affiliation(s)
- Yiting Deng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Zhiyong Zhang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
16
|
Yao D, Gonzales-Vigil E, Mansfield SD. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1858-1869. [PMID: 31805187 PMCID: PMC7242074 DOI: 10.1093/jxb/erz539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
Sucrose synthase (SuSy) is one of two enzyme families capable of catalyzing the first degradative step in sucrose utilization. Several earlier studies examining SuSy mutants in Arabidopsis failed to identify obvious phenotypic abnormalities compared with wild-type plants in normal growth environments, and as such a functional role for SuSy in the previously proposed cellulose biosynthetic process remains unclear. Our study systematically evaluated the precise subcellular localization of all six isoforms of Arabidopsis SuSy via live-cell imaging. We showed that yellow fluorescent protein (YFP)-labeled SuSy1 and SuSy4 were expressed exclusively in phloem companion cells, and the sus1/sus4 double mutant accumulated sucrose under hypoxic conditions. SuSy5 and SuSy6 were found to be parietally localized in sieve elements and restricted only to the cytoplasm. SuSy2 was present in the endosperm and embryo of developing seeds, and SuSy3 was localized to the embryo and leaf stomata. No single isoform of SuSy was detected in developing xylem tissue of elongating stem, the primary site of cellulose deposition in plants. SuSy1 and SuSy4 were also undetectable in the protoxylem tracheary elements, which were induced by the vascular-related transcription factor VND7 during secondary cell wall formation. These findings implicate SuSy in the biological events related to sucrose translocation in phloem.
Collapse
Affiliation(s)
- Danyu Yao
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Wu Z, Yang L, Jiang L, Zhang Z, Song H, Rong X, Han Y. Low concentration of exogenous ethanol promoted biomass and nutrient accumulation in oilseed rape ( Brassica napus L.). PLANT SIGNALING & BEHAVIOR 2019; 14:1681114. [PMID: 31642378 PMCID: PMC6866684 DOI: 10.1080/15592324.2019.1681114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
With hydroponics culture, we monitored the response of the growth and nutrient accumulation of oilseed rape (Brassica napus L.) to five ethanol concentrations: 0 mL•L-1 (control), 0.0125 mL•L-1, 0.025 mL•L-1, 0.05 mL•L-1, and 0.25 mL•L-1, respectively. The results showed that a high concentration of exogenous ethanol (0.25 mL•L-1) significantly inhibited oilseed rape growth by 52.28%. However, the biomass of oilseed rape with a low concentration of exogenous ethanol (0.0125-0.05 mL•L-1) manipulation was raised by 16.62-44.08%. A similar result was found on the total nitrogen, phosphorus, and potassium of the oilseed rape. Results of micro-element determination showed that iron and zinc accumulation in oilseed rape was unchanged, while manganese and copper accumulation was increased first and then decreased with increasing ethanol concentration. This study provided a possibility for improving plant growth with low concentration ethanol application in oilseed rape planting.
Collapse
Affiliation(s)
- Zhimin Wu
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| | - Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, P.R. China
| | - Zhenhua Zhang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| | - Haixing Song
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| | - Xiangmin Rong
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| | - Yongliang Han
- College of Resources and Environmental, Hunan Agricultural University, Changsha, P.R. China
| |
Collapse
|
18
|
Stein O, Granot D. An Overview of Sucrose Synthases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:95. [PMID: 30800137 PMCID: PMC6375876 DOI: 10.3389/fpls.2019.00095] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 05/04/2023]
Abstract
Sucrose is the end product of photosynthesis and the primary sugar transported in the phloem of most plants. Sucrose synthase (SuSy) is a glycosyl transferase enzyme that plays a key role in sugar metabolism, primarily in sink tissues. SuSy catalyzes the reversible cleavage of sucrose into fructose and either uridine diphosphate glucose (UDP-G) or adenosine diphosphate glucose (ADP-G). The products of sucrose cleavage by SuSy are available for many metabolic pathways, such as energy production, primary-metabolite production, and the synthesis of complex carbohydrates. SuSy proteins are usually homotetramers with an average monomeric molecular weight of about 90 kD (about 800 amino acids long). Plant SuSy isozymes are mainly located in the cytosol or adjacent to plasma membrane, but some SuSy proteins are found in the cell wall, vacuoles, and mitochondria. Plant SUS gene families are usually small, containing between four to seven genes, with distinct exon-intron structures. Plant SUS genes are divided into three separate clades, which are present in both monocots and dicots. A comprehensive phylogenetic analysis indicates that a first SUS duplication event may have occurred before the divergence of the gymnosperms and angiosperms and a second duplication event probably occurred in a common angiosperm ancestor, leading to the existence of all three clades in both monocots and dicots. Plants with reduced SuSy activity have been shown to have reduced growth, reduced starch, cellulose or callose synthesis, reduced tolerance to anaerobic-stress conditions and altered shoot apical meristem function and leaf morphology. Plants overexpressing SUS have shown increased growth, increased xylem area and xylem cell-wall width, and increased cellulose and starch contents, making SUS high-potential candidate genes for the improvement of agricultural traits in crop plants. This review summarizes the current knowledge regarding plant SuSy, including newly discovered possible developmental roles for SuSy in meristem functioning that involve sugar and hormonal signaling.
Collapse
Affiliation(s)
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
19
|
Greenway H, Armstrong W. Energy-crises in well-aerated and anoxic tissue: does tolerance require the same specific proteins and energy-efficient transport? FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:877-894. [PMID: 32291053 DOI: 10.1071/fp17250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/20/2018] [Indexed: 06/11/2023]
Abstract
Many of the profound changes in metabolism that are caused by O2 deficiency also occur in well-aerated tissues when oxidative phosphorylation is partially or wholly inhibited. For these well-aerated tissues, reduction in energy formation occurs during exposure to inhibitors of oxidative phosphorylation, cold/chilling and wounding, so we prefer the term 'energy crisis' metabolism over 'anaerobic' metabolism. In this review, we note that the overwhelming body of data on energy crises has been obtained by exposure to hypoxia-anoxia, which we will indicate when discussing the particular experiments. We suggest that even transient survival of an energy crisis requires a network of changes common to a large number of conditions, ranging from changes in development to various adverse conditions such as high salinity, drought and nutrient deficiency, all of which reduce growth. During an energy crisis this general network needs to be complemented by energy specific proteins, including the so called 'anaerobic proteins' and the group of ERFVII transcription factors, which induces the synthesis of these proteins. Crucially, the difference between anoxia-intolerant and -tolerant tissues in the event of a severe energy crisis would mainly depend on changes in some 'key' energy crisis proteins: we suggest these proteins would include phytoglobin, the V-H+PPiase and pyruvate decarboxylase. A second characteristic of a high tolerance to an energy crisis is engagement of energy efficient transport. This feature includes a sharp reduction in rates of solute transport and use of energy-efficient modifications of transport systems by primary H+ transport and secondary H+-solute transport systems. Here we also discuss the best choice of species to study an energy crisis. Further, we consider confounding of the acclimative response by responses to injury, be it due to the use of tissues intolerant to an energy crisis, or to faulty techniques.
Collapse
Affiliation(s)
- Hank Greenway
- School of Plant Biology, Faculty of Science, the University of Western Australia, Crawley, WA 6009, Australia
| | - William Armstrong
- School of Plant Biology, Faculty of Science, the University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Liu M, Hulting A, Mallory-Smith C. Comparison of growth and physiological characteristics between roughstalk bluegrass and tall fescue in response to simulated waterlogging. PLoS One 2017; 12:e0182035. [PMID: 28750041 PMCID: PMC5531569 DOI: 10.1371/journal.pone.0182035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022] Open
Abstract
Roughstalk bluegrass (Poa trivialis) is a weed in cool season grass seed production fields in Oregon. Populations of this weed are often greater in fields prone to waterlogging. A greenhouse study was conducted to investigate the morphological and physiological differences between recently established roughstalk bluegrass and tall fescue (Lolium arundinaceum) plants in response to simulated waterlogging. Differences in root morphological development and root respiration were found between waterlogged tall fescue and roughstalk bluegrass. Plants after 4 weeks of waterlogging, leaf number, plant height, and root biomass were reduced more in tall fescue than in roughstalk bluegrass plants. The root length increased 6% in waterlogged tall fescue plants, and decreased 42% in waterlogged roughstalk bluegrass plants, which lead to a shallower root system in roughstalk bluegrass. Root aerenchyma area increased more in waterlogged roughstalk bluegrass than in tall fescue. Alcohol dehydrogenase and lactate dehydrogenase activities increased in the roots of both species, but not in the leaves. The increases were greater in tall fescue than in roughstalk bluegrass. Turf quality, aboveground biomass, photosynthetic capacity, and water-soluble carbohydrate concentrations were reduced by waterlogging, but there were no differences over time or species. Thus, the shallower root system, larger aerenchyma, and reduced fermentation rates were the characteristics most likely to contribute to better waterlogging tolerance in roughstalk bluegrass compared to tall fescue and invasion of roughstalk bluegrass in waterlogged cool season grass seed fields.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Andrew Hulting
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Carol Mallory-Smith
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
21
|
Xu X, Chen M, Ji J, Xu Q, Qi X, Chen X. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC PLANT BIOLOGY 2017; 17:129. [PMID: 28747176 PMCID: PMC5530484 DOI: 10.1186/s12870-017-1081-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 07/21/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Waterlogging is a serious abiotic stress to plant growth because it results in the decline in the supplement of oxygen to submerged tissues. Although cucumber (Cucumis sativus L.) is sensitive to waterlogging, its ability to generate adventitious roots (ARs) facilitates gas diffusion and increases plant survival when the oxygen concentration is decreased. To gain a better understanding of the molecular mechanisms that enable de novo AR primordia emergence upon waterlogging, the RNA sequencing-based transcriptomic responses of two contrasting cucumber genotypes, Zaoer-N (waterlogging tolerant) and Pepino (waterlogging sensitive), which differed in their abilities to form AR were compared. RESULTS More than 27,000 transcripts were detected in cucumber hypocotyls, from which 1494 and 1766 genes in 'Zaoer-N' and 'Pepino', respectively, were differentially expressed 2 days after waterlogging. The significant positive correlation between RNA sequencing data and a qPCR analysis indicated that the identified genes were credible. A comparative analysis revealed that genes functioning in carbohydrate mobilization, nitrate assimilation, hormone production and signaling pathways, transcription factors and cell division might contribute to the waterlogging-triggered AR primordia initiation. Ethylene was determined to be an important plant hormone responsible for the cucumber ARs initiation. Additionally, genes encoding cytochrome P450, ankyrin repeat-containing proteins and sulfite oxidases were determined as important in waterlogging acclimation. CONCLUSION This research broadens our understanding of the mechanism underlying waterlogging-triggered ARs emergence, and provides valuable information for the breeding of cucumber with enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Xuewen Xu
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| | - Minyang Chen
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| | - Jing Ji
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| | - Qiang Xu
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| | - Xiaohua Qi
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| | - Xuehao Chen
- Department of horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 wenhui eastroad, Yangzhou, Jiangsu 225009 China
| |
Collapse
|
22
|
Pociecha E, Rapacz M, Dziurka M, Kolasińska I. Mechanisms involved in the regulation of photosynthetic efficiency and carbohydrate partitioning in response to low- and high-temperature flooding triggered in winter rye (Secale cereale) lines with distinct pink snow mold resistances. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:45-53. [PMID: 27010744 DOI: 10.1016/j.plaphy.2016.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
In terms of climate changes and global warming, winter hardiness could be determined by unfavorable environmental conditions other than frost. These could include flooding from melting snow and/or rain, coincident with fungal diseases. Therefore, we designed an experiment to identify potential common mechanisms of flooding tolerance and snow mold resistance, involving the regulation of photosynthetic efficiency and carbohydrate metabolism at low temperatures. Snow mold-resistant and susceptible winter rye (Secale cereale) plants were characterized by considerably different patterns of response to flooding. These differences were clearer at low temperature, thus confirming a possible role of the observed changes in snow mold tolerance. The resistant plants were characterized by lower PSII quantum yields at low temperature, combined with much higher energy flux for energy dissipation from the PSII reaction center. During flooding, the level of soluble carbohydrates increased in the resistant plants and decreased in the susceptible ones. Thus increase in resistant line was connected with a decrease in the energy dissipation rate in PSII/increased photosynthetic activity (energy flux for electron transport), a lower rate of starch degradation and higher rates of sucrose metabolism in leaves. The resistant lines accumulated larger amounts of total soluble carbohydrates in the crowns than in the leaves. Irrespective of flooding treatment, the resistant lines allocated more sugars for cell wall composition, both in the leaves and crowns. Our results clearly indicated that studies on carbohydrate changes at low temperatures or during anoxia should investigate not only the alterations in water-soluble and storage carbohydrates, but also cell wall carbohydrates. The patterns of changes observed after low and high-temperature flooding were different, indicating separate control mechanisms of these responses. These included changes in the photosynthetic apparatus, starch accumulation and cell wall carbohydrate accumulation.
Collapse
Affiliation(s)
- E Pociecha
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland.
| | - M Rapacz
- Department of Plant Physiology, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland
| | - M Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - I Kolasińska
- Department of Plant Genetics and Breeding, Institute of Plant Breeding and Acclimatization, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
23
|
Mirajkar SJ, Suprasanna P, Vaidya ER. Spatial distribution and dynamics of sucrose metabolising enzymes in radiation induced mutants of sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:85-93. [PMID: 26795733 DOI: 10.1016/j.plaphy.2015.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/31/2015] [Indexed: 05/08/2023]
Abstract
Sucrose metabolism in various source and sink organs of developing sugarcane (Saccharum officinarum L.) plant is accompanied with continuous synthesis and cleavage. In this regard, the involvement of four major enzymes viz. sucrose synthase (SS), sucrose phosphate synthase (SPS), soluble acid (SAI) and neutral invertases (NI) is considered crucial. In this study, we have analysed in vivo enzymatic activity of 12th month old field grown radiation-induced sugarcane mutants identified for sucrose accumulation. The mutants showed significant differences in the spatial enzymatic regulation in leaves, immature and mature internodes; SPS and SS activities were found highest in high sucrose accumulating mutants (AKTS-02 and AKTS-20) along with lower levels of SAI activity. Overall positive correlation of SPS, SS and negative correlation of SAI, NI activities with sucrose content of the respective tissue types was observed. The SPS activity was found strongly associated with sucrose content in leaves (r(2) = 0.558) and internodes (r(2) = 0.514), whereas, the SAI activity was found significant in leaves (r(2) = 0.379) and weakly associated in internodal tissues (r(2) = 0.248). However, the associations were found to be non-significant for SS and NI activities in both leaves and internodes. Despite this, the differences in the SPS and SAI activities (SPS-SAI) in leaves (r(2) = 0.828) and internodal tissues (r(2) = 0.619) had shown greater influence on net sucrose synthesis and accumulation. To summarize, our results suggest differential sugar metabolism in the induced mutants and that such contrasting mutant germplasm with a relatively uniform genetic makeup can be useful in molecular studies on sucrose accumulation.
Collapse
Affiliation(s)
- Shriram J Mirajkar
- Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 444 104, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 450 085, India.
| | - Eknath R Vaidya
- Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 444 104, India.
| |
Collapse
|
24
|
Panda BB, Badoghar AK, Das K, Panigrahi R, Kariali E, Das SR, Dash SK, Shaw BP, Mohapatra PK. Compact panicle architecture is detrimental for growth as well as sucrose synthase activity of developing rice kernels. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:875-887. [PMID: 32480730 DOI: 10.1071/fp14363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/29/2015] [Indexed: 06/11/2023]
Abstract
The increase of spikelet number in the panicles of modern super rice has made the architecture compact, as the extra spikelets are accommodated mostly on secondary branches than on primary branches. However, the grain yield did not improve because of poor grain filling, which was more visible in the basal spikelets than apical spikelets. The objective of this study was to examine the effect of the compactness and positional difference of spikelets in the panicle on grain filling by comparing the activity and genetic expression of starch synthesising enzymes in the developing kernels of lax-(Upahar and CR3856-45-11-2-7-2-5 (CR-45)) and compact-(Mahalaxmi and CR3856-29-14-2-1-1-1 (CR-29)) panicle cultivars. Upahar and Mahalaxmi are genetically related, whereas CR-45 and CR-29 are recombinant inbred lines. The grain carbohydrate concentration and activity of sucrose synthase (SUS) enzyme were estimated during the active period of grain filling. Further, expression of isoforms of SUS, ADP glucose pyrophosphorylase (APL and APS for large and small units respectively) and starch synthase (SS and GBSS for soluble and granule bound starch synthases respectively) were also assayed through PCR studies. The genotype approach used revealed grain SUS activity and starch concentration high and sugar concentration low in the lax- compared with compact-panicle cultivars and in the apical spikelets compared with basal ones. The margin of variation between apical and basal spikelets was higher in the compact- than the lax-panicle cultivars. Genetic expression of most of the isoforms of the enzymes was higher in the lax- than the compact-panicle cultivars as seen in RT-PCR studies. A quantitative appraisal of transcript levels of isoforms in the qRT-PCR identified greater expression of SUS3 in the basal spikelets of Upahar than that in Mahalaxmi and in CR-45 over CR-29, most prominently during the active period of grain filling. We conclude that proximal location as well as increased density of spikelets on panicles affected SUS3 expression in the basal spikelets. The metabolic dominance of a spikelet in rice panicle is dependent on the expression of the genes for different isoforms of starch synthesising enzymes, but the expression of SUS3 could be more specific than the others. SUS3 expression is most active during grain filling of the lax-panicle cultivars, but its dominance is reduced significantly in the kernels of the compact-panicle cultivars.
Collapse
Affiliation(s)
- B B Panda
- Institute of Life Science, Nalco Square, Bhubaneswar 751023, India
| | - A K Badoghar
- Institute of Life Science, Nalco Square, Bhubaneswar 751023, India
| | - K Das
- Institute of Life Science, Nalco Square, Bhubaneswar 751023, India
| | - R Panigrahi
- School of Life Science, Sambalpur University, Jyoti vihar, Sambalpur 768019, India
| | - E Kariali
- School of Life Science, Sambalpur University, Jyoti vihar, Sambalpur 768019, India
| | - S R Das
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - S K Dash
- Crop Improvement Division, Central Rice Research Institute, Cuttack 753006, India
| | - B P Shaw
- Institute of Life Science, Nalco Square, Bhubaneswar 751023, India
| | - P K Mohapatra
- School of Life Science, Sambalpur University, Jyoti vihar, Sambalpur 768019, India
| |
Collapse
|
25
|
Najeeb U, Bange MP, Tan DKY, Atwell BJ. Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AOB PLANTS 2015; 7:plv080. [PMID: 26194168 PMCID: PMC4565423 DOI: 10.1093/aobpla/plv080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Climatic variability, typified by erratic heavy-rainfall events, causes waterlogging in intensively irrigated crops and is exacerbated under warm temperature regimes on soils with poor internal drainage. Irrigated cotton is often grown in precisely these conditions, exposing it to waterlogging-induced yield losses after substantial summer rainfall. This calls for a deeper understanding of mechanisms of waterlogging tolerance and its relevance to cotton. Hence this review suggests possible causes of waterlogging-induced yield loss in cotton and approaches to improvement of waterlogging tolerance, drawing upon the slight body of published data in cotton and principles from other species. The yield penalty depends on soil type, phenological stage and cumulative period of root exposure to air-filled porosities below 10 %. Events in the soil include O2 deficiency in the root zone that changes the redox state of nutrients, making them unavailable (e.g. nitrogen) or potentially toxic for plants. Furthermore, root-derived hormones that are transported in the xylem have long been associated with oxygen deficits. These belowground effects (impaired root growth, nutrient uptake and transport, hormonal signalling) affect the shoots, interfering with canopy development, photosynthesis and radiation-use efficiency. Compared with the more waterlogging-tolerant cereals, cotton does not have identified adaptations to waterlogging in the root zone, forming no conspicuous root aerenchyma and having low fermentative activity. We speculate that these factors contribute substantially to the sensitivity of cotton to sustained periods of waterlogging. We discuss the impact of these belowground factors on shoot performance, photosynthesis and yield components. Management practices, i.e. soil aeration, scheduling irrigation and fertilizer application, can reduce waterlogging-induced damage. Limiting ethylene biosynthesis using anti-ethylene agents and down-regulating expression of genes controlling ethylene biosynthesis are strong candidates to minimize yield losses in waterlogged cotton crops. Other key pathways of anoxia tolerance are also cited as potential tools towards waterlogging-tolerant cotton genotypes.
Collapse
Affiliation(s)
- Ullah Najeeb
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Michael P Bange
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia CSIRO Agriculture Flagship, Australian Cotton Research Institute, Narrabri, NSW 2390, Australia
| | - Daniel K Y Tan
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia
| | - Brian J Atwell
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, The University of Sydney, NSW 2015, Australia Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
26
|
Atwell BJ, Greenway H, Colmer TD. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. THE NEW PHYTOLOGIST 2015; 206:36-56. [PMID: 25472708 DOI: 10.1111/nph.13173] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/09/2014] [Indexed: 05/08/2023]
Abstract
Anoxia tolerance in plants is distinguished by direction of the sparse supply of energy to processes crucial to cell maintenance and sometimes to growth, as in rice seedlings. In anoxic rice coleoptiles energy is used to synthesise proteins, take up K(+) , synthesise cell walls and lipids, and in cell maintenance. Maintenance of electrochemical H(+) gradients across the tonoplast and plasma membrane is crucial for solute compartmentation and thus survival. These gradients sustain some H(+) -solute cotransport and regulate cytoplasmic pH. Pyrophosphate (PPi ), the alternative energy donor to ATP, allows direction of energy to the vacuolar H(+) -PPi ase, sustaining H(+) gradients across the tonoplast. When energy production is critically low, operation of a biochemical pHstat allows H(+) -solute cotransport across plasma membranes to continue for at least for 18 h. In active (e.g. growing) cells, PPi produced during substantial polymer synthesis allows conversion of PPi to ATP by PPi -phosphofructokinase (PFK). In quiescent cells with little polymer synthesis and associated PPi formation, the PPi required by the vacuolar H(+) -PPi ase and UDPG pyrophosphorylase involved in sucrose mobilisation via sucrose synthase might be produced by conversion of ATP to PPi through reversible glycolytic enzymes, presumably pyruvate orthophosphate dikinase. These hypotheses need testing with species characterised by contrasting anoxia tolerance.
Collapse
Affiliation(s)
- Brian J Atwell
- Department of Biological Sciences, Faculty of Science, Macquarie University, Sydney, 2109, NSW, Australia
| | - Hank Greenway
- School of Plant Biology and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Timothy D Colmer
- School of Plant Biology and the UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
27
|
Kamal AHM, Rashid H, Sakata K, Komatsu S. Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress. J Proteomics 2015; 112:1-13. [PMID: 25201076 DOI: 10.1016/j.jprot.2014.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 01/10/2023]
Abstract
Flooding stress causes growth inhibition and ultimately death in most crop species by limiting of energy production. To better understand plant responses to flooding stress, here, flooding-responsive proteins in the cotyledons of soybean were identified using a gel-free quantitative proteomic approach. One hundred forty six proteins were commonly observed in both control and flooding-stressed plants, and 19 were identified under only flooding stress conditions. The main functional categories were protein and development-related proteins. Protein-protein interaction analysis revealed that zincin-like metalloprotease and cupin family proteins were found to highly interact with other proteins under flooding stress. Plant stearoyl acyl-carrier protein, ascorbate peroxidase 1, and secretion-associated RAS superfamily 2 were down-regulated, whereas ferretin 1 was up-regulated at the transcription level. Notably, the levels of all corresponding proteins were decreased, indicating that mRNA translation to proteins is impaired under flooding conditions. Decreased levels of ferritin may lead to a strong deregulation of the expression of several metal transporter genes and over-accumulation of iron, which led to increased levels of reactive oxygen species, resulting to detoxification of these reactive species. Taken together, these results suggest that ferritin might have an essential role in protecting plant cells against oxidative damage under flooding conditions. BIOLOGICAL SIGNIFICANCE This study reported the comparative proteomic analysis of cotyledon of soybean plants between non-flooding and flooding conditions using the gel-free quantitative techniques. Mass spectrometry analysis of the proteins from cotyledon resulted in the identification of a total of 165 proteins under flooding stress. These proteins were assigned to different functional categories, such as protein, development, stress, redox, and glycolysis. Therefore, this study provides not only the comparative proteomic analysis but also the molecular mechanism underlying the flooding responsive protein functions in the cotyledon.
Collapse
Affiliation(s)
| | - Hamid Rashid
- Mohammad Ali Jinnah University, Islamabad, Pakistan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- National Institute of Crop Science, NARO, Tsukuba 305-8518, Japan.
| |
Collapse
|
28
|
Santaniello A, Loreti E, Gonzali S, Novi G, Perata P. A reassessment of the role of sucrose synthase in the hypoxic sucrose-ethanol transition in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:2294-302. [PMID: 24810896 DOI: 10.1111/pce.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 05/20/2023]
Abstract
Plants under low-oxygen availability adapt their metabolism to compensate for the lower ATP production that arises from the limited respiratory activity in mitochondria. Anaerobic glycolysis requires continuous fuelling of carbon units, also provided from sucrose. The anaerobic catabolism of sucrose is thought to require the activity of sucrose synthase, being this enzymatic reaction more energetically favourable than that of invertase. The role of sucrose synthases (SUS) for aerobic sucrose catabolism in Arabidopsis has been recently questioned since SUS mutants fail to show altered phenotype or metabolic profile. In the present paper, we analysed the role of SUS1 and SUS4, both induced by low oxygen, in plant survival and ethanol production. The results showed that mutants lacking both SUS were as tolerant to low oxygen as the wild type in most of the experimental conditions tested. Only under conditions of limiting sugar availability the requirement of SUS1 and SUS4 for ethanol production was evident, although partly compensated by invertase activities, as revealed by the use of a double mutant lacking the two major cytosolic invertases. We conclude that, contrary to general belief, the sucrose synthase pathway is not the preferential route for sucrose metabolism under hypoxia.
Collapse
|
29
|
|
30
|
Kuai J, Liu Z, Wang Y, Meng Y, Chen B, Zhao W, Zhou Z, Oosterhuis DM. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:79-98. [PMID: 24767118 DOI: 10.1016/j.plantsci.2014.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
The work explored sucrose metabolism in the leaves subtending the cotton boll (SBL) and its role in boll weight after waterlogging in cotton. Results showed that net photosynthesis rate (Pn), relative water content, contents of Chlorophyll a and Chlorophyll b, initial ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity and cytosolic fructose-1, 6-bisphosphatase (cy-FBPase) activity decreased with waterlogging in the SBL on fruiting branches 2-3 (FB2-3) and FB6-7. Activities of sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) increased to the maximum up to 6 days of waterlogging then decreased with prolonged waterlogging. Rubisco activation and specific leaf weight increased and gene expressions of SuSy, SPS and rubisco activase (RCA) were all up-regulated with the duration of waterlogging, especially for the SBL on FB6-7. The induction of activity and gene expression of SuSy was most significant indicating its crucial role in sucrose metabolism after waterlogging. For the SBL in the later period of boll development on upper FB10-11 and FB14-15, the pattern seemed opposite to that of FB2-3 and FB6c7 as compensation effect in vegetative growth existed. Correlation analysis revealed that initial Rubisco activity and cy-FBPase activity were the main limitation to Pn reduction after waterlogging. Reduction in Pn, sucrose transformation rate and initial Rubisco activity directly decrease boll weight in waterlogged cotton. Besides the role in sucrose metabolism after waterlogging, SuSy also had a positive significant correlation with the duration of rapid-accumulation period for seed fiber weight (P<0.05). These findings elucidated mechanisms to waterlogging that affected seed fiber weight, which resulted from alteration in carbohydrates, enzymes and genes.
Collapse
Affiliation(s)
- Jie Kuai
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhaowei Liu
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Youhua Wang
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yali Meng
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Binglin Chen
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Wenqing Zhao
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| | - Derrick M Oosterhuis
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
31
|
Vartapetian BB, Dolgikh YI, Polyakova LI, Chichkova NV, Vartapetian AB. Biotechnological approaches to creation of hypoxia and anoxia tolerant plants. Acta Naturae 2014; 6:19-30. [PMID: 25093107 PMCID: PMC4115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The present work provides results of a number of biotechnological studies aimed at creating cell lines and entire plants resistant to anaerobic stress. Developed biotechnological approaches were based on earlier fundamental researches into anaerobic stress in plants, so "Introduction" briefly covers the importance of the problem and focuses on works considering two main strategies of plants adaptation to anaerobic stress. Those are adaptation at molecular level where key factor is anaerobic metabolism of energy (true tolerance) and adaptation of the entire plant via formation of aerenchyma and facilitated transportation of oxygen (apparent tolerance). Thus, sugarcane and wheat cells resistant to anaerobic stress were obtained through consecutive in vitro selection under conditions of anoxia and absence of exogenous carbohydrates. Tolerant wheat cells were used to regenerate entire plants of higher resistance to root anaerobiosis. It has been demonstrated that cells tolerance to anoxia is significantly supported by their ability to utilize exogenous nitrate. Cells tolerance established itself at the genetic level and was inherited by further generations. Apart from that, other successful attempts to increase tolerance of plants to anaerobic stress by means of stimulation of glycolysis and overexpression of genes responsible for cytokinin synthesis and programmed cell death are also discussed. The presented data proved the notion of two main strategies of plants adaptation to anaerobic stress proposed earlier on the base of fundamental studies.
Collapse
Affiliation(s)
- B. B. Vartapetian
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, Moscow, Russia, 127276
| | - Y. I. Dolgikh
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, Moscow, Russia, 127276
| | - L. I. Polyakova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Str., 35, Moscow, Russia, 127276
| | - N. V. Chichkova
- A.N.Belozersky Institute of Physico-Chemical Biology Moscow State University
| | - A. B. Vartapetian
- A.N.Belozersky Institute of Physico-Chemical Biology Moscow State University
| |
Collapse
|
32
|
Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, Li X, Zhang Z. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. PLANT, CELL & ENVIRONMENT 2014; 37:795-810. [PMID: 24028217 DOI: 10.1111/pce.12200] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sucrose synthase (SUS; EC 2.4.1.13) plays important roles in sugar metabolism and abiotic stress response. But the genes encoding SUS in cucumber (Cucumis sativus L.) have not been well studied. Here, we isolated four cucumber sucrose synthase genes (CsSUS). Among them, CsSUS3, which highly expressed in the roots, was chosen for further study. Immunolocalization and subcellular localization analysis indicated that CsSUS3 localized in the cytosol and the plasma membrane, and mainly existed in the companion cells of phloem in the roots. When suffering hypoxia stress from flooding, CsSUS3 expression and SUS activity in roots increased, especially in the lateral roots; moreover, the soluble SUS activity increased clearly, but the membrane fraction hardly changed. Compared with the wild-type cucumbers, the transgenic lines with antisense expression of CsSUS3 were more sensitive to flooding. After 6 d of flooding, the SUS activity, soluble sugar and uridine 5'-diphosphate glucose (UDPG) content and the ratio of ATP/ADP in the roots of transgenic plants were significantly lower than that in wild-type plants. Moreover, the transgenic lines grew more slowly with more yellow necrosis in the leaves. These findings suggested CsSUS3 participated in resisting hypoxic stress. Furthermore, the mechanism of CsSUS3 in resisting hypoxic stress was also discussed.
Collapse
Affiliation(s)
- Hongyun Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agriculture University, Beijing, 100193, China; Yantai Agricultural Science and Technology Institute, Yantai, 265500, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kogawara S, Yamanoshita T, Norisada M, Kojima K. Steady sucrose degradation is a prerequisite for tolerance to root hypoxia. TREE PHYSIOLOGY 2014; 34:229-40. [PMID: 24646690 DOI: 10.1093/treephys/tpu013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigated the role of glycolysis and sucrolysis in the difference in tolerance to root hypoxia between two Myrtaceae tree species, Melaleuca cajuputi (which shows superior tolerance to root hypoxia) and Eucalyptus camaldulensis (which does not). Analysis of the adenylate energy charge (AEC) in roots subjected to a 4-day hypoxic treatment (HT) in hydroponic culture revealed that the interspecies difference in tolerance corresponds to the ability to maintain energy status under root hypoxia: AEC was reduced by HT in E. camaldulensis, but not in M. cajuputi. The energy status in HT roots of E. camaldulensis was restored by feeding of glucose (Glc) but not sucrose (Suc). These data provide evidence that low substrate availability for glycolysis resulting from an impairment of sucrolysis suppresses ATP production under hypoxic conditions in this species. Measurements of the rates of O2 consumption and CO2 production in roots indicated that E. camaldulensis, but not M. cajuputi, failed to activate fermentation in HT roots. These results cannot be attributed to enzymatic dysfunction, because no inhibition of main glycolytic and fermentative enzymes was observed in both species, and Glc feeding had a beneficial effect on AEC of HT roots of E. camaldulensis. The impairment of sucrolysis was demonstrated by inhibited soluble acid invertase activity in HT roots of E. camaldulensis. In contrast, there was no inhibition in all sucrolytic enzymes tested in HT roots of M. cajuputi, suggesting that steady Suc degradation is essential for maintaining high energy status under root hypoxia. We conclude that root sucrolysis is one of the essential factors that determines the extent of tolerance to root hypoxia.
Collapse
Affiliation(s)
- Satoshi Kogawara
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
34
|
Mustroph A, Hess N, Sasidharan R. Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Mustroph A, Stock J, Hess N, Aldous S, Dreilich A, Grimm B. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. FRONTIERS IN PLANT SCIENCE 2013; 4:125. [PMID: 23717315 PMCID: PMC3653104 DOI: 10.3389/fpls.2013.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 05/18/2023]
Abstract
Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the ATP-dependent phosphofructokinase (PFK) and the pyrophosphate-(PPi) dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP). During oxygen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that PPi is used as an alternative energy source for the phosphorylation of fructose-6-phosphate during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinase-encoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response to anoxic stress and compared our data with transcript profiles obtained from microarray analyses. Furthermore, the intracellular localization of rice PFK proteins was determined, and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three PFP genes were decreased. The total specific activity of both PFK and PFP changed only slightly during a 24-h anoxia treatment. It is assumed that expression of different isoforms and their catalytic properties differ during normoxic and anoxic conditions and contribute to balanced glycolytic activity during the low-oxygen stress. These characterizations of phosphofructokinase genes and the comparison to other plant species allowed us to suggest candidate rice genes for adaptation to anoxic stress.
Collapse
Affiliation(s)
- Angelika Mustroph
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Johanna Stock
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Natalia Hess
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Sophia Aldous
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| | - Anika Dreilich
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| | - Bernhard Grimm
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| |
Collapse
|
36
|
Pucciariello C, Parlanti S, Banti V, Novi G, Perata P. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. PLANT PHYSIOLOGY 2012; 159:184-96. [PMID: 22415514 PMCID: PMC3375960 DOI: 10.1104/pp.111.191122] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/12/2012] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) play an important role as triggers of gene expression during biotic and abiotic stresses, among which is low oxygen (O(2)). Previous studies have shown that ROS regulation under low O(2) is driven by a RHO-like GTPase that allows tight control of hydrogen peroxide (H(2)O(2)) production. H(2)O(2) is thought to regulate the expression of heat shock proteins, in a mechanism that is common to both O(2) deprivation and to heat stress. In this work, we used publicly available Arabidopsis (Arabidopsis thaliana) microarray datasets related to ROS and O(2) deprivation to define transcriptome convergence pattern. Our results show that although Arabidopsis response to anoxic and hypoxic treatments share a common core of genes related to the anaerobic metabolism, they differ in terms of ROS-related gene response. We propose that H(2)O(2) production under O(2) deprivation is a trait present in a very early phase of anoxia, and that ROS are needed for the regulation of a set of genes belonging to the heat shock protein and ROS-mediated groups. This mechanism, likely not regulated via the N-end rule pathway for O(2) sensing, is probably mediated by a NADPH oxidase and it is involved in plant tolerance to the stress.
Collapse
Affiliation(s)
| | | | | | | | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
37
|
Péron T, Véronési C, Mortreau E, Pouvreau JB, Thoiron S, Leduc N, Delavault P, Simier P. Role of the sucrose synthase encoding PrSus1 gene in the development of the parasitic plant Phelipanche ramosa L. (Pomel). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:402-11. [PMID: 22088196 DOI: 10.1094/mpmi-10-11-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phelipanche ramosa L. (Pomel) is a major root-parasitic weed attacking many important crops. Success in controlling this parasite is rare and a better understanding of its unique biology is needed to develop new specific control strategies. In the present study, quantitative polymerase chain reaction experiments showed that sucrose synthase encoding PrSus1 transcripts accumulate at their highest level once the parasite is connected to the host (tomato) vascular system, mainly in the parasite tubercles, which bear numerous adventitious roots. In situ hybridization experiments revealed strong PrSus1 expression in both shoot and root apices, especially in shoot apical meristems and in the vascular tissues of scale leaves and stems, and in the apical meristems and developing xylem in roots. In addition, immunolocalization experiments showed that a sucrose synthase protein co-localized with cell-wall thickening in xylem elements. These findings highlight the role of PrSus1 in the utilization of host-derived sucrose in meristematic areas and in cellulose biosynthesis in differentiating vascular elements. We also demonstrate that PrSus1 is downregulated in response to 2,3,5-triiodobenzoic acid-induced inhibition of polar auxin transport in the host stem, suggesting that PrSus1 activity in xylem maturation is controlled by host-derived auxin.
Collapse
Affiliation(s)
- Thomas Péron
- LUNAM Université Laboratoire de Biologie et Pathologie Végétales, UFR Sciences et Techniques, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ferner E, Rennenberg H, Kreuzwieser J. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. TREE PHYSIOLOGY 2012; 32:135-45. [PMID: 22367762 DOI: 10.1093/treephys/tps009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Flooding is assumed to cause an energy crisis in plants because-due to a lack of O(2)-mitochondrial respiration is replaced by alcoholic fermentation which yields considerably less energy equivalents. In the present study, the effect of flooding on the carbon metabolism of flooding-tolerant pedunculate oak (Quercus robur L.) and flooding-sensitive European beech (Fagus sylvatica L.) seedlings was characterized. Whereas soluble carbohydrate concentrations dropped in roots of F. sylvatica, they were constant in Q. robur during flooding. At the same time, root alcohol dehydrogenase activities were decreased in beech but not in oak, suggesting substrate limitation of alcoholic fermentation in beech roots. Surprisingly, leaf and phloem sap sugar concentrations increased in both species but to a much higher degree in beech. This finding suggests that the phloem unloading process in flooding-sensitive beech was strongly impaired. It is assumed that root-derived ethanol is transported to the leaves via the transpiration stream. This mechanism is considered an adaptation to flooding because it helps avoid the accumulation of toxic ethanol in the roots and supports the whole plant's carbon metabolism by channelling ethanol into the oxidative metabolism of the leaves. A labelling experiment demonstrated that in the leaves of flooded trees, ethanol metabolism does not differ between flooded beech and oak, indicating that processes in the roots are crucial for the trees' flooding tolerance.
Collapse
Affiliation(s)
- Eleni Ferner
- Institut für Forstbotanik und Baumphysiologie, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee Geb. 053/054, D-79110 Freiburg i. Br., Germany
| | | | | |
Collapse
|
39
|
Singer SD, Hily JM, Cox KD. The sucrose synthase-1 promoter from Citrus sinensis directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants. PLANTA 2011; 234:623-37. [PMID: 21594624 DOI: 10.1007/s00425-011-1432-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/08/2011] [Indexed: 05/19/2023]
Abstract
Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene to test their ability to drive expression in the phloem of transgenic Arabidopsis thaliana and Nicotiana tabacum. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the CsSUS1p-2 allele also generated a significant level of expression in non-target tissues. Unexpectedly, GUS expression was also instigated in a minority of CsSUS1p::GUS lines in response to wounding in the leaves of transgenic Arabidopsis. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides -410 to -268 relative to the translational start site contained elements required for phloem-specific expression while nucleotides -268 to -103 contained elements necessary for wound-specific expression. Interestingly, the main difference between the two CsSUS1p alleles was the presence of a 94-bp insertion in allele 2. Fusion of this indel to a minimal promoter and GUS reporter gene indicated that it contained stamen and carpel-specific enhancer elements. This finding of highly specific and separable regulatory units within the CsSUS1p suggests that this promoter may have a potential application in the generation of constructs for the use in the development of transgenic plants resistant to a wide variety of target pests.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
40
|
Plaxton WC, Tran HT. Metabolic adaptations of phosphate-starved plants. PLANT PHYSIOLOGY 2011; 156:1006-15. [PMID: 21562330 PMCID: PMC3135920 DOI: 10.1104/pp.111.175281] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 05/09/2011] [Indexed: 05/18/2023]
Affiliation(s)
- William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
41
|
Irfan M, Hayat S, Hayat Q, Afroz S, Ahmad A. Physiological and biochemical changes in plants under waterlogging. PROTOPLASMA 2010; 241:3-17. [PMID: 20066446 DOI: 10.1007/s00709-009-0098-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/10/2009] [Indexed: 05/21/2023]
Abstract
Waterlogging usually results from overuse and/or poor management of irrigation water and is a serious constraint with damaging effects. The rapidly depleting oxygen from submerged root zone is sensed and plant adjusts expressing anaerobic proteins. Plant cells shift their metabolism towards low energy yielding anaerobic fermentation pathways in the absence of oxygen. Structural modifications are also induced as aerenchyma formation and adventitious rootings, etc. Studies at molecular and biochemical levels to facilitate early perception and subsequent responses have also been worked out to produce resistant transgenic plants. This review explores the sequential changes of plant responses at different levels regarding their defense strategies and efforts made to enhance them, tailoring crucial regulators so that they can withstand waterlogging stress.
Collapse
Affiliation(s)
- Mohd Irfan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | | | | | |
Collapse
|
42
|
Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J. Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. PLANT PHYSIOLOGY 2010; 152:1484-500. [PMID: 20097791 PMCID: PMC2832244 DOI: 10.1104/pp.109.151845] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/14/2010] [Indexed: 05/17/2023]
Abstract
High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific low-oxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.
Collapse
|
43
|
Sairam RK, Dharmar K, Chinnusamy V, Meena RC. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). JOURNAL OF PLANT PHYSIOLOGY 2009; 166:602-16. [PMID: 18947901 DOI: 10.1016/j.jplph.2008.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 05/24/2023]
Abstract
The objective of this study was to examine the role of root carbohydrate levels and metabolism in the waterlogging tolerance of contrasting mung bean genotypes. An experiment was conducted with two cultivated mung bean (Vigna radiata) genotypes viz., T44 (tolerant) and Pusa Baisakhi (PB) (susceptible), and a wild Vigna species Vigna luteola under pot-culture to study the physiological and molecular mechanism of waterlogging tolerance. Waterlogging resulted in decrease in relative water content (RWC), membrane stability index (MSI) in root and leaf tissues, and chlorophyll (Chl) content in leaves, while the Chl a/b ratio increased. Waterlogging-induced decline in RWC, MSI, Chl and increase in Chl a/b ratio was greater in PB than V. luteola and T44. Waterlogging caused decline in total and non-reducing sugars in all the genotypes and reducing sugars in PB, while the content of reducing sugar increased in V. luteola and T44. The pattern of variation in reducing sugar content in the 3 genotypes was parallel to sucrose synthase (SS) activity. V. luteola and T44 also showed fewer declines in total and non-reducing sugars and greater increase in reducing sugar and SS activity than PB. Activity of alcohol dehydrogenase (ADH) increased up to 8d of waterlogging in V. luteola and T44, while in PB a marginal increase was observed only up to 4d of treatment. Gene expression studies done by RT-PCR in 24h waterlogged plants showed enhanced expression of ADH and SS in the roots of V. luteola and T44, while in PB there was no change in expression level in control or treated plants. PCR band products were cloned and sequenced, and partial cDNAs of 531, 626, and 667; 702, 736, and 744bp of SS and ADH, respectively were obtained. The partial cDNA sequences of cloned SS genes showed 93-100 homologies among different genotypes and with D10266, while in case of ADH the similarity was in the range of 97-100% amongst each other and with Z23170. The results suggest that the availability of sufficient sugar reserve in the roots, activity of SS to provide reducing sugars for glycolytic activity and ADH for the recycling of NADH, and for the continuation of glycolysis, could be one of the important mechanisms of waterlogging tolerance of V. radiata genotype T44 and wild species V. luteola. This was reflected in better RWC and Chl content in leaves, and membrane stability of leaf and root tissue in V. luteola and T44.
Collapse
Affiliation(s)
- Raj K Sairam
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India.
| | | | | | | |
Collapse
|
44
|
Magneschi L, Perata P. Rice germination and seedling growth in the absence of oxygen. ANNALS OF BOTANY 2009; 103:181-96. [PMID: 18660495 PMCID: PMC2707302 DOI: 10.1093/aob/mcn121] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/08/2008] [Accepted: 06/03/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Higher plants are aerobic organisms which suffer from the oxygen deficiency imposed by partial or total submergence. However, some plant species have developed strategies to avoid or withstand severe oxygen shortage and, in some cases, the complete absence of oxygen (tissue anoxia) for considerable periods of time. SCOPE Rice (Oryza sativa) is one of the few plant species that can tolerate prolonged soil flooding or complete submergence thanks to an array of adaptive mechanisms. These include an ability to elongate submerged shoot organs at faster than normal rates and to develop aerenchyma, allowing the efficient internal transport of oxygen from the re-emerged elongated shoot to submerged parts. However, rice seeds are able to germinate anaerobically by means of coleoptile elongation. This cannot be explained in terms of oxygen transport through an emerged shoot. This review provides an overview of anoxic rice germination that is mediated through coleoptile rather than root emergence. CONCLUSIONS Although there is still much to learn about the biochemical and molecular basis of anaerobic rice germination, the ability of rice to maintain an active fermentative metabolism (i.e. by fuelling the glycolytic pathway with readily fermentable carbohydrates) is certainly crucial. The results obtained through microarray-based transcript profiling confirm most of the previous evidence based on single-gene studies and biochemical analysis, and highlight new aspects of the molecular response of the rice coleoptile to anoxia.
Collapse
Affiliation(s)
| | - Pierdomenico Perata
- Plant & Crop Physiology Lab, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
45
|
Klotz KL, Haagenson DM. Wounding, anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:423-34. [PMID: 17395334 DOI: 10.1016/j.jplph.2007.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 05/07/2023]
Abstract
Wounding, anoxia, and cold are often encountered during crop production and postharvest storage of plant products. Although the effect of these stresses on the expression of sucrose synthase, a key enzyme in the carbon metabolism of many storage organs, has been investigated in several starch-accumulating plant organs, little information on their effect on sucrose synthase expression in sucrose-storing organs is available. To determine the effect of wounding, anoxia and cold on a sucrose-storing organ, sugarbeet (Beta vulgaris) roots were wounded, subjected to anoxic conditions, or exposed to cold temperatures, and transcript and protein levels for the organ's two sucrose synthase genes (SBSS1 and SBSS2) and sucrose synthase enzyme activity were determined during 24h and 7d time course experiments. Wounding, anoxia and cold were associated with several-fold changes in sucrose synthase transcript levels. SBSS1 transcript levels were elevated in wounded, anoxic and cold-treated roots; SBSS2 transcript levels were elevated in response to wounding, cold, and short exposures (3-12h) to anoxic conditions and reduced in roots exposed to anoxic conditions for more than 24h. SBSS1 and SBSS2 protein levels, however, exhibited little change in stressed roots, even after 7d. Enzyme activity was also relatively unchanged in stressed roots, except for small activity differences of 1-2d duration that were unrelated to transcriptional changes. The disparity between transcript levels, protein abundance and enzyme activity indicate that SBSS1 and SBSS2 expression in response to wounding, anoxia and cold may be regulated by post-transcriptional mechanisms. The unresponsiveness of sucrose synthase protein levels or enzyme activity to wounding, anoxia and cold questions the importance of this enzyme to stress responses in sugarbeet root.
Collapse
Affiliation(s)
- Karen L Klotz
- USDA-ARS, Northern Crop Science Laboratory, University Station, Fargo, ND 58105-5677, USA.
| | | |
Collapse
|
46
|
Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM. Analysis of the sucrose synthase gene family in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:810-28. [PMID: 17257168 DOI: 10.1111/j.1365-313x.2006.03011.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The properties and expression patterns of the six isoforms of sucrose synthase in Arabidopsis are described, and their functions are explored through analysis of T-DNA insertion mutants. The isoforms have generally similar kinetic properties. Although there is variation in sensitivity to substrate inhibition by fructose this is unlikely to be of major physiological significance. No two isoforms have the same spatial and temporal expression patterns. Some are highly expressed in specific locations, whereas others are more generally expressed. More than one isoform is expressed in all organs examined. Mutant plants lacking individual isoforms have no obvious growth phenotypes, and are not significantly different from wild-type plants in starch, sugar and cellulose content, seed weight or seed composition under the growth conditions employed. Double mutants lacking the pairs of similar isoforms sus2 and sus3, and sus5 and sus6, are also not significantly different in these respects from wild-type plants. These results are surprising in the light of the marked phenotypes observed when individual isoforms are eliminated in crop plants including pea, maize, potato and cotton. A sus1/sus4 double mutant grows normally in well-aerated conditions, but shows marked growth retardation and accumulation of sugars when roots are subjected to hypoxia. The sucrose synthase activity in roots of this mutant is 3% or less of wild-type activity. Thus under well-aerated conditions sucrose mobilization in the root can proceed almost entirely via invertases without obvious detriment to the plant, but under hypoxia there is a specific requirement for sucrose synthase activity.
Collapse
Affiliation(s)
- Zuzanna Bieniawska
- Max-Planck-Institut für Molekulare Plflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kato-Noguchi H, Macías FA. Possible Mechanism of Inhibition of 6-Methoxy-Benzoxazolin-2(3H)-One on Germination of Cress (Lepidium sativum L.). J Chem Ecol 2006; 32:1101-9. [PMID: 16739026 DOI: 10.1007/s10886-006-9041-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 06/09/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
6-Methoxy-benzoxazolin-2(3H)-one (MBOA) inhibited the germination of cress (Lepidium sativum L.) seeds at concentrations greater than 0.03 mM. Inhibition was overcome by sucrose, suggesting that MBOA may inhibit sugar metabolism in cress seeds. Induction of alpha-amylase activity in seeds was also inhibited by MBOA at concentrations greater than 0.03 mM. Inhibition of both germination and induction of alpha-amylase activity increased with increasing concentrations of MBOA, and the extent of germination correlated positively with the activity of alpha-amylase in the seeds. MBOA added to a reaction mixture for alpha-amylase assay did not affect enzyme activity, indicating that MBOA does not inhibit in vitro alpha-amylase activity. Cress seeds germinated approximately 16 hr after incubation, and inhibition of alpha-amylase by MBOA occurred within 6 hr after incubation. These results suggest that MBOA may inhibit the germination of cress seeds by inhibiting the induction of alpha-amylase activity, because alpha-amylase plays a key role in the conversion of reserve carbohydrate into soluble sugars, a prerequisite for seed germination.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Biochemistry and Food Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan.
| | | |
Collapse
|
48
|
Kato-Noguchi H, Macías FA. Effects of 6-methoxy-2-benzoxazolinone on the germination and alpha-amylase activity in lettuce seeds. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1304-7. [PMID: 16425448 DOI: 10.1016/j.jplph.2005.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Germination of lettuce seeds was inhibited by 6-methoxy-2-benzoxazolinone (MBOA) at concentrations greater than 0.03 mmol/L. MBOA also inhibited the induction of alpha-amylase activity in the lettuce seeds at concentrations greater than 0.03 mmol/L. These two concentration-response curves for the germination and alpha-amylase indicate that the percentage of the germination was positively correlated with the activity of alpha-amylase in the seeds. Lettuce seeds germinated around 18h after incubation and inhibition of alpha-amylase by MBOA occurred within 6h after seed incubation. These results show that MBOA may inhibit the germination of lettuce seeds by inhibiting the induction of alpha-amylase activity.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Biochemistry and Food Science, Faculty of Agriculture, Kagawa University, Miki, Japan.
| | | |
Collapse
|
49
|
HARADA TARO, SATOH SHIGERU, YOSHIOKA TOSHIHITO, ISHIZAWA KIMIHARU. Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. ANNALS OF BOTANY 2005; 96:683-92. [PMID: 16033779 PMCID: PMC4247035 DOI: 10.1093/aob/mci220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 11/19/2004] [Accepted: 01/31/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Overwintering buds (turions) of the monocot aquatic pondweed species (Potamogeton distinctus) are highly tolerant to anoxic stress. Sucrose metabolism accompanied by enhanced activity of sucrose synthase (SuSy) operates actively during anaerobic elongation of pondweed turions. The aim of this study is to isolate SuSy genes from the turions and to investigate their transcriptional changes in response to anoxia and other stimuli. METHODS SuSy genes were isolated from pondweed turions by PCR methods and transcript levels of SuSy genes were examined in response to anoxia, sugars and plant hormones. In addition, the effects of anoxia on SuSy activity were examined both in the soluble fraction and in the microsomal fraction. KEY RESULTS cDNAs of two SuSy genes (PdSUS1 and PdSUS2) were cloned from pondweed turions. The levels of PdSUS1 transcripts increased under anoxia but did not with sugar treatments. Anoxia-stimulated elongation of turions was further enhanced by 2,4-dichlorophenoxyacetic acid (2,4-D) and suppressed by treatments with sorbitol, 2-deoxyglucose (2-dGlc) and abscisic acid (ABA). The levels of PdSUS1 transcripts were increased by 2,4-D and decreased by sorbitol under anoxia. The levels of PdSUS2 transcripts were not significantly affected by anoxia and any other treatments. SuSy activity of turions under anoxia was enhanced in the soluble fraction, but not in the microsomal fraction. CONCLUSIONS Up-regulation of PdSUS1 transcription under anoxia may not be attributed to sugar starvation under anoxia. A positive correlation between stem elongation and the level of PdSUS1 transcripts was observed in turions treated with anoxic conditions, 2,4-D and sorbitol. The increase in SuSy activity in the cytosol may contribute to sugar metabolism and sustain stem elongation under anoxia.
Collapse
Affiliation(s)
- TARO HARADA
- Department of Developmental Biology and Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - SHIGERU SATOH
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Sendai 981-8555, Japan
| | - TOSHIHITO YOSHIOKA
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Sendai 981-8555, Japan
| | - KIMIHARU ISHIZAWA
- Department of Developmental Biology and Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
50
|
Mustroph A, Albrecht G, Hajirezaei M, Grimm B, Biemelt S. Low levels of pyrophosphate in transgenic potato plants expressing E. coli pyrophosphatase lead to decreased vitality under oxygen deficiency. ANNALS OF BOTANY 2005; 96:717-26. [PMID: 16027130 PMCID: PMC4247038 DOI: 10.1093/aob/mci223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 01/12/2005] [Accepted: 02/14/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the importance of pyrophosphate (PPi) for plant metabolism and survival under low oxygen stress. Responses of roots of wild-type potato plants were compared with roots of transgenic plants containing decreased amounts of PPi as a result of the constitutive expression of Escherichia coli pyrophosphatase in the cytosol. METHODS For the experiments, roots of young wild-type and transgenic potato plants growing in nutrient solution were flushed for 4 d with nitrogen, and subsequently metabolite contents as well as enzyme activities of the glycolytic pathway were determined. KEY RESULTS AND CONCLUSIONS In roots of transgenic plants containing 40% less PPi, UDPglucose accumulated while the concentrations of hexose-6-phosphate, other glycolytic intermediates and ATP were decreased, leading to a growth retardation in aerated conditions. Apart from metabolic alterations, the activity of sucrose synthase was increased to a lower extent in the transgenic line than in wild type during hypoxia. These data suggest that sucrose cleavage was inhibited due to PPi deficiency already under aerated conditions, which has severe consequences for plant vitality under low oxygen. This is indicated by a reduction in the glycolytic activity, lower ATP levels and an impaired ability to resume growth after 4 d of hypoxia. Interestingly, the phosphorylation of fructose-6-phosphate via PPi-dependent phosphofructokinase was not altered in roots of transgenic plants. Nevertheless, our data provide some evidence for the importance of PPi to maintain plant growth and metabolism under oxygen deprivation.
Collapse
Affiliation(s)
- Angelika Mustroph
- Humboldt-Universität zu Berlin, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin.
| | | | | | | | | |
Collapse
|