1
|
Munson E. 2024 American Society for Microbiology Awards and Prize Program: clinical microbiology honorees. J Clin Microbiol 2024; 62:e0126124. [PMID: 39292003 PMCID: PMC11481561 DOI: 10.1128/jcm.01261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Dyrdak R, Hodcroft EB, Broddesson S, Grabbe M, Franklin H, Gisslén M, Holm ME, Lindh M, Nederby-Öhd J, Ringlander J, Sundqvist M, Neher RA, Albert J. Early unrecognised SARS-CoV-2 introductions shaped the first pandemic wave, Sweden, 2020. Euro Surveill 2024; 29:2400021. [PMID: 39392000 PMCID: PMC11484920 DOI: 10.2807/1560-7917.es.2024.29.41.2400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/30/2024] [Indexed: 10/12/2024] Open
Abstract
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1 week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
Collapse
Affiliation(s)
- Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emma B Hodcroft
- Institute for Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Broddesson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malin Grabbe
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hildur Franklin
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Maricris E Holm
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Nederby-Öhd
- Department of Infectious Disease Prevention and Control, Stockholm Region, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Sundqvist
- Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Li X, Trovão NS. The evolutionary and transmission dynamics of HIV-1 CRF08_BC. PLoS One 2024; 19:e0310027. [PMID: 39241052 PMCID: PMC11379155 DOI: 10.1371/journal.pone.0310027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
HIV-1 CRF08_BC is a significant subtype in China, though its origin and spread remain incompletely understood. Previous studies using partial genomic data have provided insights but lack comprehensive analysis. Here, we investigate the early evolutionary and spatiotemporal dynamics of HIV-1 CRF08_BC in China and Myanmar using near-complete genome sequences. We analyzed 28 near-complete HIV-1 CRF08_BC genomes from China and Myanmar (1997-2013). Phylogenetic, molecular clock, and Bayesian discrete trait analyses were performed to infer the virus's origin, spread, and associated risk groups. Based on Bayesian time-scaled inference with the best-fitting combination of models determined by marginal likelihood estimation (MLE), we inferred the time to the most recent common ancestor (TMRCA) and evolutionary rate of HIV-1 CRF08_BC to be at 3 October 1991 (95% HPD: 22 February1989-27 November 1993) and 2.30 × 10-3 substitutions per site per year (95% HPD: 1.96 × 10-3-2.63 × 10-3), respectively. Our analysis suggests that HIV-1 CRF08_BC originated in Yunnan Province, China, among injecting drug users, and subsequently spread to other regions. This study provides valuable insights into the early dynamics of HIV-1 CRF08_BC through combined genomic and epidemiological data, which may inform effective prevention and mitigation efforts. However, the limited genomic data influenced the extent of our findings, and challenges in collecting accurate risk group information during surveillance were evident.
Collapse
Affiliation(s)
- Xingguang Li
- Ningbo No.2 Hospital, Ningbo, China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, China
| | - Nídia S Trovão
- National Institutes of Health, Fogarty International Center, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Khurana MP, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang MHE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt S. High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark. Nat Commun 2024; 15:7123. [PMID: 39164246 PMCID: PMC11335946 DOI: 10.1038/s41467-024-51371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Neil Scheidwasser
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas L Juul
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Sune Lehmann
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tyra G Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut Copenhagen, Copenhagen, Denmark
| | | | - David A Duchêne
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
Mukherjee V, Postelnicu R, Parker C, Rivers PS, Anesi GL, Andrews A, Ables E, Morrell ED, Brett-Major DM, Broadhurst MJ, Cobb JP, Irwin A, Kratochvil CJ, Krolikowski K, Kumar VK, Landsittel DP, Lee RA, Liebler JM, Segal LN, Sevransky JE, Srivastava A, Uyeki TM, Wurfel MM, Wyles D, Evans LE, Lutrick K, Bhatraju PK. COVID-19 Across Pandemic Variant Periods: The Severe Acute Respiratory Infection-Preparedness (SARI-PREP) Study. Crit Care Explor 2024; 6:e1122. [PMID: 39023121 PMCID: PMC11259394 DOI: 10.1097/cce.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has evolved through multiple phases in the United States, with significant differences in patient centered outcomes with improvements in hospital strain, medical countermeasures, and overall understanding of the disease. We describe how patient characteristics changed and care progressed over the various pandemic phases; we also emphasize the need for an ongoing clinical network to improve the understanding of known and novel respiratory viral diseases. OBJECTIVES To describe how patient characteristics and care evolved across the various COVID-19 pandemic periods in those hospitalized with viral severe acute respiratory infection (SARI). DESIGN Severe Acute Respiratory Infection-Preparedness (SARI-PREP) is a Centers for Disease Control and Prevention Foundation-funded, Society of Critical Care Medicine Discovery-housed, longitudinal multicenter cohort study of viral pneumonia. We defined SARI patients as those hospitalized with laboratory-confirmed respiratory viral infection and an acute syndrome of fever, cough, and radiographic infiltrates or hypoxemia. We collected patient-level data including demographic characteristics, comorbidities, acute physiologic measures, serum and respiratory specimens, therapeutics, and outcomes. Outcomes were described across four pandemic variant periods based on a SARS-CoV-2 sequenced subsample: pre-Delta, Delta, Omicron BA.1, and Omicron post-BA.1. SETTING Multicenter cohort of adult patients admitted to an acute care ward or ICU from seven hospitals representing diverse geographic regions across the United States. PARTICIPANTS Patients with SARI caused by infection with respiratory viruses. MAIN OUTCOMES AND RESULTS Eight hundred seventy-four adult patients with SARI were enrolled at seven study hospitals between March 2020 and April 2023. Most patients (780, 89%) had SARS-CoV-2 infection. Across the COVID-19 cohort, median age was 60 years (interquartile range, 48.0-71.0 yr) and 66% were male. Almost half (430, 49%) of the study population belonged to underserved communities. Most patients (76.5%) were admitted to the ICU, 52.5% received mechanical ventilation, and observed hospital mortality was 25.5%. As the pandemic progressed, we observed decreases in ICU utilization (94% to 58%), hospital length of stay (median, 26.0 to 8.5 d), and hospital mortality (32% to 12%), while the number of comorbid conditions increased. CONCLUSIONS AND RELEVANCE We describe increasing comorbidities but improved outcomes across pandemic variant periods, in the setting of multiple factors, including evolving care delivery, countermeasures, and viral variants. An understanding of patient-level factors may inform treatment options for subsequent variants and future novel pathogens.
Collapse
Affiliation(s)
- Vikramjit Mukherjee
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Radu Postelnicu
- Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Chelsie Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Patrick S. Rivers
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - George L. Anesi
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Adair Andrews
- Society of Critical Care Medicine, Mount Prospect, IL
| | - Erin Ables
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
| | - M. Jana Broadhurst
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - J. Perren Cobb
- Departments of Surgery and Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy Irwin
- Division of Infectious Diseases, Denver Health Medical Center, Denver, CO
| | | | - Kelsey Krolikowski
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Vishakha K. Kumar
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Douglas P. Landsittel
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY
| | - Richard A. Lee
- Division of Pulmonary Diseases and Critical Care Medicine, University of California, Irvine, School of Medicine, Irvine, CA
| | - Janice M. Liebler
- Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Leopoldo N. Segal
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN
| | - Jonathan E. Sevransky
- Division of Pulmonary, Allergy, Critical Care and Sleep, School of Medicine, Emory University, Atlanta, GA
- Emory Critical Care Center, Emory Healthcare, Atlanta, GA
| | - Avantika Srivastava
- Institute of Implementation Science in Population Health, City University of New York, New York, NY
| | - Timothy M. Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - David Wyles
- Division of Infectious Diseases, Denver Health Medical Center, Denver, CO
| | - Laura E. Evans
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| | - Karen Lutrick
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
6
|
Perofsky AC, Hansen CL, Burstein R, Boyle S, Prentice R, Marshall C, Reinhart D, Capodanno B, Truong M, Schwabe-Fry K, Kuchta K, Pfau B, Acker Z, Lee J, Sibley TR, McDermot E, Rodriguez-Salas L, Stone J, Gamboa L, Han PD, Adler A, Waghmare A, Jackson ML, Famulare M, Shendure J, Bedford T, Chu HY, Englund JA, Starita LM, Viboud C. Impacts of human mobility on the citywide transmission dynamics of 18 respiratory viruses in pre- and post-COVID-19 pandemic years. Nat Commun 2024; 15:4164. [PMID: 38755171 PMCID: PMC11098821 DOI: 10.1038/s41467-024-48528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Many studies have used mobile device location data to model SARS-CoV-2 dynamics, yet relationships between mobility behavior and endemic respiratory pathogens are less understood. We studied the effects of population mobility on the transmission of 17 endemic viruses and SARS-CoV-2 in Seattle over a 4-year period, 2018-2022. Before 2020, visits to schools and daycares, within-city mixing, and visitor inflow preceded or coincided with seasonal outbreaks of endemic viruses. Pathogen circulation dropped substantially after the initiation of COVID-19 stay-at-home orders in March 2020. During this period, mobility was a positive, leading indicator of transmission of all endemic viruses and lagging and negatively correlated with SARS-CoV-2 activity. Mobility was briefly predictive of SARS-CoV-2 transmission when restrictions relaxed but associations weakened in subsequent waves. The rebound of endemic viruses was heterogeneously timed but exhibited stronger, longer-lasting relationships with mobility than SARS-CoV-2. Overall, mobility is most predictive of respiratory virus transmission during periods of dramatic behavioral change and at the beginning of epidemic waves.
Collapse
Affiliation(s)
- Amanda C Perofsky
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - Chelsea L Hansen
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
- PandemiX Center, Department of Science & Environment, Roskilde University, Roskilde, Denmark
| | - Roy Burstein
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Shanda Boyle
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Robin Prentice
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Cooper Marshall
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - David Reinhart
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Ben Capodanno
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Melissa Truong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Kristen Schwabe-Fry
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Kayla Kuchta
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Brian Pfau
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Zack Acker
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas R Sibley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Evan McDermot
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Leslie Rodriguez-Salas
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Luis Gamboa
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Peter D Han
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Amanda Adler
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Alpana Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Michael Famulare
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Trevor Bedford
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Janet A Englund
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Wagner C, Kistler KE, Perchetti GA, Baker N, Frisbie LA, Torres LM, Aragona F, Yun C, Figgins M, Greninger AL, Cox A, Oltean HN, Roychoudhury P, Bedford T. Positive selection underlies repeated knockout of ORF8 in SARS-CoV-2 evolution. Nat Commun 2024; 15:3207. [PMID: 38615031 PMCID: PMC11016114 DOI: 10.1038/s41467-024-47599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Cassia Wagner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Garrett A Perchetti
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Noah Baker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Frank Aragona
- Washington State Department of Health, Shoreline, WA, USA
| | - Cory Yun
- Washington State Department of Health, Shoreline, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Alexander L Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alex Cox
- Washington State Department of Health, Shoreline, WA, USA
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
8
|
Tran-Kiem C, Bedford T. Estimating the reproduction number and transmission heterogeneity from the size distribution of clusters of identical pathogen sequences. Proc Natl Acad Sci U S A 2024; 121:e2305299121. [PMID: 38568971 PMCID: PMC11009662 DOI: 10.1073/pnas.2305299121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Quantifying transmission intensity and heterogeneity is crucial to ascertain the threat posed by infectious diseases and inform the design of interventions. Methods that jointly estimate the reproduction number R and the dispersion parameter k have however mainly remained limited to the analysis of epidemiological clusters or contact tracing data, whose collection often proves difficult. Here, we show that clusters of identical sequences are imprinted by the pathogen offspring distribution, and we derive an analytical formula for the distribution of the size of these clusters. We develop and evaluate an inference framework to jointly estimate the reproduction number and the dispersion parameter from the size distribution of clusters of identical sequences. We then illustrate its application across a range of epidemiological situations. Finally, we develop a hypothesis testing framework relying on clusters of identical sequences to determine whether a given pathogen genetic subpopulation is associated with increased or reduced transmissibility. Our work provides tools to estimate the reproduction number and transmission heterogeneity from pathogen sequences without building a phylogenetic tree, thus making it easily scalable to large pathogen genome datasets.
Collapse
Affiliation(s)
- Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Seattle, WA98109
| |
Collapse
|
9
|
Walas N, Müller NF, Parker E, Henderson A, Capone D, Brown J, Barker T, Graham JP. Application of phylodynamics to identify spread of antimicrobial-resistant Escherichia coli between humans and canines in an urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170139. [PMID: 38242459 DOI: 10.1016/j.scitotenv.2024.170139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The transmission of antimicrobial resistant bacteria in the urban environment is poorly understood. We utilized genomic sequencing and phylogenetics to characterize the transmission dynamics of antimicrobial resistant Escherichia coli (AMR-Ec) cultured from putative canine (caninep) and human feces present on urban sidewalks in San Francisco, California. We isolated a total of fifty-six AMR-Ec isolates from human (n = 20) and caninep (n = 36) fecal samples from the Tenderloin and South of Market (SoMa) neighborhoods of San Francisco. We then analyzed phenotypic and genotypic antimicrobial resistance (AMR) of the isolates, as well as clonal relationships based on cgMLST and single nucleotide polymorphisms (SNPs) of the core genomes. Using Bayesian inference, we reconstructed the transmission dynamics between humans and caninesp from multiple local outbreak clusters using the marginal structured coalescent approximation (MASCOT). Our results provide evidence for multiple sharing events of AMR-Ec between humans and caninesp. In particular, we found one instance of likely transmission from caninesp to humans as well as an additional local outbreak cluster consisting of one caninep and one human sample. Based on this analysis, it appears that non-human feces act as an important reservoir of clinically relevant AMR-Ec within the urban environment for this study population. This work showcases the utility of genomic epidemiology to reconstruct potential pathways by which antimicrobial resistance spreads.
Collapse
Affiliation(s)
| | | | | | | | - Drew Capone
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joe Brown
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Troy Barker
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
10
|
Paredes MI, Ahmed N, Figgins M, Colizza V, Lemey P, McCrone JT, Müller N, Tran-Kiem C, Bedford T. Underdetected dispersal and extensive local transmission drove the 2022 mpox epidemic. Cell 2024; 187:1374-1386.e13. [PMID: 38428425 PMCID: PMC10962340 DOI: 10.1016/j.cell.2024.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.
Collapse
Affiliation(s)
- Miguel I Paredes
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Nashwa Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - John T McCrone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicola Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
11
|
Emanuels A, Casto AM, Heimonen J, O'Hanlon J, Chow EJ, Ogokeh C, Rolfes MA, Han PD, Hughes JP, Uyeki TM, Frazar C, Chung E, Starita LM, Englund JA, Chu HY. Remote surveillance and detection of SARS-CoV-2 transmission among household members in King County, Washington. BMC Infect Dis 2024; 24:309. [PMID: 38481147 PMCID: PMC10936024 DOI: 10.1186/s12879-024-09160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER NCT04141930, Date of registration 28/10/2019.
Collapse
Affiliation(s)
- Anne Emanuels
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
| | - Amanda M Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jessica Heimonen
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
| | - Jessica O'Hanlon
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
| | - Eric J Chow
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
| | - Constance Ogokeh
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa A Rolfes
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Peter D Han
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christian Frazar
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Erin Chung
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, UW Medicine Box 358061, Chu Lab Room E630, 750 Republican Street, Seattle, WA, 98109, USA.
| |
Collapse
|
12
|
Faucher B, Sabbatini CE, Czuppon P, Kraemer MUG, Lemey P, Colizza V, Blanquart F, Boëlle PY, Poletto C. Drivers and impact of the early silent invasion of SARS-CoV-2 Alpha. Nat Commun 2024; 15:2152. [PMID: 38461311 PMCID: PMC10925057 DOI: 10.1038/s41467-024-46345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) circulated cryptically before being identified as a threat, delaying interventions. Here we studied the drivers of such silent spread and its epidemic impact to inform future response planning. We focused on Alpha spread out of the UK. We integrated spatio-temporal records of international mobility, local epidemic growth and genomic surveillance into a Bayesian framework to reconstruct the first three months after Alpha emergence. We found that silent circulation lasted from days to months and decreased with the logarithm of sequencing coverage. Social restrictions in some countries likely delayed the establishment of local transmission, mitigating the negative consequences of late detection. Revisiting the initial spread of Alpha supports local mitigation at the destination in case of emerging events.
Collapse
Affiliation(s)
- Benjamin Faucher
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara E Sabbatini
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, 48149, Germany
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Vittoria Colizza
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
- Department of Biology, Georgetown University, Washington, DC, USA
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, 75005, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP), F75012, Paris, France
| | - Chiara Poletto
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
13
|
Srikrishna D. Pentagon Found Daily, Metagenomic Detection of Novel Bioaerosol Threats to Be Cost-Prohibitive: Can Virtualization and AI Make It Cost-Effective? Health Secur 2024; 22:108-129. [PMID: 38625036 DOI: 10.1089/hs.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.
Collapse
|
14
|
Paredes MI, Perofsky AC, Frisbie L, Moncla LH, Roychoudhury P, Xie H, Bakhash SAM, Kong K, Arnould I, Nguyen TV, Wendm ST, Hajian P, Ellis S, Mathias PC, Greninger AL, Starita LM, Frazar CD, Ryke E, Zhong W, Gamboa L, Threlkeld M, Lee J, Stone J, McDermot E, Truong M, Shendure J, Oltean HN, Viboud C, Chu H, Müller NF, Bedford T. Local-scale phylodynamics reveal differential community impact of SARS-CoV-2 in a metropolitan US county. PLoS Pathog 2024; 20:e1012117. [PMID: 38530853 PMCID: PMC10997136 DOI: 10.1371/journal.ppat.1012117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county. Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories of North and South King County began to diverge. We find that South King County consistently had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of local viral transmission when compared to North King County, where viral importations from outside drove a larger proportion of new cases. Using mobility and demographic data, we also find that South King County experienced a more modest and less sustained reduction in mobility following stay-at-home orders than North King County, while also bearing more socioeconomic inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale phylodynamics in understanding the heterogeneous transmission landscape.
Collapse
Affiliation(s)
- Miguel I. Paredes
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Amanda C. Perofsky
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lauren Frisbie
- Washington State Department of Health, Shoreline, Washington, United States of America
| | - Louise H. Moncla
- The University of Pennsylvania, Department of Pathobiology, Philadelphia, Pennsylvania, United States of America
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Shah A. Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kevin Kong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Isabel Arnould
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Tien V. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Seffir T. Wendm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Pooneh Hajian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Sean Ellis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Patrick C. Mathias
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chris D. Frazar
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Erica Ryke
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Weizhi Zhong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - Luis Gamboa
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - Machiko Threlkeld
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - Evan McDermot
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
| | - Melissa Truong
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Hanna N. Oltean
- Washington State Department of Health, Shoreline, Washington, United States of America
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helen Chu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Nicola F. Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Krammer F. The role of vaccines in the COVID-19 pandemic: what have we learned? Semin Immunopathol 2024; 45:451-468. [PMID: 37436465 PMCID: PMC11136744 DOI: 10.1007/s00281-023-00996-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged late in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic that has so far claimed approximately 20 million lives. Vaccines were developed quickly, became available in the end of 2020, and had a tremendous impact on protection from SARS-CoV-2 mortality but with emerging variants the impact on morbidity was diminished. Here I review what we learned from COVID-19 from a vaccinologist's perspective.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Trovao NS, Pan V, Goel C, Gallego-García P, Liu Y, Barbara C, Borg R, Briffa M, Cilia C, Grech L, Vassallo M, Treangen TJ, Posada D, Beheshti A, Borg J, Zahra G. Evolutionary and spatiotemporal analyses reveal multiple introductions and cryptic transmission of SARS-CoV-2 VOC/VOI in Malta. Microbiol Spectr 2023; 11:e0153923. [PMID: 37800925 PMCID: PMC10714767 DOI: 10.1128/spectrum.01539-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Our study provides insights into the evolution of the coronavirus disease 2019 (COVID-19) pandemic in Malta, a highly connected and understudied country. We combined epidemiological and phylodynamic analyses to analyze trends in the number of new cases, deaths, tests, positivity rates, and evolutionary and dispersal patterns from August 2020 to January 2022. Our reconstructions inferred 173 independent severe acute respiratory syndrome coronavirus 2 introductions into Malta from various global regions. Our study demonstrates that characterizing epidemiological trends coupled with phylodynamic modeling can inform the implementation of public health interventions to help control COVID-19 transmission in the community.
Collapse
Affiliation(s)
- Nidia S. Trovao
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- COVID-19 International Research Team, Medford, Massachusetts, USA
| | - Vincent Pan
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Chirag Goel
- COVID-19 International Research Team, Medford, Massachusetts, USA
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Yunxi Liu
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Christopher Barbara
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Rebecca Borg
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Mark Briffa
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Chanelle Cilia
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Laura Grech
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| | - Mario Vassallo
- Department of Sociology, Faculty of Arts, University of Malta, Msida, Malta
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, Spain
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Joseph Borg
- COVID-19 International Research Team, Medford, Massachusetts, USA
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Graziella Zahra
- Molecular Diagnostics-Infectious Diseases, Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
17
|
Paredes MI, Ahmed N, Figgins M, Colizza V, Lemey P, McCrone JT, Müller N, Tran-Kiem C, Bedford T. Early underdetected dissemination across countries followed by extensive local transmission propelled the 2022 mpox epidemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293266. [PMID: 37577709 PMCID: PMC10418578 DOI: 10.1101/2023.07.27.23293266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case-reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.
Collapse
Affiliation(s)
- Miguel I. Paredes
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nashwa Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - John T. McCrone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicola Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
18
|
Lee K, Seok JH, Kim H, Park S, Lee S, Bae JY, Jeon K, Kang JG, Yoo JR, Heo ST, Cho NH, Lee KH, Kim K, Park MS, Kim JI. Genome-informed investigation of the molecular evolution and genetic reassortment of severe fever with thrombocytopenia syndrome virus. PLoS Negl Trop Dis 2023; 17:e0011630. [PMID: 37713429 PMCID: PMC10529592 DOI: 10.1371/journal.pntd.0011630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is a viral pathogen causing significant clinical signs from mild fever with thrombocytopenia to severe hemorrhages. World Health Organization has paid special attention to the dramatic increase in human SFTS cases in China, Japan, and South Korea since the 2010s. The present study investigated the molecular evolution and genetic reassortment of SFTSVs using complete genomic sequences. METHODS/PRINCIPAL FINDING We collected the complete genome sequences of SFTSVs globally isolated until 2019 (L segment, n = 307; M segment, n = 326; and S segment, n = 564) and evaluated the evolutionary profiles of SFTSVs based on phylogenetic and molecular selection pressure analyses. By employing a time-scaled Bayesian inference method, we found the geographical heterogeneity of dominant SFTSV genotypes in China, Japan, and South Korea around several centuries before and locally spread by tick-born spillover with infrequent long-distance transmission. Purifying selection predominated the molecular evolution of SFTSVs with limited gene reassortment and fixed substitution, but almost all three gene segments appeared to harbor at least one amino acid residue under positive selection. Specifically, the nonstructural protein and glycoprotein (Gn/Gc) genes were preferential selective targets, and the Gn region retained the highest number of positively selected residues. CONCLUSION/SIGNIFICANCE Here, the large-scale genomic analyses of SFTSVs improved prior knowledge of how this virus emerged and evolved in China, Japan, and South Korea. Our results highlight the importance of SFTSV surveillance in both human and non-human reservoirs at the molecular level to fight against fatal human infection with the virus.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sohyun Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyeongseok Jeon
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Laboratory for Vector Borne Disease, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, College of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keun Hwa Lee
- Department of Microbiology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
- Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Republic of Korea
- Biosafety Center, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Rothstein AP, Jesser KJ, Feistel DJ, Konstantinidis KT, Trueba G, Levy K. Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105476. [PMID: 37392822 PMCID: PMC10599324 DOI: 10.1016/j.meegid.2023.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Human movement may be an important driver of transmission dynamics for enteric pathogens but has largely been underappreciated except for international 'travelers' diarrhea or cholera. Phylodynamic methods, which combine genomic and epidemiological data, are used to examine rates and dynamics of disease matching underlying evolutionary history and biogeographic distributions, but these methods often are not applied to enteric bacterial pathogens. We used phylodynamics to explore the phylogeographic and evolutionary patterns of diarrheagenic E. coli in northern Ecuador to investigate the role of human travel in the geographic distribution of strains across the country. Using whole genome sequences of diarrheagenic E. coli isolates, we built a core genome phylogeny, reconstructed discrete ancestral states across urban and rural sites, and estimated migration rates between E. coli populations. We found minimal structuring based on site locations, urban vs. rural locality, pathotype, or clinical status. Ancestral states of phylogenomic nodes and tips were inferred to have 51% urban ancestry and 49% rural ancestry. Lack of structuring by location or pathotype E. coli isolates imply highly connected communities and extensive sharing of genomic characteristics across isolates. Using an approximate structured coalescent model, we estimated rates of migration among circulating isolates were 6.7 times larger for urban towards rural populations compared to rural towards urban populations. This suggests increased inferred migration rates of diarrheagenic E. coli from urban populations towards rural populations. Our results indicate that investments in water and sanitation prevention in urban areas could limit the spread of enteric bacterial pathogens among rural populations.
Collapse
Affiliation(s)
- Andrew P. Rothstein
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dorian J. Feistel
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Sharma S, Pannu J, Chorlton S, Swett JL, Ecker DJ. Threat Net: A Metagenomic Surveillance Network for Biothreat Detection and Early Warning. Health Secur 2023; 21:347-357. [PMID: 37367195 DOI: 10.1089/hs.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Early detection of novel pathogens can prevent or substantially mitigate biological incidents, including pandemics. Metagenomic next-generation sequencing (mNGS) of symptomatic clinical samples may enable detection early enough to contain outbreaks, limit international spread, and expedite countermeasure development. In this article, we propose a clinical mNGS architecture we call "Threat Net," which focuses on the hospital emergency department as a high-yield surveillance location. We develop a susceptible-exposed-infected-removed (SEIR) simulation model to estimate the effectiveness of Threat Net in detecting novel respiratory pathogen outbreaks. Our analysis serves to quantify the value of routine clinical mNGS for respiratory pandemic detection by estimating the cost and epidemiological effectiveness at differing degrees of hospital coverage across the United States. We estimate that a biological threat detection network such as Threat Net could be deployed across hospitals covering 30% of the population in the United States. Threat Net would cost between $400 million and $800 million annually and have a 95% chance of detecting a novel respiratory pathogen with traits of SARS-CoV-2 after 10 emergency department presentations and 79 infections across the United States. Our analyses suggest that implementing Threat Net could help prevent or substantially mitigate the spread of a respiratory pandemic pathogen in the United States.
Collapse
Affiliation(s)
- Siddhanth Sharma
- Siddhanth Sharma, MD MPH, is a Public Health Registrar, Metropolitan Communicable Disease Control, Perth, Australia
| | - Jaspreet Pannu
- Jaspreet Pannu, MD, is a Resident Physician, Department of Medicine, Stanford University School of Medicine, Stanford, CA. Johns Hopkins Center for Health Security, Baltimore, MD
| | - Sam Chorlton
- Sam Chorlton, MD, D(ABMM), is Chief Executive Officer, BugSeq Bioinformatics, Vancouver, Canada
| | - Jacob L Swett
- Jacob L. Swett, DPhil, is Cofounder, altLabs, Inc., Berkeley, CA
| | - David J Ecker
- David J. Ecker, PhD, is Vice President of Strategic Innovation, Ionis Pharmaceuticals, Carlsbad, CA
| |
Collapse
|
21
|
Abdel-Megied AM, Monreal IA, Zhao L, Apffel A, Aguilar HC, Jones JW. Characterization of the cellular lipid composition during SARS-CoV-2 infection. Anal Bioanal Chem 2023; 415:5269-5279. [PMID: 37438564 PMCID: PMC10981079 DOI: 10.1007/s00216-023-04825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Emerging and re-emerging zoonotic viral diseases continue to significantly impact public health. Of particular interest are enveloped viruses (e.g., SARS-CoV-2, the causative pathogen of COVID-19), which include emerging pathogens of highest concern. Enveloped viruses contain a viral envelope that encapsulates the genetic material and nucleocapsid, providing structural protection and functional bioactivity. The viral envelope is composed of a coordinated network of glycoproteins and lipids. The lipid composition of the envelope consists of lipids preferentially appropriated from host cell membranes. Subsequently, changes to the host cell lipid metabolism and an accounting of what lipids are changed during viral infection provide an opportunity to fingerprint the host cell's response to the infecting virus. To address this issue, we comprehensively characterized the lipid composition of VeroE6-TMPRSS2 cells infected with SARS-CoV-2. Our approach involved using an innovative solid-phase extraction technique to efficiently extract cellular lipids combined with liquid chromatography coupled to high-resolution tandem mass spectrometry. We identified lipid changes in cells exposed to SARS-CoV-2, of which the ceramide to sphingomyelin ratio was most prominent. The identification of a lipid profile (i.e., lipid fingerprint) that is characteristic of cellular SARS-CoV-2 infection lays the foundation for targeting lipid metabolism pathways to further understand how enveloped viruses infect cells, identifying opportunities to aid antiviral and vaccine development.
Collapse
Affiliation(s)
- Ahmed M Abdel-Megied
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh City, Egypt
| | - Isaac A Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Bristow J, Hamilton J, Weinshel J, Rovig R, Wallace R, Olney C, Lindquist KJ. Interplay of demographics, geography and COVID-19 pandemic responses in the Puget Sound region: The Vashon, Washington Medical Reserve Corps experience. PLoS One 2023; 18:e0274345. [PMID: 37585489 PMCID: PMC10431654 DOI: 10.1371/journal.pone.0274345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Rural U.S. communities are at risk from COVID-19 due to advanced age and limited access to acute care. Recognizing this, the Vashon Medical Reserve Corps (VMRC) in King County, Washington, implemented an all-volunteer, community-based COVID-19 response program. This program integrated public engagement, SARS-CoV-2 testing, contact tracing, vaccination, and material community support, and was associated with the lowest cumulative COVID-19 case rate in King County. This study aimed to investigate the contributions of demographics, geography and public health interventions to Vashon's low COVID-19 rates. METHODS This observational cross-sectional study compares cumulative COVID-19 rates and success of public health interventions from February 2020 through November 2021 for Vashon Island with King County (including metropolitan Seattle) and Whidbey Island, located ~50 km north of Vashon. To evaluate the role of demography, we developed multiple linear regression models of COVID-19 rates using metrics of age, race/ethnicity, wealth and educational attainment across 77 King County zip codes. To investigate the role of remote geography we expanded the regression models to include North, Central and South Whidbey, similarly remote island communities with varying demographic features. To evaluate the effectiveness of VMRC's community-based public health measures, we directly compared Vashon's success of vaccination and contact tracing with that of King County and South Whidbey, the Whidbey community most similar to Vashon. RESULTS Vashon's cumulative COVID-19 case rate was 29% that of King County overall (22.2 vs 76.8 cases/K). A multiple linear regression model based on King County demographics found educational attainment to be a major correlate of COVID-19 rates, and Vashon's cumulative case rate was just 38% of predicted (p < .05), so demographics alone do not explain Vashon's low COVID-19 case rate. Inclusion of Whidbey communities in the model identified a major effect of remote geography (-49 cases/K, p < .001), such that observed COVID-19 rates for all remote communities fell within the model's 95% prediction interval. VMRC's vaccination effort was highly effective, reaching a vaccination rate of 1500 doses/K four months before South Whidbey and King County and maintaining a cumulative vaccination rate 200 doses/K higher throughout the latter half of 2021 (p < .001). Including vaccination rates in the model reduced the effect of remote geography to -41 cases/K (p < .001). VMRC case investigation was also highly effective, interviewing 96% of referred cases in an average of 1.7 days compared with 69% in 3.7 days for Washington Department of Health investigating South Whidbey cases and 80% in 3.4 days for Public Health-Seattle & King County (both p<0.001). VMRC's public health interventions were associated with a 30% lower case rate (p<0.001) and 55% lower hospitalization rate (p = 0.056) than South Whidbey. CONCLUSIONS While the overall magnitude of the pre-Omicron COVID-19 pandemic in rural and urban U.S. communities was similar, we show that island communities in the Puget Sound region were substantially protected from COVID-19 by their geography. We further show that a volunteer community-based COVID-19 response program was highly effective in the Vashon community, augmenting the protective effect of geography. We suggest that Medical Reserve Corps should be an important element of future pandemic planning.
Collapse
Affiliation(s)
- James Bristow
- Vashon Medical Reserve Corps, Vashon, Washington, United States of America
| | - Jamie Hamilton
- Island County Public Health Department, Coupeville, Washington, United States of America
| | - John Weinshel
- Vashon Medical Reserve Corps, Vashon, Washington, United States of America
- VashonBePrepared, Vashon, Washington, United States of America
| | - Robert Rovig
- Atlas Genomics, Seattle, Washington, United States of America
| | - Rick Wallace
- VashonBePrepared, Vashon, Washington, United States of America
| | - Clayton Olney
- Vashon Medical Reserve Corps, Vashon, Washington, United States of America
- Madigan Army Medical Center, Joint Base Lewis McChord, Washington, United States of America
| | | | - Karla J. Lindquist
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
Porter AF, Featherstone L, Lane CR, Sherry NL, Nolan ML, Lister D, Seemann T, Duchene S, Howden BP. The importance of utilizing travel history metadata for informative phylogeographical inferences: a case study of early SARS-CoV-2 introductions into Australia. Microb Genom 2023; 9:mgen001099. [PMID: 37650865 PMCID: PMC10483412 DOI: 10.1099/mgen.0.001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Inferring the spatiotemporal spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via Bayesian phylogeography has been complicated by the overwhelming sampling bias present in the global genomic dataset. Previous work has demonstrated the utility of metadata in addressing this bias. Specifically, the inclusion of recent travel history of SARS-CoV-2-positive individuals into extended phylogeographical models has demonstrated increased accuracy of estimates, along with proposing alternative hypotheses that were not apparent using only genomic and geographical data. However, as the availability of comprehensive epidemiological metadata is limited, many of the current estimates rely on sequence data and basic metadata (i.e. sample date and location). As the bias within the SARS-CoV-2 sequence dataset is extensive, the degree to which we can rely on results drawn from standard phylogeographical models (i.e. discrete trait analysis) that lack integrated metadata is of great concern. This is particularly important when estimates influence and inform public health policy. We compared results generated from the same dataset, using two discrete phylogeographical models: one including travel history metadata and one without. We utilized sequences from Victoria, Australia, in this case study for two unique properties. Firstly, the high proportion of cases sequenced throughout 2020 within Victoria and the rest of Australia. Secondly, individual travel history was collected from returning travellers in Victoria during the first wave (January to May) of the coronavirus disease 2019 (COVID-19) pandemic. We found that the implementation of individual travel history was essential for the estimation of SARS-CoV-2 movement via discrete phylogeography models. Without the additional information provided by the travel history metadata, the discrete trait analysis could not be fit to the data due to numerical instability. We also suggest that during the first wave of the COVID-19 pandemic in Australia, the primary driving force behind the spread of SARS-CoV-2 was viral importation from international locations. This case study demonstrates the necessity of robust genomic datasets supplemented with epidemiological metadata for generating accurate estimates from phylogeographical models in datasets that have significant sampling bias. For future work, we recommend the collection of metadata in conjunction with genomic data. Furthermore, we highlight the risk of applying phylogeographical models to biased datasets without incorporating appropriate metadata, especially when estimates influence public health policy decision making.
Collapse
Affiliation(s)
- Ashleigh F. Porter
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Leo Featherstone
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Courtney R. Lane
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Norelle L. Sherry
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
| | | | | | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Goiriz L, Ruiz R, Garibo-i-Orts Ò, Conejero JA, Rodrigo G. A variant-dependent molecular clock with anomalous diffusion models SARS-CoV-2 evolution in humans. Proc Natl Acad Sci U S A 2023; 120:e2303578120. [PMID: 37459528 PMCID: PMC10372551 DOI: 10.1073/pnas.2303578120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/11/2023] [Indexed: 07/20/2023] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans has been monitored at an unprecedented level due to the public health crisis, yet the stochastic dynamics underlying such a process is dubious. Here, considering the number of acquired mutations as the displacement of the viral particle from the origin, we performed biostatistical analyses from numerous whole genome sequences on the basis of a time-dependent probabilistic mathematical model. We showed that a model with a constant variant-dependent evolution rate and nonlinear mutational variance with time (i.e., anomalous diffusion) explained the SARS-CoV-2 evolutionary motion in humans during the first 120 wk of the pandemic in the United Kingdom. In particular, we found subdiffusion patterns for the Primal, Alpha, and Omicron variants but a weak superdiffusion pattern for the Delta variant. Our findings indicate that non-Brownian evolutionary motions occur in nature, thereby providing insight for viral phylodynamics.
Collapse
Affiliation(s)
- Lucas Goiriz
- BioInstituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas – Universitat de València, 46980Paterna, Spain
- Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022Valencia, Spain
| | - Raúl Ruiz
- BioInstituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas – Universitat de València, 46980Paterna, Spain
| | - Òscar Garibo-i-Orts
- Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022Valencia, Spain
| | - J. Alberto Conejero
- Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022Valencia, Spain
| | - Guillermo Rodrigo
- BioInstituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas – Universitat de València, 46980Paterna, Spain
| |
Collapse
|
25
|
Holtz A, Baele G, Bourhy H, Zhukova A. Integrating full and partial genome sequences to decipher the global spread of canine rabies virus. Nat Commun 2023; 14:4247. [PMID: 37460566 DOI: 10.1038/s41467-023-39847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Despite the rapid growth in viral genome sequencing, statistical methods face challenges in handling historical viral endemic diseases with large amounts of underutilized partial sequence data. We propose a phylogenetic pipeline that harnesses both full and partial viral genome sequences to investigate historical pathogen spread between countries. Its application to rabies virus (RABV) yields precise dating and confident estimates of its geographic dispersal. By using full genomes and partial sequences, we reduce both geographic and genetic biases that often hinder studies that focus on specific genes. Our pipeline reveals an emergence of the present canine-mediated RABV between years 1301 and 1403 and reveals regional introductions over a 700-year period. This geographic reconstruction enables us to locate episodes of human-mediated introductions of RABV and examine the role that European colonization played in its spread. Our approach enables phylogeographic analysis of large and genetically diverse data sets for many viral pathogens.
Collapse
Affiliation(s)
- Andrew Holtz
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
- World Health Organization Collaborating Center for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France.
| |
Collapse
|
26
|
Babu TM, Feldstein LR, Saydah S, Acker Z, Boisvert CL, Briggs-Hagen M, Carone M, Casto A, Cox SN, Ehmen B, Englund JA, Fortmann SP, Frivold CJ, Groom H, Han PD, Kuntz JL, Lockwood T, Midgley CM, Mularski RA, Ogilvie T, Reich SL, Schmidt MA, Smith N, Starita L, Stone J, Vandermeer M, Weil AA, Wolf CR, Chu HY, Naleway AL. CASCADIA: a prospective community-based study protocol for assessing SARS-CoV-2 vaccine effectiveness in children and adults using a remote nasal swab collection and web-based survey design. BMJ Open 2023; 13:e071446. [PMID: 37451722 PMCID: PMC10350906 DOI: 10.1136/bmjopen-2022-071446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Although SARS-CoV-2 vaccines were first approved under Emergency Use Authorization by the Food and Drug Administration in late 2020 for adults, authorisation for young children 6 months to <5 years of age did not occur until 2022. These authorisations were based on clinical trials, understanding real-world vaccine effectiveness (VE) in the setting of emerging variants is critical. The primary goal of this study is to evaluate SARS-CoV-2 VE against infection among children aged >6 months and adults aged <50 years. METHODS CASCADIA is a 4-year community-based prospective study of SARS-CoV-2 VE among 3500 adults and paediatric populations aged 6 months to 49 years in Oregon and Washington, USA. At enrolment and regular intervals, participants complete a sociodemographic questionnaire. Individuals provide a blood sample at enrolment and annually thereafter, with optional blood draws every 6 months and after infection and vaccination. Participants complete weekly self-collection of anterior nasal swabs and symptom questionnaires. Swabs are tested for SARS-CoV-2 and other respiratory pathogens by reverse transcription-PCR, with results of selected pathogens returned to participants; nasal swabs with SARS-CoV-2 detected will undergo whole genome sequencing. Participants who test positive for SARS-CoV-2 undergo serial swab collection every 3 days for 21 days. Serum samples are tested for SARS-CoV-2 antibody by binding and neutralisation assays. ANALYSIS The primary outcome is SARS-CoV-2 infection. Cox regression models will be used to estimate the incidence rate ratio associated with SARS-CoV-2 vaccination among the paediatric and adult population, controlling for demographic factors and other potential confounders. ETHICS AND DISSEMINATION All study materials including the protocol, consent forms, data collection instruments, participant communication and recruitment materials, were approved by the Kaiser Permanente Interregional Institutional Review Board, the IRB of record for the study. Results will be disseminated through peer-reviewed publications, presentations, participant newsletters and appropriate general news media.
Collapse
Affiliation(s)
- Tara M Babu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Leora R Feldstein
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Saydah
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Acker
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
| | | | - Melissa Briggs-Hagen
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marco Carone
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Amanda Casto
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sarah N Cox
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Brenna Ehmen
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
| | - Janet A Englund
- Department of Pediatrics, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Stephen P Fortmann
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Collrane J Frivold
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Holly Groom
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Peter D Han
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
| | - Jennifer L Kuntz
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Tina Lockwood
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Claire M Midgley
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Richard A Mularski
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Tara Ogilvie
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sacha L Reich
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Mark A Schmidt
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Ning Smith
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Lea Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
- Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, Washington, USA
| | - Meredith Vandermeer
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Ana A Weil
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Caitlin R Wolf
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Helen Y Chu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Allison L Naleway
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| |
Collapse
|
27
|
Yao Y, Yao J, Chen S, Zhang X, Meng H, Li Y, Lu L. Psychological Capital and Self-Acceptance Modified the Association of Depressive Tendency with Self-Rated Health of College Students in China during the COVID-19 Pandemic. Behav Sci (Basel) 2023; 13:552. [PMID: 37503999 PMCID: PMC10376835 DOI: 10.3390/bs13070552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND To explore the association between the self-reported health status, depressive tendency, psychological capital, and self-acceptance of college students in China during the COVID-19 pandemic. METHODS Using the online survey platform "questionnaire star", a two-phase cross-sectional study was conducted on a total number of 1438 undergraduates with informed consents. The questionnaires of Self-Rated Health Measurement Scale (SRHMS), the Center for Epidemiological Studies-Depression Scale (CES-D), Psychological Capital Questionnaire (PCQ-24), and self-acceptance questionnaire were administered to each participant. RESULTS Male college students had significantly higher depressive tendency scores than female (17.59 vs. 15.82) (p < 0.01). College students having no siblings had significantly higher psychological capital scores than those having siblings (108.63 vs. 105.60) (p < 0.05). Exercise had significantly positive associations with self-rated health, psychological capital, and self-acceptance scores, while online time per day had significantly negative associations. Multivariate analysis showed that the interaction between depressive tendency, psychological capital, and self-acceptance was statistically significant (β = 0.004, p = 0.013 for phase 1 and β = 0.002, p = 0.025 for phase 2) in health status with depressive tendency ranking the top (β = -0.54 for phase 1 and -0.41 for phase 2, p < 0.001). Mediation analysis showed that psychological capital and self-acceptance modified the association of depressive tendency with health status. CONCLUSION Physical exercise is beneficial to both physical and psychological health. Depressive tendency is the main risk factor that associates with self-rated health. Regardless of depressive tendency level, high psychological capital and self-acceptance could improve college students' health.
Collapse
Affiliation(s)
- Yongcheng Yao
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Junyan Yao
- College of Elementary Education, Capital Normal University, Beijing 100048, China
| | - Shuyan Chen
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Xiaohui Zhang
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Hongling Meng
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Yuping Li
- School of Mathematics and Statistics, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06520-8034, USA
- School of Medicine, Yale University, New Haven, CT 06520-8034, USA
| |
Collapse
|
28
|
Brett TS, Bansal S, Rohani P. Charting the spatial dynamics of early SARS-CoV-2 transmission in Washington state. PLoS Comput Biol 2023; 19:e1011263. [PMID: 37379328 PMCID: PMC10335681 DOI: 10.1371/journal.pcbi.1011263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 07/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
The spread of SARS-CoV-2 has been geographically uneven. To understand the drivers of this spatial variation in SARS-CoV-2 transmission, in particular the role of stochasticity, we used the early stages of the SARS-CoV-2 invasion in Washington state as a case study. We analysed spatially-resolved COVID-19 epidemiological data using two distinct statistical analyses. The first analysis involved using hierarchical clustering on the matrix of correlations between county-level case report time series to identify geographical patterns in the spread of SARS-CoV-2 across the state. In the second analysis, we used a stochastic transmission model to perform likelihood-based inference on hospitalised cases from five counties in the Puget Sound region. Our clustering analysis identifies five distinct clusters and clear spatial patterning. Four of the clusters correspond to different geographical regions, with the final cluster spanning the state. Our inferential analysis suggests that a high degree of connectivity across the region is necessary for the model to explain the rapid inter-county spread observed early in the pandemic. In addition, our approach allows us to quantify the impact of stochastic events in determining the subsequent epidemic. We find that atypically rapid transmission during January and February 2020 is necessary to explain the observed epidemic trajectories in King and Snohomish counties, demonstrating a persisting impact of stochastic events. Our results highlight the limited utility of epidemiological measures calculated over broad spatial scales. Furthermore, our results make clear the challenges with predicting epidemic spread within spatially extensive metropolitan areas, and indicate the need for high-resolution mobility and epidemiological data.
Collapse
Affiliation(s)
- Tobias S. Brett
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Center for Influenza Disease & Emergence Research (CIDER), Athens, Georgia, United States of America
| |
Collapse
|
29
|
Cheng Y, Ji C, Zhou HY, Zheng H, Wu A. Web Resources for SARS-CoV-2 Genomic Database, Annotation, Analysis and Variant Tracking. Viruses 2023; 15:1158. [PMID: 37243244 PMCID: PMC10222785 DOI: 10.3390/v15051158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The SARS-CoV-2 genomic data continue to grow, providing valuable information for researchers and public health officials. Genomic analysis of these data sheds light on the transmission and evolution of the virus. To aid in SARS-CoV-2 genomic analysis, many web resources have been developed to store, collate, analyze, and visualize the genomic data. This review summarizes web resources used for the SARS-CoV-2 genomic epidemiology, covering data management and sharing, genomic annotation, analysis, and variant tracking. The challenges and further expectations for these web resources are also discussed. Finally, we highlight the importance and need for continued development and improvement of related web resources to effectively track the spread and understand the evolution of the virus.
Collapse
Affiliation(s)
- Yexiao Cheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Chengyang Ji
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| |
Collapse
|
30
|
Rich SN, Richards V, Mavian C, Rife Magalis B, Grubaugh N, Rasmussen SA, Dellicour S, Vrancken B, Carrington C, Fisk-Hoffman R, Danso-Odei D, Chacreton D, Shapiro J, Seraphin MN, Hepp C, Black A, Dennis A, Trovão NS, Vandamme AM, Rasmussen A, Lauzardo M, Dean N, Salemi M, Prosperi M. Application of Phylodynamic Tools to Inform the Public Health Response to COVID-19: Qualitative Analysis of Expert Opinions. JMIR Form Res 2023; 7:e39409. [PMID: 36848460 PMCID: PMC10131930 DOI: 10.2196/39409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/26/2022] [Accepted: 12/27/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.
Collapse
Affiliation(s)
- Shannan N Rich
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Veronica Richards
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brittany Rife Magalis
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nathan Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Sonja A Rasmussen
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Simon Dellicour
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Bruxelles, Belgium
| | - Bram Vrancken
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Bruxelles, Belgium
| | - Christine Carrington
- Department of Preclinical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Rebecca Fisk-Hoffman
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Demi Danso-Odei
- Florida Department of Health in Alachua County, Gainesville, FL, United States
| | - Daniel Chacreton
- Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States
| | - Jerne Shapiro
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
- Florida Department of Health in Alachua County, Gainesville, FL, United States
| | - Marie Nancy Seraphin
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
- School of Informatics, Computing, and Cyber Systems, College of Engineering, Informatics, and Applied Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Allison Black
- Chan Zuckerberg Initiative, Redwood City, CA, United States
| | - Ann Dennis
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, United States
| | - Anne-Mieke Vandamme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Angela Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Natalie Dean
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
31
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Oltean HN, Allen KJ, Frisbie L, Lunn SM, Torres LM, Manahan L, Painter I, Russell D, Singh A, Peterson JM, Grant K, Peter C, Cao R, Garcia K, Mackellar D, Jones L, Halstead H, Gray H, Melly G, Nickerson D, Starita L, Frazar C, Greninger AL, Roychoudhury P, Mathias PC, Kalnoski MH, Ting CN, Lykken M, Rice T, Gonzalez-Robles D, Bina D, Johnson K, Wiley CL, Magnuson SC, Parsons CM, Chapman ED, Valencia CA, Fortna RR, Wolgamot G, Hughes JP, Baseman JG, Bedford T, Lindquist S. Sentinel Surveillance System Implementation and Evaluation for SARS-CoV-2 Genomic Data, Washington, USA, 2020-2021. Emerg Infect Dis 2023; 29:242-251. [PMID: 36596565 PMCID: PMC9881772 DOI: 10.3201/eid2902.221482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genomic data provides useful information for public health practice, particularly when combined with epidemiologic data. However, sampling bias is a concern because inferences from nonrandom data can be misleading. In March 2021, the Washington State Department of Health, USA, partnered with submitting and sequencing laboratories to establish sentinel surveillance for SARS-CoV-2 genomic data. We analyzed available genomic and epidemiologic data during presentinel and sentinel periods to assess representativeness and timeliness of availability. Genomic data during the presentinel period was largely unrepresentative of all COVID-19 cases. Data available during the sentinel period improved representativeness for age, death from COVID-19, outbreak association, long-term care facility-affiliated status, and geographic coverage; timeliness of data availability and captured viral diversity also improved. Hospitalized cases were underrepresented, indicating a need to increase inpatient sampling. Our analysis emphasizes the need to understand and quantify sampling bias in phylogenetic studies and continue evaluation and improvement of public health surveillance systems.
Collapse
|
33
|
Correlated substitutions reveal SARS-like coronaviruses recombine frequently with a diverse set of structured gene pools. Proc Natl Acad Sci U S A 2023; 120:e2206945119. [PMID: 36693089 PMCID: PMC9945976 DOI: 10.1073/pnas.2206945119] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Quantifying SARS-like coronavirus (SL-CoV) evolution is critical to understanding the origins of SARS-CoV-2 and the molecular processes that could underlie future epidemic viruses. While genomic analyses suggest recombination was a factor in the emergence of SARS-CoV-2, few studies have quantified recombination rates among SL-CoVs. Here, we infer recombination rates of SL-CoVs from correlated substitutions in sequencing data using a coalescent model with recombination. Our computationally-efficient, non-phylogenetic method infers recombination parameters of both sampled sequences and the unsampled gene pools with which they recombine. We apply this approach to infer recombination parameters for a range of positive-sense RNA viruses. We then analyze a set of 191 SL-CoV sequences (including SARS-CoV-2) and find that ORF1ab and S genes frequently undergo recombination. We identify which SL-CoV sequence clusters have recombined with shared gene pools, and show that these pools have distinct structures and high recombination rates, with multiple recombination events occurring per synonymous substitution. We find that individual genes have recombined with different viral reservoirs. By decoupling contributions from mutation and recombination, we recover the phylogeny of non-recombined portions for many of these SL-CoVs, including the position of SARS-CoV-2 in this clonal phylogeny. Lastly, by analyzing >400,000 SARS-CoV-2 whole genome sequences, we show current diversity levels are insufficient to infer the within-population recombination rate of the virus since the pandemic began. Our work offers new methods for inferring recombination rates in RNA viruses with implications for understanding recombination in SARS-CoV-2 evolution and the structure of clonal relationships and gene pools shaping its origins.
Collapse
|
34
|
Krishna VD, Roehrich H, Schroeder DC, Cheeran MCJ, Yuan C, Hou JH. In vitro infection of human ocular tissues by SARS-CoV-2 lineage A isolates. BMC Ophthalmol 2022; 22:518. [PMID: 36585637 PMCID: PMC9801150 DOI: 10.1186/s12886-022-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The purpose of this study was: [1] to evaluate the infectivity of two SARS-CoV-2 lineage A variants on human ocular tissues in vitro, and [2] to evaluate the stability of SARS-CoV-2 lineage A variants in corneal preservation medium. METHODS Primary cultures of donor corneal, conjunctival, and limbal epithelium were inoculated with two lineage A, GISAID clade S isolates of SARS-CoV-2 (Hong Kong/VM20001061/2020, USA-WA1/2020), to evaluate the susceptibility of the ocular tissue to infection. Flat-mounted Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) grafts were inoculated with SARS-CoV-2 to evaluate the susceptibility of the endothelium to infection. All inoculated samples were immunostained for SARS-CoV-2 nucleocapsid (N)-protein expression to confirm positive infection. SARS-CoV-2 Hong Kong was then inoculated into cornea preservation media (Life4°C, Numedis, Inc.). Inoculated media was stored at 4oC for 14 days and assayed over time for changes in infectious viral titers. RESULTS Corneal, conjunctival, and limbal epithelial cells all demonstrated susceptibility to infection by SARS-CoV-2 lineage A variants. Conjunctiva demonstrated the highest infection rate (78% of samples infected [14/18]); however, infection rates did not differ statistically between cell types and viral isolates. After inoculation, 40% (4/10) of DSAEK grafts had active infection in the endothelium. SARS-CoV-2 lineage A demonstrated < 1 log decline in viral titers out to 14 days in corneal preservation media. CONCLUSIONS SARS-CoV-2 lineage A variants can infect corneal, limbal, and conjunctival epithelium, as well as corneal endothelium. There was no statistical difference in infectivity between different lineage A variants. SARS-CoV-2 lineage A can survive and remain infectious in corneal preservation media out to 14 days in cold storage.
Collapse
Affiliation(s)
- Venkatramana D. Krishna
- grid.17635.360000000419368657Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN USA
| | - Heidi Roehrich
- grid.17635.360000000419368657Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St SE, MMC 493, Minneapolis, MN 55455 USA
| | - Declan C. Schroeder
- grid.17635.360000000419368657Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN USA ,grid.9435.b0000 0004 0457 9566School of Biological Sciences, University of Reading, Reading, UK
| | - Maxim C.-J. Cheeran
- grid.17635.360000000419368657Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN USA
| | - Ching Yuan
- grid.17635.360000000419368657Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St SE, MMC 493, Minneapolis, MN 55455 USA ,Lions Gift of Sight Eye Bank, St. Paul, MN USA
| | - Joshua H. Hou
- grid.17635.360000000419368657Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 420 Delaware St SE, MMC 493, Minneapolis, MN 55455 USA ,Lions Gift of Sight Eye Bank, St. Paul, MN USA
| |
Collapse
|
35
|
Bowen JE, Park YJ, Stewart C, Brown JT, Sharkey WK, Walls AC, Joshi A, Sprouse KR, McCallum M, Tortorici MA, Franko NM, Logue JK, Mazzitelli IG, Nguyen AW, Silva RP, Huang Y, Low JS, Jerak J, Tiles SW, Ahmed K, Shariq A, Dan JM, Zhang Z, Weiskopf D, Sette A, Snell G, Posavad CM, Iqbal NT, Geffner J, Bandera A, Gori A, Sallusto F, Maynard JA, Crotty S, Van Voorhis WC, Simmerling C, Grifantini R, Chu HY, Corti D, Veesler D. SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Sci Immunol 2022; 7:eadf1421. [PMID: 36356052 PMCID: PMC9765460 DOI: 10.1126/sciimmunol.adf1421] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.
Collapse
Affiliation(s)
- John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - William K. Sharkey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Anshu Joshi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Ignacio G. Mazzitelli
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Annalee W. Nguyen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Rui P. Silva
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Yimin Huang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Sasha W Tiles
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kumail Ahmed
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Asefa Shariq
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Zeli Zhang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | | | - Christine M. Posavad
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Najeeha Talat Iqbal
- Department of Paediatrics and Child Health, and Biological & Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Buenos Aires C1121ABG, Argentina
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA UC92037, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases, Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, 20122 Milan, Italy
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Goldman JD, Wang K, Röltgen K, Nielsen SCA, Roach JC, Naccache SN, Yang F, Wirz OF, Yost KE, Lee JY, Chun K, Wrin T, Petropoulos CJ, Lee I, Fallen S, Manner PM, Wallick JA, Algren HA, Murray KM, Hadlock J, Chen D, Dai CL, Yuan D, Su Y, Jeharajah J, Berrington WR, Pappas GP, Nyatsatsang ST, Greninger AL, Satpathy AT, Pauk JS, Boyd SD, Heath JR. Reinfection with SARS-CoV-2 and Waning Humoral Immunity: A Case Report. Vaccines (Basel) 2022; 11:5. [PMID: 36679852 PMCID: PMC9861578 DOI: 10.3390/vaccines11010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.
Collapse
Affiliation(s)
- Jason D. Goldman
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Fan Yang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Oliver F. Wirz
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E. Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kelly Chun
- LabCorp Esoterix, Calabasas, CA 91301, USA
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA 94080, USA
| | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | - Paula M. Manner
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Julie A. Wallick
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Heather A. Algren
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Kim M. Murray
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Jennifer Hadlock
- Providence St. Joseph Health, Renton, WA 98057, USA
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | - Dan Yuan
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Joshua Jeharajah
- Division of Infectious Diseases, Polyclinic, Seattle, WA 98104, USA
| | - William R. Berrington
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - George P. Pappas
- Division of Pulmonology and Critical Care Medicine, Swedish Medical Center, Seattle, WA 98104, USA
| | - Sonam T. Nyatsatsang
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, DC 98109, USA
| | | | - John S. Pauk
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - Scott D. Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94304, USA
| | | |
Collapse
|
37
|
Paredes MI, Perofsky AC, Frisbie L, Moncla LH, Roychoudhury P, Xie H, Mohamed Bakhash SA, Kong K, Arnould I, Nguyen TV, Wendm ST, Hajian P, Ellis S, Mathias PC, Greninger AL, Starita LM, Frazar CD, Ryke E, Zhong W, Gamboa L, Threlkeld M, Lee J, Stone J, McDermot E, Truong M, Shendure J, Oltean HN, Viboud C, Chu H, Müller NF, Bedford T. Local-Scale phylodynamics reveal differential community impact of SARS-CoV-2 in metropolitan US county. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.12.15.22283536. [PMID: 36561171 PMCID: PMC9774227 DOI: 10.1101/2022.12.15.22283536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county. Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories of North and South King County began to diverge. We find that South King County consistently had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of local viral transmission when compared to North King County, where viral importations from outside drove a larger proportion of new cases. Using mobility and demographic data, we also find that South King County experienced a more modest and less sustained reduction in mobility following stay-at-home orders than North King County, while also bearing more socioeconomic inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale phylodynamics in understanding the heterogeneous transmission landscape.
Collapse
Affiliation(s)
- Miguel I. Paredes
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda C. Perofsky
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Frisbie
- Washington State Department of Health, Shoreline, WA USA
| | - Louise H. Moncla
- The University of Pennsylvania, Department of Pathobiology, Philadelphia, PA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Kevin Kong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Isabel Arnould
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tien V. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Seffir T. Wendm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Pooneh Hajian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sean Ellis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Patrick C. Mathias
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lea M. Starita
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Chris D. Frazar
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Erica Ryke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Weizhi Zhong
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
| | - Luis Gamboa
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
| | - Machiko Threlkeld
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
| | - Evan McDermot
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
| | - Melissa Truong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | | | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Helen Chu
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA
| | - Nicola F. Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
38
|
Langan LM, O’Brien M, Lovin LM, Scarlett KR, Davis H, Henke AN, Seidel SE, Archer N, Lawrence E, Norman RS, Bojes HK, Brooks BW. Quantitative Reverse Transcription PCR Surveillance of SARS-CoV-2 Variants of Concern in Wastewater of Two Counties in Texas, United States. ACS ES&T WATER 2022; 2:2211-2224. [PMID: 37552718 PMCID: PMC9291321 DOI: 10.1021/acsestwater.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
After its emergence in late November/December 2019, the severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) rapidly spread globally. Recognizing that this virus is shed in feces of individuals and that viral RNA is detectable in wastewater, testing for SARS-CoV-2 in sewage collections systems has allowed for the monitoring of a community's viral burden. Over a 9 month period, the influents of two regional wastewater treatment facilities were concurrently examined for wild-type SARS-CoV-2 along with variants B.1.1.7 and B.1.617.2 incorporated as they emerged. Epidemiological data including new confirmed COVID-19 cases and associated hospitalizations and fatalities were tabulated within each location. RNA from SARS-CoV-2 was detectable in 100% of the wastewater samples, while variant detection was more variable. Quantitative reverse transcription PCR (RT-qPCR) results align with clinical trends for COVID-19 cases, and increases in COVID-19 cases were positively related with increases in SARS-CoV-2 RNA load in wastewater, although the strength of this relationship was location specific. Our observations demonstrate that clinical and wastewater surveillance of SARS-CoV-2 wild type and constantly emerging variants of concern can be combined using RT-qPCR to characterize population infection dynamics. This may provide an early warning for at-risk communities and increases in COVID-19 related hospitalizations.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| | - Lea M. Lovin
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Kendall R. Scarlett
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Haley Davis
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Abigail N. Henke
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Biology, Baylor
University, One Bear Place #97388, Waco, Texas 76798, United
States
| | - Sarah E. Seidel
- Center for Health
Statistics, Texas Department of State Health Services, Austin, Texas
78756, United States
| | - Natalie Archer
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Eric Lawrence
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, Arnold School of
Public Health, University of South Carolina, 921 Assembly
Street Columbia, South Carolina 29208, United States
| | - Heidi K. Bojes
- Environmental Epidemiology and Disease Registries
Section, Texas Department of State Health Services, Austin,
Texas 78756, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Public Health, Baylor
University, One Bear Place #97343, Waco, Texas 76798, United
States
| |
Collapse
|
39
|
Saud Z, Richards CAJ, Williams G, Stanton RJ. Anti-viral organic coatings for high touch surfaces based on smart-release, Cu 2+ containing pigments. PROGRESS IN ORGANIC COATINGS 2022; 172:107135. [PMID: 36035655 PMCID: PMC9393488 DOI: 10.1016/j.porgcoat.2022.107135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/15/2023]
Abstract
Viruses such as SARS-CoV-2 can remain viable on solid surfaces for up to one week, hence fomites are a potential route of exposure to infectious virus. Copper has well documented antiviral properties that could limit this problem, however practical deployment of copper surfaces has been limited due to the associated costs and the incompatibility of copper metal in specific environments and conditions. We therefore developed an organic coating containing an intelligent-release Cu2+ pigment based on a cation exchange resin. Organic coatings containing a 50 % weight or higher loading of smart-release pigment were capable of completely inactivating (>6 log reduction in titre) SARS-CoV-2 within 4 h of incubation. Importantly these organic coatings demonstrated a significantly enhanced ability to inactivate SARS-CoV-2 compared to metallic copper and un-pigmented material. Furthermore, the presence of contaminating proteins inhibited the antiviral activity of metallic copper, but the intelligent-release Cu2+ pigment was unaffected. The approach of using a very basic paint system, based on a polymer binder embedded with "smart release" pigment containing an anti-viral agent which is liberated by ion-exchange, holds significant promise as a cost effective and rapidly deployed coating to confer virus inactivating capability to high touch surfaces.
Collapse
Affiliation(s)
- Zack Saud
- Infection and Immunity, Medicine, Cardiff University, Heath Park, Cardiff CF11 9HH, UK
| | - Calvin A J Richards
- Department of Materials Science and Engineering, Faculty of Science and Engineering, Bay Campus, Swansea University Crymlyn Burrows, Swansea SA1 8EN, UK
| | - Geraint Williams
- Department of Materials Science and Engineering, Faculty of Science and Engineering, Bay Campus, Swansea University Crymlyn Burrows, Swansea SA1 8EN, UK
| | - Richard J Stanton
- Infection and Immunity, Medicine, Cardiff University, Heath Park, Cardiff CF11 9HH, UK
| |
Collapse
|
40
|
Pei S, Kandula S, Cascante Vega J, Yang W, Foerster S, Thompson C, Baumgartner J, Ahuja SD, Blaney K, Varma JK, Long T, Shaman J. Contact tracing reveals community transmission of COVID-19 in New York City. Nat Commun 2022; 13:6307. [PMID: 36274183 PMCID: PMC9588776 DOI: 10.1038/s41467-022-34130-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that locations with higher vaccination coverage and lower numbers of visitors to points-of-interest had reduced within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings.
Collapse
Affiliation(s)
- Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
| | - Sasikiran Kandula
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Jaime Cascante Vega
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Wan Yang
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Steffen Foerster
- New York City Department of Health and Mental Hygiene (DOHMH), Long Island City, NY, 11001, USA
| | - Corinne Thompson
- New York City Department of Health and Mental Hygiene (DOHMH), Long Island City, NY, 11001, USA
| | - Jennifer Baumgartner
- New York City Department of Health and Mental Hygiene (DOHMH), Long Island City, NY, 11001, USA
| | - Shama Desai Ahuja
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
- New York City Department of Health and Mental Hygiene (DOHMH), Long Island City, NY, 11001, USA
| | - Kathleen Blaney
- New York City Department of Health and Mental Hygiene (DOHMH), Long Island City, NY, 11001, USA
| | - Jay K Varma
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, 10065, USA
| | | | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
- Columbia Climate School, Columbia University, New York, NY, 10025, USA
| |
Collapse
|
41
|
Asghar A, Imran HM, Bano N, Maalik S, Mushtaq S, Hussain A, Varjani S, Aleya L, Iqbal HMN, Bilal M. SARS-COV-2/COVID-19: scenario, epidemiology, adaptive mutations, and environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69117-69136. [PMID: 35947257 PMCID: PMC9363873 DOI: 10.1007/s11356-022-22333-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The coronavirus pandemic of 2019 has already exerted an enormous impact. For over a year, the worldwide pandemic has ravaged the whole globe, with approximately 250 million verified human infection cases and a mortality rate surpassing 4 million. While the genetic makeup of the related pathogen (SARS-CoV-2) was identified, many unknown facets remain a mystery, comprising the virus's origin and evolutionary trend. There were many rumors that SARS-CoV-2 was human-borne and its evolution was predicted many years ago, but scientific investigation proved them wrong and concluded that bats might be the origin of SARS-CoV-2 and pangolins act as intermediary species to transmit the virus from bats to humans. Airborne droplets were found to be the leading cause of human-to-human transmission of this virus, but later studies showed that contaminated surfaces and other environmental factors are also involved in its transmission. The evolution of different SARS-CoV-2 variants worsens the condition and has become a challenge to overcome this pandemic. The emergence of COVID-19 is still a mystery, and scientists are unable to explain the exact origin of SARS-CoV-2. This review sheds light on the possible origin of SARS-CoV-2, its transmission, and the key factors that worsen the situation.
Collapse
Affiliation(s)
- Asma Asghar
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Imran
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Naheed Bano
- Department of Fisheries & Aquaculture, MNS-University of Agriculture, Multan, Pakistan
| | - Sadia Maalik
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
42
|
Weil AA, Luiten KG, Casto AM, Bennett JC, O'Hanlon J, Han PD, Gamboa LS, McDermot E, Truong M, Gottlieb GS, Acker Z, Wolf CR, Magedson A, Chow EJ, Lo NK, Pothan LC, McDonald D, Wright TC, McCaffrey KM, Figgins MD, Englund JA, Boeckh M, Lockwood CM, Nickerson DA, Shendure J, Bedford T, Hughes JP, Starita LM, Chu HY. Genomic surveillance of SARS-CoV-2 Omicron variants on a university campus. Nat Commun 2022; 13:5240. [PMID: 36068236 PMCID: PMC9446629 DOI: 10.1038/s41467-022-32786-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.
Collapse
Affiliation(s)
- Ana A Weil
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Kyle G Luiten
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amanda M Casto
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julia C Bennett
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jessica O'Hanlon
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter D Han
- Brotman Baty Institute, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Luis S Gamboa
- Brotman Baty Institute, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Geoffrey S Gottlieb
- Department of Medicine, University of Washington, Seattle, WA, USA
- Environmental Health & Safety Department, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Zack Acker
- Brotman Baty Institute, Seattle, WA, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ariana Magedson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric J Chow
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Natalie K Lo
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lincoln C Pothan
- Brotman Baty Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Devon McDonald
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tessa C Wright
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Marlin D Figgins
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christina M Lockwood
- Brotman Baty Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Brotman Baty Institute, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Brotman Baty Institute, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lea M Starita
- Brotman Baty Institute, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Miao M, De Clercq E, Li G. Towards Efficient and Accurate SARS-CoV-2 Genome Sequence Typing Based on Supervised Learning Approaches. Microorganisms 2022; 10:microorganisms10091785. [PMID: 36144387 PMCID: PMC9505117 DOI: 10.3390/microorganisms10091785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the active development of SARS-CoV-2 surveillance methods (e.g., Nextstrain, GISAID, Pangolin), the global emergence of various SARS-CoV-2 viral lineages that potentially cause antiviral and vaccine failure has driven the need for accurate and efficient SARS-CoV-2 genome sequence classifiers. This study presents an optimized method that accurately identifies the viral lineages of SARS-CoV-2 genome sequences using existing schemes. For Nextstrain and GISAID clades, a template matching-based method is proposed to quantify the differences between viral clades and to play an important role in classification evaluation. Furthermore, to improve the typing accuracy of SARS-CoV-2 genome sequences, an ensemble model that integrates a combination of machine learning-based methods (such as Random Forest and Catboost) with optimized weights is proposed for Nextstrain, Pangolin, and GISAID clades. Cross-validation is applied to optimize the parameters of the machine learning-based method and the weight settings of the ensemble model. To improve the efficiency of the model, in addition to the one-hot encoding method, we have proposed a nucleotide site mutation-based data structure that requires less computational resources and performs better in SARS-CoV-2 genome sequence typing. Based on an accumulated database of >1 million SARS-CoV-2 genome sequences, performance evaluations show that the proposed system has a typing accuracy of 99.879%, 97.732%, and 96.291% for Nextstrain, Pangolin, and GISAID clades, respectively. A single prediction only takes an average of <20 ms on a portable laptop. Overall, this study provides an efficient and accurate SARS-CoV-2 genome sequence typing system that benefits current and future surveillance of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Miao Miao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
- Hunan Children’s Hospital, Changsha 410007, China
- Correspondence: ; Tel.: +86-731-8480-5414
| |
Collapse
|
44
|
Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nat Rev Genet 2022; 23:547-562. [PMID: 35459859 PMCID: PMC9028907 DOI: 10.1038/s41576-022-00483-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 01/05/2023]
Abstract
Determining the transmissibility, prevalence and patterns of movement of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is central to our understanding of the impact of the pandemic and to the design of effective control strategies. Phylogenies (evolutionary trees) have provided key insights into the international spread of SARS-CoV-2 and enabled investigation of individual outbreaks and transmission chains in specific settings. Phylodynamic approaches combine evolutionary, demographic and epidemiological concepts and have helped track virus genetic changes, identify emerging variants and inform public health strategy. Here, we review and synthesize studies that illustrate how phylogenetic and phylodynamic techniques were applied during the first year of the pandemic, and summarize their contributions to our understanding of SARS-CoV-2 transmission and control.
Collapse
Affiliation(s)
- Stephen W Attwood
- Department of Zoology, University of Oxford, Oxford, UK.
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK.
| | - Sarah C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas R Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK.
| |
Collapse
|
45
|
Shrestha L, Lin MJ, Xie H, Mills MG, Mohamed Bakhash SA, Gaur VP, Livingston RJ, Castor J, Bruce EA, Botten JW, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Clinical Performance Characteristics of the Swift Normalase Amplicon Panel for Sensitive Recovery of Severe Acute Respiratory Syndrome Coronavirus 2 Genomes. J Mol Diagn 2022; 24:963-976. [PMID: 35863699 PMCID: PMC9290336 DOI: 10.1016/j.jmoldx.2022.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Amplicon-based sequencing methods are central in characterizing the diversity, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but need to be rigorously assessed for clinical utility. Herein, we validated the Swift Biosciences' SARS-CoV-2 Swift Normalase Amplicon Panels using remnant clinical specimens. High-quality genomes meeting our established library and sequence quality criteria were recovered from positive specimens, with 95% limit of detection of 40.08 SARS-CoV-2 copies/PCR. Breadth of genome recovery was evaluated across a range of CT values (11.3 to 36.7; median, 21.6). Of 428 positive samples, 413 (96.5%) generated genomes with <10% unknown bases, with a mean genome coverage of 13,545× ± SD 8382×. No genomes were recovered from PCR-negative specimens (n = 30) or from specimens positive for non-SARS-CoV-2 respiratory viruses (n = 20). Compared with whole-genome shotgun metagenomic sequencing (n = 14) or Sanger sequencing for the spike gene (n = 11), pairwise identity between consensus sequences was 100% in all cases, with highly concordant allele frequencies (R2 = 0.99) between Swift and shotgun libraries. When samples from different clades were mixed at varying ratios, expected variants were detected even in 1:99 mixtures. When deployed as a clinical test, 268 tests were performed in the first 23 weeks, with a median turnaround time of 11 days, ordered primarily for outbreak investigations and infection control.
Collapse
Affiliation(s)
- Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vinod P Gaur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Robert J Livingston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jared Castor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Jason W Botten
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
46
|
Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, Gangavarapu K, Malpica Serrano LM, Crits-Christoph A, Matteson NL, Zeller M, Levy JI, Wang JC, Hughes S, Lee J, Park H, Park MS, Ching KZY, Lin RTP, Mat Isa MN, Noor YM, Vasylyeva TI, Garry RF, Holmes EC, Rambaut A, Suchard MA, Andersen KG, Worobey M, Wertheim JO. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 2022; 377:960-966. [PMID: 35881005 PMCID: PMC9348752 DOI: 10.1126/science.abp8337] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
Collapse
Affiliation(s)
- Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Izhikevich
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Karthik Gangavarapu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Nathaniel L. Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jade C. Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Jungmin Lee
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | | | - Raymond Tzer Pin Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore
| | - Mohd Noor Mat Isa
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert F. Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
- Zalgen Labs, LCC, Frederick, MD 21703 USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FL, UK
| | - Marc A. Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
47
|
Park YJ, Pinto D, Walls AC, Liu Z, Marco AD, Benigni F, Zatta F, Silacci-Fregni C, Bassi J, Sprouse KR, Addetia A, Bowen JE, Stewart C, Giurdanella M, Saliba C, Guarino B, Schmid MA, Franko N, Logue J, Dang HV, Hauser K, Iulio JD, Rivera W, Schnell G, Rajesh A, Zhou J, Farhat N, Kaiser H, Montiel-Ruiz M, Noack J, Lempp FA, Janer J, Abdelnabi R, Maes P, Ferrari P, Ceschi A, Giannini O, de Melo GD, Kergoat L, Bourhy H, Neyts J, Soriaga L, Purcell LA, Snell G, Whelan SPJ, Lanzavecchia A, Virgin HW, Piccoli L, Chu H, Pizzuto MS, Corti D, Veesler D. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.08.491108. [PMID: 35677069 PMCID: PMC9176643 DOI: 10.1101/2022.05.08.491108] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SARS-CoV-2 Omicron sublineages carry distinct spike mutations and represent an antigenic shift resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters result in potent plasma neutralizing activity against Omicron BA.1 and BA.2 and that breakthrough infections, but not vaccination-only, induce neutralizing activity in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1 and BA.2 receptor-binding domains whereas Omicron primary infections elicit B cells of narrow specificity. While most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant antibody, that is unaffected by any Omicron lineage spike mutations and is a strong candidate for clinical development.
Collapse
Affiliation(s)
- Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Dora Pinto
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna De Marco
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Jessica Bassi
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Martina Giurdanella
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Ha V Dang
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | | | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Javier Janer
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Piet Maes
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Alessandro Ceschi
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Clinical Trial Unit, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Giannini
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Guilherme Dias de Melo
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France
| | - Lauriane Kergoat
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Antonio Lanzavecchia
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Luca Piccoli
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | | | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Gao J, May MR, Rannala B, Moore BR. New Phylogenetic Models Incorporating Interval-Specific Dispersal Dynamics Improve Inference of Disease Spread. Mol Biol Evol 2022; 39:msac159. [PMID: 35861314 PMCID: PMC9384482 DOI: 10.1093/molbev/msac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured prominently in studies of the COVID-19 pandemic. Virtually all such studies are based on phylodynamic models that assume-despite direct and compelling evidence to the contrary-that rates of viral geographic dispersal are constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the number and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of discrete-geographic phylodynamic models to empirical datasets. We first validate our new methods using simulations, and then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter estimates; (2) in practice, our interval-specific discrete-geographic phylodynamic models can significantly improve the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific models provides qualitatively different inferences regarding key aspects of the COVID-19 pandemic-revealing significant temporal variation in global viral dispersal rates, viral dispersal routes, and the number of viral dispersal events between areas-and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.
Collapse
Affiliation(s)
- Jiansi Gao
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| | - Michael R May
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
- Department of Integrative Biology, University of California, 3060 VLSB, Berkeley, CA 94720-3140, USA
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| | - Brian R Moore
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| |
Collapse
|
49
|
Lau KA, Horan K, Gonçalves da Silva A, Kaufer A, Theis T, Ballard SA, Rawlinson WD. Proficiency testing for SARS-CoV-2 whole genome sequencing. Pathology 2022; 54:615-622. [PMID: 35778290 PMCID: PMC9239710 DOI: 10.1016/j.pathol.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
Abstract
Extensive studies and analyses into the molecular features of severe acute respiratory syndrome related coronavirus 2 (SARS-CoV-2) have enhanced the surveillance and investigation of its clusters and transmission worldwide. The whole genome sequencing (WGS) approach is crucial in identifying the source of infection and transmission routes by monitoring the emergence of variants over time and through communities. Varying SARS-CoV-2 genomics capacity and capability levels have been established in public health laboratories across different Australian states and territories. Therefore, laboratories performing SARS-CoV-2 WGS for public health purposes are recommended to participate in an external proficiency testing program (PTP). This study describes the development of a SARS-CoV-2 WGS PTP. The PTP assessed the performance of laboratories while providing valuable insight into the current state of SARS-CoV-2 genomics in public health across Australia. Part 1 of the PTP contained eight simulated SARS-CoV-2 positive and negative specimens to assess laboratories' wet and dry laboratory capacity. Part 2 involved the analysis of a genomic dataset that consisted of a multi-FASTA file of 70 consensus genomes of SARS-CoV-2. Participating laboratories were required to (1) submit raw data for independent bioinformatics analysis, (2) analyse the data with their processes, and (3) answer relevant questions about the data. The performance of the laboratories was commendable, despite some variation in the reported results due to the different sequencing and bioinformatics approaches used by laboratories. The overall outcome is positive and demonstrates the critical role of the PTP in supporting the implementation and validation of SARS-CoV-2 WGS processes. The data derived from this PTP will contribute to the development of SARS-CoV-2 bioinformatic quality control (QC) and performance benchmarking for accreditation.
Collapse
Affiliation(s)
| | - Kristy Horan
- Communicable Diseases Genomics Network (CDGN), Public Health Laboratory Network (PHLN), Sydney, NSW, Australia; Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL), The University of Melbourne at The Peter Doherty Institute for Immunity and Infection, Melbourne, Vic, Australia
| | - Anders Gonçalves da Silva
- Communicable Diseases Genomics Network (CDGN), Public Health Laboratory Network (PHLN), Sydney, NSW, Australia; Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL), The University of Melbourne at The Peter Doherty Institute for Immunity and Infection, Melbourne, Vic, Australia
| | - Alexa Kaufer
- RCPAQAP Biosecurity, St Leonards, NSW, Australia
| | | | - Susan A Ballard
- Communicable Diseases Genomics Network (CDGN), Public Health Laboratory Network (PHLN), Sydney, NSW, Australia; Microbiological Diagnostic Unit Public Health Laboratory (MDU PHL), The University of Melbourne at The Peter Doherty Institute for Immunity and Infection, Melbourne, Vic, Australia
| | - William D Rawlinson
- Serology and Virology Division (SAViD) SEALS Microbiology, NSW Health Pathology, SOMS, BABS, Women's and Children's, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
50
|
Pei S, Kandula S, Vega JC, Yang W, Foerster S, Thompson C, Baumgartner J, Ahuja S, Blaney K, Varma J, Long T, Shaman J. Contact tracing reveals community transmission of COVID-19 in New York City. RESEARCH SQUARE 2022:rs.3.rs-1840065. [PMID: 35923312 PMCID: PMC9347284 DOI: 10.21203/rs.3.rs-1840065/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that higher vaccination coverage and reduced numbers of visitors to points-of-interest are associated with fewer within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shama Ahuja
- New York City Department of Health and Mental Hygiene
| | | | | | | | | |
Collapse
|