1
|
Rafieerad A, Khanahmadi S, Rahman A, Shahali H, Böhmer M, Amiri A. Induction of Chirality in MXene Nanosheets and Derived Quantum Dots: Chiral Mixed-Low-Dimensional Ti 3C 2T x Biomaterials as Potential Agricultural Biostimulants for Enhancing Plant Tolerance to Different Abiotic Stresses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500654. [PMID: 40176740 DOI: 10.1002/smll.202500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Indexed: 04/04/2025]
Abstract
This work presents two advancements in the engineering design and bio-applications of emerging MXene nanosheets and derived quantum dots. First, a facile, versatile, and universal strategy is showcased for inducing the right- or left-handed chirality into the surface of titanium carbide-based MXene (Ti3C2Tx) to form stable mixed-low-dimensional chiral MXene biomaterials with enhanced aqueous colloidal dispersibility and debonding tolerance, mimicking the natural asymmetric bio-structure of most biomolecules and living organisms. In particular, Ti3C2Tx MXene nanosheets are functionalized with carboxyl-based terminals and bound feasibly with the D/L-cysteine amino acid ligands. The physicochemical characterizations of these 2D-0D/1D chiral MXene heterostructures suggest the inclusion of Ti3C2Tx nanosheets and different levels of self-derived MXene quantum dots and surface titanium-oxide nanoparticles, providing enhanced material stability and oxidative degradation resistance for tested months. Further, the interaction and molecular binding at cysteine-Ti3C2Tx/Ti-oxide interfaces, associated ion transport and ionic conductivity analysis, and charge re/distribution mechanisms are evaluated using density functional theory (DFT) calculations and electrochemical impedance spectroscopy (EIS) measurements. The second uniqueness of this study relies on the multifunctional application of optimal chiral MXenes as potential nano-biostimulants for enhancing plant tolerance to different abiotic conditions, including severe drought, salinity, or light stress. This surface tailoring enables high biocompatibility with the seed/seedling/plant of Arabidopsis thaliana alongside promoting multi-bioactivities for enhanced seed-to-seedling transition, seedling germination/maturation, plant-induced stomatal closure, and ROS production eliciting responses. Given that the induced chirality is a pivotal factor in many agro-stimulants and amino acid-containing fertilizers for enhanced interaction with plant cells/enzymes, boosting stress tolerance, nutrient uptake, and growth, these findings open up new avenues toward multiple applications of chiral MXene biomaterials as next-generation carbon-based nano-biostimulants in agriculture.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Akif Rahman
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Hossein Shahali
- Russell School of Chemical Engineering, University of Tulsa, Tulsa, OK, 74104, USA
| | - Maik Böhmer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
- Russell School of Chemical Engineering, University of Tulsa, Tulsa, OK, 74104, USA
| |
Collapse
|
2
|
Mu P, Ye F, Liu X, Zhang P, Liu T, Li X. Partial root-zone drying irrigation enhances synthesis of glutathione in barley roots to improve low temperature tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70026. [PMID: 39908208 DOI: 10.1111/tpj.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Partial root-zone drying irrigation (PRD) has been widely employed to regulate crop root development and responses to environmental fluctuations. However, its role in reprogramming rhizospheric microorganisms and inducing plant stress tolerance remains largely unexplored. This study aimed to investigate the effects of PRD on the response of barley (Hordeum vulgare) plants to low temperatures under various irrigation regimes. Under low temperature, barley plants subjected to PRD exhibited a significantly enhanced net photosynthetic rate, stomatal conductance, and maximum quantum efficiency of photosystem II compared to fully irrigated plants. Additionally, these plants showed a reduction in relative conductance. These results suggest that PRD could be a viable strategy for enhancing crop stress tolerance through irrigation management. Metabolomic analysis revealed that PRD influenced the accumulation of glutathione and 9-octadecenamide in roots under low temperature, which was corroborated by transcriptome profiling data. Furthermore, the study highlighted the close association between this regulatory process and rhizosphere core microorganisms, such as Sphingobium and Mortierella, enriched in barley roots under PRD. This study revealed the mechanism underlying plant stress tolerance induction by PRD and the roles of rhizosphere microorganisms in this process. Also, the current study suggests that PRD is a promising strategy for enhancing crop stress tolerance through effective irrigation management.
Collapse
Affiliation(s)
- Peng Mu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Fan Ye
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xintong Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Peng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Tianhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xiangnan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Manandhar A, Pichaco J, McAdam SAM. Abscisic acid increase correlates with the soil water threshold of transpiration decline during drought. PLANT, CELL & ENVIRONMENT 2024; 47:5067-5075. [PMID: 39139139 DOI: 10.1111/pce.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
By regulating carbon uptake and water loss by plants, stomata are not only responsible for productivity but also survival during drought. The timing of the onset of stomatal closure is crucial for preventing excessive water loss during drought, but is poorly explained by plant hydraulics alone and what triggers stomatal closure remains disputed. We investigated whether the hormone abscisic acid (ABA) was this trigger in a highly embolism-resistant tree species Umbellularia californica. We tracked leaf ABA levels, determined the leaf water potential and gravimetric soil water content (gSWC) thresholds for stomatal closure and transpiration decline during a progressive drought. We found that U. californica plants have a peaking-type ABA dynamic, where ABA levels rise early in drought and then decline under prolonged drought conditions. The early increase in ABA levels correlated with the closing of stomata and reduced transpiration. Furthermore, we found that transpiration declined before any large decreases in predawn plant water status and could best be explained by transient drops in midday water potentials triggering increased ABA levels. Our results indicate that ABA-mediated stomatal regulation may be an integral mechanism for reducing transpiration during drought before major drops in bulk soil and plant water status.
Collapse
Affiliation(s)
- Anju Manandhar
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Javier Pichaco
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS-CSIC, Seville, Spain
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Liu J, Huang J, Peng S, Xiong D. Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5457-5469. [PMID: 39205650 DOI: 10.1111/pce.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Drought and subsequent rewatering are common in agriculture, where recovery from mild droughts is easier than from severe ones. The specific drought threshold and factors limiting recovery are under-researched. This study subjected maize plants to varying drought degrees before rewatering, and measuring plant water status, gas exchange, hydraulic conductance, hormone levels, and cellular damage throughout. We discovered that stomatal reopening in plants was inhibited with leaf water potentials below about -1.7 MPa, hindering postdrought photosynthetic recovery. Neither hydraulic loss nor abscisic acid (ABA) content was the factor inhibited stomatal reopening on the second day following moderate drought stress and rewatering. But stomatal reopening was significantly correlated to the interaction between hydraulic signals and ABA content under severe drought. Extended drought led to leaf death at about -2.8 MPa or 57% relative water content, influenced by reduced rehydration capacity, not hydraulic failure. The lethal threshold remained relatively constant across leaf stages, but the recoverable safety margin (RSM), that is, the water potential difference between stomatal closure and recovery capacity loss, significantly decreased with leaf aging due to delayed stomatal closure during drought. Our findings indicate hydraulic failure alone does not cause maize leaf death, highlighting the importance of RSM in future research.
Collapse
Affiliation(s)
- Junzhou Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Vafina G, Akhiyarova G, Korobova A, Finkina EI, Veselov D, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process. Int J Mol Sci 2024; 25:7486. [PMID: 39000596 PMCID: PMC11242760 DOI: 10.3390/ijms25137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.
Collapse
Affiliation(s)
- Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Alla Korobova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ekaterina I Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
6
|
Zhao L, Pang B, Hong J, Ma X, Du Z, Wang X. Root pH variation of herbaceous plants among plant functional groups in response to climate and soil gradients on the Tibetan alpine grasslands. Ecol Evol 2024; 14:e70060. [PMID: 39041022 PMCID: PMC11260881 DOI: 10.1002/ece3.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Plant pH is an emerging functional trait that plays important roles in physiological processes and nutrient cycling. However, how root pH varies among plant functional groups (PFGs) and the regulatory factors on a large scale remain unclear. Therefore, we quantified root pH variation of herbaceous plants in four PFGs from 20 sites on the Tibetan Plateau along a 1600 km transect and explored the correlations between root pH and different PFGs, climate and soil conditions. The results showed that the root pH of herbaceous plants was slightly acidic (6.46 ± 0.05). Grasses had the highest root pH (6.91 ± 0.10) across all functional groups (p < .05), whereas legumes had the lowest (5.90 ± 0.08; p < .05). The root pH decreased with mean annual precipitation, aridity index, soil water content and soil stress coefficient, whereas the significant positive correlation with soil pH. PFGs, climate and soil explained 5.39, 11.15 and 24.94% of the root pH variance, respectively. This study provided a comprehensive analysis of root pH patterns in herbaceous plants over a large spatial scale. Root pH was controlled by the combined influence of PFGs, climate and soil properties, with moisture status being the main influential factor. In contrast to the leaf pH, the root pH of herbaceous plants is strongly affected by the soil pH along environmental gradients. Our findings provide new insights into root functional traits and survival strategies of herbaceous plants in alpine ecosystems.
Collapse
Affiliation(s)
- Lirong Zhao
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bo Pang
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiangtao Hong
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
| | - Xingxing Ma
- College of Urban and Environment SciencesShanxi Normal UniversityLinfenChina
| | - Ziyin Du
- School of Land and ResourcesChina West Normal UniversityNanchongChina
| | - Xiaodan Wang
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
| |
Collapse
|
7
|
Liu J, Carriquí M, Xiong D, Kang S. Influence of IAA and ABA on maize stem vessel diameter and stress resistance in variable environments. PHYSIOLOGIA PLANTARUM 2024; 176:e14443. [PMID: 39039017 DOI: 10.1111/ppl.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
The plasticity of the xylem and its associated hydraulic properties play crucial roles in plant acclimation to environmental changes, with vessel diameter (Dv) being the most functionally prominent trait. While the effects of external environmental factors on xylem formation and Dv are not fully understood, the endogenous hormones indole-3-acetic acid (IAA) and abscisic acid (ABA) are known to play significant signalling roles under stress conditions. This study investigates how these hormones impact Dv under various environmental changes. Experiments were conducted in maize plants subjected to drought, soil salinity, and high CO2 concentration treatments. We found that drought and soil salinity significantly reduced Dv at the same stem internode, while an elevated CO2 concentration can mitigate this decrease in Dv. Remarkably, significant negative correlations were observed between Dv and the contents of IAA and ABA when considering the different treatments. Moreover, appropriate foliar application of either IAA or ABA on well-watered and stressed plants led to a decrease in Dv, while the application of corresponding inhibitors resulted in an increase in Dv. This finding underscores the causal relationship between Dv and the levels of both IAA and ABA, offering a promising approach to manipulating xylem vessel size.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Marc Carriquí
- Research Group in Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Dongliang Xiong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
8
|
Baroi A, Ritu SA, Khan MSU, Uddin MN, Hossain MA, Haque MS. Abscisic acid and glycine betaine-mediated seed and root priming enhance seedling growth and antioxidative defense in wheat under drought. Heliyon 2024; 10:e30598. [PMID: 38742073 PMCID: PMC11089379 DOI: 10.1016/j.heliyon.2024.e30598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The extent of drought tolerance in the seedlings of three wheat cultivars (WMRI-1, BARI GOM-33 and BARI GOM-21) was investigated by seed and root priming using abscisic acid (ABA) and glycine betaine (GB). The seeds were primed with ABA (10 and 20 μM) and GB (50 and 100 mM) and grown in pots maintaining control (0 % PEG) and drought (10 % PEG) conditions. Under drought, the root and shoot length, root and shoot biomass were significantly increased in ABA and GB primed seedlings than non-primed seedlings in all cultivars. Among the priming agents, either 20 μM ABA or 50 mM GB triggered better seedling growth in all wheat cultivars. These two levels were then applied with the nutrient solution in the hydroponics following four treatments: Control, Drought, Drought + ABA and Drought + GB. The seedling growth significantly declined in drought, while an improved seedling growth was observed in ABA and GB-treated plants in all cultivars. A considerable increase in lipid peroxidation, proline content, total antioxidant capacity and total flavonoid content in roots and leaves were recorded in all drought conditions, while these values were considerably reduced in ABA and GB treatments. Hierarchical clustering heatmap using stress tolerance index (STI) values showed that Drought + ABA and Drought + GB secured higher STI scores suggesting a greater degree of drought tolerance in all cultivars. In conclusion, seed and root priming of ABA and GB enhanced drought tolerance in the wheat seedlings by improving seedling growth and antioxidative defense suggesting a declined state of oxidative damage.
Collapse
Affiliation(s)
- Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sadia Afroz Ritu
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
9
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Akhiyarova G, Finkina EI, Zhang K, Veselov D, Vafina G, Ovchinnikova TV, Kudoyarova G. The Long-Distance Transport of Some Plant Hormones and Possible Involvement of Lipid-Binding and Transfer Proteins in Hormonal Transport. Cells 2024; 13:364. [PMID: 38474328 PMCID: PMC10931013 DOI: 10.3390/cells13050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Adaptation to changes in the environment depends, in part, on signaling between plant organs to integrate adaptive response at the level of the whole organism. Changes in the delivery of hormones from one organ to another through the vascular system strongly suggest that hormone transport is involved in the transmission of signals over long distances. However, there is evidence that, alternatively, systemic responses may be brought about by other kinds of signals (e.g., hydraulic or electrical) capable of inducing changes in hormone metabolism in distant organs. Long-distance transport of hormones is therefore a matter of debate. This review summarizes arguments for and against the involvement of the long-distance transport of cytokinins in signaling mineral nutrient availability from roots to the shoot. It also assesses the evidence for the role of abscisic acid (ABA) and jasmonates in long-distance signaling of water deficiency and the possibility that Lipid-Binding and Transfer Proteins (LBTPs) facilitate the long-distance transport of hormones. It is assumed that proteins of this type raise the solubility of hydrophobic substances such as ABA and jasmonates in hydrophilic spaces, thereby enabling their movement in solution throughout the plant. This review collates evidence that LBTPs bind to cytokinins, ABA, and jasmonates and that cytokinins, ABA, and LBTPs are present in xylem and phloem sap and co-localize at sites of loading into vascular tissues and at sites of unloading from the phloem. The available evidence indicates a functional interaction between LBTPs and these hormones.
Collapse
Affiliation(s)
- Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Ekaterina I. Finkina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (E.I.F.); (T.V.O.)
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of 10 Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| | - Dmitriy Veselov
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Gulnara Vafina
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia; (E.I.F.); (T.V.O.)
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia; (G.A.); (D.V.); (G.V.)
| |
Collapse
|
11
|
Castro-Valdecantos P, Puértolas J, Dodd IC. Similar soil drying-induced stomatal closure in soybean genotypes varying in abscisic acid accumulation and stomatal sensitivity to abscisic acid. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37072870 DOI: 10.1071/fp23012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Different soybean cultivars (Williams 82 , Union , Jindou 21 , Long Huang 1 , Long Huang 2 ) were exposed to drying soil, to investigate whether endogenous abscisic acid (ABA) concentrations and leaf water relations regulated stomatal behaviour. We measured ABA concentrations in xylem and tissue of the first and second trifoliate leaves respectively; stomatal conductance (gs ) and leaf water potential (Ψleaf ) in both leaves; and water content in soil. Cultivar variation in leaf area and g s caused different rates of soil drying, but g s and Ψ leaf declined similarly with soil drying in all cultivars. Variation in leaf xylem ABA concentration better explained stomatal responses than foliar ABA concentration in some cultivars, and was highly correlated with stomatal conductance. Xylem ABA concentration in well-watered soil was highest in Union , and in drying soil was lowest in Jindou 21 and Long Huang 2 , although the latter had the highest foliar ABA concentrations. Jindou 21 accumulated lower xylem ABA concentrations than other cultivars as soil moisture or Ψ leaf decreased, but its stomatal sensitivity to xylem ABA was greater. Because cultivars varied in both ABA accumulation and stomatal sensitivity to ABA, but had similar stomatal sensitivity to Ψ leaf , leaf water relations seem more important in regulating stomatal closure of soybean.
Collapse
Affiliation(s)
- Pedro Castro-Valdecantos
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China; and The Joint Institute for the Environmental Research and Education, Guangzhou, China; and Present address: Department of Agronomy, Escuela Técnica Superior de Ingeniería Agronómica, University of Seville, Ctra. Utrera km. 1, Seville 41013, Spain
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and Present address: Department of Botany and Plant Ecology and Physiology, University of La Laguna, Facultad de Farmacia, Avd Astrofísico Francisco Sánchez s/n, San Cristóbal de La Laguna, Canary Islands 38200, Spain
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster LA1 4YQ, UK; and The Joint Institute for the Environmental Research and Education, Guangzhou, China
| |
Collapse
|
12
|
Guo S, Wei X, Ma B, Ma Y, Yu Z, Li P. Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense. STRESS BIOLOGY 2023; 3:54. [PMID: 38055155 DOI: 10.1007/s44154-023-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/22/2023] [Indexed: 12/07/2023]
Abstract
Non-hydraulic root signals (nHRS) are affirmed as a unique positive response to soil drying, and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production. Strigolactones (SLs) can enhance plant drought adaptability. However, the question of whether strigolactones enhance grain yield and water use efficiency by regulating nHRS and antioxidant defense systems in dryland wheat remains unanswered. In this study, pot experiments were conducted to investigate the effects of strigolactones on nHRS, antioxidant defense system, and grain yield and water use efficiency in dryland wheat. The results showed that external application of SLs increased drought-induced abscisic acid (ABA) accumulation and activated an earlier trigger of nHRS at 73.4% field capacity (FC), compared to 68.5% FC in the control group (CK). This phenomenon was mechanically associated with the physiological mediation of SLs. The application of SLs significantly enhanced the activities of leaf antioxidant enzymes, reduced ROS production, and mitigated oxidative damage to lipid membrane. Additionally, root biomass, root length density, and root to shoot ratio were increased under strigolactone treatment. Furthermore, exogenous application of SLs significantly increased grain yield by 34.9% under moderate drought stress. Water use efficiency was also increased by 21.5% and 33.3% under moderate and severe drought conditions respectively, compared to the control group (CK). The results suggested that the application of strigolactones triggered earlier drought-sensing mechanism and improved the antioxidant defense ability, thus enhancing grain yield and water use efficiency in dryland wheat production.
Collapse
Affiliation(s)
- Sha Guo
- College of Forestry, Northwest A&F University, Shaanxi, 712000, Yangling, China
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, 712000, Yangling, China
| | - Xiaofei Wei
- College of Forestry, Northwest A&F University, Shaanxi, 712000, Yangling, China
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, 712000, Yangling, China
| | - Baoluo Ma
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, K1A0C6, Canada
| | - Yongqing Ma
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, 712000, Yangling, China
| | - Zihan Yu
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712000, Yangling, China
| | - Pufang Li
- College of Forestry, Northwest A&F University, Shaanxi, 712000, Yangling, China.
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, 712000, Yangling, China.
| |
Collapse
|
13
|
Rumyantseva NI, Valieva AI, Kostyukova YA, Ageeva MV. The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:4048. [PMID: 38068682 PMCID: PMC10707844 DOI: 10.3390/plants12234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Abstract
Vacuum infiltration-centrifugation (VIC) is the most reproducible technique for the isolation of apoplast washing fluid (AWF) from leaves, but its effectiveness depends on the infiltration-centrifugation conditions and the anatomical and physiological peculiarities of leaves. This study aimed to elaborate an optimal procedure for AWF isolation from the leaves of Tartary buckwheat grown in in vivo and in vitro conditions and reveal the leaf anatomical and physiological traits that could contribute to the effectiveness of AWF isolation. Here, it was demonstrated that leaves of buckwheat plants grown in vitro could be easier infiltrated, were less sensitive to higher forces of centrifugation (900× g and 1500× g), and produced more AWF yield and apoplastic protein content than in vivo leaves at the same forces of centrifugation (600× g and 900× g). The extensive study of the morphological, anatomical, and ultrastructural characteristics of buckwheat leaves grown in different conditions revealed that in vitro leaves exhibited significant plasticity in a number of interconnected morphological, anatomical, and physiological features, generally driven by high RH and low lighting; some of them, such as the reduced thickness and increased permeability of the cuticle of the epidermal cells, large intercellular spaces, increase in the size of stomata and in the area of stomatal pores, higher stomata index, drop in density, and area of calcium oxalate druses, are beneficial to the effectiveness of VIC. The size of stomata pores, which were almost twice as large in in vitro leaves as those in in vivo ones, was the main factor contributing to the isolation of AWF free of chlorophyll contamination. The opening of stomata pores by artificially created humid conditions reduced damage to the in vivo leaves and improved the VIC of them. For Fagopyrum species, this is the first study to develop a VIC technique for AWF isolation from leaves.
Collapse
Affiliation(s)
- Natalya I. Rumyantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
- Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Alfia I. Valieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Yulia A. Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Marina V. Ageeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| |
Collapse
|
14
|
Pal P, Masand M, Sharma S, Seth R, Singh G, Singh S, Kumar A, Sharma RK. Genome-wide transcriptional profiling and physiological investigation elucidating the molecular mechanism of multiple abiotic stress response in Stevia rebaudiana Bertoni. Sci Rep 2023; 13:19853. [PMID: 37963906 PMCID: PMC10645737 DOI: 10.1038/s41598-023-46000-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Considering the major source of plant-derived low/non-calorie steviol glycosides (SGs), comprehensive physiological, biochemical, and deep transcriptional investigations were conducted to explicit deeper insight into multiple abiotic stress responses in Stevia rebaudiana. The physiological indicators including photosynthesis, chlorophyll, relative water content, shoot growth, electrolyte leakage, and SG biosynthesis were negatively impacted under drought (DS), followed by salinity (SS) and waterlogging (WS). Global transcriptional analysis revealed significant upregulated expression of the genes encoding for ROS detoxification (GST, SOD, APX, glutathione peroxidase), osmotic adjustment (alpha-trehalose-phosphate and S-adenosylmethionine decarboxylase), ion transporters (CAX, NHX, CNGS, VPPase, VATPase), water channel (PIP1, TIP) and abiotic stress-responsive candidate genes (LEA, HSPs, and Dehydrins) regulating abiotic stress response in S. rebaudiana. These inferences were complemented with predicted interactome network that revealed regulation of energy metabolism by key stress-responsive genes (GST, HKT1, MAPKs, P5CSs, PIP), transcription factors (HSFA2, DREB1A, DREB2A), and abiotic stress responsive pathways (ABA, ethylene, ion stress). This is the first detailed study to comprehend the molecular regulation of stress response and their interplay under DS, SS, and WS. The key genes and regulators can be functionally validated, and will facilitate targeted gene editing for genetic improvement of crop sustainability under changing environmental conditions in S. rebaudiana.
Collapse
Affiliation(s)
- Poonam Pal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mamta Masand
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Romit Seth
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanatsujat Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ashok Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur-176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
15
|
Yoo Y, Yoo YH, Lee DY, Jung KH, Lee SW, Park JC. Caffeine Produced in Rice Plants Provides Tolerance to Water-Deficit Stress. Antioxidants (Basel) 2023; 12:1984. [PMID: 38001837 PMCID: PMC10669911 DOI: 10.3390/antiox12111984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Exogenous or endogenous caffeine application confers resistance to diverse biotic stresses in plants. In this study, we demonstrate that endogenous caffeine in caffeine-producing rice (CPR) increases tolerance even to abiotic stresses such as water deficit. Caffeine produced by CPR plants influences the cytosolic Ca2+ ion concentration gradient. We focused on examining the expression of Ca2+-dependent protein kinase genes, a subset of the numerous proteins engaged in abiotic stress signaling. Under normal conditions, CPR plants exhibited increased expressions of seven OsCPKs (OsCPK10, OsCPK12, OsCPK21, OsCPK25, OsCPK26, OsCPK30, and OsCPK31) and biochemical modifications, including antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase) activity and non-enzymatic antioxidant (ascorbic acid) content. CPR plants exhibited more pronounced gene expression changes and biochemical alterations in response to water-deficit stress. CPR plants revealed increased expressions of 16 OsCPKs (OsCPK1, OsCPK2, OsCPK3, OsCPK4, OsCPK5, OsCPK6, OsCPK9, OsCPK10, OsCPK11, OsCPK12, OsCPK14, OsCPK16, OsCPK18, OsCPK22, OsCPK24, and OsCPK25) and 8 genes (OsbZIP72, OsLEA25, OsNHX1, OsRab16d, OsDREB2B, OsNAC45, OsP5CS, and OsRSUS1) encoding factors related to abiotic stress tolerance. The activity of antioxidant enzymes increased, and non-enzymatic antioxidants accumulated. In addition, a decrease in reactive oxygen species, an accumulation of malondialdehyde, and physiological alterations such as the inhibition of chlorophyll degradation and the protection of photosynthetic machinery were observed. Our results suggest that caffeine is a natural chemical that increases the potential ability of rice to cope with water-deficit stress and provides robust resistance by activating a rapid and comprehensive resistance mechanism in the case of water-deficit stress. The discovery, furthermore, presents a new approach for enhancing crop tolerance to abiotic stress, including water deficit, via the utilization of a specific natural agent.
Collapse
Affiliation(s)
- Youngchul Yoo
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea;
| | - Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, RDA, Suwon 16429, Republic of Korea;
| | - Dong Yoon Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Sang-Won Lee
- Graduate School of Green-Bio Science, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (D.Y.L.); (K.-H.J.)
| | - Jong-Chan Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Wang H, He Y, Zheng Q, Yang Q, Wang J, Zhu J, Zhan X. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132816. [PMID: 39491995 DOI: 10.1016/j.jhazmat.2023.132816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Photoaging-prone and additive-rich polyvinyl chloride microplastics (PVC-MPs) are abundant in the terrestrial environment, However, current knowledge about the effects of PVC-MPs on terrestrial plants is lacking. Herein, we investigated the physicochemical toxicity mechanisms of photoaged PVC-MP components, i.e. leachate (L), leached PVC-particles (P), and unleached PVC-MPs (UAMP), to wheat seedling roots. 108-h photoaged components were more detrimental to root growth than unaged ones, with root length decline by 3.56%- 7.45%, indicating enhanced ecotoxicity. Notably, 108-h aged UAMP displayed more pronounced inhibition to root architecture, nutrient content and root activity, and more significant stimulation on antioxidant systems compared to 108-h aged L and P. The abovementioned phenomena suggested the presence of a synergistic effect between physical damage from P and chemical harm from L. Surface adsorption experiments demonstrated that the adsorption of photoaging induced smaller particles caused physical damage to root system. Exposure treatment suggested that there was appreciable environmental risk posed by photoaged PVC-MP-derived additives, e.g., Irgafos 168-ox and Irganox 1076. Based on principal component analysis (PCA), additives from leachate played a greater role in UAMP ecotoxicity. Therefore, PVC-MP-derived additives require more consideration and put forward an important new aspect for the impact assessment of PVC-MPs in the environment.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
17
|
Alavi SM, Kamali M, Selahvarzi Y, Ansari S. Deficit irrigation strategies (PRD, SDI) and titanium nanoparticles improve water use efficiency and flower quality in greenhouse-grown cut roses. Sci Rep 2023; 13:18019. [PMID: 37865717 PMCID: PMC10590367 DOI: 10.1038/s41598-023-45042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023] Open
Abstract
This study explored the use of deficit irrigation techniques for water management in the hydroponic greenhouse cultivation of cut roses. A factorial experiment was conducted using three irrigation treatments: full irrigation (FI), partial root drying (PRD), and sustained deficit irrigation (SDI), and three doses of titanium dioxide nanoparticle foliar application (0, 15, and 30 ppm) as stress alleviation. Results showed that drought stress increased biochemical parameters such as the plants' proline and total phenol content. Compared to SDI treatment, the PRD treatments have an increase in flower number by 40%. The PRD strategy has positive effects on drought tolerance by increasing osmotic and elastic adjustment. Therefore, higher relative water content and longer root length in PRD treatments were observed. Thus, Biomass water use efficiency significantly increased in PRD treatments compared to others. In the PRD treatment, yield WUE increases by 26% and 61% compared to FI and SDI, respectively. The results showed TiO2-NPs positively affected mitigating and even improving some traits in drought stress conditions. These results suggest the superiority of the PRD strategy, which improves growth characteristics and water use efficiency, leading to increased sustainability, reduced environmental impact of greenhouse toxic wastewater, and total profitability of the greenhouse.
Collapse
Affiliation(s)
| | - Maryam Kamali
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yahya Selahvarzi
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Sana Ansari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int J Mol Sci 2023; 24:13876. [PMID: 37762179 PMCID: PMC10530793 DOI: 10.3390/ijms241813876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
19
|
Taria S, Arora A, Krishna H, Manjunath KK, Meena S, Kumar S, Singh B, Krishna P, Malakondaiah AC, Das R, Alam B, Kumar S, Singh PK. Multivariate analysis and genetic dissection of staygreen and stem reserve mobilisation under combined drought and heat stress in wheat ( Triticum aestivum L.). Front Genet 2023; 14:1242048. [PMID: 37705611 PMCID: PMC10496116 DOI: 10.3389/fgene.2023.1242048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction: Abiotic stresses significantly reduce crop yield by adversely affecting many physio-biochemical processes. Several physiological traits have been targeted and improved for yield enhancement in limiting environmental conditions. Amongst them, staygreen and stem reserve mobilisation are two important mutually exclusive traits contributing to grain filling under drought and heat stress in wheat. Henceforth, the present study was carried out to identify the QTLs governing these traits and to identify the superiors' lines through multi-trait genotype-ideotype distance index (MGIDI) Methods: A mapping population consisting of 166 recombinant inbred lines (RILs) developed from a cross between HD3086 and HI1500 was utilized in this study. The experiment was laid down in alpha lattice design in four environmental conditions viz. Control, drought, heat and combined stress (heat and drought). Genotyping of parents and RILs was carried out with 35 K Axiom® array (Wheat breeder array). Results and Discussion: Medium to high heritability with a moderate to high correlation between traits was observed. Principal component analysis (PCA) was performed to derive latent variables in the original set of traits and the relationship of these traits with latent variables.From this study, 14 QTLs were identified, out of which 11, 2, and 1 for soil plant analysis development (SPAD) value, leaf senescence rate (LSR), and stem reserve mobilisation efficiency (SRE) respectively. Quantitative trait loci (QTLs) for SPAD value harbored various genes like Dirigent protein 6-like, Protein FATTY ACID EXPORT 3, glucan synthase-3 and Ubiquitin carboxyl-terminal hydrolase, whereas QTLs for LSR were found to contain various genes like aspartyl protease family protein, potassium transporter, inositol-tetrakisphosphate 1-kinase, and DNA polymerase epsilon subunit D-like. Furthermore, the chromosomal region for SRE was found to be associated with serine-threonine protein kinase. Serine-threonine protein kinases are involved in many signaling networks such as ABA mediated ROS signaling and acclimation to environmental stimuli. After the validation of QTLs in multilocation trials, these QTLs can be used for marker-assisted selection (MAS) in breeding programs.
Collapse
Affiliation(s)
- Sukumar Taria
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Shashi Meena
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Biswabiplab Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pavithra Krishna
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Badre Alam
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Sushil Kumar
- ICAR-Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India
| | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
20
|
Berauer BJ, Akale A, Schweiger AH, Knott M, Diehl D, Wolf M, Sawers RJH, Ahmed MA. Differences in mucilage properties and stomatal sensitivity of locally adapted Zea mays in relation with precipitation seasonality and vapour pressure deficit regime of their native environment. PLANT DIRECT 2023; 7:e519. [PMID: 37600238 PMCID: PMC10435965 DOI: 10.1002/pld3.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.
Collapse
Affiliation(s)
- Bernd J. Berauer
- Institute of Landscape and Plant Ecology, Department of Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Asegidew Akale
- Root‐Soil Interaction, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andreas H. Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant EcologyUniversity of HohenheimStuttgartGermany
| | - Mathilde Knott
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Dörte Diehl
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Marc‐Philip Wolf
- Institute for Environmental Sciences, Group of Environmental and Soil ChemistryRPTU in LandauLandauGermany
| | - Ruairidh J. H. Sawers
- Department of Plant ScienceThe Pennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Mutez A. Ahmed
- Root‐Soil Interaction, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
21
|
Fgaier S, Aarrouf J, Lopez-Lauri F, Lizzi Y, Poiroux F, Urban L. Effect of high salinity and of priming of non-germinated seeds by UV-C light on photosynthesis of lettuce plants grown in a controlled soilless system. FRONTIERS IN PLANT SCIENCE 2023; 14:1198685. [PMID: 37469782 PMCID: PMC10352585 DOI: 10.3389/fpls.2023.1198685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023]
Abstract
High salinity results in a decrease in plant photosynthesis and crop productivity. The aim of the present study was to evaluate the effect of UV-C priming treatments of lettuce seeds on photosynthesis of plants grown at high salinity. Non-primed and primed seeds were grown in an hydroponic system, with a standard nutrient solution, either supplemented with 100 mM NaCl (high salinity), or not (control). Considering that leaf and root K+ concentrations remained constant and that chlorophyll fluorescence parameters and root growth were not affected negatively in the high salinity treatment, we conclude that the latter was at the origin of a moderate stress only. A substantial decrease in leaf net photosynthetic assimilation (Anet) was however observed as a consequence of stomatal and non-stomatal limitations in the high salinity treatment. This decrease in Anet translated into a decrease in growth parameters; it may be attributed partially to the high salinity-associated increase in leaf concentration in abscisic acid and decrease in stomatal conductance. Priming by UV-C light resulted in an increase in total photosynthetic electron transport rate and Anet in the leaves of plants grown at high salinity. The increase of the latter translated into a moderate increase in growth parameters. It is hypothesized that the positive effect of UV-C priming on Anet and growth of the aerial part of lettuce plants grown at high salinity, is mainly due to its stimulating effect on leaf concentration in salicylic acid. Even though leaf cytokinins' concentration was higher in plants from primed seeds, maintenance of the cytokinins-to-abscisic acid ratio also supports the idea that UV-C priming resulted in protection of plants exposed to high salinity.
Collapse
Affiliation(s)
- Salah Fgaier
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Jawad Aarrouf
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Félicie Lopez-Lauri
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Yves Lizzi
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| | - Florine Poiroux
- Nova Genetic, Zone Anjou Actiparc de Jumelles, Longué-Jumelles, France
| | - Laurent Urban
- Unité Propre de Recherche Innovante, Equipe de Recherche et d'Innovations Thématiques (ERIT) Plant Science, Interactions and Innovation, Avignon Université, Avignon, France
| |
Collapse
|
22
|
Xu Y, Qian X, Li K, Zhou T, Tian Y, Yuan L, Wang Z, Yang J. Differential roles of abscisic acid in maize roots in the adaptation to soil drought. Food Energy Secur 2023. [DOI: 10.1002/fes3.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
23
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
24
|
Li Q, Shen C, Zhang Y, Zhou Y, Niu M, Wang HL, Lian C, Tian Q, Mao W, Wang X, Liu C, Yin W, Xia X. PePYL4 enhances drought tolerance by modulating water-use efficiency and ROS scavenging in Populus. TREE PHYSIOLOGY 2023; 43:102-117. [PMID: 36074523 DOI: 10.1093/treephys/tpac106] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus.
Collapse
Affiliation(s)
- Qing Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Shen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yangyan Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conglong Lian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Mao
- Salver Academy of Botany, Rizhao 262305, China
| | | | - Chao Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Moloi SJ, Ngara R. The roles of plant proteases and protease inhibitors in drought response: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1165845. [PMID: 37143877 PMCID: PMC10151539 DOI: 10.3389/fpls.2023.1165845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
Upon exposure to drought, plants undergo complex signal transduction events with concomitant changes in the expression of genes, proteins and metabolites. For example, proteomics studies continue to identify multitudes of drought-responsive proteins with diverse roles in drought adaptation. Among these are protein degradation processes that activate enzymes and signalling peptides, recycle nitrogen sources, and maintain protein turnover and homeostasis under stressful environments. Here, we review the differential expression and functional activities of plant protease and protease inhibitor proteins under drought stress, mainly focusing on comparative studies involving genotypes of contrasting drought phenotypes. We further explore studies of transgenic plants either overexpressing or repressing proteases or their inhibitors under drought conditions and discuss the potential roles of these transgenes in drought response. Overall, the review highlights the integral role of protein degradation during plant survival under water deficits, irrespective of the genotypes' level of drought resilience. However, drought-sensitive genotypes exhibit higher proteolytic activities, while drought-tolerant genotypes tend to protect proteins from degradation by expressing more protease inhibitors. In addition, transgenic plant biology studies implicate proteases and protease inhibitors in various other physiological functions under drought stress. These include the regulation of stomatal closure, maintenance of relative water content, phytohormonal signalling systems including abscisic acid (ABA) signalling, and the induction of ABA-related stress genes, all of which are essential for maintaining cellular homeostasis under water deficits. Therefore, more validation studies are required to explore the various functions of proteases and their inhibitors under water limitation and their contributions towards drought adaptation.
Collapse
|
26
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
27
|
Sintaha M, Man CK, Yung WS, Duan S, Li MW, Lam HM. Drought Stress Priming Improved the Drought Tolerance of Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2954. [PMID: 36365408 PMCID: PMC9653977 DOI: 10.3390/plants11212954] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The capability of a plant to protect itself from stress-related damages is termed "adaptability" and the phenomenon of showing better performance in subsequent stress is termed "stress memory". While drought is one of the most serious disasters to result from climate change, the current understanding of drought stress priming in soybean is still inadequate for effective crop improvement. To fill this gap, in this study, the drought memory response was evaluated in cultivated soybean (Glycine max). To determine if a priming stress prior to a drought stress would be beneficial to the survival of soybean, plants were divided into three treatment groups: the unprimed group receiving one cycle of stress (1S), the primed group receiving two cycles of stress (2S), and the unstressed control group not subjected to any stress (US). When compared with the unprimed plants, priming led to a reduction of drought stress index (DSI) by 3, resulting in more than 14% increase in surviving leaves, more than 13% increase in leaf water content, slight increase in shoot water content and a slower rate of loss of water from the detached leaves. Primed plants had less than 60% the transpiration rate and stomatal conductance compared to the unprimed plants, accompanied by a slight drop in photosynthesis rate, and about a 30% increase in water usage efficiency (WUE). Priming also increased the root-to-shoot ratio, potentially improving water uptake. Selected genes encoding late embryogenesis abundant (LEA) proteins and MYB, NAC and PP2C domain-containing transcription factors were shown to be highly induced in primed plants compared to the unprimed group. In conclusion, priming significantly improved the drought stress response in soybean during recurrent drought, partially through the maintenance of water status and stronger expression of stress related genes. In sum, we have identified key physiological parameters for soybean which may be used as indicators for future genetic study to identify the genetic element controlling the drought stress priming.
Collapse
Affiliation(s)
- Mariz Sintaha
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chun-Kuen Man
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wai-Shing Yung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shaowei Duan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
28
|
Alves RF, Putti FF. Use of images for early identification of water stress. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS 2022. [DOI: 10.18011/bioeng.2022.v16.1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The instability of climatic events intimidates the development of crops at a global level, as it can cause serious economic and social consequences in the face of increased demand for food. In this scenario, the use of images for early identification of water stress is considered a form of non-destructive identification of physical, biochemical, and plant development-related responses. Water deficit is responsible for triggering a series of responses in the plant due to the increase in the production of Reactive Oxygen Species (ROS) and the accumulation of Abscisic Acid (ABA) that promotes the closing of the stomata, limiting the evaporative cooling capacity performed by the plant, given the increase in its leaf temperature. The present article investigates the relationship between the water deficit in the plant and the consequent increase in its leaf temperature.
Collapse
|
29
|
Chen Z, Li S, Wan X, Liu S. Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. FRONTIERS IN PLANT SCIENCE 2022; 13:926535. [PMID: 36237513 PMCID: PMC9552884 DOI: 10.3389/fpls.2022.926535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Considerable evidences highlight the occurrence of increasing widespread tree mortality as a result of global climate change-associated droughts. However, knowledge about the mechanisms underlying divergent strategies of various tree species to adapt to drought has remained remarkably insufficient. Leaf stomatal regulation and embolism resistance of stem xylem serves as two important strategies for tree species to prevent hydraulic failure and carbon starvation, as comprising interconnected physiological mechanisms underlying drought-induced tree mortality. Hence, the physiological and anatomical determinants of leaf stomatal regulation and stems xylem embolism resistance are evaluated and discussed. In addition, root properties related to drought tolerance are also reviewed. Species with greater investment in leaves and stems tend to maintain stomatal opening and resist stem embolism under drought conditions. The coordination between stomatal regulation and stem embolism resistance are summarized and discussed. Previous studies showed that hydraulic safety margin (HSM, the difference between minimum water potential and that causing xylem dysfunction) is a significant predictor of tree species mortality under drought conditions. Compared with HSM, stomatal safety margin (the difference between water potential at stomatal closure and that causing xylem dysfunction) more directly merge stomatal regulation strategies with xylem hydraulic strategies, illustrating a comprehensive framework to characterize plant response to drought. A combination of plant traits reflecting species' response and adaptation to drought should be established in the future, and we propose four specific urgent issues as future research priorities.
Collapse
Affiliation(s)
- Zhicheng Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xianchong Wan
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
30
|
Li XH, Sheng K, Wang YH, Dong YQ, Jiang ZK, Sun JS. Influence of furrow irrigation regime on the yield and water consumption indicators of winter wheat based on a multi-level fuzzy comprehensive evaluation. Open Life Sci 2022; 17:1094-1103. [PMID: 36160632 PMCID: PMC9468680 DOI: 10.1515/biol-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/15/2022] Open
Abstract
Irrigation regimes should be chosen to maximize crop yield and water use efficiency. To realize high yield and efficient water use with the appropriate furrow irrigation regime, the effects of two regimes (alternate furrow irrigation and conventional furrow irrigation) and three lower soil moisture limits (60, 70, and 80%) were studied on winter wheat yield and water consumption using a multi-level fuzzy comprehensive evaluation method. The results show that under the two regimes, alternate furrow irrigation and conventional furrow irrigation, when the lower limit of the soil moisture is 70%, the harvest index (0.45 and 0.39, respectively) and crop water productivity of winter wheat (1.86 and 1.90 kg m−3, respectively) are highest. The comprehensive fuzzy evaluation model considers multiple measures, including yield, harvest indices, irrigation volume, total water consumption, and crop water productivity – the index values are highest at the 70% condition, which are 0.3468 and 0.3432, respectively. Therefore, it can be concluded that a moderate water deficit is conducive to saving water resources and improving water use efficiency. In conclusion, a multi-level and multi-factor indices system of furrow irrigation regime was constructed based on ensuring winter wheat production. Conventional furrow irrigation is recommended in areas with sufficient irrigation water, while alternating furrow irrigation, which can reduce the total amount of irrigation required, is suitable for areas with water shortages.
Collapse
Affiliation(s)
- Xiao-Hang Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang 453000, Henan, P. R. China.,Institute of Wheat Research, Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, Henan, P. R. China
| | - Kun Sheng
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang 453000, Henan, P. R. China.,Institute of Wheat Research, Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, Henan, P. R. China
| | - Ying-Hong Wang
- Institute of Wheat Research, Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, Henan, P. R. China
| | - Yan-Qi Dong
- Institute of Wheat Research, Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, Henan, P. R. China
| | - Zhi-Kai Jiang
- Institute of Wheat Research, Xinxiang Academy of Agricultural Sciences, Xinxiang 453000, Henan, P. R. China
| | - Jing-Sheng Sun
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang 453000, Henan, P. R. China
| |
Collapse
|
31
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
32
|
Singh G, Goldberg S, Schaefer D, Zhang F, Sharma S, Mishra V, Xu J. Biochemical, gas exchange, and chlorophyll fluorescence analysis of maize genotypes under drought stress reveals important insights into their interaction and homeostasis. PHOTOSYNTHETICA 2022; 60:376-388. [PMID: 39650104 PMCID: PMC11558602 DOI: 10.32615/ps.2022.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 12/11/2024]
Abstract
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
Collapse
Affiliation(s)
- G.M. Singh
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
| | - S. Goldberg
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - D. Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - F. Zhang
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, 734000 Gansu, China
| | - S. Sharma
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - V.K. Mishra
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - J. Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| |
Collapse
|
33
|
Slette IJ, Hoover DL, Smith MD, Knapp AK. Repeated extreme droughts decrease root production, but not the potential for post‐drought recovery of root production, in a mesic grassland. OIKOS 2022. [DOI: 10.1111/oik.08899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ingrid J. Slette
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| | - David L. Hoover
- USDA‐ARS Rangeland Resources and Systems Research Unit, Crops Research Laboratory Fort Collins CO USA
| | - Melinda D. Smith
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| | - Alan K. Knapp
- Dept of Biology and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| |
Collapse
|
34
|
Arbuscular Mycorrhizal Fungi Enhanced Drought Resistance of Populus cathayana by Regulating the 14-3-3 Family Protein Genes. Microbiol Spectr 2022; 10:e0245621. [PMID: 35612316 PMCID: PMC9241863 DOI: 10.1128/spectrum.02456-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plants can improve their resistance to a variety of stresses by forming mutualistic relationships with arbuscular mycorrhizal fungi (AMF). The 14-3-3 protein is a major regulator of the plant stress response. However, the regulation mechanism of 14-3-3 family protein genes (14-3-3s) of mycorrhizal plants coping with stress during AMF symbiosis remains unclear. Here, we analyzed the physiological changes and 14-3-3 expression profiles of Populus cathayana inoculated with AMF under different water conditions. The results showed that good colonization and symbiotic relationships with plants were formed under all water conditions (63.00% to 83.67%). Photosynthesis, peroxidase (POD) activity, and Mg and Ca content were significantly affected by drought and AMF. In addition, thirteen 14-3-3 protein genes (PcGRF1-PcGRF13) were identified by quantitative real-time PCR (qRT-PCR), of which the expression levels of PcGRF10 and PcGRF11 induced by AMF were significantly positively correlated with superoxide dismutase (SOD), POD, and sugar content, indicating that the 14-3-3s of mycorrhizal symbiotic plants may respond to drought through antioxidant and osmotic regulation. This is the first study on 14-3-3s in the symbiosis system of forest arbor plants and AMF, and it may help to further study the effects of 14-3-3s during AMF symbiosis on stresses and provide new ideas for improving mycorrhizal seedling cultivation under stress. IMPORTANCE The 14-3-3 protein may regulate many biochemical and physiological processes under abiotic stress. Studies have shown that the 14-3-3 protein gene of AMF is not only upregulated under drought stress, but also enhances the regulation of AMF on plant drought tolerance by regulating plant signal pathways and drought response genes; however, knowledge about the biological relevance of these interactions remains limited and controversial. The precise functions of Populus cathayana 14-3-3s under drought stress remain poorly resolved and the mechanisms of action of these genes in mycorrhizae-induced drought stress are still unknown. Thus, studying the drought-resistance mechanism of the AMF symbiotic plant 14-3-3 gene is of special significance to improving the drought tolerance of the plant. Further systematic study is needed to probe the mechanism by which AMF regulates different 14-3-3 genes and their subsequent physiological effects on drought.
Collapse
|
35
|
Zhang P, Yang X, Manevski K, Li S, Wei Z, Andersen MN, Liu F. Physiological and Growth Responses of Potato ( Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits. PLANTS (BASEL, SWITZERLAND) 2022; 11:1126. [PMID: 35567127 PMCID: PMC9105088 DOI: 10.3390/plants11091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
| | - Xin Yang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Kiril Manevski
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Shenglan Li
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling 712100, China;
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; (K.M.); (M.N.A.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; (X.Y.); (S.L.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| |
Collapse
|
36
|
Teng Z, Yu H, Wang G, Meng S, Liu B, Yi Y, Chen Y, Zheng Q, Liu L, Yang J, Duan M, Zhang J, Ye N. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1457-1472. [PMID: 34921476 DOI: 10.1111/tpj.15642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Poor grain filling of inferior spikelets is becoming a severe problem in some super rice varieties with large panicles. Moderate soil drying (MD) after pollination has been proven to be a practical strategy to promote grain filling. However, the molecular mechanisms underlying this phenomenon remain largely unexplored. Here, transcriptomic analysis of the most active grain filling stage revealed that both starch metabolism and phytohormone signaling were significantly promoted by MD treatment, accompanied by increased enzyme activities of starch synthesis and elevated abscisic acid (ABA) and indole-3-acetic acid (IAA) content in the inferior spikelet. Moreover, the IAA biosynthesis genes OsYUC11 and OsTAR2 were upregulated, while OsIAA29 and OsIAA24, which encode two repressors of auxin signaling, were downregulated by MD, implying a regulation of both IAA biosynthesis and auxin signal transduction in the inferior spikelet by MD. A notable improvement in grain filling of the inferior spikelet was found in the aba8ox2 mutant, which is mutated in an ABA catabolism gene. In contrast, overexpression of OsABA8ox2 significantly reduced grain filling. Interestingly, not only the IAA content, but also the expression of IAA biosynthesis and auxin-responsive genes displayed a similar trend to that in the inferior spikelet under MD. In addition, several OsTPP genes were downregulated in the inferior spikelets of both MD/ABA-treated wild-type plants and the aba8ox2 mutant, resulting in lower trehalose content and higher levels of -6-phosphate (T6P), thereby increasing the expression of OsTAR2, a target of T6P. Taken together, our results suggest that the synergistic interaction of ABA-mediated accumulation of IAA promotes grain filling of inferior spikelets under MD.
Collapse
Affiliation(s)
- Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Huihui Yu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yake Yi
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinke Chen
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Qin Zheng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
37
|
Hoshika Y, Paoletti E, Centritto M, Gomes MTG, Puértolas J, Haworth M. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. PHYSIOLOGIA PLANTARUM 2022; 174:e13639. [PMID: 35092611 PMCID: PMC9303399 DOI: 10.1111/ppl.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Mesophyll conductance (gmCO2 ) is one of the most important components in plant photosynthesis. Tropospheric ozone (O3 ) and drought impair physiological processes, causing damage to photosynthetic systems. However, the combined effects of O3 and drought on gmCO2 are still largely unclear. We investigated leaf gas exchange during mid-summer in three Mediterranean oaks exposed to O3 (ambient [35.2 nmol mol-1 as daily mean]; 1.4 × ambient) and water treatments (WW [well-watered] and WD [water-deficit]). We also examined if leaf traits (leaf mass per area [LMA], foliar abscisic acid concentration [ABA]) could influence the diffusion of CO2 inside a leaf. The combination of O3 and WD significantly decreased net photosynthetic rate (PN ) regardless of the species. The reduction of photosynthesis was associated with a decrease in gmCO2 and stomatal conductance (gsCO2 ) in evergreen Quercus ilex, while the two deciduous oaks (Q. pubescens, Q. robur) also showed a reduction of the maximum rate of carboxylation (Vcmax ) and maximum electron transport rate (Jmax ) with decreased diffusive conductance parameters. The reduction of gmCO2 was correlated with increased [ABA] in the three oaks, whereas there was a negative correlation between gmCO2 with LMA in Q. pubescens. Interestingly, two deciduous oaks showed a weak or no significant correlation between gsCO2 and ABA under high O3 and WD due to impaired stomatal physiological behaviour, indicating that the reduction of PN was related to gmCO2 rather than gsCO2 . The results suggest that gmCO2 plays an important role in plant carbon gain under concurrent increases in the severity of drought and O3 pollution.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET)National Research Council of Italy (CNR)Sesto Fiorentino
| | - Mauro Centritto
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| | - Marcos Thiago Gaudio Gomes
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
- Present address:
Department of Biological Sciences, Center for Human and Natural SciencesFederal University of Espírito SantoGoiabeiras, CEP 29075‐910, Vitória, Espírito SantoBrazil
| | - Jaime Puértolas
- Lancaster Environment CentreLancaster UniversityLancasterUK
- Present address:
Department of Botany and Plant Ecology and PhysiologyUniversity of La LagunaSan Cristóbal de La LagunaSpain
| | - Matthew Haworth
- Institute of Sustainable Plant Protection (IPSP)National Research Council of Italy (CNR)Sesto FiorentinoItaly
| |
Collapse
|
38
|
Gao C, Lu S, Wang Y, Xu H, Gao X, Gu Y, Xuan H, Wang B, Yuan H, Cao Y. Bismuth Vanadium Oxide Can Promote Growth and Activity in Arabidopsis thaliana. Front Chem 2021; 9:766078. [PMID: 34858942 PMCID: PMC8632446 DOI: 10.3389/fchem.2021.766078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
The excellent properties of nanomaterials have been confirmed in many fields, but their effects on plants are still unclear. In this study, different concentrations of bismuth vanadate (BV) were added to the growth medium to analyze the growth of seedlings, including taproots, lateral roots, leaf stomata, root activity, and superoxide anion O2.- generation. Gene expression levels related to root growth were determined by quantitative PCR in Arabidopsis thaliana. The results showed that BV promoted the growth of taproots and the development of lateral roots, enhanced the length of the extension zone in roots, increased the number and size of leaf stomata and root activity, reduced the accumulation of ROS in seedlings, and changed the expression levels of genes related to polyamines or hormones. At the same time, we investigated the antibacterial activity of BV against a variety of common pathogens causing crop diseases. The results showed that BV could effectively inhibit the growth of Fusarium wilt of cotton and rice sheath blight. These results provide a new prospect for the development of nanomaterial-assisted plants, which is expected to become one of the ways to solve the problem of controlling and promoting the development of plants. At the same time, it also provides a reference for the study of the effect of BV on plants.
Collapse
Affiliation(s)
- Cong Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Shuai Lu
- School of Life Sciences, Nantong University, Nantong, China
| | - Yongzhou Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Hao Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xiaoxiao Gao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yiwen Gu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
39
|
Iqbal R, Habib-ur-Rahman M, Raza MAS, Waqas M, Ikram RM, Ahmed MZ, Toleikiene M, Ayaz M, Mustafa F, Ahmad S, Aslam MU, Waqas MM, Khan MT, Aslam MM, Haider I. Assessing the potential of partial root zone drying and mulching for improving the productivity of cotton under arid climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66223-66241. [PMID: 34328621 PMCID: PMC8636447 DOI: 10.1007/s11356-021-15259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Water scarcity constrains global cotton production. However, partial root-zone drying (PRD) and mulching can be used as good techniques to save water and enhance crop production, especially in arid regions. This study aimed to evaluate the effects of mulching for water conservation in an arid environment under PRD and to further assess the osmotic adjustment and enzymatic activities for sustainable cotton production. The study was carried out for 2 years in field conditions using mulches (NM = no mulch, BPM = black plastic mulch at 32 kg ha-1, WSM = wheat straw mulch at 3 tons ha-1, CSM = cotton sticks mulch at 10 tons ha-1) and two irrigation levels (FI = full irrigation and PRD (50% less water than FI). High seed cotton yield (SCY) achieved in FI+WSM (4457 and 4248 kg ha-1 in 2017 and 2018, respectively) and even in PRD+WSM followed by BPM>CSM>NM under FI and PRD for both years. The higher SCY and traits observed in FI+WSM and PRD+WSM compared with the others were attributed to the improved water use efficiency and gaseous exchange traits, increased hormone production (ABA), osmolyte accumulation, and enhanced antioxidants to scavenge the excess reactive oxygen. Furthermore, better cotton quality traits were also observed under WSM either with FI or PRD irrigation regimes. Mulches applications found effective to control the weeds in the order as BPM>WSM>CSM. In general, PRD can be used as an effective stratagem to save moisture along with WSM, which ultimately can improve cotton yield in the water-scarce regions under arid climatic regions. It may prove as a good adaptation strategy under current and future water shortage scenarios of climate change.
Collapse
Affiliation(s)
- Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Habib-ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES) Crop Science Group, University Bonn, Bonn, Germany
- Department of Agronomy, MNS-University of Agriculture, Multan, Pakistan
| | - Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, University of Okara, Okara, Pakistan
| | | | | | - Monika Toleikiene
- Lithuanian Center for Agriculture and Forestry (LAMMC), Kėdainių, Lithuania
| | - Muhammad Ayaz
- Lithuanian Center for Agriculture and Forestry (LAMMC), Kėdainių, Lithuania
| | - Farhan Mustafa
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disasters, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Salman Ahmad
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | | | | | - Imran Haider
- Department of Agronomy, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
40
|
Yang N, Nesme J, Røder HL, Li X, Zuo Z, Petersen M, Burmølle M, Sørensen SJ. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. NPJ Biofilms Microbiomes 2021; 7:82. [PMID: 34795326 PMCID: PMC8602335 DOI: 10.1038/s41522-021-00253-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
Drought severely restricts plant production and global warming is further increasing drought stress for crops. Much information reveals the ability of individual microbes affecting plant stress tolerance. However, the effects of emergent bacterial community properties on plant drought tolerance remain largely unexplored. Here, we inoculated Arabidopsis plants in vivo with a four-species bacterial consortium (Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans, and Paenibacillus amylolyticus, termed as SPMX), which is able to synergistically produce more biofilm biomass together than the sum of the four single-strain cultures, to investigate its effects on plant performance and rhizo-microbiota during drought. We found that SPMX remarkably improved Arabidopsis survival post 21-day drought whereas no drought-tolerant effect was observed when subjected to the individual strains, revealing emergent properties of the SPMX consortium as the underlying cause of the induced drought tolerance. The enhanced drought tolerance was associated with sustained chlorophyll content and endogenous abscisic acid (ABA) signaling. Furthermore, our data showed that the addition of SPMX helped to stabilize the diversity and structure of root-associated microbiomes, which potentially benefits plant health under drought. These SPMX-induced changes jointly confer an increased drought tolerance to plants. Our work may inform future efforts to engineer the emergent bacterial community properties to improve plant tolerance to drought.
Collapse
Affiliation(s)
- Nan Yang
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xuanji Li
- grid.5254.60000 0001 0674 042XSection of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhangli Zuo
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- grid.5254.60000 0001 0674 042XDepartment of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
41
|
Xu C, Yang F, Tang X, Lu B, Li Z, Liu Z, Ding Y, Ding C, Li G. Super Rice With High Sink Activities Has Superior Adaptability to Low Filling Stage Temperature. FRONTIERS IN PLANT SCIENCE 2021; 12:729021. [PMID: 34777415 PMCID: PMC8578116 DOI: 10.3389/fpls.2021.729021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
To investigate the differential responses of super rice grain filling to low filling stage temperature (LT) and the regulative effect of nitrogen panicle fertilizer (NPF), physiological and molecular experiments were conducted with two super rice varieties (Nanjing 7th: N7 and Nanjing 9108th: N9108) on two different filling stage temperature treatments implemented by applying two sowing dates [Normal filling stage temperature (CK): Sowed on May 30, Tmean = 24.7°C and low filling stage temperature (LT): Sowed on July 1, Tmean = 20.3°C], and two NPF levels (0 and 150 kg N ha-1). In this study, LT, NPF, and simultaneous LT and NPF treatments suppressed the grain filling in all varieties with different levels. Under LT or NPF treatments, the reduction of grain weight, seed setting rate, and filling rate were closely associated with suppressed starch biosynthesis rate in inferior seeds, suggesting that reduced starch biosynthesis rate, expression, and activities of enzymes encoded by related genes, Floury endosperm-4 (FLO4), Starch branching enzyme-I (SBE1), and Starch phosphorylase-L (PHO-l), were responsible for the grain filling reduction. Under LT or NPF treatments, significantly higher grain filling rates and lower variance were found in N9108 compared to that in N7, which were closely related to their higher starch biosynthesis ability, related gene expression, and enzymes activities. One of the probable explanations of the grain filling difference was the variation in the relative amount of key regulative hormones, Abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC). These results raise a possibility that super rice with higher sink activities has superior adaptability to LT and NPF due to their higher sink activities.
Collapse
Affiliation(s)
- Congshan Xu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Fei Yang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
| | - Xinao Tang
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Bo Lu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Ziyu Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Zhenghui Liu
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Chao Ding
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- National Engineering and Technology Center for Information Agriculture, Nanjing, China
| |
Collapse
|
42
|
Abstract
Drought and flooding conditions are increasingly common abiotic factors that affect citrus crops in both the Mediterranean Basin and Florida. Furthermore, emerging diseases, such as Huanglongbing (HLB), are a potential risk for these crops in those producing areas. This study aimed to evaluate the behavior under water-stress treatments of three new citrus rootstocks (UFR-6, B11R5T60, and 2247 x 6070-02-2) with reported tolerance of HLB, comparing them with a common commercial citrus rootstock (Carrizo citrange). Four water conditions were established: Control, Medium Water Stress (MWS), Drought, and Flooding. Chlorophyll index (SPAD), growth in height, relative growth rate, biomass (fresh and dry weight) and plant water status were evaluated. Citru rootstock response were different for each genotype; Carrizo citrange was negatively affected by all water treatments in the chlorophyll index (SPAD) and biomass production. By contrast, UFR-6 showed a positive response in SPAD and growth under MWS and Drought, B11R5T60 displayed similar behavior to Control under all water stresses, and the response of 2247 x 6070-02-2 under MWS treatment was adequate but was not under Drought or Flooding conditions. Our study describes the behavior of these promising new citrus rootstocks against water stress; B11R5T60 exhibiting the best performance. These results can be useful for the citrus industry to address water-stress problems in these crops.
Collapse
|
43
|
Zendonadi Dos Santos N, Piepho HP, Condorelli GE, Licieri Groli E, Newcomb M, Ward R, Tuberosa R, Maccaferri M, Fiorani F, Rascher U, Muller O. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. PLANT, CELL & ENVIRONMENT 2021; 44:2858-2878. [PMID: 34189744 DOI: 10.1111/pce.14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ( Fq'/Fm' ) and the kinetics of electron transport measured by reoxidation rates ( Fr1' and Fr2' ). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq'/Fm' and Fr2' were little affected, while Fr1' was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.
Collapse
Affiliation(s)
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Eder Licieri Groli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Newcomb
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Richard Ward
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
44
|
Wang W, Pang J, Zhang F, Sun L, Yang L, Zhao Y, Yang Y, Wang Y, Siddique KHM. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:605-620. [PMID: 34186284 DOI: 10.1016/j.plaphy.2021.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Soil salinization is a major constraint limiting agricultural development and affecting crop growth and productivity, especially in arid and semi-arid regions. Understanding the molecular mechanism of the adaptability of canola to salt stress is very important to improve the salt tolerance of canola and promote its cultivation in saline alkali soil. RESULTS To identify the metabolomic and transcriptomic mechanisms of canola under alkaline salt stress, we collected roots of control (no salt treatment) and 72 h Na2CO3-stressed canola seedlings (hydroponics) for metabolic profiling of metabolites, supplemented with RNA-Seq analysis and real-time quantitative PCR validation. Metabolomic analysis showed that the metabolites of amino acids and fatty acids were higher accumulated under alkaline salt stress, including L-proline, L-glutamate, L-histidine, L-phenylalanine, L-citrulline, L-tyrosine, L-saccharopine, L-tryptophan, linoleic acid, dihomo gamma linolenic acid, alpha linolenic acid, Eric acid, oleic acid and neuronic acid, while the metabolism of carbohydrate (sucrase, alpha, alpha trehalose), polyol (ribitol), UDP-D-galactose, D-mannose, D-fructose and D-glucose 6-phosphate decreased. Transcriptomic and metabolomic pathway analysis indicated that carbohydrate metabolism may not play an important role in the resistance of canola to alkaline salt stress. Organic acid metabolism (fatty acid accumulation) and amino acid metabolism are important metabolic pathways in the root of canola under alkaline salt stress. CONCLUSIONS These results suggest that the genes and metabolites involved in fatty acid metabolism and amino acids metabolism in roots of canola may regulate salt tolerance of canola seedlings under alkaline salt stress, which improves our understanding of the molecular mechanisms of salt tolerance in canola.
Collapse
Affiliation(s)
- Weichao Wang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China; The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Jiayin Pang
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia.
| | - Fenghua Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Lupeng Sun
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Lei Yang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Yaguang Zhao
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Yang Yang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Yajuan Wang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Crops, Shihezi University, Xinjiang, 832003, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia.
| |
Collapse
|
45
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
46
|
Casaretto E, Signorelli S, Gallino JP, Vidal S, Borsani O. Endogenous • NO accumulation in soybean is associated with initial stomatal response to water deficit. PHYSIOLOGIA PLANTARUM 2021; 172:564-576. [PMID: 33159328 DOI: 10.1111/ppl.13259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Drought is the main cause of productivity losses in soybean plants, triggering physiological and biochemical responses, stomatal closure being essential to prevent water losses and thus mitigate the negative effects of drought. Abscisic acid (ABA) is the main molecule involved in stomatal closure under drought conditions along with nitric oxide (• NO). However, the role of • NO in this process is not yet fully understood and contrasting findings about its role have been reported. Most of the assays in the literature have been carried out under in vitro conditions using • NO donors or scavengers, but little is known about the effects of endogenously produced • NO under drought conditions. This study is aimed to determine the pattern of endogenous • NO accumulation from the establishment of water stress and how this relates to stomatal closure and other biochemical and physiological responses. The analysis of soybean plant responses to drought revealed no correlation between whole-leaf • NO accumulation and typical water-deficit stress markers. Moreover, • NO accumulation did not explain oxidative damage induced by drought. However, endogenous • NO content correlated with the early stomatal closure. Analysis of stomatal behavior and endogenous • NO content in guard cells through epidermal peel technique showed a stomatal population with high variation in stomatal opening and • NO content under the initial stages of water stress, even when ABA responses are activated. Our data suggest that upon early stress perception, soybean plants respond by accumulating • NO in the guard cells to inhibit stomatal closure, potentially through the inhibition of ABA responses.
Collapse
Affiliation(s)
- Esteban Casaretto
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Signorelli
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, Western Australia, Australia
| | - Juan P Gallino
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Omar Borsani
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
47
|
Li Y, Jiao M, Li Y, Zhong Y, Li X, Chen Z, Chen S, Wang J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3526-3539. [PMID: 33687058 PMCID: PMC8096601 DOI: 10.1093/jxb/erab102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
The polypeptide extract of the dry mycelium of Penicillium chrysogenum (PDMP) can protect tobacco plants from tobacco mosaic virus (TMV), although the mechanism underlying PDMP-mediated TMV resistance remains unknown. In our study, we analysed a potential mechanism via RNA sequencing (RNA-seq) and found that the abscisic acid (ABA) biosynthetic pathway and β-1,3-glucanase, a callose-degrading enzyme, might play an important role in PDMP-induced priming of resistance to TMV. To test our hypothesis, we successfully generated a Nicotiana benthamiana ABA biosynthesis mutant and evaluated the role of the ABA pathway in PDMP-induced callose deposition during resistance to TMV infection. Our results suggested that PDMP can induce callose priming to defend against TMV movement. PDMP inhibited TMV movement by increasing callose deposition around plasmodesmata, but this phenomenon did not occur in the ABA biosynthesis mutant; moreover, these effects of PDMP on callose deposition could be rescued by treatment with exogenous ABA. Our results suggested that callose deposition around plasmodesmata in wild-type plants is mainly responsible for the restriction of TMV movement during the PDMP-induced defensive response to TMV infection, and that ABA biosynthesis apparently plays a crucial role in PDMP-induced callose priming for enhancing defence against TMV.
Collapse
Affiliation(s)
- Yu Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Mengting Jiao
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yingjuan Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Yu Zhong
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Xiaoqin Li
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Zhuangzhuang Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| | - Jianguang Wang
- Biocontrol Engineering Research Center of Crop Disease & Pest of Yunnan Province, School of Life Science, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Plant Disease & Pest, School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
48
|
Ramachandran M, Arulbalachandran D, Dilipan E, Ramya S. Comparative analysis of abscisic acid recovery on two varieties of rice (Oryza sativa L.) under drought condition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
50
|
Abstract
With the global climate anomalies and the destruction of ecological balance, the water shortage has become a serious ecological problem facing all mankind, and drought has become a key factor restricting the development of agricultural production. Therefore, it is essential to study the drought tolerance of crops. Based on previous studies, we reviewed the effects of drought stress on plant morphology and physiology, including the changes of external morphology and internal structure of root, stem, and leaf, the effects of drought stress on osmotic regulation substances, drought-induced proteins, and active oxygen metabolism of plants. In this paper, the main drought stress signals and signal transduction pathways in plants are described, and the functional genes and regulatory genes related to drought stress are listed, respectively. We summarize the above aspects to provide valuable background knowledge and theoretical basis for future agriculture, forestry breeding, and cultivation.
Collapse
|