1
|
Jensch R, Baber R, Körner A, Kiess W, Ceglarek U, Garten A, Vogel M. Association of Whole Blood Amino Acid and Acylcarnitine Metabolome with Anthropometry and IGF-I Serum Levels in Healthy Children and Adolescents in Germany. Metabolites 2024; 14:489. [PMID: 39330496 PMCID: PMC11433988 DOI: 10.3390/metabo14090489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Physiological changes of blood amino acids and acylcarnitines during healthy child development are poorly studied. The LIFE (Leipziger Forschungszentrum für Zivilisationserkrankungen) Child study offers a platform with a large cohort of healthy children to investigate these dynamics. We aimed to assess the intra-person variability of 28 blood metabolites and their associations with anthropometric parameters related to growth and excess body fat. METHODS Concentrations of 22 amino acids (AA), 5 acylcarnitines (AC) and free carnitine of 2213 children aged between 3 months and 19 years were analyzed using liquid chromatography/tandem mass spectrometry. Values were transformed into standard deviation scores (SDS) to account for sex- and age-related variations. The stability of metabolites was assessed through the coefficient of determination. Associations with parameters for body composition and insulin-like growth factor-I (IGF-I) SDS were determined by the Pearson correlation and linear regression. RESULTS Our research revealed substantial within-person variation in metabolite concentrations during childhood and adolescence. Most metabolites showed a positive correlation with body composition parameters, with a notable influence of sex, pubertal status and weight group. Glycine exhibited negative associations with parameters of body fat distribution, especially in normal weight girls, overweight/obese boys and during puberty. CONCLUSION Blood AA and AC measurements may contribute to elucidating pathogenesis pathways of adiposity-related comorbidities, but the specific timings and conditions of development during childhood and adolescence need to be taken into consideration.
Collapse
Affiliation(s)
- Ricky Jensch
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
| | - Ronny Baber
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig, Paul-List Str. 13/15, 04103 Leipzig, Germany
| | - Antje Körner
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Wieland Kiess
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Uta Ceglarek
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics (ILM), University Hospital Leipzig, Paul-List Str. 13/15, 04103 Leipzig, Germany
| | - Antje Garten
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
| | - Mandy Vogel
- LIFE Child, LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany; (R.B.); (A.K.); (W.K.); (U.C.); (M.V.)
- Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse 19-21, 04103 Leipzig, Germany;
- German Center for Child and Adolescent Health (DZKJ), Leipzig/Dresden Partner Site, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Calvert ME, Molsberry SA, Overdahl KE, Jarmusch AK, Shaw ND. Pubertal Girls With Overweight/Obesity Have Higher Androgen Levels-Can Metabolomics Tell us Why? J Clin Endocrinol Metab 2024; 109:1328-1333. [PMID: 37978828 PMCID: PMC11031235 DOI: 10.1210/clinem/dgad675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
CONTEXT Pubertal girls with higher total body fat (TBF) demonstrate higher androgen levels. The cause of this association is unknown but is hypothesized to relate to insulin resistance. OBJECTIVE This work aimed to investigate the association between higher TBF and higher androgens in pubertal girls using untargeted metabolomics. METHODS Serum androgens were determined using a quantitative mass spectrometry (MS)-based assay. Metabolomic samples were analyzed using liquid chromatography high-resolution MS. Associations between TBF or body mass index (BMI) z score (exposure) and metabolomic features (outcome) and between metabolomic features (exposure) and serum hormones (outcome) were examined using gaussian generalized estimating equation models with the outcome lagged by one study visit. Benjamini-Hochberg false discovery rate (FDR) adjusted P values were calculated to account for multiple testing. RaMP-DB (relational database of metabolomic pathways) was used to conduct enriched pathway analyses among features nominally associated with body composition or hormones. RESULTS Sixty-six pubertal, premenarchal girls (aged 10.9 ± 1.39 SD years; 60% White, 24% Black, 16% other; 63% normal weight, 37% overweight/obese) contributed an average of 2.29 blood samples. BMI and TBF were negatively associated with most features including raffinose (a plant trisaccharide) and several bile acids. For BMI, RaMP-DB identified many enriched pathways related to bile acids. Androstenedione also showed strong negative associations with raffinose and bile acids. CONCLUSION Metabolomic analyses of samples from pubertal girls did not identify an insulin resistance signature to explain the association between higher TBF and androgens. Instead, we identified potential novel signaling pathways that may involve raffinose or bile acid action at the adrenal gland.
Collapse
Affiliation(s)
- Madison E Calvert
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA
| | | | | | | | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA
| |
Collapse
|
3
|
Yousf S, Batra HS, Jha RM, Sardesai DM, Ananthamohan K, Chugh J, Sharma S. Identification of potential serum biomarkers associated with HbA1c levels in Indian type 2 diabetic subjects using NMR-based metabolomics. Clin Chim Acta 2024; 557:117857. [PMID: 38484908 DOI: 10.1016/j.cca.2024.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics. MATERIALS AND METHODS The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR spectroscopy and major perturbed metabolites were identified by multivariate analysis and receiver operating characteristic (ROC) modules. RESULTS Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively. CONCLUSION We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hitender S Batra
- Department of Biochemistry, Armed Forces Medical College (AFMC), Wanowrie, Pune 411040, India; Department of Biochemistry, Symbiosis Medical College for Women, Pune 412115, India.
| | - Rakesh M Jha
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
4
|
Tinghäll Nilsson U, Lönnerdal B, Hernell O, Kvistgaard AS, Jacobsen LN, Karlsland Åkeson P. Low-Protein Infant Formula Enriched with Alpha-Lactalbumin during Early Infancy May Reduce Insulin Resistance at 12 Months: A Follow-Up of a Randomized Controlled Trial. Nutrients 2024; 16:1026. [PMID: 38613059 PMCID: PMC11013926 DOI: 10.3390/nu16071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
High protein intake during infancy results in accelerated early weight gain and potentially later obesity. The aim of this follow-up study at 12 months was to evaluate if modified low-protein formulas fed during early infancy have long-term effects on growth and metabolism. In a double-blinded RCT, the ALFoNS study, 245 healthy-term infants received low-protein formulas with either alpha-lactalbumin-enriched whey (α-lac-EW; 1.75 g protein/100 kcal), casein glycomacropeptide-reduced whey (CGMP-RW; 1.76 g protein/100 kcal), or standard infant formula (SF; 2.2 g protein/100 kcal) between 2 and 6 months of age. Breastfed (BF) infants served as a reference. At 12 months, anthropometrics and dietary intake were assessed, and serum was analyzed for insulin, C-peptide, and insulin-like growth factor 1 (IGF-1). Weight gain between 6 and 12 months and BMI at 12 months were higher in the SF than in the BF infants (p = 0.019; p < 0.001, respectively), but were not significantly different between the low-protein formula groups and the BF group. S-insulin and C-peptide were higher in the SF than in the BF group (p < 0.001; p = 0.003, respectively), but more alike in the low-protein formula groups and the BF group. Serum IGF-1 at 12 months was similar in all study groups. Conclusion: Feeding modified low-protein formula during early infancy seems to reduce insulin resistance, resulting in more similar growth, serum insulin, and C-peptide concentrations to BF infants at 6-months post intervention. Feeding modified low-protein formula during early infancy results in more similar growth, serum insulin, and C-peptide concentrations to BF infants 6-months post intervention, probably due to reduced insulin resistance in the low-protein groups.
Collapse
Affiliation(s)
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA 95616, USA;
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, 901 87 Umeå, Sweden;
| | | | | | - Pia Karlsland Åkeson
- Department of Clinical Sciences Malmö, Pediatrics, Lund University, 221 00 Lund, Sweden;
| |
Collapse
|
5
|
Wu J, Li Z, Zhu H, Chang Y, Li Q, Chen J, Shen G, Feng J. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics. Obesity (Silver Spring) 2024; 32:571-582. [PMID: 38112246 DOI: 10.1002/oby.23964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim of this study was to identify the differential metabolic characteristics of children with overweight and obesity and understand their potential mechanism in different age stratifications. METHODS Four hundred seventy-three children were recruited and divided into two age stratifications: >4 years (older children) and ≤4 years (younger children), and overweight and obesity were defined according to their BMI percentile. A one dimensional proton nuclear magnetic resonance (1 H-NMR)-based metabolomics strategy combined with pattern recognition methods was used to identify the metabolic characteristics of childhood overweight and obesity. RESULTS Four and sixteen potential biomarkers related to overweight and two and twenty potential biomarkers related to obesity were identified from younger and older children, respectively. Fluctuations in phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate co-occurred in children with obesity at two age stratifications. The disturbances in biosynthesis and metabolism of amino acids, lipid metabolism, and galactose metabolism disturbance were mainly involved in children with overweight and obesity. CONCLUSIONS The metabolic disturbances show a significant progression from overweight to obesity in children, and different metabolic characteristics were demonstrated in age stratifications. The changes in the levels of phenylalanine, tyrosine, glutamine, leucine, histidine, and ascorbate were tracked with the persistence of childhood obesity. These findings will promote the mechanistic understanding of childhood overweight and obesity.
Collapse
Affiliation(s)
- Jinxia Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Zhenchang Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Hongwei Zhu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yajie Chang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Quanquan Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jing Chen
- Department of Child Health, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
7
|
Kuneš J, Hojná S, Mráziková L, Montezano A, Touyz RM, Maletínská L. Obesity, Cardiovascular and Neurodegenerative Diseases: Potential Common Mechanisms. Physiol Res 2023; 72:S73-S90. [PMID: 37565414 PMCID: PMC10660578 DOI: 10.33549/physiolres.935109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
The worldwide increase in the incidence of obesity and cardiovascular and neurodegenerative diseases, e.g. Alzheimer's disease, is related to many factors, including an unhealthy lifestyle and aging populations. However, the interconnection between these diseases is not entirely clear, and it is unknown whether common mechanisms underlie these conditions. Moreover, there are currently no fully effective therapies for obesity and neurodegeneration. While there has been extensive research in preclinical models addressing these issues, the experimental findings have not been translated to the clinic. Another challenge relates to the time of onset of individual diseases, which may not be easily identified, since there are no specific indicators or biomarkers that define disease onset. Hence knowing when to commence preventive treatment is unclear. This is especially pertinent in neurodegenerative diseases, where the onset of the disease may be subtle and occur decades before the signs and symptoms manifest. In metabolic and cardiovascular disorders, the risk may occur in-utero, in line with the concept of fetal programming. This review provides a brief overview of the link between obesity, cardiovascular and neurodegenerative diseases and discusses potential common mechanisms including the role of the gut microbiome.
Collapse
Affiliation(s)
- J Kuneš
- Institute of Physiology AS CR, Prague, Czech Republic. . Research Institute of McGill University Health Centre (RI-MUHC), Québac, Canada,
| | | | | | | | | | | |
Collapse
|
8
|
Tong L, Tian M, Ma X, Bai L, Zhou J, Ding W. Metabolome Profiling and Pathway Analysis in Metabolically Healthy and Unhealthy Obesity among Chinese Adolescents Aged 11-18 Years. Metabolites 2023; 13:metabo13050641. [PMID: 37233682 DOI: 10.3390/metabo13050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The underlying mechanisms of the development of unhealthy metabolic phenotypes in obese children and adolescents remain unclear. We aimed to screen the metabolomes of individuals with the unhealthy obesity phenotype and identify the potential metabolic pathways that could regulate various metabolic profiles of obesity in Chinese adolescents. A total of 127 adolescents aged 11-18 years old from China were investigated using a cross-sectional study. The participants were classified as having metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the presence/absence of metabolic abnormalities defined by metabolic syndrome (MetS) and body mass index (BMI). Serum-based metabolomic profiling using gas chromatography-mass spectrometry (GC-MS) was undertaken on 67 MHO and 60 MUO individuals. ROC analyses showed that palmitic acid, stearic acid, and phosphate could predict MUO, and that glycolic acid, alanine, 3-hydroxypropionic acid, and 2-hydroxypentanoic acid could predict MHO (all p < 0.05) from selected samples. Five metabolites predicted MUO, 12 metabolites predicted MHO in boys, and only two metabolites predicted MUO in girls. Moreover, several metabolic pathways may be relevant in distinguishing the MHO and MUO groups, including the fatty acid biosynthesis, fatty acid elongation in mitochondria, propanoate metabolism, glyoxylate and dicarboxylate metabolism, and fatty acid metabolism pathways. Similar results were observed for boys except for phenylalanine, tyrosine and tryptophan biosynthesis, which had a high impact [0.098]. The identified metabolites and pathways could be efficacious for investigating the underlying mechanisms of the development of different metabolic phenotypes in obese Chinese adolescents.
Collapse
Affiliation(s)
- Lingling Tong
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Mei Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoyan Ma
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Bai
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyu Zhou
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Wenqing Ding
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
9
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
10
|
Childhood Obesity and the Cryptic Language of the Microbiota: Metabolomics’ Upgrading. Metabolites 2023; 13:metabo13030414. [PMID: 36984854 PMCID: PMC10052538 DOI: 10.3390/metabo13030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The growing obesity epidemic in childhood is increasingly concerning for the related physical and psychological consequences, with a significant impact on health care costs in both the short and the long term. Nonetheless, the scientific community has not yet completely clarified the complex metabolic mechanisms underlying body weight alterations. In only a small percentage of cases, obesity is the result of endocrine, monogenic, or syndromic causes, while in much more cases, lifestyle plays a crucial role in obesity development. In this context, the pediatric age appears to be of considerable importance as prevention strategies together with early intervention can represent important therapeutic tools not only to counteract the comorbidities that increasingly affect children but also to hinder the persistence of obesity in adulthood. Although evidence in the literature supporting the alteration of the microbiota as a critical factor in the etiology of obesity is abundant, it is not yet fully defined and understood. However, increasingly clear evidence is emerging regarding the existence of differentiated metabolic profiles in obese children, with characteristic metabolites. The identification of specific pathology-related biomarkers and the elucidation of the altered metabolic pathways would therefore be desirable in order to clarify aspects that are still poorly understood, such as the consequences of the interaction between the host, the diet, and the microbiota. In fact, metabolomics can characterize the biological behavior of a specific individual in response to external stimuli, offering not only an eventual effective screening and prevention strategy but also the possibility of evaluating adherence and response to dietary intervention.
Collapse
|
11
|
Arjmand B, Ebrahimi Fana S, Ghasemi E, Kazemi A, Ghodssi-Ghassemabadi R, Dehghanbanadaki H, Najjar N, Kakaii A, Forouzanfar K, Nasli-Esfahani E, Farzadfar F, Larijani B, Razi F. Metabolic signatures of insulin resistance in non-diabetic individuals. BMC Endocr Disord 2022; 22:212. [PMID: 36002887 PMCID: PMC9404631 DOI: 10.1186/s12902-022-01130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) evolved from excessive energy intake and poor energy expenditure, affecting the patient's quality of life. Amino acid and acylcarnitine metabolomic profiles have identified consistent patterns associated with metabolic disease and insulin sensitivity. Here, we have measured a wide array of metabolites (30 acylcarnitines and 20 amino acids) with the MS/MS and investigated the association of metabolic profile with insulin resistance. METHODS The study population (n = 403) was randomly chosen from non-diabetic participants of the Surveillance of Risk Factors of NCDs in Iran Study (STEPS 2016). STEPS 2016 is a population-based cross-sectional study conducted periodically on adults aged 18-75 years in 30 provinces of Iran. Participants were divided into two groups according to the optimal cut-off point determined by the Youden index of HOMA-IR for the diagnosis of metabolic syndrome. Associations were investigated using regression models adjusted for age, sex, and body mass index (BMI). RESULTS People with high IR were significantly younger, and had higher education level, BMI, waist circumference, FPG, HbA1c, ALT, triglyceride, cholesterol, non-HDL cholesterol, uric acid, and a lower HDL-C level. We observed a strong positive association of serum BCAA (valine and leucine), AAA (tyrosine, tryptophan, and phenylalanine), alanine, and C0 (free carnitine) with IR (HOMA-IR); while C18:1 (oleoyl L-carnitine) was inversely correlated with IR. CONCLUSIONS In the present study, we identified specific metabolites linked to HOMA-IR that improved IR prediction. In summary, our study adds more evidence that a particular metabolomic profile perturbation is associated with metabolic disease and reemphasizes the significance of understanding the biochemistry and physiology which lead to these associations.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Kazemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Najjar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaii
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhang X, Chen Q, Sun X, Wu Q, Cheng Z, Lv Q, Zhou J, Zhu Y. Association between MRI-based visceral adipose tissues and metabolic abnormality in a Chinese population: a cross-sectional study. Nutr Metab (Lond) 2022; 19:16. [PMID: 35248099 PMCID: PMC8898486 DOI: 10.1186/s12986-022-00651-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background Previous studies have indicated that the deposition of abdominal adipose tissue was associated with the abnormalities of cardiometabolic components. The aim of this study was to examine the relationship of visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and metabolic status and the different effects between males and females. Methods The 1388 eligible subjects were recruited in a baseline survey of metabolic syndrome in China, from two communities in Hangzhou and Chengdu. Areas of abdominal VAT and SAT were measured by magnetic resonance imaging (MRI). Serum total triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) were measured by an automated biochemical analyzer. Metabolic abnormality (MA) was defined more than one abnormal metabolic components, which was based on the definition of metabolic syndrome (IDF 2005). Multiple logistic regression was used to calculate the odds ratios (ORs) and 95% confidence intervals (95%CI). Predictive value was assessed by area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI), respectively. Results Their mean age was 53.8 years (SD: 7.1 years), the mean body mass index (BMI) was 23.7 kg/m2, and 44.8% of the subjects were male. Both male and female with MA had higher VAT levels compared to subjects with normal metabolism (MN), and male had higher SAT levels than female (P < 0.05). Higher VAT was significantly associated with MA with ORs in the fourth quartile (Q4) of 6.537 (95% CI = 3.394–12.591) for male and 3.364 (95% CI = 1.898–5.962) for female (P for trend < 0.05). In female, VAT could increase the risk of metabolic abnormalities, but SAT could increase the risk of MA in the second and fourth quartiles (Q2 and Q4) only at BMI > 24 kg/m2. In male, VAT improved the predictive value of MA compared to BMI and waist circumference (WC), the AUC was 0.727 (95% CI = 0.687–0.767), the NRI was 0.139 (95% CI = 0.070–0.208) and 0.106 (95% CI = 0.038–0.173), and the IDI was 0.074 (95% CI = 0.053–0.095) and 0.046 (95% CI = 0.026–0.066). Similar results were found in female. Conclusions In male, VAT and SAT could increase the risk of metabolic abnormalities both at BMI < 24 kg/m2 and at BMI ≥ 24 kg/m2. In female, VAT could increase the risk of metabolic abnormalities but SAT could increase the risk of MA in the second and fourth quartiles (Q2 and Q4) only at BMI > 24 kg/m2. Deposition of abdominal adipose tissue was associated with metabolic abnormalities. VAT improved the predictive power of MA. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00651-x.
Collapse
Affiliation(s)
- Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang, China.,Affiliated Hangzhou Center of Disease Control and Prevention, Zhejiang University School of Public Health, Hangzhou, 310051, Zhejiang, China
| | - Qiannan Chen
- Basic Discipline of Chinese and Western Integrative, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Qiong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qingguo Lv
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan Province, China.
| | - Jiaqiang Zhou
- Department of Endocrinology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
13
|
van Beijsterveldt IA, Snowden SG, Myers PN, de Fluiter KS, van de Heijning B, Brix S, Ong KK, Dunger DB, Hokken‐Koelega AC, Koulman A. Metabolomics in early life and the association with body composition at age 2 years. Pediatr Obes 2022; 17:e12859. [PMID: 34644810 PMCID: PMC9286420 DOI: 10.1111/ijpo.12859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Early life is a critical window for adiposity programming. Metabolic-profile in early life may reflect this programming and correlate with later life adiposity. We investigated if metabolic-profile at 3 months of age is predictive for body composition at 2 years and if there are differences between boys and girls and between infant feeding types. METHODS In 318 healthy term-born infants, we determined body composition with skinfold measurements and abdominal ultrasound at 3 months and 2 years of age. High-throughput-metabolic-profiling was performed on 3-month-blood-samples. Using random-forest-machine-learning-models, we studied if the metabolic-profile at 3 months can predict body composition outcomes at 2 years of age. RESULTS Plasma metabolite-profile at 3 months was found to predict body composition at 2 years, based on truncal: peripheral-fat-skinfold-ratio (T:P-ratio), with a predictive value of 75.8%, sensitivity of 100% and specificity of 50%. Predictive value was higher in boys (Q2 = 0.322) than girls (Q2 = 0.117). Of the 15 metabolite variables most strongly associated with T:P-ratio, 11 were also associated with visceral fat at 2 years of age. CONCLUSION Several plasma metabolites (LysoPC(22:2), dimethylarginine and others) at 3 months associate with body composition outcome at 2 years. These results highlight the importance of the first months of life for adiposity programming.
Collapse
Affiliation(s)
- Inge A.L.P. van Beijsterveldt
- Department of Pediatrics, Subdivision of EndocrinologyErasmus University Medical Center/Sophia Children's HospitalRotterdamThe Netherlands
| | - Stuart G. Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research LaboratoriesInstitute of Metabolic Science, University of CambridgeCambridgeUK,Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Pernille Neve Myers
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark,Clinical‐Microbiomics A/SCopenhagenDenmark
| | - Kirsten S. de Fluiter
- Department of Pediatrics, Subdivision of EndocrinologyErasmus University Medical Center/Sophia Children's HospitalRotterdamThe Netherlands
| | | | - Susanne Brix
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Ken K. Ong
- Medical Research Council Epidemiology UnitUniversity of Cambridge, Institute of Metabolic Science, Cambridge Biomedical CampusCambridgeUK
| | | | - Anita C.S. Hokken‐Koelega
- Department of Pediatrics, Subdivision of EndocrinologyErasmus University Medical Center/Sophia Children's HospitalRotterdamThe Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research LaboratoriesInstitute of Metabolic Science, University of CambridgeCambridgeUK
| |
Collapse
|
14
|
Stratakis N, Siskos AP, Papadopoulou E, Nguyen AN, Zhao Y, Margetaki K, Lau CHE, Coen M, Maitre L, Fernández-Barrés S, Agier L, Andrusaityte S, Basagaña X, Brantsaeter AL, Casas M, Fossati S, Grazuleviciene R, Heude B, McEachan RRC, Meltzer HM, Millett C, Rauber F, Robinson O, Roumeliotaki T, Borras E, Sabidó E, Urquiza J, Vafeiadi M, Vineis P, Voortman T, Wright J, Conti DV, Vrijheid M, Keun HC, Chatzi L. Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health. eLife 2022; 11:e71332. [PMID: 35076016 PMCID: PMC8789316 DOI: 10.7554/elife.71332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/02/2022] [Indexed: 11/13/2022] Open
Abstract
Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used 1H NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N-methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children's diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.
Collapse
Affiliation(s)
- Nikos Stratakis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | | | - Anh N Nguyen
- Department of Epidemiology, Erasmus University Medical CenterRotterdamNetherlands
| | - Yinqi Zhao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Katerina Margetaki
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Chung-Ho E Lau
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Muireann Coen
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Lea Maitre
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Silvia Fernández-Barrés
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Lydiane Agier
- Inserm, CNRS, University Grenoble Alpes, Team of environmental epidemiology applied to reproduction and respiratory health, IABGrenobleFrance
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus UniversityKaunasLithuania
| | - Xavier Basagaña
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | | | - Maribel Casas
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Serena Fossati
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | | | - Barbara Heude
- Centre for Research in Epidemiology and Statistics, Université de Paris, Inserm, InraParisFrance
| | - Rosemary RC McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | | | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial CollegeLondonUnited Kingdom
- Department of Preventive Medicine, School of Medicine, University of São PauloSão PauloBrazil
| | - Fernanda Rauber
- Public Health Policy Evaluation Unit, School of Public Health, Imperial CollegeLondonUnited Kingdom
- Department of Preventive Medicine, School of Medicine, University of São PauloSão PauloBrazil
- Center for Epidemiological Research in Nutrition and Health, University of São PauloSão PauloBrazil
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of CreteHeraklionGreece
| | - Eva Borras
- ISGlobalBarcelonaSpain
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Eduard Sabidó
- ISGlobalBarcelonaSpain
- Centre for Genomic Regulation, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jose Urquiza
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of CreteHeraklionGreece
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical CenterRotterdamNetherlands
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martine Vrijheid
- ISGlobalBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Epidemiologia y Salud PúblicaMadridSpain
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer and Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital CampusLondonUnited Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
15
|
Handakas E, Lau CH, Alfano R, Chatzi VL, Plusquin M, Vineis P, Robinson O. A systematic review of metabolomic studies of childhood obesity: State of the evidence for metabolic determinants and consequences. Obes Rev 2022; 23 Suppl 1:e13384. [PMID: 34797026 DOI: 10.1111/obr.13384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Childhood obesity has become a global epidemic and carries significant long-term consequences to physical and mental health. Metabolomics, the global profiling of small molecules or metabolites, may reveal the mechanisms of development of childhood obesity and clarify links between obesity and metabolic disease. A systematic review of metabolomic studies of childhood obesity was conducted, following Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines, searching across Scopus, Ovid, Web of Science and PubMed databases for articles published from January 1, 2005 to July 8, 2020, retrieving 1271 different records and retaining 41 articles for qualitative synthesis. Study quality was assessed using a modified Newcastle-Ottawa Scale. Thirty-three studies were conducted on blood, six on urine, three on umbilical cord blood, and one on saliva. Thirty studies were primarily cross-sectional, five studies were primarily longitudinal, and seven studies examined effects of weight-loss following a life-style intervention. A consistent metabolic profile of childhood obesity was observed including amino acids (particularly branched chain and aromatic), carnitines, lipids, and steroids. Although the use of metabolomics in childhood obesity research is still developing, the identified metabolites have provided additional insight into the pathogenesis of many obesity-related diseases. Further longitudinal research is needed into the role of metabolic profiles and child obesity risk.
Collapse
Affiliation(s)
- Evangelos Handakas
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Chung Ho Lau
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Rossella Alfano
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Vaia Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michelle Plusquin
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
16
|
Pero-Gascon R, Hemeryck LY, Poma G, Falony G, Nawrot TS, Raes J, Vanhaecke L, De Boevre M, Covaci A, De Saeger S. FLEXiGUT: Rationale for exposomics associations with chronic low-grade gut inflammation. ENVIRONMENT INTERNATIONAL 2022; 158:106906. [PMID: 34607040 DOI: 10.1016/j.envint.2021.106906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
FLEXiGUT is the first large-scale exposomics study focused on chronic low-grade inflammation. It aims to characterize human life course environmental exposure to assess and validate its impact on gut inflammation and related biological processes and diseases. The cumulative influences of environmental and food contaminants throughout the lifespan on certain biological responses related to chronic gut inflammation will be investigated in two Flemish prospective cohorts, namely the "ENVIRONAGE birth cohort", which provides follow-up from gestation to early childhood, and the "Flemish Gut Flora Project longitudinal cohort", a cohort of adults. The exposome will be characterised through biomonitoring of legacy and emerging contaminants, mycotoxins and markers of air pollution, by analysing the available metadata on nutrition, location and activity, and by applying state-of-the-art -omics techniques, including metagenomics, metabolomics and DNA adductomics, as well as the assessment of telomere length and measurement of inflammatory markers, to encompass both exposure and effect. Associations between exposures and health outcomes will be uncovered using an integrated -omics data analysis framework comprising data exploration, pre-processing, dimensionality reduction and data mining, combined with machine learning-based pathway analysis approaches. This is expected to lead to a more profound insight in mechanisms underlying disease progression (e.g. metabolic disorders, food allergies, gastrointestinal cancers) and/or accelerated biological ageing.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Nandy D, Craig SJC, Cai J, Tian Y, Paul IM, Savage JS, Marini ME, Hohman EE, Reimherr ML, Patterson AD, Makova KD, Chiaromonte F. Metabolomic profiling of stool of two-year old children from the INSIGHT study reveals links between butyrate and child weight outcomes. Pediatr Obes 2022; 17:e12833. [PMID: 34327846 PMCID: PMC8647636 DOI: 10.1111/ijpo.12833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomic analysis is commonly used to understand the biological underpinning of diseases such as obesity. However, our knowledge of gut metabolites related to weight outcomes in young children is currently limited. OBJECTIVES To (1) explore the relationships between metabolites and child weight outcomes, (2) determine the potential effect of covariates (e.g., child's diet, maternal health/habits during pregnancy, etc.) in the relationship between metabolites and child weight outcomes, and (3) explore the relationship between selected gut metabolites and gut microbiota abundance. METHODS Using 1 H-NMR, we quantified 30 metabolites from stool samples of 170 two-year-old children. To identify metabolites and covariates associated with children's weight outcomes (BMI [weight/height2 ], BMI z-score [BMI adjusted for age and sex], and growth index [weight/height]), we analysed the 1 H-NMR data, along with 20 covariates recorded on children and mothers, using LASSO and best subset selection regression techniques. Previously characterized microbiota community information from the same stool samples was used to determine associations between selected gut metabolites and gut microbiota. RESULTS At age 2 years, stool butyrate concentration had a significant positive association with child BMI (p-value = 3.58 × 10-4 ), BMI z-score (p-value = 3.47 × 10-4 ), and growth index (p-value = 7.73 × 10-4 ). Covariates such as maternal smoking during pregnancy are important to consider. Butyrate concentration was positively associated with the abundance of the bacterial genus Faecalibacterium (p-value = 9.61 × 10-3 ). CONCLUSIONS Stool butyrate concentration is positively associated with increased child weight outcomes and should be investigated further as a factor affecting childhood obesity.
Collapse
Affiliation(s)
- Debmalya Nandy
- Department of StatisticsPenn State UniversityUniversity ParkPAUSA,Present address:
Department of Biostatistics and Informatics, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sarah J. C. Craig
- Department of BiologyPenn State UniversityUniversity ParkPAUSA,Center for Medical GenomicsPenn State UniversityUniversity ParkPAUSA
| | - Jingwei Cai
- Department of Molecular ToxicologyPenn State UniversityUniversity ParkPAUSA,Present address:
Department of Drug Metabolism and PharmacokineticsGenentech Inc.South San FranciscoCaliforniaUSA
| | - Yuan Tian
- Department of Molecular ToxicologyPenn State UniversityUniversity ParkPAUSA
| | - Ian M. Paul
- Center for Medical GenomicsPenn State UniversityUniversity ParkPAUSA,Department of PediatricsPenn State College of MedicineHersheyPAUSA
| | - Jennifer S. Savage
- Department of Nutritional SciencesPenn State UniversityUniversity ParkPAUSA,Center for Childhood Obesity ResearchPenn State UniversityUniversity ParkPAUSA
| | - Michele E. Marini
- Center for Childhood Obesity ResearchPenn State UniversityUniversity ParkPAUSA
| | - Emily E. Hohman
- Center for Childhood Obesity ResearchPenn State UniversityUniversity ParkPAUSA
| | - Matthew L. Reimherr
- Department of StatisticsPenn State UniversityUniversity ParkPAUSA,Center for Medical GenomicsPenn State UniversityUniversity ParkPAUSA
| | - Andrew D. Patterson
- Department of Molecular ToxicologyPenn State UniversityUniversity ParkPAUSA,Department of Biochemistry & Molecular BiologyPenn State UniversityUniversity ParkPAUSA
| | - Kateryna D. Makova
- Department of BiologyPenn State UniversityUniversity ParkPAUSA,Center for Medical GenomicsPenn State UniversityUniversity ParkPAUSA
| | - Francesca Chiaromonte
- Department of StatisticsPenn State UniversityUniversity ParkPAUSA,Center for Medical GenomicsPenn State UniversityUniversity ParkPAUSA,Institute of EconomicsEMbeDS, Sant'Anna School of Advanced StudiesPisaItaly
| |
Collapse
|
18
|
Passaro AP, Marzuillo P, Guarino S, Scaglione F, Miraglia del Giudice E, Di Sessa A. Omics era in type 2 diabetes: From childhood to adulthood. World J Diabetes 2021; 12:2027-2035. [PMID: 35047117 PMCID: PMC8696648 DOI: 10.4239/wjd.v12.i12.2027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Parallel to the dramatic rise of pediatric obesity, estimates reported an increased prevalence of type 2 diabetes (T2D) already in childhood. The close relationship between obesity and T2D in children is mainly sustained by insulin resistance (IR). In addition, the cardiometabolic burden of T2D including nonalcoholic fatty liver disease, cardiovascular disease and metabolic syndrome is also strictly related to IR. Although T2D pathophysiology has been largely studied in an attempt to improve therapeutic options, molecular mechanisms are still not fully elucidated. In this perspective, omics approaches (including lipidomics, metabolomics, proteomics and metagenomics) are providing the most attractive therapeutic options for T2D. In particular, distinct both lipids and metabolites are emerging as potential therapeutic tools. Of note, among lipid classes, the pathogenic role of ceramides in T2D context has been supported by several data. Thus, selective changes of ceramides expression might represent innovative therapeutic strategies for T2D treatment. More, distinct metabolomics pathways have been also found to be associated with higher T2D risk, by providing novel potential T2D biomarkers. Taken together, omics data are responsible for the expanding knowledge of T2D pathophysiology, by providing novel insights to improve therapeutic strategies for this tangled disease. We aimed to summarize the most recent evidence in the intriguing field of the omics approaches in T2D both in adults and children.
Collapse
Affiliation(s)
- Antonio Paride Passaro
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Stefano Guarino
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Federica Scaglione
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Emanuele Miraglia del Giudice
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| | - Anna Di Sessa
- Department of Woman, Child and of General and Specialized Surgery, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli 80138, Italy
| |
Collapse
|
19
|
De Spiegeleer M, De Paepe E, Van Meulebroek L, Gies I, De Schepper J, Vanhaecke L. Paediatric obesity: a systematic review and pathway mapping of metabolic alterations underlying early disease processes. Mol Med 2021; 27:145. [PMID: 34742239 PMCID: PMC8571978 DOI: 10.1186/s10020-021-00394-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The alarming trend of paediatric obesity deserves our greatest awareness to hinder the early onset of metabolic complications impacting growth and functionality. Presently, insight into molecular mechanisms of childhood obesity and associated metabolic comorbidities is limited. This systematic review aimed at scrutinising what has been reported on putative metabolites distinctive for metabolic abnormalities manifesting at young age by searching three literature databases (Web of Science, Pubmed and EMBASE) during the last 6 years (January 2015-January 2021). Global metabolomic profiling of paediatric obesity was performed (multiple biological matrices: blood, urine, saliva and adipose tissue) to enable overarching pathway analysis and network mapping. Among 2792 screened Q1 articles, 40 met the eligibility criteria and were included to build a database on metabolite markers involved in the spectrum of childhood obesity. Differential alterations in multiple pathways linked to lipid, carbohydrate and amino acid metabolisms were observed. High levels of lactate, pyruvate, alanine and acetate marked a pronounced shift towards hypoxic conditions in children with obesity, and, together with distinct alterations in lipid metabolism, pointed towards dysbiosis and immunometabolism occurring early in life. Additionally, aberrant levels of several amino acids, most notably belonging to tryptophan metabolism including the kynurenine pathway and its relation to histidine, phenylalanine and purine metabolism were displayed. Moreover, branched-chain amino acids were linked to lipid, carbohydrate, amino acid and microbial metabolism, inferring a key role in obesity-associated insulin resistance. CONCLUSIONS This systematic review revealed that the main metabolites at the crossroad of dysregulated metabolic pathways underlying childhood obesity could be tracked down to one central disturbance, i.e. impending insulin resistance for which reference values and standardised measures still are lacking. In essence, glycolytic metabolism was evinced as driving energy source, coupled to impaired Krebs cycle flux and ß-oxidation. Applying metabolomics enabled to retrieve distinct metabolite alterations in childhood obesity(-related insulin resistance) and associated pathways at early age and thus could provide a timely indication of risk by elucidating early-stage biomarkers as hallmarks of future metabolically unhealthy phenotypes.
Collapse
Affiliation(s)
- Margot De Spiegeleer
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ellen De Paepe
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Inge Gies
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium
| | - Jean De Schepper
- KidZ Health Castle, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090, Brussel, Belgium.,Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast, BT7 1NN, UK.
| |
Collapse
|
20
|
Mohammad S, Bhattacharjee J, Vasanthan T, Harris CS, Bainbridge SA, Adamo KB. Metabolomics to understand placental biology: Where are we now? Tissue Cell 2021; 73:101663. [PMID: 34653888 DOI: 10.1016/j.tice.2021.101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Metabolomics, the application of analytical chemistry methodologies to survey the chemical composition of a biological system, is used to globally profile and compare metabolites in one or more groups of samples. Given that metabolites are the terminal end-products of cellular metabolic processes, or 'phenotype' of a cell, tissue, or organism, metabolomics is valuable to the study of the maternal-fetal interface as it has the potential to reveal nuanced complexities of a biological system as well as differences over time or between individuals. The placenta acts as the primary site of maternal-fetal exchange, the success of which is paramount to growth and development of offspring during pregnancy and beyond. Although the study of metabolomics has proven moderately useful for the screening, diagnosis, and understanding of the pathophysiology of pregnancy complications, the placental metabolome in the context of a healthy pregnancy remains poorly characterized and understood. Herein, we discuss the technical aspects of metabolomics and review the current literature describing the placental metabolome in human and animal models, in the context of health and disease. Finally, we highlight areas for future opportunities in the emerging field of placental metabolomics.
Collapse
Affiliation(s)
- S Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - J Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - T Vasanthan
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - C S Harris
- Department of Biology & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - S A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - K B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
21
|
Li XX, Zhang XX, Zhang R, Ni ZJ, Elam E, Thakur K, Cespedes-Acuña CL, Zhang JG, Wei ZJ. Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in high-fat diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food Chem Toxicol 2021; 152:112235. [PMID: 33894295 DOI: 10.1016/j.fct.2021.112235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/11/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
We explored the effect of carboxymethylated wheat bran dietary fibers (DFs) on mice with type 2 diabetes (T2D) (induced by HFD combined with STZ) and their possible hypoglycemic mechanism. After feeding the diabetic mice with modified DFs for four weeks, the DFs had lipid lowering and anti-hyperglycemic effect, via increasing the levels of insulin, GLP-1, PYY, and SCFAs in diabetic mice, and improving the histopathology of liver and pancreas. qRT-PCR results showed that the intake of DFs up-regulated the expression levels of G6Pase and Prkce, and down regulated the expression levels of Glut2 and InsR in the liver of diabetic mice. It is suggested that DFs may play a role by inhibiting 1,2-DAG-PKCε pathway, improving insulin receptor activity and insulin signal transduction. 16 S rDNA high-throughput sequencing results showed that the DFs significantly improved the relative abundance of Akkermansia muciniphila, increased the diversity of gut microbiota and reduced the ratio of Firmicutes to Bacteroidetes, thus promoting the hypoglycemic and hypolipidemic effect on diabetic mice. Our study can foster the further understanding of the gut modulatory biomarkers and related metabolites, and may extend the basis for DFs as a potential dietary intervention to prevent or treat the T2D.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Rui Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Elnur Elam
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
22
|
Jaimes JD, Slavíčková A, Hurych J, Cinek O, Nichols B, Vodolánová L, Černý K, Havlík J. Stool metabolome-microbiota evaluation among children and adolescents with obesity, overweight, and normal-weight using 1H NMR and 16S rRNA gene profiling. PLoS One 2021; 16:e0247378. [PMID: 33765008 PMCID: PMC7993802 DOI: 10.1371/journal.pone.0247378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Characterization of metabolites and microbiota composition from human stool provides powerful insight into the molecular phenotypic difference between subjects with normal weight and those with overweight/obesity. The aim of this study was to identify potential metabolic and bacterial signatures from stool that distinguish the overweight/obesity state in children/adolescents. Using 1H NMR spectral analysis and 16S rRNA gene profiling, the fecal metabolic profile and bacterial composition from 52 children aged 7 to 16 was evaluated. The children were classified into three groups (16 with normal-weight, 17 with overweight, 19 with obesity). The metabolomic analysis identified four metabolites that were significantly different (p < 0.05) among the study groups based on one-way ANOVA testing: arabinose, butyrate, galactose, and trimethylamine. Significantly different (p < 0.01) genus-level taxa based on edgeR differential abundance tests were genus Escherichia and Tyzzerella subgroup 3. No significant difference in alpha-diversity was detected among the three study groups, and no significant correlations were found between the significant taxa and metabolites. The findings support the hypothesis of increased energy harvest in obesity by human gut bacteria through the growing observation of increased fecal butyrate in children with overweight/obesity, as well as an increase of certain monosaccharides in the stool. Also supported is the increase of trimethylamine as an indicator of an unhealthy state.
Collapse
Affiliation(s)
- José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Andrea Slavíčková
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jakub Hurych
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Ondřej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic.,Department of Paediatrics, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Ben Nichols
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Lucie Vodolánová
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Karel Černý
- Olivova Children's Medical Institution, Říčany, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
23
|
Hovinen T, Korkalo L, Freese R, Skaffari E, Isohanni P, Niemi M, Nevalainen J, Gylling H, Zamboni N, Erkkola M, Suomalainen A. Vegan diet in young children remodels metabolism and challenges the statuses of essential nutrients. EMBO Mol Med 2021; 13:e13492. [PMID: 33471422 PMCID: PMC7863396 DOI: 10.15252/emmm.202013492] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Vegan diets are gaining popularity, also in families with young children. However, the effects of strict plant-based diets on metabolism and micronutrient status of children are unknown. We recruited 40 Finnish children with a median age 3.5 years-vegans, vegetarians, or omnivores from same daycare centers-for a cross-sectional study. They enjoyed nutritionist-planned vegan or omnivore meals in daycare, and the full diets were analyzed with questionnaires and food records. Detailed analysis of serum metabolomics and biomarkers indicated vitamin A insufficiency and border-line sufficient vitamin D in all vegan participants. Their serum total, HDL and LDL cholesterol, essential amino acid, and docosahexaenoic n-3 fatty acid (DHA) levels were markedly low and primary bile acid biosynthesis, and phospholipid balance was distinct from omnivores. Possible combination of low vitamin A and DHA status raise concern for their visual health. Our evidence indicates that (i) vitamin A and D status of vegan children requires special attention; (ii) dietary recommendations for children cannot be extrapolated from adult vegan studies; and (iii) longitudinal studies on infant-onset vegan diets are warranted.
Collapse
Affiliation(s)
- Topi Hovinen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Liisa Korkalo
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Riitta Freese
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Essi Skaffari
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Pirjo Isohanni
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Nevalainen
- Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Helena Gylling
- Department of Medicine, Division of Internal Medicine, University of Helsinki, Helsinki, Finland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Maijaliisa Erkkola
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Müllner E, Röhnisch HE, von Brömssen C, Moazzami AA. Metabolomics analysis reveals altered metabolites in lean compared with obese adolescents and additional metabolic shifts associated with hyperinsulinaemia and insulin resistance in obese adolescents: a cross-sectional study. Metabolomics 2021; 17:11. [PMID: 33438144 PMCID: PMC7803706 DOI: 10.1007/s11306-020-01759-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hyperinsulinaemia and insulin resistance (IR) are strongly associated with obesity and are forerunners of type 2 diabetes. Little is known about metabolic alterations separately associated with obesity, hyperinsulinaemia/IR and impaired glucose tolerance (IGT) in adolescents. OBJECTIVES To identify metabolic alterations associated with obesity, hyperinsulinaemia/IR and hyperinsulinaemia/IR combined with IGT in obese adolescents. METHODS 81 adolescents were stratified into four groups based on body mass index (lean vs. obese), insulin responses (normal insulin (NI) vs. high insulin (HI)) and glucose responses (normal glucose tolerance (NGT) vs. IGT) after an oral glucose tolerance test (OGTT). The groups comprised: (1) healthy lean with NI and NGT, (2) obese with NI and NGT, (3) obese with HI and NGT, and (4) obese with HI and IGT. Targeted nuclear magnetic resonance-based metabolomics analysis was performed on fasting and seven post-OGTT plasma samples, followed by univariate and multivariate statistical analyses. RESULTS Two groups of metabolites were identified: (1) Metabolites associated with insulin response level: adolescents with HI (groups 3-4) had higher concentrations of branched-chain amino acids and tyrosine, and lower concentrations of serine, glycine, myo-inositol and dimethylsulfone, than adolescents with NI (groups 1-2). (2) Metabolites associated with obesity status: obese adolescents (groups 2-4) had higher concentrations of acetylcarnitine, alanine, pyruvate and glutamate, and lower concentrations of acetate, than lean adolescents (group 1). CONCLUSIONS Obesity is associated with shifts in fat and energy metabolism. Hyperinsulinaemia/IR in obese adolescents is also associated with increased branched-chain and aromatic amino acids.
Collapse
Affiliation(s)
- Elisabeth Müllner
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hanna E Röhnisch
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Claudia von Brömssen
- Department of Energy and Technology, Unit of Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
25
|
Beken S, Abali S, Yildirim Saral N, Guner B, Dinc T, Albayrak E, Ersoy M, Kilercik M, Halici M, Bulbul E, Kaya D, Karabay M, Ay ZA, Eksi GZ, Benli Aksungar F, Korkmaz A, Serteser M. Early Postnatal Metabolic Profile in Neonates With Different Birth Weight Status: A Pilot Study. Front Pediatr 2021; 9:646860. [PMID: 33987152 PMCID: PMC8110833 DOI: 10.3389/fped.2021.646860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Restricted or enhanced intrauterine growth is associated with elevated risks of early and late metabolic problems in humans. Metabolomics based on amino acid and carnitine/acylcarnitine profile may have a role in fetal and early postnatal energy metabolism. In this study, the relationship between intrauterine growth status and early metabolomics profile was evaluated. Materials and Methods: A single-center retrospective cohort study was conducted. Three hundred and sixty-one newborn infants were enrolled into the study, and they were grouped according to their birth weight percentile as small for gestational age (SGA, n = 69), appropriate for gestational age (AGA, n = 168), and large for gestational age (LGA, n = 124) infants. In all infants, amino acid and carnitine/acylcarnitine profiles with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were recorded and compared between groups. Results: LGA infants had higher levels of glutamic acid and lower levels of ornithine, alanine, and glycine (p < 0.05) when compared with AGA infants. SGA infants had higher levels of alanine and glycine levels when compared with AGA and LGA infants. Total carnitine, C0, C2, C4, C5, C10:1, C18:1, C18:2, C14-OH, and C18:2-OH levels were significantly higher and C3 and C6-DC levels were lower in SGA infants (p < 0.05). LGA infants had higher C3 and C5:1 levels and lower C18:2 and C16:1-OH levels (p < 0.05). There were positive correlations between free carnitine and phenylalanine, arginine, methionine, alanine, and glycine levels (p < 0.05). Also, a positive correlation between ponderal index and C3, C5-DC, C14, and C14:1 and a negative correlation between ponderal index and ornithine, alanine, glycine, C16:1-OH, and C18:2 were shown. Conclusion: We demonstrated differences in metabolomics possibly reflecting the energy metabolism in newborn infants with intrauterine growth problems in the early postnatal period. These differences might be the footprints of metabolic disturbances in future adulthood.
Collapse
Affiliation(s)
- Serdar Beken
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Saygin Abali
- Department of Pediatrics, Section of Pediatric Endocrinology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Bengisu Guner
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Taha Dinc
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Albayrak
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melike Ersoy
- Department of Pediatrics, Bakirkoy Dr Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Meltem Kilercik
- Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Muge Halici
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ezgi Bulbul
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Didem Kaya
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Melis Karabay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Zeynep Alize Ay
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gulten Zeynep Eksi
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Metabolism, Acibadem Labmed Clinical Laboratories, Istanbul, Turkey.,Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ayse Korkmaz
- Department of Pediatrics, Section of Neonatology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mustafa Serteser
- Department of Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
26
|
Cheng D, Zhao X, Yang S, Cui H, Wang G. Metabolomic Signature Between Metabolically Healthy Overweight/Obese and Metabolically Unhealthy Overweight/Obese: A Systematic Review. Diabetes Metab Syndr Obes 2021; 14:991-1010. [PMID: 33692630 PMCID: PMC7939496 DOI: 10.2147/dmso.s294894] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The clinical manifestations of overweight/obesity are heterogeneous and complex. In contrast to metabolically unhealthy overweight/obese (MUO), a particular sub-group of obese patients who are considered as metabolically healthy overweight/obese (MHO), display favorable metabolic profiles characterized by high levels of insulin sensitivity, normal blood pressure, as well as favorable lipid, inflammation, hormone, liver enzyme, and immune profiles. While only a few available studies focused on the metabolic files underlying the obese phenotypes, the current review aimed to perform a systematic review of available studies focusing on describing the metabolomic signature between MUO and MHO. We did the systematic search for literature on MEDLINE (PubMed), the Cochrane Library, EMBASE, and searched for the references of relevant manuscripts from inception to 29 May 2020. After critical selection, 20 studies were eligible for this systematic review and evaluated by using QUADOMICS for quality assessment. Eventually, 12 of 20 studies were classified as "high quality". Branched-chain amino acids (isoleucine, leucine, and valine), aromatic amino acids (phenylalanine and tyrosine), lipids (palmitic acid, palmitoleic acid, oleic acid, eicosapentaenoic acid, and docosahexaenoic acid), and acylcarnitines (propionyl carnitine) levels might be elevated in MUO. The current results suggested that MHO showed a favorable trend in the overall metabolic signature. More longitudinal studies are needed to elaborate deeply on the metabolic pathway and the relationship between metabolic patterns and the occurrence of the disease.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Correspondence: Guixia Wang Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of ChinaTel +15843081103 Email
| |
Collapse
|
27
|
Rasooli SA, Fathi R, Golzar FAK, Baghersalimi M. The effect of circuit resistance training on plasma levels of amino acids, alpha-hydroxybutyrate, mannose, and urinary levels of glycine conjugated adducts in obese adolescent boys. Appl Physiol Nutr Metab 2020; 46:561-570. [PMID: 33151749 DOI: 10.1139/apnm-2020-0171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Few studies have examined the improving effects of exercise on the association between metabolites of impaired protein metabolism and insulin resistance in obese children. Therefore, this study aims to investigate the effect of circuit resistance training (CRT) on plasma levels of amino acids, alpha-hydroxybutyrate (α-HB), mannose, and urinary levels of glycine conjugated adducts in obese adolescent boys. Forty obese adolescent boys (body mass index above the 95th percentile) with an age range of 14-17 years were randomly divided into the CRT group (n = 20) and control group (n = 20). The CRT program (3 times/week, 70%-80% of 1-repetition maximum) was performed for 8 weeks. The results indicated that the body composition and plasma levels of glucose, insulin resistance, valine, mannose, lysine, and the sum of branched-chain amino acids (BCAA) were decreased because of CRT. The plasma levels of asparagine, glycine, serine, and urinary levels of glycine conjugated adduct also increased in the CRT group. Although α-HB level decreased during CRT, it had no significant difference from that of the control group. It can be concluded that the improvement in obesity complications including insulin resistance in obese adolescent boys after CRT may be due to decrease in plasma levels of mannose and BCAA and increase urinary metabolites. Novelty: CRT improves glucose metabolism and insulin resistance in obese adolescent boys. CRT decreases plasma levels of mannose and BCAA and normalizes other amino acids. CRT increases urinary levels of glycine conjugated adducts.
Collapse
Affiliation(s)
- Seyed Ali Rasooli
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.,Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Rozita Fathi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.,Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Farhad Ahmadi-Kani Golzar
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.,Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Masoumeh Baghersalimi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran.,Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
28
|
Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients 2020; 12:nu12113310. [PMID: 33137934 PMCID: PMC7692749 DOI: 10.3390/nu12113310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
The evolution of obesity and its resulting comorbidities differs depending upon the age of the subject. The dramatic rise in childhood obesity has resulted in specific needs in defining obesity-associated entities with this disease. Indeed, even the definition of obesity differs for pediatric patients from that employed in adults. Regardless of age, one of the earliest metabolic complications observed in obesity involves perturbations in glucose metabolism that can eventually lead to type 2 diabetes. In children, the incidence of type 2 diabetes is infrequent compared to that observed in adults, even with the same degree of obesity. In contrast, insulin resistance is reported to be frequently observed in children and adolescents with obesity. As this condition can be prerequisite to further metabolic complications, identification of biological markers as predictive risk factors would be of tremendous clinical utility. Analysis of obesity-induced modifications of the adipokine profile has been one classic approach in the identification of biomarkers. Recent studies emphasize the utility of metabolomics in the analysis of metabolic characteristics in children with obesity with or without insulin resistance. These studies have been performed with targeted or untargeted approaches, employing different methodologies. This review summarizes some of the advances in this field while emphasizing the importance of the different techniques employed.
Collapse
|
29
|
Regan JA, Shah SH. Obesity Genomics and Metabolomics: a Nexus of Cardiometabolic Risk. Curr Cardiol Rep 2020; 22:174. [PMID: 33040225 DOI: 10.1007/s11886-020-01422-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is a significant international public health epidemic with major downstream consequences on morbidity and mortality. While lifestyle factors contribute, there is an evolving understanding of genomic and metabolomic pathways involved with obesity and its relationship with cardiometabolic risk. This review will provide an overview of some of these important findings from both a biologic and clinical perspective. RECENT FINDINGS Recent studies have identified polygenic risk scores and metabolomic biomarkers of obesity and related outcomes, which have also highlighted biological pathways, such as the branched-chain amino acid (BCAA) pathway that is dysregulated in this disease. These biomarkers may help in personalizing obesity interventions and for mitigation of future cardiometabolic risk. A multifaceted approach is necessary to impact the growing epidemic of obesity and related diseases. This will likely include incorporating precision medicine approaches with genomic and metabolomic biomarkers to personalize interventions and improve risk prediction.
Collapse
Affiliation(s)
- Jessica A Regan
- Department of Medicine, Duke University, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA
| | - Svati H Shah
- Department of Medicine, Duke University, Durham, NC, USA. .,Duke Molecular Physiology Institute, Duke University, 300 N. Duke Street, DUMC, Box 104775, Durham, NC, 27701, USA.
| |
Collapse
|
30
|
Cioffi CE, Narayan KMV, Liu K, Uppal K, Jones DP, Tran V, Yu T, Alvarez JA, Bellissimo MP, Maner-Smith KM, Pierpoint B, Caprio S, Santoro N, Vos MB. Hepatic fat is a stronger correlate of key clinical and molecular abnormalities than visceral and abdominal subcutaneous fat in youth. BMJ Open Diabetes Res Care 2020; 8:e001126. [PMID: 32699106 PMCID: PMC7380953 DOI: 10.1136/bmjdrc-2019-001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Body fat distribution is strongly associated with cardiometabolic disease (CMD), but the relative importance of hepatic fat as an underlying driver remains unclear. Here, we applied a systems biology approach to compare the clinical and molecular subnetworks that correlate with hepatic fat, visceral fat, and abdominal subcutaneous fat distribution. RESEARCH DESIGN AND METHODS This was a cross-sectional sub-study of 283 children/adolescents (7-19 years) from the Yale Pediatric NAFLD Cohort. Untargeted, high-resolution metabolomics (HRM) was performed on plasma and combined with existing clinical variables including hepatic and abdominal fat measured by MRI. Integrative network analysis was coupled with pathway enrichment analysis and multivariable linear regression (MLR) to examine which metabolites and clinical variables associated with each fat depot. RESULTS The data divided into four communities of correlated variables (|r|>0.15, p<0.05) after integrative network analysis. In the largest community, hepatic fat was associated with eight clinical biomarkers, including measures of insulin resistance and dyslipidemia, and 878 metabolite features that were enriched predominantly in amino acid (AA) and lipid pathways in pathway enrichment analysis (p<0.05). Key metabolites associated with hepatic fat included branched-chain AAs (valine and isoleucine/leucine), aromatic AAs (tyrosine and tryptophan), serine, glycine, alanine, and pyruvate, as well as several acylcarnitines and glycerophospholipids (all q<0.05 in MLR adjusted for covariates). The other communities detected in integrative network analysis consisted of abdominal visceral, superficial subcutaneous, and deep subcutaneous fats, but no clinical variables, fewer metabolite features (280, 312, and 74, respectively), and limited findings in pathway analysis. CONCLUSIONS These data-driven findings show a stronger association of hepatic fat with key CMD risk factors compared with abdominal fats. The molecular network identified using HRM that associated with hepatic fat provides insight into potential mechanisms underlying the hepatic fat-insulin resistance interface in youth.
Collapse
Affiliation(s)
- Catherine E Cioffi
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Ken Liu
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - ViLinh Tran
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianwei Yu
- Department of Biostatistics, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Moriah P Bellissimo
- Nutrition and Health Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Kristal M Maner-Smith
- Emory Integrated Lipidomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bridget Pierpoint
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sonia Caprio
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicola Santoro
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Molise, Italy
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
31
|
Longitudinal relationship of amino acids and indole metabolites with long-term body mass index and cardiometabolic risk markers in young individuals. Sci Rep 2020; 10:6399. [PMID: 32286421 PMCID: PMC7156759 DOI: 10.1038/s41598-020-63313-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Amino acid metabolites in biofluids are associated with high body mass index (BMI) and cardiometabolic abnormalities. However, prospective investigations regarding these associations are few, particularly among young individuals. Moreover, little is presently known about the impact of long-term high BMI. Using data from the DOrtmund Nutritional and Anthropometric Longitudinally Designed study (111 males and 107 females), we prospectively investigated relations between repeatedly measured urinary levels of 33 metabolites and (1) previously identified long-term BMI trajectory groups from childhood into late adolescence and (2) cardiometabolic risk markers in late adolescence–young adulthood, in sex-specific linear mixed regression models. Males with long-term overweight had lower indole-3-acetic acid when compared to others. Further, methionine, isoleucine, tryptophan, xanthurenic acid, and indole-3-carboxaldehyde were negatively associated with C-reactive protein (CRP), but 5-hydroxyindole-3-acetic acid was positively associated with CRP. No associations were observed in females. Long-term overweight from childhood into late adolescence is associated with decreased urinary levels of gut bacteria-derived indole-3-acetic acid, and several urinary amino acids, including gut bacteria-derived indole-3-carboxaldehyde are associated with elevated CRP later on in life. Taken together, our data suggest that indole metabolites, and their gut bacteria producers play potentially important roles in overweight-related inflammation.
Collapse
|
32
|
Sun M, Zhao B, He S, Weng R, Wang B, Ding Y, Huang X, Luo Q. The Alteration of Carnitine Metabolism in Second Trimester in GDM and a Nomogram for Predicting Macrosomia. J Diabetes Res 2020; 2020:4085757. [PMID: 32851095 PMCID: PMC7439181 DOI: 10.1155/2020/4085757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The metabolism of three major nutrients (sugar, lipid, and protein) will change during pregnancy, especially in the second trimester. The present study is aimed at evaluating carnitine alteration in fatty acid metabolism in the second trimester of pregnancy and the correlation between carnitine and GDM. METHODS 450 pregnant women were recruited in the present prospective study. Metabolic profiling of 31 carnitines was detected by LC-MS/MS in these women. Correlation between carnitine metabolism and maternal and neonatal complication with GDM was analyzed. RESULTS We found the levels of 7 carnitines increased in age > 35, BMI ≥ 30, weight gain > 20 kg, and ART pregnant groups, but the level of free carnitine (C0) decreased. Nine carnitines were specific metabolites of GDM. Prepregnancy BMI, weight gain, and carnitines (C0, C3, and C16) were independent risk factors associated with GDM and related macrosomia. C0 was negatively correlated with FBG, LDL, TG, and TC. A nomogram was developed for predicting macrosomia in GDM based on carnitine-related metabolic variables. CONCLUSION The carnitine metabolism in the second trimester is abnormal in GDM women. The dysfunction of carnitine metabolism is closely related to the abnormality of blood lipid and glucose in GDM. Carnitine metabolism abnormality could predict macrosomia complicated with GDM.
Collapse
Affiliation(s)
- Man Sun
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Baihui Zhao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Sainan He
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Ruopeng Weng
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Binqiao Wang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Yunping Ding
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Xinwen Huang
- Department of Genetic and Metabolic Diseases, The Children's Hospital, School of Medicine, Zhejiang University, No.1, Xueshi Road, Shangchen District, Hangzhou, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
33
|
Hosking J, Pinkney J, Jeffery A, Cominetti O, Da Silva L, Collino S, Kussmann M, Hager J, Martin FP. Insulin Resistance during normal child growth and development is associated with a distinct blood metabolic phenotype (Earlybird 72). Pediatr Diabetes 2019; 20:832-841. [PMID: 31254470 DOI: 10.1111/pedi.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND While insulin resistance (IR) is associated with specific metabolite signatures in adults, there have been few truly longitudinal studies in healthy children, either to confirm which abnormalities are present, or to determine whether they precede or result from IR. Therefore, we investigated the association of serum metabolites with IR in childhood in the Earlybird cohort. METHODS The Earlybird cohort is a well-characterized cohort of healthy children with annual measurements from age 5 to 16 years. For the first time, longitudinal association analyses between individual serum metabolites and homeostatic model assessment (HOMA) of insulin resistance (HOMA-IR) have been performed taking into account the effects of age, growth, puberty, adiposity, and physical activity. RESULTS IR was higher in girls than in boys and was associated with increasing body mass index (BMI). In longitudinal analysis IR was associated with reduced concentrations of branched-chain amino acids (BCAA), 2-ketobutyrate, citrate and 3-hydroxybutyrate, and higher concentrations of lactate and alanine. These findings demonstrate the widespread biochemical consequences of IR for intermediary metabolism, ketogenesis, and pyruvate oxidation during normal child growth and development. CONCLUSIONS Longitudinal analysis can differentiate metabolite signatures that precede or follow the development of greater levels of IR. In healthy normal weight children, higher levels of IR are associated with reduced levels of BCAA, ketogenesis, and fuel oxidation. In contrast, elevated lactate concentrations preceded the rise in IR. These changes reveal the metabolite signature of insulin action during normal growth, and they contrast with previous findings in obese children and adults that represent the consequences of IR and obesity.
Collapse
Affiliation(s)
- Joanne Hosking
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Jonathan Pinkney
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Alison Jeffery
- Faculty of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Ornella Cominetti
- Department of Analytical Sciences, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Laeticia Da Silva
- Department of Analytical Sciences, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sebastiano Collino
- Department of Analytical Sciences, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Martin Kussmann
- Department of Analytical Sciences, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Jorg Hager
- Department of Nutrition and Dietary recommendations, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Francois-Pierre Martin
- Department of Metabolic Health, Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
34
|
Khusial RD, Cioffi CE, Caltharp SA, Krasinskas AM, Alazraki A, Knight-Scott J, Cleeton R, Castillo-Leon E, Jones DP, Pierpont B, Caprio S, Santoro N, Akil A, Vos MB. Development of a Plasma Screening Panel for Pediatric Nonalcoholic Fatty Liver Disease Using Metabolomics. Hepatol Commun 2019; 3:1311-1321. [PMID: 31592078 PMCID: PMC6771165 DOI: 10.1002/hep4.1417] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in children, but diagnosis is challenging due to limited availability of noninvasive biomarkers. Machine learning applied to high-resolution metabolomics and clinical phenotype data offers a novel framework for developing a NAFLD screening panel in youth. Here, untargeted metabolomics by liquid chromatography-mass spectrometry was performed on plasma samples from a combined cross-sectional sample of children and adolescents ages 2-25 years old with NAFLD (n = 222) and without NAFLD (n = 337), confirmed by liver biopsy or magnetic resonance imaging. Anthropometrics, blood lipids, liver enzymes, and glucose and insulin metabolism were also assessed. A machine learning approach was applied to the metabolomics and clinical phenotype data sets, which were split into training and test sets, and included dimension reduction, feature selection, and classification model development. The selected metabolite features were the amino acids serine, leucine/isoleucine, and tryptophan; three putatively annotated compounds (dihydrothymine and two phospholipids); and two unknowns. The selected clinical phenotype variables were waist circumference, whole-body insulin sensitivity index (WBISI) based on the oral glucose tolerance test, and blood triglycerides. The highest performing classification model was random forest, which had an area under the receiver operating characteristic curve (AUROC) of 0.94, sensitivity of 73%, and specificity of 97% for detecting NAFLD cases. A second classification model was developed using the homeostasis model assessment of insulin resistance substituted for the WBISI. Similarly, the highest performing classification model was random forest, which had an AUROC of 0.92, sensitivity of 73%, and specificity of 94%. Conclusion: The identified screening panel consisting of both metabolomics and clinical features has promising potential for screening for NAFLD in youth. Further development of this panel and independent validation testing in other cohorts are warranted.
Collapse
Affiliation(s)
- Richard D Khusial
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Catherine E Cioffi
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA
| | - Shelley A Caltharp
- Children's Healthcare of Atlanta Atlanta GA.,Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Alyssa M Krasinskas
- Department of Pathology and Laboratory Medicine Emory University School of Medicine Atlanta GA
| | - Adina Alazraki
- Children's Healthcare of Atlanta Atlanta GA.,Department of Radiology Emory University School of Medicine Atlanta GA
| | | | - Rebecca Cleeton
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Dean P Jones
- Department of Medicine Emory University School of Medicine Atlanta GA
| | | | - Sonia Caprio
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Nicola Santoro
- Department of Pediatrics Yale School of Medicine New Haven CT
| | - Ayman Akil
- Department of Pharmaceutical Sciences, College of Pharmacy Mercer University Atlanta GA
| | - Miriam B Vos
- Nutrition and Health Sciences, Laney Graduate School Emory University Atlanta GA.,Children's Healthcare of Atlanta Atlanta GA.,Department of Pediatrics Emory University School of Medicine Atlanta GA
| |
Collapse
|
35
|
Rangel-Huerta OD, Pastor-Villaescusa B, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics 2019; 15:93. [PMID: 31197497 PMCID: PMC6565659 DOI: 10.1007/s11306-019-1553-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is a disorder characterized by a disproportionate increase in body weight in relation to height, mainly due to the accumulation of fat, and is considered a pandemic of the present century by many international health institutions. It is associated with several non-communicable chronic diseases, namely, metabolic syndrome, type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), and cancer. Metabolomics is a useful tool to evaluate changes in metabolites due to being overweight and obesity at the body fluid and cellular levels and to ascertain metabolic changes in metabolically unhealthy overweight and obese individuals (MUHO) compared to metabolically healthy individuals (MHO). OBJECTIVES We aimed to conduct a systematic review (SR) of human studies focused on identifying metabolomic signatures in obese individuals and obesity-related metabolic alterations, such as inflammation or oxidative stress. METHODS We reviewed the literature to identify studies investigating the metabolomics profile of human obesity and that were published up to May 7th, 2019 in SCOPUS and PubMed through an SR. The quality of reporting was evaluated using an adapted of QUADOMICS. RESULTS Thirty-three articles were included and classified according to four types of approaches. (i) studying the metabolic signature of obesity, (ii) studying the differential responses of obese and non-obese subjects to dietary challenges (iii) studies that used metabolomics to predict weight loss and aimed to assess the effects of weight loss interventions on the metabolomics profiles of overweight or obese human subjects (iv) articles that studied the effects of specific dietary patterns or dietary compounds on obesity-related metabolic alterations in humans. CONCLUSION The present SR provides state-of-the-art information about the use of metabolomics as an approach to understanding the dynamics of metabolic processes involved in human obesity and emphasizes metabolic signatures related to obesity phenotypes.
Collapse
Affiliation(s)
- Oscar Daniel Rangel-Huerta
- Faculty of Medicine, Department of Nutrition, University of Oslo, Oslo, Norway
- Norwegian Veterinary Institute, Oslo, Norway
| | - Belén Pastor-Villaescusa
- LMU - Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Neuherberg, Germany
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix, Centre for Biomedical Research, University of Granada", Granada, Spain.
- Instituto de Investigación Biosanitaria ibs-Granada, Granada, Spain.
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain.
| |
Collapse
|
36
|
Goodson JM, Hardt M, Hartman ML, Alqaderi H, Green D, Tavares M, Mutawa AS, Ariga J, Soparkar P, Behbehani J, Behbehani K. Salivary N1-Methyl-2-Pyridone-5-Carboxamide, a Biomarker for Uranium Uptake, in Kuwaiti Children Exhibiting Exceptional Weight Gain. Front Endocrinol (Lausanne) 2019; 10:382. [PMID: 31281289 PMCID: PMC6596350 DOI: 10.3389/fendo.2019.00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
In a longitudinal study of 6,158 Kuwaiti children, we selected 94 for salivary metabolomic analysis who were neither obese (by waist circumference) nor metabolic syndrome (MetS) positive (<3 diagnostic features). Half (43) remained healthy for 2 years. The other half (51) were selected because they became obese and MetS positive 2 years later. In the half becoming obese, metabolomic analysis revealed that the level of salivary N1-Methyl-2-pyridone-5-carboxamide (2PY) had the highest positive association with obesity (p = 0.0003, AUC = 0.72) of 441 salivary biochemicals detected. 2PY is a recognized uremic toxin. Also, 2PY has been identified as a biomarker for uranium uptake. Considering that a relatively recent military conflict with documented uranium contamination of the area suggests that this weight gain could be a toxicological effect of long-time, low-level uranium ingestion. Comparison of salivary 2PY in samples from the USA and Kuwait found that only Kuwait samples were significantly related to obesity. Also, the geographic distribution of both reported soil radioactivity from 238U and measured salivary 2PY was highest in the area where military activity was highest. The prevalence pattern of adult diabetes in Kuwait suggests that a transient diabetogenic factor has been introduced into the Kuwaiti population. Although we did not measure uranium in our study, the presence of a salivary biomarker for uranium consumption suggests potential toxicity related to obesity in children.
Collapse
Affiliation(s)
- Jo Max Goodson
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
- *Correspondence: Jo Max Goodson
| | - Markus Hardt
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
| | - Mor-Li Hartman
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
| | - Hend Alqaderi
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
- Kuwait School Health Program, Kuwait City, Kuwait
| | - Daniel Green
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
| | - Mary Tavares
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
| | | | | | - Pramod Soparkar
- Department of Applied Oral Sciences, The Forsyth Research Institute, Cambridge, MA, United States
| | - Jawad Behbehani
- Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
37
|
Li KJ, Jenkins N, Luckasen G, Rao S, Ryan EP. Plasma metabolomics of children with aberrant serum lipids and inadequate micronutrient intake. PLoS One 2018; 13:e0205899. [PMID: 30379930 PMCID: PMC6209210 DOI: 10.1371/journal.pone.0205899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022] Open
Abstract
Blood lipids have served as key biomarkers for cardiovascular disease (CVD) risk, yet emerging evidence indicates metabolite profiling might reveal a larger repertoire of small molecules that reflect altered metabolism, and which may be associated with early disease risk. Inadequate micronutrient status may also drive or exacerbate CVD risk factors that emerge during childhood. This study aimed to understand relationships between serum lipid levels, the plasma metabolome, and micronutrient status in 38 children (10 ± 0.8 years) at risk for CVD. Serum lipid levels were measured via autoanalyzer and average daily micronutrient intakes were calculated from 3-day food logs. Plasma metabolites were extracted using 80% methanol and analyzed via ultra-high-performance liquid chromatography-tandem mass spectrometry. Spearman's rank-order coefficients (rs) were computed for correlations between the following serum lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides (TG)], 805 plasma metabolites, and 17 essential micronutrients. Serum lipid levels in the children ranged from 128-255 mg/dL for total cholesterol, 67-198 mg/dL for LDL, 31-58 mg/dL for HDL, and 46-197 mg/dL for TG. The majority of children (71 to 100%) had levels lower than the Recommended Daily Allowance for vitamin E, calcium, magnesium, folate, vitamin D, and potassium. For sodium, 76% of children had levels above the Upper Limit of intake. Approximately 30% of the plasma metabolome (235 metabolites) were significantly correlated with serum lipids. As expected, plasma cholesterol was positively correlated with serum total cholesterol (rs = 0.6654; p<0.0001). Additionally, 27 plasma metabolites were strongly correlated with serum TG (rs ≥0.60; p≤0.0001), including alanine and diacylglycerols, which have previously been associated with cardiometabolic and atherosclerotic risk in adults and experimental animals. Plasma metabolite profiling alongside known modifiable risk factors for children merit continued investigation in epidemiological studies to assist with early CVD detection, mitigation, and prevention via lifestyle-based interventions.
Collapse
Affiliation(s)
- Katherine J. Li
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - NaNet Jenkins
- University of Colorado Health Research–Northern Region, Medical Center of the Rockies, Loveland, Colorado, United States of America
| | - Gary Luckasen
- University of Colorado Health Research–Northern Region, Medical Center of the Rockies, Loveland, Colorado, United States of America
| | - Sangeeta Rao
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pomar CA, Kuda O, Kopecky J, Rombaldova M, Castro H, Picó C, Sánchez J, Palou A. Alterations in plasma acylcarnitine and amino acid profiles may indicate poor nutrition during the suckling period due to maternal intake of an unbalanced diet and may predict later metabolic dysfunction. FASEB J 2018; 33:796-807. [DOI: 10.1096/fj.201800327rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Catalina A. Pomar
- Laboratory of Molecular BiologyNutrition, and Biotechnology (Nutrigenomics and Obesity) Palma de Mallorca Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN)University of the Balearic Islands Palma de Mallorca Spain
| | - Ondrej Kuda
- Department of Adipose Tissue BiologyInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue BiologyInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martina Rombaldova
- Department of Adipose Tissue BiologyInstitute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Heriberto Castro
- Laboratory of Molecular BiologyNutrition, and Biotechnology (Nutrigenomics and Obesity) Palma de Mallorca Spain
- Facultad de Salud Pública y NutriciónUniversidad Autónoma de Nuevo León Nuevo León México
| | - Catalina Picó
- Laboratory of Molecular BiologyNutrition, and Biotechnology (Nutrigenomics and Obesity) Palma de Mallorca Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN)University of the Balearic Islands Palma de Mallorca Spain
- Instituto de Investigación Sanitaria Illes Balears Palma de Mallorca Spain
| | - Juana Sánchez
- Laboratory of Molecular BiologyNutrition, and Biotechnology (Nutrigenomics and Obesity) Palma de Mallorca Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN)University of the Balearic Islands Palma de Mallorca Spain
- Instituto de Investigación Sanitaria Illes Balears Palma de Mallorca Spain
| | - Andreu Palou
- Laboratory of Molecular BiologyNutrition, and Biotechnology (Nutrigenomics and Obesity) Palma de Mallorca Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN)University of the Balearic Islands Palma de Mallorca Spain
- Instituto de Investigación Sanitaria Illes Balears Palma de Mallorca Spain
| |
Collapse
|
39
|
Palomino-Schätzlein M, Simó R, Hernández C, Ciudin A, Mateos-Gregorio P, Hernández-Mijares A, Pineda-Lucena A, Herance JR. Metabolic fingerprint of insulin resistance in human polymorphonuclear leucocytes. PLoS One 2018; 13:e0199351. [PMID: 30005063 PMCID: PMC6044522 DOI: 10.1371/journal.pone.0199351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Abstract
The present study was aimed at determining the metabolic profile of PMNs in obese subjects, and to explore its potential relationship with insulin resistance (IR). To achieve this goal, a pilot clinical study was performed using PMNs from 17 patients with obesity and IR, and 17 lean controls without IR, which was validated in an additional smaller cohort (consisting of 10 patients and 10 controls). PMNs were isolated from peripheral blood and nuclear magnetic resonance was used to perform the metabolomic analysis. A total of 48 metabolites were quantified. The main metabolic change found in PMNs was a significant increase in 2-aminoisobutyric acid with a direct correlation with HOMA-IR (p<0.001), BMI (p<0.000001) and waist circumference (p<0.000001). By contrast, a decrease of 3-hydroxyisovalerate was observed with an inverse correlation with HOMA-IR (p = 0.001), BMI (p = 0.001) and waist circumference (p = 0.0001). Notably, the metabolic profile in plasma was different than that obtained in PMNs. In summary, our results suggest that the change in 3-hydroxyisovalerate and 2-aminoisobutyric is the key metabolic fingerprint in PMNs of obese subjects with IR. In addition, our methodology could be an easy and reliable tool for monitoring the effect of treatments in the setting of precision medicine.
Collapse
Affiliation(s)
- Martina Palomino-Schätzlein
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail: (JRH); (MP); (RS)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
- * E-mail: (JRH); (MP); (RS)
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
| | - Andreea Ciudin
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute, Barcelona, Spain
- CIBERDEM (Instituto de Salud Carlos III), Madrid, Spain
| | - Pablo Mateos-Gregorio
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Antonio Pineda-Lucena
- Structural Biochemistry Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José Raúl Herance
- Medical Molecular Imaging Research Group, Vall d’Hebron Research Institute, CIBBIM-Nanomedicine, CIBERbbn, Barcelona, Spain
- * E-mail: (JRH); (MP); (RS)
| |
Collapse
|
40
|
Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, Wang DD, Corella D, Estruch R, Hernáez Á, Yu E, Gómez-Gracia E, Zheng Y, Arós F, Romaguera D, Dennis C, Ros E, Lapetra J, Serra-Majem L, Papandreou C, Portoles O, Fitó M, Salas-Salvadó J, Hu FB, Martínez-González MA. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 2018; 61:1560-1571. [PMID: 29663011 PMCID: PMC5988977 DOI: 10.1007/s00125-018-4611-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) are associated with type 2 diabetes. However, repeated measurements of BCAA/AAA and their interactions with dietary interventions have not been evaluated. We investigated the associations between baseline and changes at 1 year in BCAA/AAA with type 2 diabetes in the context of a Mediterranean diet (MedDiet) trial. METHODS We included 251 participants with incident type 2 diabetes and a random sample of 694 participants (641 participants without type 2 diabetes and 53 overlapping cases) in a case-cohort study nested within the PREvención con DIeta MEDiterránea (PREDIMED) trial. Participants were randomised to a MedDiet+extra-virgin olive oil (n = 273), a MedDiet+nuts (n = 324) or a control diet (n = 295). We used LC-MS/MS to measure plasma levels of amino acids. Type 2 diabetes was a pre-specified secondary outcome of the PREDIMED trial. RESULTS Elevated plasma levels of individual BCAAs/AAAs were associated with higher type 2 diabetes risk after a median follow-up of 3.8 years: multivariable HR for the highest vs lowest quartile ranged from 1.32 for phenylalanine ([95% CI 0.90, 1.92], p for trend = 0.015) to 3.29 for leucine ([95% CI 2.03, 5.34], p for trend<0.001). Increases in BCAA score at 1 year were associated with higher type 2 diabetes risk in the control group with HR per SD = 1.61 (95% CI 1.02, 2.54), but not in the MedDiet groups (p for interaction <0.001). The MedDiet+extra-virgin olive oil significantly reduced BCAA levels after 1 year of intervention (p = 0.005 vs the control group). CONCLUSIONS/INTERPRETATION Our results support that higher baseline BCAAs and their increases at 1 year were associated with higher type 2 diabetes risk. A Mediterranean diet rich in extra-virgin olive oil significantly reduced the levels of BCAA and attenuated the positive association between plasma BCAA levels and type 2 diabetes incidence. Clinical trial number: SRCTN35739639 ( www.controlled-trials.com ).
Collapse
Affiliation(s)
- Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, Facultad de Medicina, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Guasch-Ferré
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, Facultad de Medicina, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Clary B Clish
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, Facultad de Medicina, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong D Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Biomedical Research Institute August Pi Sunyer (IDI- BAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Álvaro Hernáez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group (Regicor Study Group), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Edward Yu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Yan Zheng
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fernando Arós
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, University Hospital, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Dora Romaguera
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Mallorca, Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Biomedical Research Institute August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - José Lapetra
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Primary Care Division of Sevilla, Sevilla, Spain
| | - Lluis Serra-Majem
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences and Medical School University of Las Palmas de Gran Canarias, Las Palmas de Gran Canaria, Spain
| | - Christopher Papandreou
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
| | - Olga Portoles
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group (Regicor Study Group), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jordi Salas-Salvadó
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Institute, Rovira i Virgili University, Reus, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, Facultad de Medicina, Universidad de Navarra, Irunlarrea 1, 31008, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
41
|
Goetzman ES, Gong Z, Schiff M, Wang Y, Muzumdar RH. Metabolic pathways at the crossroads of diabetes and inborn errors. J Inherit Metab Dis 2018; 41:5-17. [PMID: 28952033 PMCID: PMC6757345 DOI: 10.1007/s10545-017-0091-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Research over the past two decades has led to advances in our understanding of the genetic and metabolic factors that underlie the pathogenesis of type 2 diabetes mellitus (T2DM). While T2DM is defined by its hallmark metabolic symptoms, the genetic risk factors for T2DM are more immune-related than metabolism-related, and the observed metabolic disease may be secondary to chronic inflammation. Regardless, these metabolic changes are not benign, as the accumulation of some metabolic intermediates serves to further drive the inflammation and cell stress, eventually leading to insulin resistance and ultimately to T2DM. Because many of the biochemical changes observed in the pre-diabetic state (i.e., ectopic lipid storage, increased acylcarnitines, increased branched-chain amino acids) are also observed in patients with rare inborn errors of fatty acid and amino acid metabolism, an interesting question is raised regarding whether isolated metabolic gene defects can confer an increased risk for T2DM. In this review, we attempt to address this question by summarizing the literature regarding the metabolic pathways at the crossroads of diabetes and inborn errors of metabolism. Studies using cell culture and animal models have revealed that, within a given pathway, disrupting some genes can lead to insulin resistance while for others there may be no effect or even improved insulin sensitivity. This differential response to ablating a single metabolic gene appears to be dependent upon the specific metabolic intermediates that accumulate and whether these intermediates subsequently activate inflammatory pathways. This highlights the need for future studies to determine whether certain inborn errors may confer increased risk for diabetes as the patients age.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- Children's Hospital of Pittsburgh, Rangos 5117, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Zhenwei Gong
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Manuel Schiff
- UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| | - Yan Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Radhika H Muzumdar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| |
Collapse
|
42
|
Sánchez-Pintos P, de Castro MJ, Roca I, Rite S, López M, Couce ML. Similarities between acylcarnitine profiles in large for gestational age newborns and obesity. Sci Rep 2017; 7:16267. [PMID: 29176728 PMCID: PMC5701125 DOI: 10.1038/s41598-017-15809-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Large for gestational age (LGA) newborns have an increased risk of obesity, insulin resistance, and metabolic syndrome. Acylcarnitine profiles in obese children and adults are characterized by increased levels of C3, C5, and certain medium-chain (C12) and long-chain (C14:1 and C16) acylcarnitines. C2 is also increased in insulin-resistant states. In this 1-year observational study of 2514 newborns (246 LGA newborns, 250 small for gestational age (GA) newborns, and 2018 appropriate for GA newborns), we analyzed and compared postnatal acylcarnitine profiles in LGA newborns with profiles described for obese individuals. Acylcarnitine analysis was performed by tandem mass spectrometry on dried-blood spots collected on day 3 of life. LGA newborns had higher levels of total short-chain acylcarnitines (p < 0.001), C2 (p < 0.01) and C3 (p < 0.001) acylcarnitines, and all C12, C14, and C16 acylcarnitines except C12:1. They also had a higher tendency towards carnitine insufficiency (p < 0.05) and carnitine deficiency (p < 0.001). No significant differences were observed between LGA newborns born to mothers with or without a history of gestational diabetes. This novel study describes a postnatal acylcarnitine profile in LGA with higher levels of C2, C3, total acylcarnitines, and total short-chain acylcarnitines that is characteristic of childhood and adult obesity and linked to an unhealthy metabolic phenotype.
Collapse
Affiliation(s)
- Paula Sánchez-Pintos
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain.
| | - Maria-Jose de Castro
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Iria Roca
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| | - Segundo Rite
- Neonatology Unit. University Hospital Miguel Servet, Zaragoza, Spain
| | - Miguel López
- NeurObesity Group. Department of Physiology, CIMUS. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela (IDIS), 15706, Spain
| | - Maria-Luz Couce
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC). Neonatology Service. Department of Pediatrics. Hospital Clínico Universitario. University of Santiago de Compostela. Institute of Clinical Research of Santiago de Compostela (IDIS). CIBERER, Santiago de Compostela, Spain
| |
Collapse
|
43
|
A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease. Nutrients 2017. [PMID: 28640216 PMCID: PMC5537762 DOI: 10.3390/nu9070642] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of several metabolite pathways, including branched-chain amino acids (BCAAs), are associated with Non-Alcoholic Fatty Liver Disease (NAFLD) and insulin resistance in adults, while studies in youth reported conflicting results. We explored whether, independently of obesity and insulin resistance, obese adolescents with NAFLD display a metabolomic signature consistent with disturbances in amino acid and lipid metabolism. A total of 180 plasma metabolites were measured by a targeted metabolomic approach in 78 obese adolescents with (n = 30) or without (n = 48) NAFLD assessed by magnetic resonance imaging (MRI). All subjects underwent an oral glucose tolerance test and subsets of patients underwent a two-step hyperinsulinemic-euglycemic clamp and/or a second MRI after a 2.2 ± 0.8-year follow-up. Adolescents with NAFLD had higher plasma levels of valine (p = 0.02), isoleucine (p = 0.03), tryptophan (p = 0.02), and lysine (p = 0.02) after adjustment for confounding factors. Circulating BCAAs were negatively correlated with peripheral and hepatic insulin sensitivity. Furthermore, higher baseline valine levels predicted an increase in hepatic fat content (HFF) at follow-up (p = 0.01). These results indicate that a dysregulation of BCAA metabolism characterizes obese adolescents with NAFLD independently of obesity and insulin resistance and predict an increase in hepatic fat content over time.
Collapse
|
44
|
Kolanu BR, Boddula V, Vadakedath S, Kandi V. Amino Acid (Leucine) Chromatography: A Study of Branched-Chain Aminoaciduria in Type 2 Diabetes. Cureus 2017; 9:e1091. [PMID: 28413737 PMCID: PMC5391057 DOI: 10.7759/cureus.1091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Diabetes is a disease characterized by insulin deficiency resulting in glucose intolerance and in abnormalities of other metabolic fuels including protein. Recently, a number of studies have revealed that branched-chain amino acids (BCAAs) (leucine, isoleucine, and valine) play an important role in the regulation of protein synthesis by activating mammalian target of rapamycin (mTOR) in pancreatic β cells. BCAAs have positive effects on the regulation of glucose homeostasis. Leucine is an important nutrient signal as evidenced by recent observations, which showed increased fasting concentrations of circulating BCAAs being associated with an increased risk of type 2 diabetes (T2D) and insulin resistance in humans. Leucine seems to have direct effects on hypothalamic and brainstem functioning involved in satiety, which can potentially contribute to obesity and T2D. A number of observational studies indicate that elevated activity of BCAAs could be associated with poor metabolic health and T2D complications. Although these associations were consistently observed in humans, the mechanisms underlying this relationship remain to be completely understood. In this study, we have attempted to evaluate urinary excretion of leucine among patients of T2D and compared them with healthy controls by using a low-cost and non-invasive amino acid chromatography technique. METHODS The study was carried out in the Department of Biochemistry, Central Research Unit, Prathima Institute of Medical Sciences (PIMS), Karimnagar, Telangana, India, during the period between July and September 2016. A group of 55 normal healthy subjects (control group A), and 55 patients suffering from T2D on treatment (test group B), were enrolled in the study. The urine samples were collected from normal and T2D subjects. Thin-layer chromatography (TLC) for leucine was performed on all the urine samples. RESULTS A strong correlation (p=0.0004) was found between the urinary excretion of leucine among the control (Rf=0.174 ±0.089) and T2D (Rf=0.247 ±0.030) patients. CONCLUSION Excretion of BCAAs (leucine) in detectable and increased quantities reflect the presence of an altered metabolic state attributable to T2D, which in turn could lead to early diabetic complications. This method (TLC), being non-invasive and cost-effective, could be recommended for assessing the progression and management of type 2 diabetes patients.
Collapse
|
45
|
Ali-Dinar T, Lang JE. Is impaired glucose metabolism the missing piece in the obesity-asthma puzzle? Pediatr Pulmonol 2017; 52:147-150. [PMID: 27749021 DOI: 10.1002/ppul.23625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/29/2016] [Indexed: 11/06/2022]
Abstract
Obesity is a major risk factor for several conditions including atherosclerotic disease, metabolic syndrome, and upper airway dysfunction. However, the purported link between obesity and asthma has remained more difficult to define, in part due to limitations in past epidemiologic studies and the inherent challenge in accurately defining asthma in children. It is possible that obesity leads to asthma only in the presence of a mediating variable such as an obesity-related conditions such as esophageal reflux or insulin resistance. The article by Karampatakis and colleagues in this week's edition of the journal is important because it addresses the hypothesis that altered glucose metabolism/insulin resistance associates with bronchial hyperresponsiveness (BHR), a central and objectively measured marker of asthma. They studied pre-pubertal children with and without asthma with a range of body mass indices and found for the first time in pre-pubertal asthmatic children that both insulin resistance and impaired glucose tolerance were more closely related to BHR than was obesity. Their work opens the way for directed mechanistic study of the effects of impaired glucose metabolism on airway development during childhood and airway responsiveness, and for the study of insulin sensitizing therapies in children to prevent lower airway disease. Pediatr Pulmonol. 2017;52:147-150. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tarig Ali-Dinar
- Division of Pulmonary and Sleep Medicine, Nemours Children's Hospital, Orlando, Florida
| | - Jason E Lang
- Division of Pulmonary Medicine, Duke Children's Hospital and Health Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|